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ABSTRACT. This article presents a conforming discontinuous Galerkin (con-
forming DG) scheme for second order elliptic equations on rectangular parti-
tions. The new method is based on DG finite element space and uses a weak
gradient arising from local Raviart Thomas space for gradient approximations.
By using the weak gradient and enforcing inter-element continuity strongly, the
scheme maintains the simple formulation of conforming finite element method
while have the flexibility of using discontinuous approximations. Hence, the
programming complexity of this new conforming DG scheme is significantly
reduced compared to other existing DG methods. Error estimates of optimal
order are established for the corresponding conforming DG approximations in
various discrete Sobolev norms. Numerical results are presented to confirm the
developed convergence theory.
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1. Introduction. For simplicity, we consider Poisson equation with a Dirichlet
boundary condition as our model problem.

—Au = f, in Q, (1)
u = g, on 0%, (2)

where () is a bounded polygonal domain in R2.
Using integration by parts, we can get the variational form: find u € H*(Q)
satisfying u = g on 992 and

(Vu, Vo) = (f,v), Yo € H} (Q). (3)

Various finite element methods have been introduced to solve the Poisson equa-
tions (1)-(2), such as the Galerkin finite element methods (FEMs)[2, 3], the mixed
FEMs [15] and the finite volume methods (FVMs) [6], etc. The FVMs emphasis
on the local conservation property and discretize equations by asking the solution
satisfying the flux conservation on a dual mesh consisting of control volumes. The
mixed FEMs is another category method that based on the variable u and a flux
variable usually written as p.

The classical conforming finite element method obtains numerical approximate
results by constructing a finite-dimensional subspace of H}(Q). The finite element
scheme has the same form with the variational form (3): find u;, € Vj, € H(Q)
satisfying up = Ipg on 02 and

(Vuh,Vvh) = (fa Uh)a V’Uh S V}?v (4)

where V0 is a subspace of V}, that satisfying v, = 0 on 90 and I, is the kth order La-
grange interpolation operator. The FE method is a popular and easy-to-implement
numerical scheme, however, it is less flexible in constructing elements and generat-
ing meshes. These limitations are mainly due to the strong continuity requirements
of functions in V3. Omne solution to circumvent these limitations is using discon-
tinuous approximations. Since the 1970th, many new finite element methods with
discontinuous approximations have been developed, including the early proposed
DG methods [1], local discontinuous Galerkin (LDG) methods [8], interior penalty
discontinuous Galerkin (IPDG) methods [9], and the recently developed hybridiz-
able discontinuous Galerkin (HDG) methods [7], mimetic finite differences method
[10], virtual element (VE) method [4], weak Galerkin (WG) method [19, 20] and
references therein.

One obvious disadvantage of discontinuous finite element methods is their rather
complex formulations which are often necessary to ensure connections of discontin-
uous solutions across element boundaries. For example, the IPDG methods add
parameter depending interior penalty terms. Besides additional programming com-
plexity, one often has difficulties in finding optimal values for the penalty parameters
and corresponding efficient solvers. Most recently, Zhang and Ye [21] developed a
discontinuous finite element method that has an ultra simple weak formulation on
triangular/tetrahedal meshes. The corresponding numerical scheme can be written
as: find up, € Vj, satisfying u, = Ig on 092 and

(unha vwvh) = (f7 Uh)a VUh S V}?7 (5)

where V}, is the DG finite element space and V,, is the weak gradient operator. The
notion of weak gradient was first introduced by Wang and Ye in the weak Galerkin
(WG) methods [19, 20]. The WG methods allow the use of totally discontinuous
functions and provides stable numerical schemes that are parameter-independent
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and free of locking [17] in some applications. Another key feature in the WG meth-
ods is it can be used for arbitrary polygonal meshes. The WG finite element method
has been rapidly developed and applied to other problems, including the Stokes and
Navier-Stokes equations [11, 18], the biharmonic [14, 13] and elasticity equations
[12, 17], div-curl systems and the Maxwell’s equations and parabolic problem [23],
etc. The introduction of the weak gradient operator in the conforming DG methods
makes the scheme (5) maintain the simple formulation of conforming finite element
method while have the flexibility of using discontinuous approximations. Hence,
the programming complexity of this conforming DG scheme is significantly reduced.
Furthermore, the scheme results in a simple symmetric and positive definite system.

Following the work in [21, 22], we propose a new conforming DG finite element
method on rectangular partitions in this work. It can be obtained from the conform-
ing formulation simply by replacing V by V., and enforcing the boundary condition
strongly. The simplicity of the conforming DG formulation will ease the complexity
for implementation of DG methods. We note that the conforming DG method in
[21] is based on triangular /tetrahedal meshes. Then in [22], the method is extended
to work on general polytopal meshes by raising the degree of polynomials used to
compute weak gradient.

In this paper, we keep the same finite element space as DG method, replace the
boundary function with the average of the inner function, and use the weak gradi-
ent arising from local Raviart-Thomas (RT) elements [5] to approximate the classic
gradient. Moreover, the derivation process in this paper is based on rectangular RT
elements [16]. Error estimates of optimal order are established for the correspond-
ing conforming DG approximation in both a discrete H' norm and the L? norm.
Numerical verifications have been performed on different kinds of quadrangle finite
element space. In particular, super-convergence phenomenon have been observed
for @y elements.

The rest of this paper is organized as follows: In Section 2, we shall present
the conforming DG finite element scheme for the Poisson equation on rectangular
partitions. Section 3 is devoted to a discussion of the stability and solvability of the
new method. In Section 4, we shall prepare ourselves for error estimates by deriving
some identities. Error estimates of optimal order in H' and L? norm are established
in Section 5. In Section 6, we present some numerical results to illustrate the theory
derived in earlier sections. Finally in section 7, we conclude our major contributions
in this article.

Throughout this paper, we adopt the standard definition of Sobolev space H*(f2).
For any given open bounded domain K C Q, (-,)s.k, | - ||s,x, and | - |s,x are used
to denote the inner product, norm and semi-norm, respectively. The space H°(K)
coincides with L?(K), and the subscripts K in the inner product, norm, and semi-
norm can be dropped in the case of K = ). In particular, the function space H} (£2)
is defined as

H3(Q) ={ve HY(Q): v|psq =0},

and the space H(div, ) is defined as the set of vector-valued functions g, which
together with their divergence are square integrable, i.e.

H(div,Q) = {q € [L*(Q)]¢: V-q e L*(Q)}.

2. Conforming DG method. Assume that the domain Q is of polygonal type
and is partitioned into non-overlapping rectangles 7, = {T'}. For each T € Ty,



2378 YUE FENG, YUJIE LIU, RUISHU WANG AND SHANGYOU ZHANG

denote by TV its interior and AT its boundary. Denote by &, = {e} the set of all
edges in Ty, and 52 = &, \ 0N the set of all interior edges in 7,. For each T' € T}, and
e € &, denote by hr and h,. the diameter of T" and e, respectively. h = maxrpey;, At
is the meshsize of Tj,.

For any interior edge e € 5,?, let 71 and 75 be two rectangles sharing e, we define
the average {-} and the jump [-] on e for a scalar-valued function v by

1
{U} = §(v|3T1 +U|3T2)7 [[U]] = U|3T1n1 +v|3T2n21 (6)

where v|gr,, i = 1,2 is the trace of v on 9T;, n; and ns are the two unit outward
normal vectors on e, associated with T7 and T5, respectively. If e is a boundary
edge, we define

{v} = vl and [v] = vl|en. (7)
We define a discontinuous finite element space
Vi ={ve L*Q):v|lp € Qu(T), VT € Th}, (8)
and its subspace
VY ={veV,:v=0o0n00}, (9)

where Q(T), k > 1 denotes the set of polynomials with regard to quadrilateral
elements. The weak gradient for a scalar-valued function v € V}, is defined by the
following definition

Definition 2.1. For a given T' € T;, and a function v € V},, the discrete weak
gradient Vv € RT(T) on T is defined as the unique polynomial such that

(Vav, @)1 == —(v,V - @) + ({v}, ¢ - n)or, V q € RT(T), (10)

where n is the unit outward normal on 9T, RTy(T) = [Qx(T)]? +xQx(T), and {v}
is defined in (6) and (7).

The weak gradient operator V4 as defined in (10) is a local operator computed
at each element. It can be extended to any function v € V}, by taking weak gradient
locally on each element T. More precisely, the weak gradient of any v € V}, is defined
element-by-element as follows:

(Vav)lr = Va(v|r).
We introduce the following bilinear form:
a(v,w) = (Vav, Vaw),
the conforming DG algorithm to solve the problems (1) - (2) is given by
Conforming DG algorithm 1. Find uy € V}, satisfying up, = Ing on 09 and
a(up,vn) = (f,on), Vv, € V), (11)

where Iy, is the kth order Lagrange interpolation.
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3. Stability and well-posedness. We will prove the existence and uniqueness of
the solution of equation (11). Firstly, we present the following two useful inequalities
to derive the forthcoming analysis.

Lemma 3.1 (trace inequality). Let T be an element of the finite element partition
Th, and e is an edge or face which is part of OT. For any function ¢ € H*(T), the
following trace inequality holds true (see [20] for details):

lell2 < Clhzt ez + hr | Vel 2), (12)
where C' is a constant independent of h.

Lemma 3.2 (inverse inequality). Let T;, be a finite element partition of Q that is
shape requalr. Assume that Ty, satisfies all the assumptions A1-A/ in [20]. Then,
for any piecewise polynomial function ¢ of degree n on Ty, there exists a constant
C = C(n) such that

IVelr < C)hz' ¢z, VT € T (13)

Then, we define the following semi-norms in the discontinuous finite element
space V},

Iol* = a(v,0)= 3 [VavlF, (14)
TETh
lolfn = > IVellz + D act Tl (15)
TETh ecty

We have the equivalence between the semi-norms ||v|| and ||v||1,5, and it is proved
in the following lemma.

Lemma 3.3. For any v € V},, the following equivalence holds true
Cillvllen < flvll < Callvl1n, (16)

where C1 and Cy are two constants independent of h.

Proof. 1t follows from the definition of Vv, integration by parts, the trace inequal-
ity, and the inverse inequality that

[Vav|Z, = (Vav,Vau)r, = —(v,V - Vau)p, + {vin, Vav)or,
(Vu,Vau)r, — ((v—={v})n, Vav)or,

< Vol IVavllr, + [[(v = {vh)nllon IVavllor

IVavllz, (IVvll7, + hi% (v = {v})nllor,). (17)

For any e C 0T1, e = 011 N 9T, we have

A

IN

1
(0 ={vhlens = vloryn1 — S (vlor + vlon,)m
1
= §(U‘3T1n1 +U|3T2n2)
1
= 5[[1)}]6.
Then we can get
1
1o = {oh)mllr, <5 > lllele. (18)

e€dT,
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Substituting (18) into (17) gives
_1
IVaollz, < CollVavllz (IVollmy + Y ke 2l

ecdT,
this completes the proof of the right-hand of (16).
To prove the left-hand of (16), we consider the subspace of RT)(T") for any T' € Ty,
Dk, T):={q€e RT,(T): ¢-n=0ondT}.
Note that D(k, T is a dual space of [Qx_1(T)]? [13]. Thus, for any Vv € [Qx_1(T)]?,

we have

IVolr = sup 0D

19
qene,) 4T (19)

Using the integration by parts, Cauchy-Schwarz inequality, the definition of D(k,T")
and Vyvu, we get
(Vu,q)r = —(v,V-q)r+ {v,q-n)ar
(Vav, )7 — ({v}, g - n)or
(Vav, q)r
IVavllz - [lqlr,

IA

where we have used the fact that ¢-n|sr = 0 in the definition of D(k, T). Combining
the above result with (19), one has

IVollr < [[Vavlr. (20)

We define the space D.(k,T) as the set of all ¢ € RTy(T) such that all degrees
of freedom, except those for g - n|., vanish. Note that D.(k,T) is a dual space of
[Qx(e)]? [13]. Thus, we know

<HU]]7 q- n>e
[[V]lle = sup == (21)
gen (k) g 7mle
Following the integration by parts and the definition of V4, we can derive that
(vdv7 q)T = (VU, q)T - <Ua q- n>6 + <{U}a q - n>e-
Together with (20), we obtain

[([v]; - m)e

(Vav, @)r — (Vv, @)7|

(Vav, @)r| +2|(Vv, ¢)7
C(IVavllrllgllr + IVvlrllqlr)
Cl[Vav|r| gl

Substituting the above inequality into (21), by the scaling argument [13], for such
q € D.(k,T), we have ||q||r < hz||q - n]|., then

2|
2|

INIAIA

\Y
jtetle < AT 6y (22)
lq - nle
Combining (20) and (22) gives a proof of the left-hand of (16). O

Lemma 3.4. The semi-norm | - || defined in (14) is a norm in V;.
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Proof. We shall only verify the positivity property for || - |. To this end, assume
lvll = 0 for some v € V2. By Lemma 3.3, it follows that |[v]|1,, = 0 for all T € Ty,
which means that Vo = 0 for all elements T € T, and [v] = 0 for all edges e € £7.
We can derive from Vv = 0 for all T € Ty, that v is a constant in each T. [v] =0
on each e € £ implies v is a continuous function. This two conclusions and v = 0
on Jf) show that v = 0, which completes the proof of the lemma. O

The above two lemmas imply the well posedness of the scheme (11). We prove
the existence and uniqueness of solution of the conforming DG method in Theorem
3.1.

Theorem 3.1. The conforming DG scheme (11) has and only has one solution.

Proof. To prove the scheme (11) is uniquely solvable, it suffices to verify that the
homogeneous equation has zero as its unique solution. To this end, let u; € Vj
be the solution of the numerical scheme 11 with homogeneous data f = 0, g = 0.
Letting vy, = up, we obtain

a(up,up) =0,
which leads to up, = 0 by using Lemma 3.4. This completes the proof of the
theorem. O

4. Error equation. In this section, we will derive an error equation which will be
used for the error estimates. For any q € H(div,(), we assume that there exist
an interpolation operator I, satisfying I, q € H(div, Q)N RT(T) on each element
T €Ty, and

(V-q,v)r = (V-1Lq,v)r, Yve Qu(T). (23)

For any w € H***(Q) with k > 1, from Lemma 7.3 in [20], we have the estimate
of IT;, as follows.

[ (Vw) = V|| < CRF||w]1+4- (24)
Moreover, it is easy to verify the following property holds true.

Lemma 4.1. For any q € H(div, ),
Z (=V-qv)r = Z (I, g, Vav)r, Vv € V). (25)
TeETh TETh

Proof. 11,q € H(div,) implies that Il q is continuous across each interior edge.
Since v € V)2, we know that {v} = v =0 on Q. Then

> ({v}. Mg - n)or = 0. (26)

TET
By the definition of II;, and V4 and the equation (26), we have

Y (=V-quv)r = Y (-V-Ihqv)r

TETh TeTh
= > (-V-Ihgv)r+ Y {v}1hg n)or
TETh TETh
= > (Thg,Vao)r.
TeTh

This completes the proof of the lemma. O
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Before establishing the error equation, we define a continuous finite element
subspace of V}, as follows

Vi ={ve H'(Q):v|r € Qu(T), VT € Tp,}. (27)
so as a subspace of Vj,
V0 = {v € V) : v]aq = 0}. (28)
Lemma 4.2. For any v € Vi, we have
Vv = V.

Proof. By the definition of V4 and integration by parts, for any q € RTy(T), we
have

(Vav,@)r = —(v,V-q@)r+ ({v},q - nor
—(v,V-q)r + (v, q-n)or
= (V’U, q)Ta

which gives

(Vaqv — Vv, q)r =0, Vg € RT(T).
Letting ¢ be Vgv — Vo in the above equation yields [|[Vqv — Vu|| = 0, which
completes the proof of the lemma. O

Let e;, = Iyu—uy, where I, is the kth order Lagrange interpolation, u € H*+1((2)
with k& > 1 is the exact solution of the Poisson equations (1) - (2), and uj, € V}, is
the numerical solution of the scheme (11). The following estimate of the Lagrange
interpolation operator I holds true.

[hu = ull < CR* |1, (29)
IV Inu — Vul| < CB* [ 1. (30)
It is obvious that e € Vho and Iyu € f/h. We have the following lemma;:

Lemma 4.3. Denote e, = Ipu — uy the error of conforming DG method arising
from (11). For any vy, € V), we have

a(eh,vh) = lu(vh), (31)
where
lu(’l)h) = Z (Vlhu — I, Vu, Vdvh). (32)
TETh

Proof. Since Ihu € Vh, we have V Iu = VIju. Using the property (25), we can
derive

> (Valww, Vavn)r = Y (VIwu, Vavy)r
TeTh Te€Th
= Z (thu — I, Vu + 11, Vu, Vdvh)T
TeTh
= Y (VIu =TV, Vaon)r + > ([ThVu, Vaon)r
TETh TETh
= lu(vh) — Z (V . Vu,vh)T
TeTh

= lu(vn) + (f,vn).
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By the definition of the scheme (11), we have
Z (Valpu — Vaup, Vaop)r = Ly(vh).
TeTh

This completes the proof of the lemma. O

5. Error estimates. The goal of this section is to derive the error estimates in
H' and L? norms for the conforming DG solution uy,.

Theorem 5.1. Let u € H*1(Q) with k > 1 be the exact solution of the Poisson
equation (1) - (2), and up, € V3, be the numerical solution of the scheme (11). Let
en = Inu — up, there exists a constant C independent of h such that

llenll < Ch*[ulg1. (33)
Proof. Letting vy, = ep, in (31), and by the definition of | - ||, we have
lenl = Lu(en). (34)

From the Cauchy-Schwarz inequality, the triangle inequality, the definition of || - ||
(24), and (30), we arrive at

)

lu(vh) = Z (thu — Hh(Vu), Vdvh)T
TETh
< Y IVIvu = T(Va) |7 Vavn||z
TETh
< <Z |V1hu—Hh(VU)%> (Z |vdUh||2T>
TETh TETh

1
2
= < > IVIu—Vu+ Vu - Hh(VU)||2T> llonll

TeTh

1

< ( > IVIvu = VullF + [V - Hh(VU)II%> llonll
TeTh

< Ch*ulisa]lonll-

Then, we have

Lu(en) < Ch*[ulsr[lenl]- (35)
Substituting (35) to (34), we obtain

lenll® < Ch*fulirallenl,

which completes the proof of the lemma. O

It is obvious that f/,? C V,? . Let @, € V), be the finite element solution for the
problem (1)-(2) which satisfies 4y, = Ipg on 99 and

(Viay, Vo) = (f,v), Yo € V. (36)
For any v € f/}? C Vi, we have Vv = Vo, ie.
(Vaup, — Vi, Vv) =0, Yv € V. (37)
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In the rest of this section, we derive an optimal order error estimate for the
conforming DG approximation (11) in L? norm by adopting the duality argument.
To this end, we consider the following dual problem that seeks ® € HJ (2) satisfying

-V (VCI)) = Up — ﬂh, in Q. (38)

Assume that the dual problem satisfies H?2-regularity, which means the following
priori estimate holds true

[@ll2 < Cllun — |- (39)
In the following of this paper, we note ¢, = up — 4y, for simplicity.

Theorem 5.2. Assumeu € H*1(Q) with k > 1 is the ezact solution of the Poisson
equation (1) - (2), and up, € V3, is the numerical solution obtained with the scheme
(11). Furthermore, assume that (39) holds true. Then, there exists a constant C
independent of h such that

lu = unl) < CHF* . (40)

Proof. First, we shall derive the optimal order for ¢, in L? norm. Consider the
corresponding conforming DG scheme defined in (11) and let ®, € V0 be the
solution satisfying

a(®p,v) = (ep,v), Yo € Vf?. (41)

Since I;,® € V, it follows from (37) that

(Vduh - Vﬂh, th‘I)) = 0,
Valpb® = VI,
which gives
(Vduh — Vﬁ}“ VdI;@) =0. (42)

Setting v = €, in (41), then by the definition of ¢}, and (42), we have

lenl® = a(®n,en) = Y (Va®n, Vaen)r
TETh

> (Va(®n = 1n®), Vaun — Viip)r
TeTh
I®n = L@l (llun = Inull + [V (Inu = an)|])-

IN

Then, by the Cauchy-Schwarz inequality, (33) and (39), we obtain
lenl? < ChI®|2h*ulkr < CH*  ulpiaflen]),
which gives

lenll < CREF ulg . (43)

Combining the error estimate of finite element solution, the triangle inequality
and (43) yields (40), which completes the proof of the theorem. O
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6. Numerical experiments. In this section, we shall present some numerical
results for the conforming discontinuous Galerkin method analyzed in the previous
sections.

We solve the following Poisson equation on the unit square domain 2 = (0,1) x
(0,1),

—Au = 272 sin(7x) sin(7y) in Q (44)
u=0 on 0f. (45)

The exact solution of the above problem is u = sin(wz)sin(ny). Uniform square
grids as shown in Figure 1 are used for computation.

FIGURE 1. The first three grids used in the computation.

We first use the Py, conforming discontinuous Galerkin spaces (8) to compute the
test case (44)-(45), where Py denotes the set of polynomials of 2 variables of degree
less than or equal to k. The weak gradient is computed locally using rectangular
RT}, polynomials. The errors and the order of convergence of the conforming DG
approximations are listed in Table 1. Optimal order of convergence is achieved in
every case, which is consistent with our theory. In particular, a superconvergence of
order O(h?) was observed in the discrete H! norm for Py elements. Furthermore,
the results obtained with Py elements seems to be slightly better than that obtained
with P; elements.

The same test case is also computed using the @y conforming DG finite element
space, where @QQ; denotes the set of polynomials of 2 variables defined on 2, and
for each variable, the degree of the variable is at most k. Table 2 illustrates the
numerical performance of the corresponding conforming DG scheme. It can be
seen from numerical computing that, in this case, the results obtained with the )1
element are more accurate than those obtained with Qo(= Pp) elements (see Table
1). All numerical results converge at the corresponding optimal order, which is
consistent with the theory.

To test the superconvergence of Py DG element, we solve the following 2nd order
elliptic equation on the unit square domain Q = (0,1) x (0, 1),

—Au+u=f in
u=20 on 02,

where f is chosen so that the exact solution is not symmetric,

u=(r—a*)(y -y’ (46)
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TaBLE 1. Error profiles and convergence rates for test case (44)-
(45) obtained with uniform grids and Py conforming DG spaces.

level | [|up, — Qpullo rate ‘ llup, — Qrul| rate ‘ #Dof
by Py conforming discontinuous Galerkin elements
6 0.1996E-02 1.97 | 0.8887E-02 1.98 1024
7 0.5013E-03  1.99 | 0.2228E-02 2.00 4096
8 0.1255E-03  2.00 | 0.5574E-03 2.00 16384
by P, conforming discontinuous Galerkin elements
6 0.2427E-02  1.97 | 0.1027E4-00 1.02 3072
7 0.6100E-03  1.99 | 0.5105E-01 1.01 12288
8 0.1527E-03  2.00 | 0.2546E-01 1.00 49152
by P, conforming discontinuous Galerkin elements
5 0.1533E-03  3.00 | 0.2042E-01 2.03 1536
6 0.1915E-04 3.00 | 0.5061E-02 2.01 6144
7 0.2394E-05 3.00 | 0.1260E-02 2.01 24576
by Ps conforming discontinuous Galerkin elements
5 0.7959E-05 4.00 | 0.1965E-02 3.00 2560
6 0.4971E-06  4.00 | 0.2451E-03 3.00 10240
7 0.3140E-07  3.98 | 0.3059E-04 3.00 40960
by P, conforming discontinuous Galerkin elements
4 0.1055E-04 4.97 | 0.1421E-02 4.05 960
5 0.3314E-06  4.99 | 0.8735E-04 4.02 3840
6 0.1057E-07 497 | 0.5417E-05 4.01 15360
by Ps conforming discontinuous Galerkin elements

2 0.2835E-02  6.24 | 0.1450E4-00 5.49 84
3 0.4532E-04 5.97 | 0.4718E-02 4.94 336
4 0.7115E-06  5.99 | 0.1478E-03 5.00 1344

Uniform square grids as shown in Figure 1 are used for numerical computation.
The numerical results are listed in Table 3. Surprising, for this problem, the H!-
like norm of error superconverges at 1.5 order, and the L? error has one order of
superconvergence. But we do not yet know if such a superconvergence exists in
general.

To test further the superconvergence of Py DG element, we solve the following
2nd order elliptic equations on the unit square domain = (0,1) x (0, 1),

—V(aVu) = f in Q
u=20 on 01},

where a = 1+ z 4+ y and f is chosen so that the exact solution is not symmetric,

u=(z—z%)(y* —y°). (47)
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TABLE 2. Error profiles and convergence rates for test case (44)-
(45) obtained with uniform grids and @}, conforming DG spaces.

level | |lup — Qpullo rate ‘ llun, — Quu|| rate ‘ #Dof
by @1 conforming discontinuous Galerkin elements
6 0.4006E-03  1.99 | 0.2389E-02 1.99 4096
0.1003E-03  2.00 | 0.5982E-03 2.00 16384
8 0.2510E-04  2.00 | 0.1496E-03 2.00 65536
by @2 conforming discontinuous Galerkin elements
6 0.2360E-04 2.99 | 0.3186E-02 1.99 9216
7 0.2953E-05 3.00 | 0.7976E-03 2.00 36864
8 0.3692E-06  3.00 | 0.1995E-03 2.00 147456
by @3 conforming discontinuous Galerkin elements
5 0.1413E-04 4.08 | 0.1650E-02 2.97 4096
6 0.8676E-06  4.03 | 0.2072E-03 2.99 16384
7 0.5398E-07  4.01 | 0.2593E-04 3.00 65536
by @4 conforming discontinuous Galerkin elements

EN

3 0.2226E-02  4.59 | 0.5414E-01 3.52 400
4 0.9610E-04 4.53 | 0.3723E-02 3.86 1600
) 0.3279E-05 4.87 | 0.2392E-03 3.96 6400

TABLE 3. Error profiles and convergence rates for test case (46)
obtained with uniform grids and Py conforming DG spaces.

level | [|up, — Qpullo rate ‘ llup, — Quul| rate ‘ #Dof
by Py conforming discontinuous Galerkin elements

0.8265E-02  1.06 | 0.4577E-01 1.14 16
0.2772E-02  1.58 | 0.1732E-01 1.40 64
0.7965E-03  1.80 | 0.6331E-02 1.45 256

0.2142E-03  1.90 | 0.2290E-02 1.47 1024
0.5564E-04 1.94 | 0.8213E-03 1.48 4096
0.1419E-04 1.97 | 0.2928E-03 1.49 16384

0 O Ot W

Uniform square grids as shown in Figure 1 are used for computation. The numerical
results are listed in Table 4. Surprising, again, the H!-like norm of error supercon-
verges at 1.5 order, and the L? error has one order of superconvergence for this
problem.

7. Conclusion. In this paper, we establish a new numerical approximation scheme
based on the rectangular partition to solve second order elliptic equation. We
derived the numerical scheme and then proved the optimal order of convergence of
the error estimates in L? and H! norms of the conforming DG method. Numerical
experiments are then present to verify the theoretical analysis, and all numerical
results converging at the corresponding optimal order. Comparing with existing
numerical methods, the confoming DG method has the following two characteristics:
1. The formulation is relatively simple. The stabilizer s(- , -) is no longer needed,
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TABLE 4. Error profiles and convergence rates for test case (47)
obtained with uniform grids and Py conforming DG spaces.

level | ||up, — Qrullo rate ‘ llup, — Quu|| rate ‘ #Dof
by Py conforming discontinuous Galerkin elements

3 0.4929E-02 0.97 | 0.5371E-01 0.80 16
4 0.1917E-02 1.36 | 0.2401E-01 1.16 64
) 0.6004E-03  1.67 | 0.9407E-02 1.35 256
6 0.1682E-03  1.84 | 0.3507E-02 1.42 1024
7 0.4457E-04 1.92 | 0.1275E-02 1.46 4096
8 0.1148E-04 1.96 | 0.4576E-03 1.48 16384

the boundary function u;, is omitted, which is replaced by the average of internal

function wug; 2. The projection operator @)y, used in the traditional WG method is
replaced by the Lagrange interpolation operator I, which makes the theoretical
analysis much easier. As can be seen from the numerical examples in Section 6, this
method reduces the programming complexity while ensuring the optimal order of
convergence.
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