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Abstract. We consider the recovery of some statistical quantities by using the

near-field or far-field data in quantum scattering generated under a single real-
ization of the randomness. We survey the recent main progress in the literature

and point out the similarity among the existing results. The methodologies in

the reformulation of the forward problems are also investigated. We consider
two separate cases of using the near-field and far-field data, and discuss the key

ideas of obtaining some crucial asymptotic estimates. We pay special attention

on the use of the theory of pseudodifferential operators and microlocal analysis
needed in the proofs.

1. Introduction.

1.1. Mathematical formulations. In this paper, we mainly focus on the random
inverse problems associated with the following time-harmonic Schrödinger system

(−∆− E + potential)u(x) = source, x ∈ Rn, (1.1)

where E is the energy level, n is the dimension, and “source” and the “potential”
in (1.1) shall be specified later. In some cases we may impose incident waves to the
system in order to obtain more useful information, thus

u(x) = α · uin(x) + usc(x) (1.2)

where α takes the value of either 0 or 1 corresponding to impose or suppress the
incident wave, respectively. The corresponding data are thus called passive or active
measurements. Moreover, we shall impose the Sommerfeld radiation condition [10]

lim
r→∞

r

(
∂usc

∂r
− i
√
Eusc

)
= 0, r := |x|, (1.3)

that characterizes the outgoing nature of the scattered field usc. The system (1.1)-
(1.3) describes the quantum scattering [13, 14] associated with a source and a po-

tential at the energy level E. Later we follow the convention to use k :=
√
E to

signify the frequency at which the system is acting on.
Under different assumptions of the potential and source, of the dimension, and

of the incident wave, the regularity of the Schrödinger system (1.1)-(1.3) behaves
differently and calls for different techniques for the recovery procedure. The ran-
domness of the Schrödinger system (1.1)-(1.3) can present either in the potential,
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or in the source, or in both. In this paper we shall investigate all of these three
cases, survey the results in the literature and give details of part of the proofs.

There are rich literature on the inverse scattering problem using either passive or
active measurements as data. For a fixed potential, the recovery of the deterministic
unknown source of the system is called the inverse source problem. For the theoreti-
cal analysis and computational methods of the inverse source problems, readers may
refer to [3–5,9,31,34] and references therein. The simultaneous recovery of the deter-
ministic unknown source and potential are also studied in the literature. In [17,26],
the authors considered the simultaneous recovery of an unknown source and its
surrounding medium parameter. This type of inverse problems also arises in the
deterministic magnetic anomaly detections using geomagnetic monitoring [11, 12]
with passive measurements. While [11, 12, 17, 26] focus on deterministic setting
with passive measurements, the works [2,6,7,18–20,27,33] pay attention to random
settings. We are particularly interested in the case with a single realization of the
random sample. The single-realization recovery has been studied in the literature.
In this paper we mainly focus on [8, 18–25].

In [18, 19], Lassas et. al. considered the inverse scattering problem for the two-
dimensional random Schrödinger system (−∆−k2−q(x, ω))u(x, k, ω) = δy, x ∈ R2

which is incited by point sources uin(x) = i
4H

(1)
0 (k|x− y|); the H

(1)
0 is the Hankel

function for the first kind, and the origin y of this source are located outside the sup-
port of the potential. The potential q(x, ω) is a micro-locally isotropic generalized
Gaussian field (migr field) with compact support. The definition of the migr field
can be found in Definition 1.1. They introduced the so-called rough strength µ(x),
which is the informative part of the principal symbol µ(x)|ξ|−m of the covariance
operator. The −m in µ(x)|ξ|−m is the rough order of the random potential. The
main result in their work states that under a single measurement of the random
field inside a measurement domain, the rough strength can be recovered.

In 2019, Caro et. al. [8] considered an inverse scattering problem for an n-
dimensional (n ≥ 2) random Schrödinger system (−∆ − k2 − q(x, ω))u(x, k, ω) =
0, x ∈ Rn with incident wave being the plane wave, i.e. u is incited by the point
sources uin(x) = eikd·x; d is the incident direction. Again, the potential q is assumed
to be a migr field with compact support. The main result is as follows: they used
the backscattering far-field pattern and recovered the rough strength µ(x) almost
surely, under a single realization of the randomness.

In [20], Li, et. al. studied the case where the potential is zero and the source
is migr field. In [24] Li, et. al. studied the same setting but with the energy level
E replaced by (k2 + iσk) where the σ is the attenuation parameter. The ran-
dom source term considered is constructed as a migr field. The system has been
changed to Helmholtz system in [24] but the underlying equation is uniform with the
Schrödinger’s equation. The authors studied the regularity of the random source
and gave the well-posedness of the direct problem. Then they represented the solu-
tion as the convolution between the fundamental solution and the random source.
By truncating the fundamental solution, they indicated that the rough strength
can be recovered by utilizing the correspondingly truncated solution. Further, the
authors used calculus of symbols to recover the rough strength.

Then in [23], Li, et. al. further extended their study to Maxwell’s equation. The
recovery procedure in these three works share the same idea–the leading order term
in the Bonn expansion gives the recovery of the desired statistics while the higher
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order terms converge to zero. The proof of these converges involve the utilization
of Fourier integral operator. We shall give detailed explanations in Section 3.

In [21], the authors consider the direct and inverse scatterings for (1.1)–(1.3) with
a deterministic potential and a random source. The random source is a generalized
Gaussian random field with local mean value function and local variance function,
which are assumed to be bounded and compactly supported. The well-posedness
of the direct scattering has been formulated in some weighted L2 space. Then
the inverse scattering is studied and a recovery formula of the variance function
is obtained, and the uniqueness recovery of the potential is given. The authors
used both passive and active measurements to recover the unknowns. The passive
measurements refer to the scattering data generated only by the unknown source (α
is set to be 0 in (1.2)); active measurements refer to the scattering data generated
by both the source and the incident wave (α is set to be 1 in (1.2)). To recover
the variance function, only the passive measurements are needed, while the unique
recovery of the potential needs active measurements.

In [25], the authors extended the work [21] to the case where the source is a migr
field. The direct scattering problem is formulated in a similar manner as in [21],
while the technique used in the inverse scattering problem differs from that of [21].
In order to analyze the asymptotics of higher order terms in the Bonn expansion
corresponding to the migr fields, stationary phase lemma and pseudodifferential
operator are utilized.

Then the authors extended the work [25] to the case where both the potential and
the source are random (of migr type), and the extended result is presented in [22].
The results between [21] and [22, 25] have two major differences. First, in [21] the
random part of the source is assumed to be a Gaussian white noise, while in [22]
the potential and the source are assumed to be migr fields. The migr field can fit
larger range of randomness by tuning its rough order and rough strength. Second,
in [22] both the source and potential are random, while in [25] the potential is
assumed to be deterministic. These two facts make [22] much more challenging
than that in [25]. The techniques used in the estimates of higher order terms in [22]
are pseudodifferential operators and microlocal analysis and we shall give a detailed
treatment in Section 4.

Although the techniques used in [21,22,25] are different, the recovery formulae fall
into the same pattern. The thesis [28] partially collected these three works [21,22,25]
and readers may refer to the thesis for a more coherent discussion on this topic.

1.2. Summarization of the main results. In this paper we mainly pay attention
to two types of random model, the Gaussian white noise and the migr field. The
Gaussian white noise is well-known and readers may refer to [21, Section 2.1] for
more details. Here we give a brief introduction to the migr field. We assume f to
be a generalized Gaussian random distribution of the microlocally isotropic type
(cf. Definition 1.1). It means that f(·, ω) is a random distribution and the mapping

ω ∈ Ω 7→ 〈f(·, ω), ϕ〉 ∈ C, ϕ ∈ S (Rn),

is a Gaussian random variable whose probabilistic measure depends on the test
function ϕ. Here and also in what follows, S (Rn) stands for the Schwartz space.
Since both 〈f(·, ω), ϕ〉 and 〈f(·, ω), ψ〉 are random variables for ϕ, ψ ∈ S (Rn), from
a statistical point of view, the covariance between these two random variables,

Eω
(
〈f(·, ω)− E(f(·, ω)), ϕ〉〈f(·, ω)− E(f(·, ω)), ψ〉

)
, (1.4)
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can be understood as the covariance of f . Here Eω means to take expectation on
the random variable ω. Hence, formula (1.4) defines an operator Cf ,

Cf : ϕ ∈ S (Rn) 7→ Cf (ϕ) ∈ S ′(Rn),

in a way that Cf (ϕ) : ψ ∈ S (Rn) 7→ (Cf (ϕ))(ψ) ∈ C where

(Cf (ϕ))(ψ) := Eω
(
〈f(·, ω)− E(f(·, ω)), ϕ〉〈f(·, ω)− E(f(·, ω)), ψ〉

)
.

The operator Cf is called the covariance operator of f .

Definition 1.1 (Migr field). A generalized Gaussian random distribution f on Rn
is called microlocally isotropic with rough order −m and rough strength µ(x) in a
bounded domain D, if the following conditions hold:

1. the expectation E(f) is in C∞c (Rn) with suppE(f) ⊂ D;
2. f is supported in D a.s. (almost surely);
3. the covariance operator Cf is a classical pseudodifferential operator of order
−m;

4. Cf has a principal symbol of the form µ(x)|ξ|−m with µ ∈ C∞c (Rn;R), suppµ ⊂
D and µ(x) ≥ 0 for all x ∈ Rn.

We call a microlocally isotropic Gaussian random distribution as an migr field.

For the case where both the source and the potential are deterministic and are
L∞ functions with compact supports, the well-posedness of the direct problem of
system (1.1)–(1.3) is known; see, e.g., [10,13,29]. Moreover, there holds the following
asymptotic expansion of the outgoing radiating field usc as |x| → +∞,

usc(x) =
eik|x|

|x|(n−1)/2
u∞(x̂, k, d) + o(|x|−(n−1)/2), x ∈ Rn.

u∞(x̂, k, d) is referred to as the far-field pattern, which encodes information of the
potential and the source. x̂ := x/|x| and d in u∞(x̂, k, d) are unit vectors and they
respectively stand for the observation direction and the impinging direction of the
incident wave. When d = −x̂, u∞(x̂, k,−x̂) is called the backscattering far-field
pattern. We shall see very soon that both the near-field usc and the far-field u∞

can be used to achieve the recovery.
In (1.1), let us denote the source term as f and the potential term as q. In

our study, both the source f and the potential q are assumed to be compactly
supported. We shall treat [8,18–25] in more details. In [8,18,19], q is assumed to be
a migr field while f is either zero or point a point source, i.e. δy(x). In [20, 23, 24],
q is assumed to be zero and f is assumed to be a migr field. In [21], q is assumed
to be unknown and deterministic and f is assumed to be a Gaussian white noise,
while in [22,25], q is assumed to be deterministic or migr type and f is assumed to
be a migr field.

In [18, 19] the authors considered the inverse scattering problem for the two-
dimensional random Schrödinger system (−∆−k2− q(x, ω))u(x, k, ω) = δy(x) (x ∈
R2) which is incited by point sources uin(x) = i

4H
(1)
0 (k|x − y|); the H

(1)
0 is the

Hankel function for the first kind, and the origin y of this source is located in U .
The potential q(x, ω) is a migr field with compact support D and U ∩D = ∅. The
main result is presented as follows (cf. [19, Theorem 7.1]).

Theorem 1.1. In [18, 19], for x, y ∈ U the limit

R(x, y) = lim
K→+∞

1

K − 1

∫ K

1

k2+m|usc(x, y, k, ω)|2 dk
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holds almost surely where

R(x, x) :=
1

26+mπ2

∫
R2

µq(z)

|x− z|2
dz, x ∈ U.

and the µq is the rough strength and −m is the rough order of q.

In [8], the authors considered (−∆ − k2 − q(x, ω))u(x, k, ω) = 0, x ∈ Rn with
incident plane wave uin(x) = eikd·s. The potential q is assumed to be a migr field
with compact support. The main result (cf. [8, Corollary 4.4]) is as follows.

Theorem 1.2. In [8], the limit

µ̂q(2τ x̂) ' lim
K→+∞

1

K

∫ 2K

K

kmu∞(x̂,−x̂, k)u∞(x̂,−x̂, k + τ) dk, x̂ ∈ S2, τ > 0.

holds almost surely.

We note that the near-field data are used in [18, 19], while in [8], the authors
used the far-field data.

Part of the results in [20] and [23, 24] are similar to each other and we only
survey the first result in [20]. In [20] the authors studied the Helmholtz equation
(−∆−k2)u(x) = f where f is a source of migr type. Note that the potential equals
zero. The main result (cf. [20, Theorem 3.9]) is similar to Theorem 1.1.

Theorem 1.3. In [20], the limit∫
µf (z)

|x− z|
dz ' lim

K→+∞

1

K − 1

∫ K

1

k1+m|usc(x, k, ω)|2 dk, x ∈ U,

holds almost surely.

In [21], the authors considered direct and inverse scattering for (1.1)–(1.3) with an

unknown deterministic potential and a Gaussian noise source of the form σ(x)Ḃx(ω),

where σ(x) is the variance and Ḃx(ω) is the Gaussian white noise. The main result
(cf. [21, Lemma 4.3]) is

Theorem 1.4. In [21], the identity

σ̂2(x) = 4
√

2π lim
j→+∞

1

Kj

∫ 2Kj

Kj

u∞(x̂, k, ω) · u∞(x̂, k + τ, ω) dk.

holds almost surely.

The paper [25] extended the work [21] to the case where the source is a migr
field f with µf as its rough strength and −m as its rough order. For notational
convenience, we shall use {Kj} ∈ P (t) to signify a sequence {Kj}j∈N satisfying
Kj ≥ Cjt (j ∈ N) for some fixed constant C > 0. Throughout the rest of the paper,
γ stands for a fixed positive real number. The main result (cf. [25, Theorem 4.3])
is presented below.

Theorem 1.5. In [25], assume 2 < m < 3 and let m∗ = max{2/3, (3−m)−1/2}.
Assume that {Kj} ∈ P (m∗+γ). Then ∃Ω0 ⊂ Ω: P(Ω0) = 0, Ω0 depending only on
{Kj}j∈N, such that for any ω ∈ Ω\Ω0, there exists Sω ⊂ R3 : |Sω| = 0, it holds that
for ∀τ ∈ R+ and ∀x̂ ∈ S2 satisfying τ x̂ ∈ R3\Sω,

µ̂(τ x̂) = 4
√

2π lim
j→+∞

1

Kj

∫ 2Kj

Kj

kmu∞(x̂, k, ω) · u∞(x̂, k + τ, ω) dk,

holds for ∀τ ∈ R+ and ∀x̂ ∈ S2 satisfying τ x̂ ∈ R3\Sω.
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Then in [22] the authors further extended the work [25] to the case where both
the potential q and the source f are random of migr type. The f (resp. q) is assumed
to be supported in the domain Df (resp. Dq). In what follows, we assume that there
is a positive distance between the convex hulls of the supports of f and q, i.e.,

dist(CH(Df ), CH(Dq)) := inf{ |x− y| ; x ∈ CH(Df ), y ∈ CH(Dq) } > 0, (1.5)

where CH means taking the convex hull of a domain. Therefore, one can find a
plane which separates Df and Dq. In order to simplify the exposition, we assume
that Df and Dq are convex domains and hence CH(Df ) = Df and CH(Dq) = Dq.
Moreover, we let n denote the unit normal vector of the aforementioned plane that
separates Df and Dq, pointing from the half-space containing Df into the half-space
containing Dq. Then the result of this work (cf. [22, Theorems 1.1 and 1.2]) is as
follows.

Theorem 1.6. In [22], suppose that f and q in system (1.1)-(1.3) are migr fields
of order −mf and −mq, respectively, satisfying

2 < mf < 4, mf < 5mq − 11.

Assume that (1.5) is satisfied and n is defined as above. Then, independent of µq,
µf can be uniquely recovered almost surely and the recovering formula of µf is given
by

µ̂f (τ x̂) =

 lim
K→+∞

4
√

2π

K

∫ 2K

K

kmfu∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk, x̂ · n ≥ 0,

µ̂f (−τ x̂), x̂ · n < 0,

(1.6)
where τ ≥ 0 and u∞(x̂, k, ω) ∈Mf (ω) := {u∞(x̂, k, ω) ; ∀x̂ ∈ S2, ∀k ∈ R+ }.

When mq < mf , µq can be uniquely recovered almost surely by the data set
Mq(ω) for a fixed ω ∈ Ω. Moreover, the recovering formula is given by

µ̂q(τ x̂) =

 lim
K→+∞

4
√

2π

K

∫ 2K

K

kmqu∞(x̂, k,−x̂, ω)u∞(x̂, k+ τ
2
,−x̂, ω) dk, x̂ · n ≥ 0,

µ̂f (−τ x̂), x̂ · n < 0,

(1.7)

where τ ≥ 0 and u∞(x̂, k,−x̂, ω) ∈ Mq(ω) := {u∞(x̂, k,−x̂, ω) ; ∀x̂ ∈ S2, ∀k ∈
R+ }.

Remark 1.1. In Theorem 1.6, the data setsMf (ω) andMf (ω) correspond to the
case where the incident wave is passive and active, respectively. Readers may refer
to [22, Section 1] for more details.

Readers should note that the recovery formulae in Theorems 1.1–1.6 only use
a single realization of the randomness; the terms on the left-hand-sides are inde-
pendent of the random sample ω, while these on the right-hand-sides are limits of
terms depending on ω. This feature is also described as “statistically stable” in the
literature. The key ingredient of making this single-realization recovery possible is
ergodicity; on the right-hand-sides of these recoveries formulae in Theorems 1.1–1.6,
the probabilistic expectation operation are replaced by the average in the frequency
variable and then taking to the infinity of the frequency variable. Theorems 1.1 and
1.3 utilize the near-field data to achieve the recovery, while Theorem 1.2 and 1.4–1.6
use the far-field data. Due to this difference, the corresponding techniques required
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in the proofs are also different. We shall present these techniques separately in
Sections 3 and 4.

The rest of this paper is organized as follows. In Section 2, we first give some
preliminaries and present the well-posedness of the direct problems. In Section 3,
we give the sketch of the proofs in [8, 18–20, 23, 24]. Section 4 is devoted to the
details of the works [22,25]. We conclude the paper in Section 5 with some remarks
and open problems.

2. Preliminaries and the direct problems. Due to the presence of the random-
ness, the regularity of the potential and/or the source may be too bad to fall into
the scenarios of standard PDEs techniques. In this section, we show some details
used in reformulating the direct problems of (1.1)-(1.3) in a proper sense. Before
that, we first present some preliminaries as well as some facts related to the migr
field for the subsequent use.

2.1. Preliminary and auxiliary results. For convenient reference and self-
containedness, we first present some preliminary and auxiliary results. In this pa-
per we mainly focus on the two- and three-dimensional cases. Nevertheless, some
of the results derived also hold for higher dimensions and in those cases, we choose
to present the results in the general dimension n ≥ 3 since they might be useful in
other studies. Here we follow closely [22].

Throughout the paper, we write L(A,B) to denote the set of all the bounded
linear mappings from a normed vector space A to a normed vector space B. For
any mapping K ∈ L(A,B), we denote its operator norm as ‖K‖L(A,B). We also
use C and its variants, such as CD, CD,f , to denote some generic constants whose
particular values may change line by line. For two quantities, we write P . Q to

signify P ≤ CQ and P ' Q to signify C̃Q ≤ P ≤ CQ, for some generic positive

constants C and C̃. We write “almost everywhere” as “a.e.” and “almost surely”
as “a.s.” for short. We use |S| to denote the Lebesgue measure of any Lebesgue-
measurable set S.

The Fourier transform and inverse Fourier transform of a function ϕ are respec-
tively defined as

Fϕ(ξ) = ϕ̂(ξ) := (2π)−n/2
∫
e−ix·ξϕ(x) dx,

F−1ϕ(ξ) := (2π)−n/2
∫
eix·ξϕ(x) dx.

Set

Φ(x, y) = Φk(x, y) :=
eik|x−y|

4π|x− y|
, x ∈ R3\{y}.

Φk is the outgoing fundamental solution, centered at y, to the differential operator
−∆− k2. Define the resolvent operator Rk,

(Rkϕ)(x) :=

∫
R3

Φk(x, y)ϕ(y) dy, x ∈ R3, (2.1)

where ϕ can be any measurable function on R3 as long as (2.1) is well-defined for
almost all x in R3.
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Write 〈x〉 := (1+ |x|2)1/2 for x ∈ Rn, n ≥ 1. We introduce the following weighted
Lp-norm and the corresponding function space over Rn for any δ ∈ R,

‖ϕ‖Lpδ(Rn) := ‖〈·〉δϕ(·)‖Lp(Rn) =
( ∫

Rn
〈x〉pδ|ϕ|p dx

) 1
p ,

Lpδ(R
n) := {ϕ ∈ L1

loc(Rn) ; ‖ϕ‖Lpδ(Rn) < +∞}.
(2.2)

We also define Lpδ(S) for any subset S in Rn by replacing Rn in (2.2) with S. In
what follows, we may write L2

δ(Rn) as L2
δ for short without ambiguities. Let I be

the identity operator and define

‖f‖Hs,pδ (Rn) := ‖(I −∆)s/2f‖Lpδ(Rn), H
s,p
δ (Rn) = {f ∈ S ′; ‖f‖Hs,pδ (Rn) < +∞},

where S ′ stands for the dual space of the Schwartz space S (Rn). The space

Hs,2
δ (Rn) is abbreviated as Hs

δ (Rn), and Hs,p
0 (Rn) is abbreviated as Hs,p(Rn). It

can be verified that

‖f‖Hsδ (Rn) = ‖〈·〉sf̂(·)‖Hδ(Rn). (2.3)

Let m ∈ (−∞,+∞). We define Sm to be the set of all functions σ(x, ξ) ∈
C∞(Rn,Rn;C) such that for any two multi-indices α and β, there is a positive
constant Cα,β , depending on α and β only, for which∣∣(Dα

xD
β
ξ σ)(x, ξ)

∣∣ ≤ Cα,β(1 + |ξ|)m−|β|, ∀x, ξ ∈ Rn.

We call any function σ in
⋃
m∈R S

m a symbol. A principal symbol of σ is an equiv-

alent class [σ] = {σ̃ ∈ Sm ; σ − σ̃ ∈ Sm−1}. In what follows, we may use one
representative σ̃ in [σ] to represent the equivalent class [σ]. Let σ be a symbol.
Then the pseudo-differential operator T , defined on S (Rn) and associated with σ,
is defined by

(Tσϕ)(x) := (2π)−n/2
∫
Rn
eix·ξσ(x, ξ)ϕ̂(ξ) dξ

= (2π)−n
∫∫

Rn×Rn
ei(x−y)·ξσ(x, ξ)ϕ(y) dy dξ, ∀ϕ ∈ S (Rn).

Recall Definition 1.1. Lemma 2.1 below shows how the rough order of a migr
field is related to its Sobolev regularity.

Lemma 2.1. Let h be an migr distribution of rough order −m in Dh. Then,
h ∈ H−s,p(Rn) almost surely for any 1 < p < +∞ and s > (n−m)/2.

Proof of Lemma 2.1. See [8, Proposition 2.4].

By the Schwartz kernel theorem (see [15, Theorem 5.2.1]), there exists a kernel
Kh(x, y) with suppKh ⊂ Dh ×Dh such that

(Chϕ)(ψ) = Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉) =

∫∫
Kh(x, y)ϕ(x)ψ(y) dxdy, (2.4)

for all ϕ, ψ ∈ S (Rn). It is easy to verify that Kh(x, y) = Kh(y, x). Denote the
symbol of Ch as ch, then it can be verified (see [8]) that the equalities

Kh(x, y) = (2π)−n
∫
ei(x−y)·ξch(x, ξ) dξ, (2.5a)

ch(x, ξ) =

∫
e−iξ·(x−y)Kh(x, y) dx, (2.5b)
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hold in the distributional sense, and the integrals in (2.5) shall be understood as
oscillatory integrals. Despite the fact that h usually is not a function, intuitively
speaking, however, it is helpful to keep in mind the following correspondence,

Kh(x, y) ∼ Eω
(
h(x, ω)h(y, ω)

)
.

2.2. Some techniques related to the direct problem. One way to study the
direct problem of (1.1)-(1.3) is to transform it into the Lippmann-Schwinger equa-
tion, and then use the Bonn expansion to define a solution. To that end, the estimate
of the operator norm of the resolvent Rk is crucial. Among different types of the
estimates in the literature, one of them is known as Agmon’s estimate (cf. [13, §29]).
Reformulating (1.1) into the Lippmann-Schwinger equation formally (cf. [10]), we
obtain

(I −Rkq)usc = αRkquin −Rkf.
We demonstrate two lemmas dealing with the lack of regularity when utilizing

Agmon’s estimates. Lemma 2.2 (cf. [25, Lemma 2.2]) shows the resolvent can take
a migr field as an input without any trouble, while Lemma 2.3 (cf. [22, Theorem
2.1]) gives a variation of Agmon’s estimate to fit our own problem settings.

Lemma 2.2. Assume f is a migr field with rough order −m and supp f ⊂ Df

almost surely, then we have Rkf ∈ L2
−1/2−ε for any ε > 0 almost surely.

Proof. We split Rkf into two parts, Rk(Ef) and Rk(f − Ef). [21, Lemma 2.1]
gives Rk(Ef) ∈ L2

−1/2−ε. For Rk(f − Ef), by using (2.4), (2.5) and (2.1), one can
compute

E(‖Rk(f − Ef)(·, ω)‖2L2
−1/2−ε

)

=

∫
R3

〈x〉−1−2εE(〈f − Ef,Φ−k,x〉〈f − Ef,Φk,x〉) dx =

∫
R3

〈x〉−1−2ε〈CfΦ−k,x,Φk,x〉dx

'
∫
〈x〉−1−2ε

∫
Df

( ∫
Df

I(y, z)e−ik|x−z|

|x− z| · |y − z|2 dz
)
· e

ik|x−y|

|x− y| dy dx, (2.6)

where cf (y, ξ) is the symbol of the covariance operator Cf and

I(y, z) :=

∫
R3

|y − z|2ei(y−z)·ξcf (y, ξ) dξ.

When y = z, we know I(y, z) = 0 because the integrand is zero. Thanks to the
condition m > 2, when y 6= z we have

|I(y, z)| =
∣∣ 3∑
j=1

∫
R3

ei(y−z)·ξ(∂2
ξjcf )(y, ξ) dξ

∣∣ 3∑
j=1

∫
R3

Cj〈ξ〉−m−2 dξ ≤ C0 < +∞,

(2.7)

for some constant C0 independent of y and z. Note that if Df is bounded, then for
j = 1, 2 we have ∫

Df

|x− y|−j dy ≤ Cf,j〈x〉−j , ∀x ∈ R3, (2.8)

for some constant Cf,j depending only on f, j and the dimension. The notation 〈x〉
in (2.8) stands for (1 + |x|2)1/2 and readers may note the difference between the
〈·〉 and the 〈·, ·〉 appeared in (2.1). With the help of (2.7) and (2.8) and Hölder’s
inequality, we can continue (2.6) as

E(‖Rk(f − Ef)(·, ω)‖2L2
−1/2−ε

)
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.
∫
〈x〉−1−2ε

( ∫∫
Df×Df

(|x− z| · |y − z|2 · |x− y|)−1 dz dy
)

dx

≤
∫
〈x〉−1−2εCf 〈x〉−2 dx ≤ Cf < +∞,

which gives

E(‖Rk(f − Ef)(·, ω)‖2L2
−1/2−ε

) ≤ Cf < +∞. (2.9)

By using the Hölder inequality applied to the probability measure, we obtain from
(2.9) that

E‖Rk(f − Ef)‖L2
−1/2−ε

≤ [E(‖Rk(f − Ef)‖2L2
−1/2−ε

)]1/2 ≤ C1/2
f < +∞, (2.10)

for some constant Cf independent of k. The formula (2.10) gives that Rk(f−Ef) ∈
L2
−1/2−ε almost surely, and hence Rkf ∈ L2

−1/2−ε almost surely.

The proof is complete.

Lemma 2.3. For any 0 < s < 1/2 and ε > 0, when k > 2,

‖Rkϕ‖Hs−1/2−ε(R3) ≤ Cε,sk−(1−2s)‖ϕ‖H−s
1/2+ε

(R3), ϕ ∈ H−s1/2+ε(R
3).

Proof. We adopt the concept of Limiting absorption principle to first show desired
results on a family of operator Rk,τ controlled by a parameter τ , and then show
that Rk,τ converges in a proper sense as τ approaches zero. We sketch out the
key steps in the proof and readers may refer to the proof of [22, Theorem 2.1] for
complete details.

Define an operator

Rk,τϕ(x) := (2π)−3/2

∫
R3

eix·ξ
ϕ̂(ξ)

|ξ|2 − k2 − iτ
dξ, (2.11)

where τ ∈ R+. Fix a function χ satisfying
χ ∈ C∞c (Rn), 0 ≤ χ ≤ 1,

χ(x) = 1 when |x| ≤ 1,

χ(x) = 0 when |x| ≥ 2.

(2.12)

Write Rψ(x) := ψ(−x). We have

(Rk,τϕ,ψ)L2(R3)

=

∫
R3

Rk,τϕ(x)ψ(x) dx =

∫
R3

F{Rk,τϕ}(ξ) · F{Rψ}(ξ) dξ

=

∫ ∞
0

(1− χ2(r − k))

r2 − k2 − iτ
dr ·

∫
|ξ|=r

ϕ̂(ξ) · R̂ψ(ξ) dS(ξ)

+

∫ ∞
0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ×

∫
S2

[〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)] dS(ω)

+

∫ ∞
0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫
S2
{[〈r〉

−1
2p ϕ̂(rω)][〈r〉

−1
2p R̂ψ(rω)]

− [〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)]} dS(ω)

=: I1(τ) + I2(τ) + I3(τ). (2.13)

Here we divide (Rk,τϕ,ψ)L2(R3) into three parts in order to deal with the singularity
happened in the integral when |ξ| is close to k. The integral in I1 has avoided this
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singularity by the cutoff function χ. The singularity in I2 is only contained in the
integration w.r.t. r, and it can be shown that by using Cauchy’s integral theorem
and choosing a proper integral path w.r.t. r, the norm of the denominator τ2−k2−iτ
can always be bounded below by k, e.g. |τ2 − k2 − iτ | & k. The singularity in I3
is compensated by the difference [· · · ] inside the integration

∫
S2 [· · · ] dS(ω). In the

following, we only show how to deal with I2.
Now we estimate I1(τ). By Young’s inequality ab ≤ ap/p + bq/q, for a, b >

0, p, q > 1, 1/p+ 1/q = 1 we have

(p1/pq1/q)a1/pb1/q ≤ a+ b. (2.14)

Note that |r−k| > 1 in the support of the function 1−χ2(r−k) and |R̂ψ(ξ)| = |ψ̂(ξ)|,
one can compute

|I1(τ)| ≤
∫ ∞

0

1− χ2(r − k)

1 · p1/pq1/q(r + 1)1/p(k − 1)1/q
dr ·

∫
|ξ|=r

|ϕ̂(ξ)| · |ψ̂(ξ)|dS(ξ) (by (2.14))

≤ Cpk1/p−1‖ϕ‖
H
−1/(2p)
δ

(R3)
‖ψ‖

H
−1/(2p)
δ

(R3)
, (2.15)

where 1 < p < +∞ and δ > 0 and the Cp is independent of τ .
We next estimate I2(τ). One has

I2(τ) =

∫
S2

[〈k〉
−1
2p ϕ̂(kω)][〈k〉

−1
2p R̂ψ(kω)]

∫ ∞
0

〈r〉
1
p r2χ2(r − k) dr

r2 − k2 − iτ
dS(ω). (2.16)

It can be shown that, by choosing a fixed τ0 ∈ (0, 1) carefully, we can show that the
denominator pτ (r) := r2 − k2 − iτ could satisfy

|pτ (r)| ≥ τ0k and |r| . k, ∀r ∈ {r; 2 ≥ |r − k| ≥ τ0} ∪ Γk,τ0 , ∀τ ∈ (0, τ0), (2.17)

where Γk,τ0 := {r ∈ C; |r−k| = τ0,=r ≤ 0}. It is obvious that the purpose of (2.17)
is to use Cauchy’s integral theorem. By combining (2.17) with Cauchy’s integral
theorem, we can continue (2.16) as

|I2(τ)| ≤
∫
|ξ|=k
〈ξ〉
−1
2p |ϕ̂(ξ)| · 〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫
{r∈R+ ; 2≥|r−k|≥τ0}

〈r〉
1
p (r/k)2

τ0k
dr
)

dS(ξ)

+

∫
|ξ|=k
〈ξ〉
−1
2p |ϕ̂(ξ)| · 〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫
Γk,τ0

(1 + |r|2)
1
2p (|r|/k)2

τ0k
dr
)

dS(ξ)

≤ Cτ0
∫
|ξ|=k
〈ξ〉
−1
2p |ϕ̂(ξ)|〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫
Γk,τ0∪{r∈R+;2≥|r−k|≥τ0}

〈k〉1/p

τ0k
dr
)

dS(ξ)

+ Cτ0

∫
|ξ|=k
〈ξ〉
−1
2p |ϕ̂(ξ)|〈ξ〉

−1
2p |ψ̂(ξ)|

( ∫
Γk,τ0

〈k〉1/p

τ0k
dr
)

dS(ξ)

≤ Cτ0k
1/p−1( ∫

|ξ|=k
|〈ξ〉

−1
2p ĥ(ξ)|2 dS(ξ)

) 1
2
( ∫
|ξ|=k

|〈ξ〉
−1
2p ψ̂(ξ)|2 dS(ξ)

) 1
2

≤ Cτ0,εk
1/p−1‖ϕ‖

H
−1/(2p)
1/2+ε

(R3)
‖ψ‖

H
−1/(2p)
1/2+ε

(R3)
, (2.18)

where the constant Cτ0,ε is independent of τ . Here, in deriving the last inequality
in (2.18), we have made use of (2.3).

Finally, we estimate I3(τ). Denote F(rω) = Fr(ω) := 〈r〉−1/(2p)ϕ̂(rω) and

G(rω) = Gr(ω) := 〈r〉−1/(2p)R̂ψ̄(rω). One can compute

|I3(τ)| ≤
∫ ∞

0

〈r〉1/pχ2(r − k)

|r2 − k2|
· ‖Fr‖L2(S2r) ·

(
r2

∫
S2
|Gr −Gk|2 dS(ω)

) 1
2 dr
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+

∫ ∞
0

〈r〉1/pχ2(r − k)

|r2 − k2|
·
(
r2

∫
S2
|Fr − Fk|2 dS(ω)

) 1
2 ·
( r
k

)2‖Gk‖L2(S2k) dr,

(2.19)

where S2
r signifies the central sphere of radius r. Combining [13, Remark 13.1 and

(13.28)] and (2.3) and (2.14), we can continue (2.19) as

|I3(τ)| ≤ Cα,ε
∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|(r + k)
· ‖F‖H1/2+ε(R3) · |r − k|

α · ‖G‖H1/2+ε(R3) dr

≤ Cα,ε,p
∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|1−α(r + 1)1/p(k − 1)1−1/p
dr · ‖F‖H1/2+ε(R3)‖G‖H1/2+ε(R3)

≤ Cα,ε,pk1/p−1‖ϕ‖
H
−1/(2p)
1/2+ε

(R3)
· ‖ψ‖

H
−1/(2p)
1/2+ε

(R3)
, (2.20)

where the ε can be any positive real number and the α satisfies 0 < α < ε, and the
constant Cα,ε,p is independent of τ .

Combining (2.13), (2.15), (2.18) and (2.20), we arrive at

|(Rk,τϕ,ψ)L2(R3)| ≤ |I1(τ)|+ |I2(τ)|+ |I3(τ)| ≤ Ck1/p−1‖ϕ‖
H
−1/(2p)
1/2+ε

(R3)
‖ψ‖

H
−1/(2p)
1/2+ε

(R3)
,

which implies that

‖Rk,τϕ‖H1/(2p)

−1/2−ε(R3)
≤ Ck1/p−1‖ϕ‖

H
−1/(2p)

1/2+ε
(R3)

(2.21)

for some constant C independent of τ .
Next we investigate the limiting case lim

τ→0+
Rk,τϕ. Following similar steps when

dealing with I1, I2 and I3, it can be shown that for any τ̃ > 0, we have

|Ij(τ1)− Ij(τ2)| ≤ τ̃βk1/p−1‖ϕ‖
H
−1/(2p)

1/2+ε
(R3)
‖ψ‖

H
−1/(2p)

1/2+ε
(R3)

, (j = 1, 2, 3)

holds for ∀τ1, τ2 ∈ (0, τ̃). Therefore, we can conclude

‖Rk,τ1ϕ−Rk,τ2ϕ‖H−1/(2p)

−1/2−ε (R3)
. τ̃‖ϕ‖

H
−1/(2p)

1/2+ε
(R3)

, ∀τ1, τ2 ∈ (0, τ̃),

and thus Rk,τ̃ϕ converges and

lim
τ̃→0+

Rk,τ̃ϕ = Rkϕ in H
1/(2p)
−1/2−ε(R

3). (2.22)

Hence from (2.21) and (2.22) we conclude that

‖Rkϕ‖H1/(2p)

−1/2−ε(R3)
≤ Cε,pk−(1−1/p)‖ϕ‖

H
−1/(2p)

1/2+ε
(R3)

holds for any 1 < p < +∞ and any ε > 0.
The proof is complete.

With the help of Lemmas 2.2 and 2.3, the direct problems can be reformulated.
Readers may refer to [25, Theorem 2.1], [22, Theorem 2.3], [19, Theorem 4.3], [20,
Theorem 3.3], and [24, Theorem 3.3] as examples of how to formulate the direct
problems, and we omit the details here.

3. Recovery by near-field data. In this section we consider key steps in the
works [8, 18–20, 23, 24]. Lemma 3.3 is crucial in the key steps of the works, and its
proof relies on Lemmas 3.1 and 3.2. We shall first investigate these useful lemmas.
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3.1. Useful lemmas. Lemma 3.1 is a standard result in the field of oscillatory
integral and microlocal analysis.

Lemma 3.1. Assume α and β are multi-indexes, then the following identities hold
in the oscillatory integral sense,∫

Rnx×Rnξ
eix·ξ dxdξ = (2π)n, (3.1)∫

Rnx×Rnξ
eix·ξxαξβ dxdξ = (2π)ni|α|α!δαβ . (3.2)

Here δαβ equals to 1 when α = β and equals to 0 otherwise.

Proof. The integral in (3.1) should be understood as oscillatory integral. Fix a
cutoff function χ ∈ C∞c (Rn) with χ(0) = 1, we can compute∫

Rnx×Rn
ξ

eix·ξ dx dξ = lim
ε→0+

∫
eix·ξχ(εx)χ(εξ) dx dξ

= (2π)n/2 lim
ε→0+

∫
χ(ε2ξ)χ̂(−ξ) dξ. (3.3)

Denote M = supRn χ. We have |χ(ε2ξ)| ≤ M < ∞. Note that χ ∈ C∞c (Rn), so
χ̂ is rapidly decaying, thus χ̂(−ξ) is Lebesgue integrable. Therefore, we can see
that χ̂(−ξ)χ(ε2ξ) is dominated by a Lebesgue integrable function. Thus by using
Lebesgue Dominated Convergence Theorem, we can continue (3.3) as∫

Rnx×Rnξ
eix·ξ dx dξ = (2π)n/2

∫
χ̂(−ξ) dξ = (2π)nχ(0) = (2π)n.

We arrive at (3.1).
To show (3.2), we first show that

(2π)−n
∫∫

e−iy·ηyαηβ dy dη = (2π)−n
∫∫

e−iy·ηDα
η (ηβ) dy dη, (3.4)

where Dηj := 1
i ∂ηj . Both the LHS and RHS in (3.4) should be understood as a

oscillatory integral. Thus fix some χ ∈ D(Rn) such that χ(x) ≡ 1 when |x| ≤ 1, we
have ∫∫

e−iy·ηyαηβ dy dη = lim
ε→0+

∫∫
e−iy·ηyαηβχ(εy)χ(εη) dy dη

= lim
ε→0+

∫∫
(−Dη)α(e−iy·η) ηβχ(εy)χ(εη) dy dη

= lim
ε→0+

∫∫
e−iy·ηχ(εy)Dα

η

(
ηβχ(εη)

)
dy dη

= lim
ε→0+

∑
0<γ≤α

ε|γ|
(
α

γ

)∫∫
e−iy·ηχ(εy) ·Dα−γ

η (ηβ) ·
(
∂γχ

)
(εη) dy dη

+

∫∫
e−iy·ηDα

η

(
ηβ
)

dy dη. (3.5)

As ε goes to zero, we have∫∫
e−iy·ηχ(εy) ·Dα−γ

η (ηβ) ·
(
∂γχ

)
(εη) dy dη → Dα−γ

η (ηβ) ·
(
∂γχ

)
(εη)

∣∣
η=0

(ε→ 0+).
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Because γ > 0,
(
∂γχ

)
(εη)

∣∣
η=0

= 0. Therefore, we have

lim
ε→0+

ε|γ|
∑

0<γ≤α

(
α

γ

)∫∫
e−iy·ηχ(εy) ·Dα−γ

η (ηβ) ·
(
∂γχ

)
(εη) dy dη = 0. (3.6)

Combining (3.5) and (3.6), we arrive at∫∫
e−iy·ηyαηβ dy dη = lim

ε→0+

∫∫
e−iy·ηyαηβχ(εy)χ(εη) dy dη =

∫∫
e−iy·ηDα

η

(
ηβ
)

dy dη.

We proved (3.4).
Then, for multi-indexes α and β, if there exists i such that αi 6= βi, say, αi > βi,

then Dα
ξ (ξβ) = 0 and so∫

eix·ξxαξβ dxdξ =

∫
eix·ξ(−Dξ)

α(ξβ) dx dξ = 0.

When α = β, we have∫
eix·ξxαξβ dx dξ =

∫
eix·ξ(−Dξ)

α(ξα) dx dξ =

∫
eix·ξi|α|α! dxdξ = (2π)ni|α|α!.

We have arrived at (3.2).

We also need [16, Lemma 18.2.1] and we present a proof below.

Lemma 3.2. If a ∈ Sm(Rn × Rk) and u is defined by the oscillatory integral

u(x) =

∫
ei〈x

′,ξ′〉a(x, ξ′) dξ′,

then there exists ã ∈ Sm(Rn−k × Rk) such that

u(x) =

∫
ei〈x

′,ξ′〉ã(x′′, ξ′) dξ′,

and ã has the asymptotic expansion

ã(x′′, ξ′) ∼
∑
α

i|α|∂αx′∂
α
ξ′a(0, x′′, ξ′)/α!.

Remark 3.1. Note if a(x, ξ′) = 0 near {x′ = 0}, e.g. a(x, ξ) = (1−χ(x′))a′(x, ξ) for
some a′ and some cutoff function satisfying χ(y) ≡ 1 near the origin, then Lemma
3.2 implies that ã ∈ S−∞.

Proof. The ã(x′′, ·) is the Fourier transform of u(·, x′′) with some constants, i.e.

ã(x′′, ξ′) = (2π)−k/2Fx′{u(x′, x′′)}(ξ′) = (2π)−k
∫
e−ix

′·ξ′u(x′, x′′) dx′.

Then we can have

ã(x′′, ξ′) = (2π)−k
∫
e−ix

′·ξ′u(x) dx′ = (2π)−k
∫
eix
′·θa(x, ξ′ + θ) dθ dx′.

By adopting the way used in [1, §I.8.1] in computing the oscillatory integral, we can

easily show that |∂αx′′∂
β
ξ′ ã(x′′, ξ)| . 〈ξ′〉m−|β|, and this can be seen by the fact that

|∂αξ′ [χ(x, θ)a(2kx′, x′′, ξ′ + 2kθ)]| . 2mk〈ξ′〉k,

so ã ∈ Sm(Rn−k × Rk).
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The idea of the proof is to expand a(x′, x′′, ξ′+ θ) in terms of x′ and θ by Taylor
expansion

a(x′, x′′, ξ′ + θ) =
∑

|α|+|β|≤2N

x′αθβ

α!β!
∂αx′∂

β
ξ′a(0, x′′, ξ′)

+
∑

|α|+|β|=2N+1

x′αθβ

α!β!
∂αx′∂

β
ξ′a(ηx′, x′′, ξ′ + ηθ), 0 < η < 1,

and to use Lemma 3.1. We have

ã(x′′, ξ′) = (2π)−k
∫
eix
′·θa(x′, x′′, ξ′ + θ) dθ dx′

=
∑
|α|≤N

i|α|∂αx′∂
β
ξ′a(0, x′′, ξ′)/α!

+
∑

|α|+|β|=2N+1
γ≤α≤β+γ

Cα,β,γ

∫
eix
′·θ(∂αx′∂

β+γ
ξ′ a)(η|γ|)∂α−γθ (θβ) dθ dx′. (3.7)

Note that the constraint α ≤ β + γ in (3.7) comes from the fact that ∂α−γθ (θβ) = 0
when α > β + γ. Moreover, the constraint “|α| + |β| = 2N + 1, γ ≤ α ≤ β + γ”
gives

2N + 1 = |α|+ |β| ≤ 2|β|+ |γ| ≤ 2(|β|+ |γ|) ⇒ |β + γ| ≥ N + 1.

Now we show that each remainder term in (3.7) is controlled by 〈ξ′〉m−N−1. De-

note b(x′, x′′, θ; ξ′, η) =
(
∂αx′∂

β+γ
ξ′ a(ηx′, x′′, ξ′+ ηθ)

)
(η|γ|)∂α−γθ (θβ) with underlining

assumptions β + γ ≥ α and |β + γ| ≥ N + 1, and we have

ã(x′′, ξ′)−
∑
|α|≤N

i|α|∂αx′∂
β
ξ′a(0, x′′, ξ′)/α!

=

∫
eix
′·θχ0(x′, θ)bdθ dx′

+
∑
`≥1

∫
eix
′·θχ(x′/2`, θ/2`)b(x′, x′′, θ; ξ′, η) dθ dx′,

where χ0 and χ is as in [1, §I.8.1]. Here we only show how the second term in the
equation above is controlled by 〈ξ′〉m−N−1. The computation is as follows,∫

eix
′·θχ(x′/2`, θ/2`)b(x′, x′′, θ; ξ′, η) dθ dx′

. 22`k

∫ ( (θ, x′) · ∇(x′,θ)

i22`(|x′|2 + |θ|2)

)L
(ei2

2`x′·θ) · χ(x′, θ)b(x′, x′′, θ; ξ′, 2`η) dθ dx′

. 〈ξ′〉m−N−1 · 2`(2k+1−2L)

∫
suppχ

CL2`(|m−N−1|+L) dθ dx′

. 〈ξ′〉m−N−1 · 2`(2k+1+|m−N−1|−L),

thus if we take L to be large enough such that 2k + 1 + |m − N − 1| − L < 0, we
can have

|
∑
`≥1

∫
eix
′·θχ(x′/2`, θ/2`)b dθ dx′| .

∑
`≥1

〈ξ′〉m−N−12`(2k+1+|m−N−1|−L) . 〈ξ′〉m−N−1.
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This shows |ã(x′′, ξ′) −
∑
|α|≤N i

|α|∂αx′∂
α
ξ′a(0, x′′, ξ′)/α!| . 〈ξ′〉m−N−1. Using the

same procedure, we can show
∣∣∂κx′′∂βξ′ [ã(x′′, ξ′)−

∑
|α|≤N i

|α|∂αx′∂
α
ξ′a(0, x′′, ξ′)/α!]

∣∣ .
〈ξ′〉m−N−1−|β|, and hence

ã(x′′, ξ′)−
∑
|α|≤N

i|α|∂αx′∂
α
ξ′a(0, x′′, ξ′)/α! ∈ Sm−N−1(Rn−k × Rk).

The proof is complete.

We also need [16, Lemma 18.2.9] and we present a proof below.

Lemma 3.3. Assume that a ∈ Sm and

u(x) =

∫
ei〈x

′,ξ′〉a(x, ξ′) dξ′, ξ′ ∈ Rk,

and a C∞ diffeomorphism ρ : y ∈ Rn 7→ ρ(y) = (ρ1(y), ρ2(y)) ∈ Rn preserving
the hyperplane S = {x ; x′ = 0}. The ρ1 is k-dimensional while ρ2 is (n − k)-
dimensional. Assume u and the pull-back ρ∗u is C∞-smooth in Rn\S, then there
exists ã ∈ Sm(Rn−k × Rk) such that ρ∗u can be represented as

ρ∗u(y) =

∫
ei〈y

′,ξ′〉ã(y′′, ξ′) dξ′,

and

ã(y′′, η)− a(0, ρ2(0, y′′), (ψ(0, y′′))T,−1η)|detψ(0, y′′)|−1 ∈ Sm−1(Rn−k × Rk),

where (∗)T and (∗)T,−1 signify the transpose and transpose with inverse of a matrix,
respectively.

Remark 3.2. The condition “u and ρ∗u is C∞-smooth in Rn\S” is indispensable.

Proof. Because ρ preserves the hyperplane {x ; x′ = 0}, there exists a C∞ matrix-
valued function ψ such that ρ1(y′, y′′) = ψ(y) · y′, where the dot operation “·” here
signifies the matrix multiplication. According to Lemma 3.2, there exist ā ∈ Sm
such that u(x) =

∫
ei〈x

′,ξ′〉ā(x′′, ξ′) dξ′. Hence we have

ũ(y) := ρ∗u(y) = u(ρ(y)) =

∫
ei〈ρ1(y),ξ′〉ā(ρ2(y), ξ′) dξ′

=

∫
ei〈ψ(y)·y′,ξ′〉ā(ρ2(y), ξ′) dξ′ =

∫
ei〈y

′,(ψ(y))T ξ′〉ā(ρ2(y), ξ′) dξ′,

According to Remark 3.1, we could continue

ũ(y) =

∫
ei〈y

′,(ψ(y))T ξ′〉χ(y′)ā(ρ2(y), (ψ(y))T,−1(ψ(y))T ξ′)| detψ(y)|−1 d((ψ(y))T ξ′) + v(y)

=

∫
ei〈y

′,η〉χ(y′)ā(ρ2(y), (ψ(y))T,−1η)| detψ(y)|−1 dη + v(y),

where χ ∈ C∞c (Rk) with χ(y′) ≡ 1 in a neighborhood 0 such that the matrix ψ(y)

is invertible in suppψ, and v(y) =
∫
ei〈y

′,η〉b(y′′, η) dη with b ∈ S−∞. Using Lemma

3.2, we obtain ũ(y) =
∫
ei〈y

′,η〉ã(y′′, η) dη where

ã(y′′, η)− ā(ρ2(0, y′′), (ψ(0, y′′))T,−1η)|detψ(0, y′′)|−1 ∈ Sm−1(Rn−k × Rk).

Note that ā satisfies ā(x′′, ξ′)− a(0, x′′, ξ′) ∈ Sm−1(Rn−k × Rk), so

ã(y′′, η)− a(0, ρ2(0, y′′), (ψ(0, y′′))T,−1η)|detψ(0, y′′)|−1 ∈ Sm−1(Rn−k × Rk).

The proof is complete.
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Finally, we need Lemma 3.4.

Lemma 3.4. For any stochastic process {g(k, ω)}k∈R+
satisfying∫ +∞

1

km−1E(|g(k, ·)|) dk < +∞, (3.8)

it holds that

lim
K→+∞

1

K

∫ 2K

K

kmg(k, ω) dk = 0, a.s. ω ∈ Ω. (3.9)

Proof. Check [22, Lemma 4.1].

3.2. Key steps in the proof. Lemma 3.4 turns the justification of the ergodicity
into the asymptotic analysis of the expectation of related terms.

With the help of Lemma 3.4, the most difficult part of the work [18–20, 23, 24]
boils down to the estimate of the integral

I(x, y, k1, k2) :=

∫
eik1(|x−z1|+|z1−y|)−ik2(|x−z2|+|z2−y|)C(z1, z2) dz1 dz2, (3.10)

where C(z1, z2) =
∫
ei(z1−z2)·ξc(z1, ξ) dξ and c ∈ S−m. Readers may refer to [19,

(30)-(31)], [20, (3.21) and (3.24)], [24, (4.2) and (2.1)] as well as [23, Theorems 3.1
and 3.3] as examples.

One wonders the decaying rate of I in terms of k1 and k2, and after we got the
decaying rate, we substitute this estimate into (3.8). If I decays fast enough in terms
of k1 and/or k2, the corresponding integral in (3.8) will be finite and we can obtain
some asymptotic ergodicity like (3.9). This is the principal idea in [18–20,23,24].

Proposition 3.1. Assume I is defined as in (3.10) and C(z1, z2) =
∫
ei(z1−z2)·ξ

c(z1, ξ) dξ with c ∈ S−m is a symbol. Then for ∀N ∈ N there exists constants
CN > 0 such that

|I(x, y, k1, k2)| ≤ CN 〈k1 − k2〉−N (k1 + k2)−m,

holds uniformly for x, y.

Proof. Denote φ(z1, z2, x, y, k1, k2) := k1(|x− z1|+ |z1− y|)− k2(|x− z2|+ |z2− y|),
then I =

∫
eiφC dz1 dz2 and φ is the phase function. We have

φ(z1, z2, x, y, k1, k2) =
k1 + k2

2

[
(|x− z1|+ |z1 − y|)− (|x− z2|+ |z2 − y|)

]
+
k1 − k2

2

[
(|x− z1|+ |z1 − y|) + (|x− z2|+ |z2 − y|)

]
.

(3.11)

We note that the xyz part of the second term in (3.11) is always positive and the
first term equals to zero when z1 = z2. Also, the function C will be singular when
z1 = z2. Therefore, the situation near the hyperplane S0 := {z1 = z2} is crucial for
the behavior of I regarding the decaying rate in terms of k1, k2. Therefore, we are
willing to do a change of variables inside the integral (3.10) such that the hyperplane
S0 can be featured by a single variable, i.e. S0 = {v = 0} for some variable v. To
be specific, we choose the change of variables τ1(z1, z2) = (v, w) where

τ1 : v = z1 − z2, w = z1 + z2.

The pull-back of C under τ−1
1 is

C1(v, w) := (τ−1
1 )∗C(v, w) = C(τ−1

1 (v, w)) =

∫
eiv·ξc((v + w)/2, ξ) dξ. (3.12)
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Second, in order to make the phase function φ more easy to handle, we are also
willing to do another change of variables such that φ can be represented in the
form of inner products, i.e. φ = s · t for some s and t depending on x, y, z1, z2,
k1 and k2. One of the choices is τ2(z1, z2) = (s, t), s = (s1, · · · , sn) ∈ Rn and
t = (t1, · · · , tn) ∈ Rn where

τ2 :

{
s1 = (|x− z1|+ |z1 − y|)− (|x− z2|+ |z2 − y|),
t1 = (|x− z1|+ |z1 − y|) + (|x− z2|+ |z2 − y|).

(3.13)

We comment that under (3.13), the phase function φ will only depend on s1 and
t1, and the choice of sj and tj (j = 2, · · · , n) is inessential as long as the change of
variables τ2 is a diffeomorphism. Hence we omit the precise definitions of sj and tj
(j > 1) and readers may refer to [18–20, 23, 24] for more details. Another thing to
note is the map τ1 ◦ τ−1

2 preserves S0, i.e. τ1 ◦ τ−1
2 (0, t) = (0, w). By Lemma 3.3,

there exists a symbol c2 ∈ S−m such that the pull-back of C1 under τ1 ◦ τ−1
2 is

C2(s, t) := (τ1 ◦ τ−1
2 )∗C1(s, t) =

∫
eis·ξc2(t, ξ) dξ, (3.14)

By using Lemma 3.3, we can express c2 by c, τ1 and τ2, which involves some detailed
computations. Note that we only need the leading term of c2 so the computations
wouldn’t be too complicated.

The relationship (3.14) also gives

C2(s, t) = (τ1 ◦ τ−1
2 )∗(τ−1

1 )∗C(s, t) = (τ−1
2 )∗C(s, t),

and hence we can do the change of variables τ2 in (3.10) to obtain

I(x, y, k1, k2)

=

∫
eik1(|x−z1|+|z1−y|)−ik2(|x−z2|+|z2−y|)C(τ−1

2 ◦ τ2(z1, z2)) d(τ−1
2 ◦ τ2(z1, z2))

=

∫
ei(k1+k2)s1/2+i(k1−k2)t1/2C(τ−1

2 (s, t))|det τ−1
2 (s, t)|d(s, t)

=

∫
ei(k1+k2)s·e1/2+i(k1−k2)t·e1/2C2(s, t)|det τ−1

2 (s, t)|dsdt. (3.15)

Here we need the help of Lemma 3.2 to deal with the |det τ−1
2 (s, t)| term: there

exists a symbol c̃2 ∈ S−m such that

C2(s, t)|det τ−1
2 (s, t)| =

∫
eis·ξ c̃2(t, ξ) dξ. (3.16)

The computation of the leading term of c̃2 is straight forward,

c̃2(t, ξ)− c2(t, ξ)|det τ−1
2 (0, t)| ∈ S−m−1.

Combining (3.15) and (3.16), we arrive at

I(x, y, k1, k2) =

∫
ei(k1+k2)s·e1/2+i(k1−k2)t·e1/2

∫
eis·ξ c̃2(t, ξ) dξ dsdt

'
∫
ei(k1−k2)t·e1/2c̃2(t,−(k1 + k2)e1/2) dt.

Now we can see I is decaying at the rate of 〈k1 − k2〉−N (k1 + k2)−m for arbitrary
N ∈ N.
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We would like to comment that the estimation of I is difficult due to the presence
of the norm inside the phase function φ. However, the designs of τ1 and τ2 in the
arguments above are so peculiar that the estimate of I is possible.

4. Recovery by far-field data. In this section we consider the key steps in the
works [22,25]. In [22,25], the authors use far-field data to achieve the recovery, and
this makes the derivations different from what has been discussed in Section 3. A
different methodology is required to obtain accurate estimate of the decaying rate.
Lemmas 4.1–4.3 plays key roles in the derivation. Before stepping into the key steps
in the derivation, we shall first investigate some useful lemmas.

4.1. Useful lemmas. First, let us recall the notion of the fractional Laplacian [30]
of order s ∈ (0, 1) in Rn (n ≥ 3),

(−∆)s/2ϕ(x) := (2π)−n
∫∫

ei(x−y)·ξ|ξ|sϕ(y) dy dξ, (4.1)

where the integration is defined as an oscillatory integral. When ϕ ∈ S (Rn), (4.1)
can be understood as a usual Lebesgue integral if one integrates w.r.t. y first and
then integrates w.r.t. ξ. By duality arguments, the fractional Laplacian can be
generalized to act on wider range of functions and distributions (cf. [32]). It can be
verified that the fractional Laplacian is self-adjoint.

In the following two lemmas, we present the results in a more general form where
the space dimension n can be arbitrary but greater than 2, though only the case
n = 3 shall be used subsequently.

Lemma 4.1. For any s ∈ (0, 1), we have

(−∆ξ)
s/2(eix·ξ) = |x|seix·ξ

in the distributional sense.

Proof. Check [22, Lemma 3.1].

Lemma 4.2. For any m < 0 and s ∈ (0, 1), we have(
(−∆ξ)

s/2c
)
(x, ξ) ∈ Sm−s for any c(x, ξ) ∈ Sm.

Proof. Check [22, Corollary 3.1].

In the sequel, we denote diam(Ω) := sup
x,x′∈Ω

{|x− x′|}.

Lemma 4.3. Assume Ω is a bounded domain in Rn. For ∀α, β ∈ R such that
α < n and β < n, and for ∀p ∈ Rn\{0}, there exists a constant Cα,β independent
of p and Ω such that∫

Ω

|t|−α|t− p|−β dt ≤ Cα,β ×

{
|p|n−α−β + (diam(Ω))n−α−β , α+ β 6= n,

ln 1
|p| + ln(diam(Ω)) + Cα,β , α+ β = n.

Proof. Check [25, Lemma 3.5].
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4.2. Key steps in [22]. In this subsection we restrict ourselves to R3. One of the
key difficulty in [22] is to obtain an asymptotics about a integral

J :=

∫
eikϕ(y,s,z,t)

( ∫
ei(z−y)·ξcq(z, ξ) dξ

)( ∫
ei(t−s)·ηcf (t, ξ) dη

)
d(s, y, t, z), (4.2)

in terms of k, where ϕ(y, s, z, t) := −x̂ · (y − z) − |y − s| + |z − t|, cq ∈ S−mq and
cf ∈ S−mf with mq, mf satisfying the requirement in Theorem 1.6, d(s, y, t, z) is a
short notation for dsdy dtdz, and y, z ∈ Dq and s, t ∈ Df two convex domains Dq

and Df satisfying (1.5). Recall the definition of the unit normal vector n after (1.5).
We introduce two differential operators with C∞-smooth coefficients as follows,

L1 :=
(y − s) · ∇s
ik|y − s|

, L2 = L2,x̂ :=
∇yϕ · ∇y
ik|∇yϕ|

,

where ∇yϕ = s−y
|s−y| − x̂. The operator L2,x̂ depends on x̂ because ∇yϕ does. Due

to the fact that y ∈ Dq while s ∈ Df , the operator L1 is well-defined. It can be
verified there is a positive lower bound of |∇yϕ| for all x̂ ∈ {x̂ ∈ S2 : x̂ · n ≥ 0}. It
can also be verified that

L1(eikϕ(y,s,z,t)) = L2(eikϕ(y,s,z,t)) = eikϕ(y,s,z,t).

In what follows, we shall use C(·) and its variants, such as ~C(·), Ca,b(·) etc., to rep-
resent some generic smooth scalar/vector functions, within C∞c (R3) or C∞c (R3×4),
whose particular definition may change line by line. By using integration by parts,
one can compute

J =

∫ (
L2

1L
2
2

)
(eikϕ(y,s,z,t)) ·

( ∫
ei(z−y)·ξcq(z, ξ) dξ

)
·
( ∫

ei(t−s)·ηcf (t, η) dη
)

d(s, y, t, z)

' k−4

∫
D
eikϕ(y,s,z,t)[J1 (K1 C + ~K2 · ~C +

∑
a,b=1,2,3

K3;a,b Ca,b)

+
∑

c=1,2,3

J2;c (K1 Cc + ~K2 · ~Cc +
∑

a,b=1,2,3

K3;a,b Ca,b,c)

+
∑

a′,b′=1,2,3

J3;a′,b′(K1 Ca′,b′ + ~K2 · ~Ca′,b′ +
∑

a,b=1,2,3

K3;a,b Ca,b,a′,b′)
]

d(s, y, t, z),

(4.3)

where the integral domain D ⊂ R3×4 is bounded and

J1 :=

∫
ei(t−s)·η cf (t, η) dη, K1 :=

∫
ei(z−y)·ξ cq(z, ξ) dξ,

~J2 := ∇s
∫
ei(t−s)·η cf (t, η) dη, ~K2 := ∇y

∫
ei(z−y)·ξ cq(z, ξ) dξ,

J3;a,b := ∂2
sa,sb

∫
ei(t−s)·η cf (t, η) dη, K3;a,b := ∂2

ya,yb

∫
ei(z−y)·ξ cq(z, ξ) dξ,

and J2;c (resp. K2;c) is the c-th component of the vector ~J2 (resp. ~K2).

Here we only show how to estimate J1 and skip the details regarding ~J2, K1,

and ~K2; readers may refer to the proof of [22, Lemma 3.3] for details. For the case
where s 6= t, we have

|J1| = |
∫
ei(t−s)·η cf (t, η) dη| = |s− t|−2 · |

∫
∆η(ei(s−t)·η) cf (t, η) dη|

= |s− t|−2 · |
∫
ei(t−s)·η(∆ηcf )(t, η) dη| ≤ |s− t|−2

∫
|(∆ηcf )(t, η)|dη
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. |s− t|−2

∫
〈η〉−mf−2 dη . |s− t|−2. (4.4)

Similarly, we can have

|J1|, | ~J2|, |K1|, |~K2| . |y − z|−2. (4.5)

But for J3;a,b, if we mimic the derivation (4.4), then

J3;a,b '
∫
ei(t−s)·η · cf (t, η)ηaηb dη ' |s− t|−2

∫
∆η(ei(t−s)·η) · cf (t, η)ηaηb dη

= |s− t|−2

∫
ei(t−s)·η ·∆η(cf (t, η)ηaηb) dη. (4.6)

Note that ∆η(cf (t, η)ηaηb) ∈ S−mf and thus is not absolutely integrable in R3. If

we further differentiate the term ei(t−s)·η in (4.6) by i(s−t)·
|s−t|2 ∇η and then transfer the

operator ∇η onto ∆η(cf (t, η)ηaηb) by using integration by parts, we would arrive
at

|J3;a,b| . |s− t|−3

∫
|∇η∆η(cf (t, η)ηaηb)|dη ≤ |s− t|−3

∫
〈η〉−mf−1 dη.

The term
∫
〈η〉−mf−1 dη is absolutely integrable now, but the term |s− t|−3 is not

integrable at the hyperplane s = t in R3. To circumvent this dilemma, the fractional
Laplacian can be applied as follows. By using Lemma 4.1 and 4.2, we can continue
(4.6) as

|J3;a,b| ' |s− t|−2 ·
∣∣|s− t|−s ∫ (−∆η)s/2(ei(t−s)·η) ·∆η(cf (t, η)ηjη`) dη

∣∣
= |s− t|−2−s · |

∫
ei(t−s)·η · (−∆η)s/2

(
∆η(cf (t, η)ηjη`)

)
dη|

. |s− t|−2−s
∫
〈η〉−mf+2−2−s dη = |s− t|−2−s

∫
〈η〉−mf−s dη, (4.7)

where the number s is chosen to satisfy max{0, 3−mf} < s < 1, and the existence
of such a number s is guaranteed by noting that mf > 2. Therefore, we have{−mf − s < −3, (4.8a)

−2− s > −3. (4.8b)

Thanks to the condition (4.8a), we can continue (4.7) as

|J3;a,b| . |s− t|−2−s
∫
〈η〉−mf−s dη . |s− t|−2−s. (4.9)

Using similar arguments, we can also conclude that K3;a,b| . |y − z|−2−s.
Combining (4.3), (4.5) and (4.9), we arrive at

|J| . k−4

∫
D

(|J1|+ | ~J2|+
∑

a′,b′=1,2,3

|J3;a′,b′ |) · (|K1|+ |~K2|+
∑

a,b=1,2,3

|K3;a,b|) d(s, y, t, z)

. k−4

∫
D̃
|s− t|−2−s dsdt ·

∫
D̃
|y − z|−2−s dy dz (4.10)

for some sufficiently large but bounded domain D̃ ⊂ R3×2 satisfying D ⊂ D̃ × D̃.
Note that the integral (4.10) should be understood as a singular integral because
of the presence of the singularities occurring when s = t and y = z. By (4.10) and
(4.8b), we can finally conclude |J| . k−4, as k be large enough.
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4.3. Key steps in [25]. In this subsection we restrict ourselves to R3. We note
that in (4.2), the domains Dq and Df are assumed to be separated by two convex
hulls. This condition is relaxed in [25] and the corresponding details in the proof is
also modified. One of the key difficulty in [25] is to obtain an asymptotics about a
integral

K(x, y) :=

∫∫
Df×Df

Kf (s, t)Φ(s− y; k1)Φ(t− x; k2) dsdt, (4.11)

where Kf is the kernel of the covariance operator of the migr field f (cf. (2.4)), and
Φ is defined in the beginning of Section 2.1. From (4.11) we have

K(z, y) '
∫∫
D̃×D̃

eik1|s−y|−ik2|t−z|
(
|s− y|−1|t− z|−1

∫
ei(s−t)·ξc(s, ξ) dξ

)
dsdt.

(4.12)

Define two differential operators

L1 :=
(s− y) · ∇s
ik1|s− y|

and L2 :=
(t− z) · ∇t
−ik2|t− z|

.

It can be verified that

L1L2(eik1|s−y|−ik2|t−z|) = eik1|s−y|−ik2|t−z|.

Hence, noting that the integrand is compactly supported in D̃ × D̃ and by using
integration by part, we can continue (4.12) as

|K(z, y)|

' |
∫∫
D̃×D̃

L1L2(eik1|s−y|−ik2|t−z|)
(
|s− y|−1|t− z|−1

∫
ei(s−t)·ξc1(s, t, z, y, ξ) dξ

)
dsdt|

. k−1
1 k−1

2

∫∫
D̃×D̃

[
|s− y|−2|t− z|−2J0 + |s− y|−2|t− z|−1(max

a
J1;a)

+ |s− y|−1|t− z|−2(max
a
J1;a) + |s− y|−1|t− z|−1(max

a,b
J2;a,b)

]
dsdt,

(4.13)

where a, b are indices running from 1 to 3, and

J0 := |
∫
ei(s−t)·ξ c1(s, t, z, y, ξ) dξ|,

J1;a := |
∫
ei(s−t)·ξ ξac1(s, t, z, y, ξ) dξ|,

J2;a,b := |
∫
ei(s−t)·ξ ξaξbc1(s, t, z, y, ξ) dξ|.

Because of the condition m > 2 (cf. Theorem 1.5), we can find a number τ ∈ (0, 1)
satisfying the inequalities 3−m < τ < 1. Therefore, we have{−m− τ < −3, (4.14a)

−2− τ > −3. (4.14b)

By using Lemmas 4.1 and 4.2, these quantities J0, J1;a and J2;a,b can be estimated
as follows:

J0 = |s− t|−τ · |
∫

(−∆ξ)
τ/2(ei(s−t)·ξ)c1(s, t, z, y, ξ) dξ|

= |s− t|−τ · |
∫
ei(s−t)·ξ (−∆ξ)

τ/2(c1(s, t, z, y, ξ)) dξ|
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. |s− t|−τ ·
∫
〈ξ〉−m−τ dξ . |s− t|−τ . (4.15)

The last inequality in (4.15) makes use of the fact (4.14a). Similarly, by first using
fractional Laplacian and then using first-order differential operator on ei(s−t)·ξ, we
can have

J1;a ≤ C|s− t|−1−τ
∫
〈ξ〉−m+1−1−τ dξ ≤ C|s− t|−1−τ , (4.16)

J2;a,b ≤ C|s− t|−2−τ |
∫
〈ξ〉−m+2−2−τ dξ| ≤ C|s− t|−2−τ , (4.17)

where the constant C is independent of the indices a, b. Combining (4.13), (4.15),
(4.16) and (4.17), we can rewrite (4.13) as

k1k2|K(z, y)| .
∫∫
D̃×D̃

[
|s− y|−2|t− z|−2|s− t|−τ + |s− y|−2|t− z|−1|s− t|−1−τ

+ |s− y|−1|t− z|−2|s− t|−1−τ + |s− y|−1|t− z|−1|s− t|−2−τ ] dsdt

=: I1 + I2 + I3 + I4. (4.18)

Denote D := {x+ x′, x− x′ ; x, x′ ∈ D̃}. Then we apply Lemma 4.3 to estimate I1
as follows,

I1 =

∫∫
D̃×D̃

|s− y|−2|t− z|−2|s− t|−τ dsdt

≤
∫
D

|s|−2
( ∫

D

|t|−2|t− (s+ y − z)|−τ dt
)

ds

. CD̃ +

∫
D

|s|−2|s− (z − y)|−(τ−1) ds

' |z − y|2−τ + CD̃. (4.19)

Note that in (4.19) we used Lemma 4.3 twice. Similarly,

I2, I3, I4 . |z − y|2−τ + CD̃. (4.20)

Recall that τ ∈ (0, 1). By (4.18), (4.19) and (4.20) we arrive at

|K(z, y)| ≤ Ck−1
1 k−1

2 (|z − y|2−τ + CD̃) ≤ Ck−2((diamDV )2−τ + CD̃) . k−2.

5. Conclusions. We have reviewed the recoveries of some statistics by using the
near-field data as well as far-field data generated under a single realization of the
randomness. In this paper we mainly focus on time-harmonic Schrödinger systems.
One of the possible ways to extend the current works is to study the Helmholtz
systems. It would be also interesting to conduct the work in the time domain.
Moreover, the stability of the recovering procedure is also worth of investigation.
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