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Abstract. This paper is considered with the quasilinear elliptic equation

∆pu = b(x)f(u), u(x) > 0, x ∈ Ω, where Ω is an exterior domain with com-
pact smooth boundary, b ∈ C(Ω) is non-negative in Ω and may be singular or

vanish on ∂Ω, f ∈ C[0,∞) is positive and increasing on (0,∞) which satisfies a

generalized Keller-Osserman condition and is regularly varying at infinity with
critical index p − 1. By structuring a new comparison function, we establish

the new asymptotic behavior of large solutions to the above equation in the

exterior domain. We find that the lower term of f has an important influence
on the asymptotic behavior of large solutions. And then we further establish

the uniqueness of such solutions.

1. Introduction and main results. This presentation will investigate the influ-
ence of the lower term of nonlinearity f on the asymptotic behavior and uniqueness
of large solutions u ∈W 1,p

loc (Ω) ∩C(Ω) to the following quasilinear elliptic equation

∆pu = b(x)f(u), u(x) > 0, x ∈ Ω, (1)

where ∆pu := div(|∇u|p−2∇u) stands for p -Laplacian operator with 1 < p < N
and Ω ⊆ RN (N ≥ 3) is an exterior domain with compact smooth boundary. We

say that u ∈W 1,p
loc (Ω) is a local weak solution to Eq. (1) in Ω means that for every

sub-domain D b Ω, it holds∫
D

|∇u|p−2∇u∇ϕdx = −
∫
D

b(x)f(u(x))ϕ(x)dx, ∀ϕ ∈W 1,p
loc (Ω).

A local weak solution u is said to be a large solution if u ∈ C(Ω) and satisfies

u(x)→∞ as |x| → ∞ and u(x)→∞ as d(x) := d(x, ∂Ω)→ 0. (2)

In this paper we assume that the nonlinearity f satisfies the following hypotheses:

(f1): f ∈ C[0,∞), f(0) = 0, f(t) > 0, t > 0, and f is increasing on [0,∞);
(f2): the following generalized Keller-Osserman condition holds,∫ ∞

1

(F (s))−1/pds < +∞, F (t) =

∫ t

0

f(s)ds.
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The weight b satisfies the following hypotheses, not necessarily simultaneously:

(b1): b ∈ C(Ω) is non-negative in Ω, where Ω is an exterior domain with compact
smooth boundary;

(b2): there exist θ ∈ Λ1 and positive constant b0 such that

lim
|x|→∞

b(x)

θp(|x|)
= b0,

where Λ1 denotes the set of all positive non-increasing functions θ ∈ C1[R0,∞)
∩ L1[R0,∞) (R0 > 0) which satisfy

lim
t→∞

d

dt

(
Θ(t)

θ(t)

)
:= Dθ ∈ (0,∞), Θ(t) :=

∫ ∞
t

θ(s)ds, t ≥ R0;

(b3): there exist k ∈ Λ2 and positive constant b1 such that

lim
d(x)→0

b(x)

kp(d(x))
= b1,

where Λ2 denotes the set of all positive monotonic functions k ∈ C1(0, δ0) ∩
L1(0, δ0) (δ0 > 0) which satisfy

lim
t→0+

d

dt

(
K(t)

k(t)

)
:= Dk ∈ [0,∞), K(t) :=

∫ t

0

k(s)ds,

Λ2 was first introduced by Ĉırstea and Rădulescu [1] for non-decreasing func-
tions and by Mohammed [11] for non-increasing functions.

When Ω is a bounded domain, b ≡ 1 in Ω and f(u) = uγ with γ > p − 1, Diaz
and Letelier [3] first studied the existence of large solutions to Eq. (1). Then, when
f satisfies (f1) (or f ∈ C(R) is positive and increasing on R) and (f2), the exis-
tence and boundary behavior of large solutions to Eq. (1) are further investigated
by Matero [9] in a bounded domain Ω ⊆ RN (N ≥ 2) with a C2-boundary. In
particular, the author obtained the following boundary behavior:

lim
d(x)→0

Φ(u(x))

d(x)
= 1,

where Φ is given by

Φ(t) =

∫ ∞
t

((p/(p− 1))F (s))−1/pds.

If f further satisfies

lim inf
t→∞

Φ(λt)

Φ(t)
> 1, ∀λ ∈ (0, 1),

then u satisfies

lim
d(x)→0

u(x)

Ψ(d(x))
= 1,

where Ψ is the inverse of Φ, i.e., Ψ is given by∫ ∞
Ψ(t)

((p/(p− 1))F (s))−1/pds = t, t > 0. (3)

Gladiali and Porru [6] showed that if b ≡ 1 in bounded domain Ω ⊆ RN , f satisfies
(f1) and t 7→ F (t)t−p is increasing for large t, then any large solution u to Eq. (1)
satisfies

|u(x)−Ψ(d(x))| < cd(x)Ψ(d(x)) near ∂Ω.
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Furthermore, under the additional assumption F (t)t−2p → ∞ as t → ∞, they
obtained

u(x)−Ψ(d(x))→ 0 as d(x)→ 0.

Based on a comparison principle, Du and Guo [4] discussed the existence, unique-
ness and asymptotic behavior of various boundary blow-up solutions for a class of
quasilinear elliptic equations. Let Ω be a bounded domain, b satisfy (b1) and

(C): If there exists x0 ∈ Ω such that b(x0) = 0, then there exists a bounded
domain Ω0 (Ω0 b Ω) containing x0 such that b(x) > 0 for all x ∈ ∂Ω0,

f satisfy (f1) and (f2). Mohammed [10] showed that if the Poisson problem

−∆pv(x) = b(x), x ∈ Ω, v|∂Ω = 0

has a weak solution, then Eq. (1) admits a non-negative boundary blow-up solution.
Moreover, the author further established the asymptotic boundary estimates of such
blow-up solutions. Later, Mohammed [11] showed that if Ω ⊆ RN is a bounded
domain with C2-boundary, b satisfies (b1) and (b3) (k is non-increasing on (0, δ0)),
f satisfies (f1) and f ∈ RVρ+1 (please refer to Definition 2.1) with ρ > p− 2, then

any large solution u ∈W 1, p
loc (Ω) ∩ C(Ω) to Eq. (1) satisfies

lim
d(x)→0

u(x)

Ψ(K(d(x)))
=

(
p+Dk(2 + ρ− p)

b1(2 + ρ)

)1/(2+ρ−p)

,

where Ψ is given by (3). By introducing some structure condition, the result of
Mohammed in [11] was extended by Zhang [18] from f ∈ RVρ+1 with ρ > p− 2 to
the case that f ∈ RVρ+1 with ρ ≥ p−2 or f is rapidly varying at infinity. Moreover,
the author also studied the boundary behavior of large solutions to Eq. (1) when
b is critical singular on the boundary. Inspired by the above results, by using
Karamata regular varying theory, Wan [14] investigated the asymptotic behavior
and uniqueness of entire large solutions to Eq. (1) in RN . For other related insight
on Eq. (1.1), please refer to [2], [8]-[7], [15]-[16].

In this paper, by structuring a comparison function, we establish the new asymp-
totic behavior of large solutions to problem (1)-(2) (including the case of p = 2)
when f ∈ NRVp−1. Our results imply that the lower term of f has an important in-
fluence on the asymptotic behavior of large solutions to the above exterior domain
problem. Then, we further establish the uniqueness of the solutions to problem
(1)-(2).

To obtain our results, we further assume that f satisfies

(f3): there exist some constant t0 > 0 and two functions f1 and f2 such that

f(t) := f1(t) + f2(t), t ≥ t0,

where f1 ∈ C2[t0,∞). If we denote g(t) :=
tf ′1(t)
f1(t) − (p − 1), t ≥ t0 and g and

f2 satisfy the following conditions:

(f4):

g(t) > 0, t ≥ t0, lim
t→∞

g(t) = 0, lim
t→∞

tg′(t)

g(t)
= 0,

lim
t→∞

tg′(t)

g2(t)
= κg ∈ R, lim

t→∞

tp−1

f1(t)gp(t)
= 0;

(f5): for any ξ > 0

lim
t→∞

f2(ξt)

f2(t)
= ξp−1,
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and there exists E1 6= 0 such that

lim
t→∞

f2(t)

g(t)f1(t)
= E1,

or
(f6):

lim
t→∞

f2(t)

g(t)f1(t)
= 0

and there exists µ ≤ p− 1 such that for any ξ > 0

lim
t→∞

f2(ξt)

f2(t)
= ξµ.

Our results are summarized as follows.

Theorem 1.1. Let f satisfy (f1)-(f6), b satisfy (b1)-(b2). If

(N − p)Dθ − p+ 1 > 0 and
1

p
+ κg > 0,

then any solution u to problem (1)-(2) satisfies

lim
|x|→∞

u(x)

ψ(b
1/p
0 Θ(|x|))

= exp(ξ0), (4)

where ψ is uniquely determined by∫ ∞
ψ(t)

(sf1(s))−1/pds =
t

(p− 1)1/p
(5)

and

ξ0 =
1

p
− E2 +

1

p− 1

(
1

p
+ κg

)
((N − p)Dθ − p+ 1)

with

E2 :=

{
E1, if (f5) holds;

0, if (f6) holds.
(6)

Theorem 1.2. Let f satisfy (f1)-(f6), b satisfy (b1) and (b3) with one of the
following conditions:

(I): k is non-decreasing on (0, δ0);
(II): k is non-increasing on (0, δ0) with Dk > 1.

When (II) holds, we further assume 1
p + κg > 0. Then any solution u to problem

(1)-(2) satisfies

lim
d(x)→0

u(x)

ψ(b
1/p
1 K(d(x)))

= exp(ξ1), (7)

where ψ is uniquely determined by (5) and

ξ1 =
1

p
− E2 −

(
1

p
+ κg

)
(1−Dk),

where E2 is defined by (6).
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Remark 1.3. If we replace Dk > 1 by Dk = 1 in (II) of Theorem 1.2 and further
assume that

lim sup
t→0+

k′(t)/k(t) ≤ − (N − 1)C̃

(p− 1)1/p
and inf

x̄∈∂Ω
H(x̄) > −C̃,

where C̃ is a positive constant and H is the mean curvature of ∂Ω, then Theorem
1.2 still holds.

Remark 1.4. In Theorems 1.1 and 1.2, the comparison function ψ given by (5)
can not be replaced by Ψ given by the following integral equation∫ ∞

Ψ(t)

(sf1(s))−1/pds = t, t > 0.

Remark 1.5. Some basic examples which satisfy all of our requirements in Theo-
rems 1.1-1.2 are the following:

(i): f(t) = c1t
p−1(ln t)pα + c2t

α1(ln t)α2 , t ≥ t0, where α > 1, c1 > 0, α1 ≤ p− 1
and c2, α2 ∈ R. By a straightforward calculation, we obtain that

g(t) = pα(ln t)−1, t ≥ t0, κg = − 1

pα

and

E2 =

{
c2
c1pα

, α1 = p− 1, α2 = pα− 1;

0, α1 < p− 1 or α1 = p− 1, α2 < pα− 1;

ψ(t) = exp

(
(α− 1)c

1/p
1

(p− 1)1/p

)1/(1−α)

t1/(1−α), t > 0.

(ii): f(t) = c1t
p−1 exp((ln t)q) + c2t

α1(ln t)α2 exp((ln t)α3), t ≥ t0, where c1 > 0,
α1 ≤ p − 1, q, α3 ∈ (0, 1), c2, α2 ∈ R. By a straightforward calculation, we
obtain that

g(t) = q(ln t)q−1, t ≥ t0, κg = 0

and

E2 =


c2
c1q
, α1 = p− 1, α2 = q − 1 and α3 = q;

0, α1 < p− 1 or α1 = p− 1, α2 < q − 1 and α3 = q;

0, α1 = p− 1 and α3 < q.

(iii): f(t) = c1t
p−1(ln t)p(ln(ln t))pα+c2t

α1(ln t)α2(ln(ln t))α3 , t ≥ t0, where c1 >
0, α > 1 and α1 ≤ p− 1, c2, α2, α3 ∈ R. By a straightforward calculation, we
obtain that

g(t) = p(ln t)−1(1 + α(ln(ln t))−1), t ≥ t0 and κg = −1

p

and

E2 =


c2
c1p
, α1 = α2 = p− 1 and α3 = pα;

0, α1 < p− 1 or α1 = p− 1, α2 < p− 1 and α3 = q;

0, α1 = α2 = p− 1 and α3 < pα;

ψ(t) = exp

(
exp

((
(α− 1)c

1/p
1

(p− 1)1/p

)1/(1−α)

t1/(1−α)

))
, t > 0.
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Theorem 1.6. Let f satisfy (f1) and

(f8): t 7→ f(t)t1−p is non-decreasing on (0,∞),

b satisfy (b1), and u1, u2 be arbitrary positive solutions to problem (1)-(2) and
satisfy

lim
|x|→∞

u1(x)

u2(x)
= 1, lim

d(x)→0

u1(x)

u2(x)
= 1,

then u1 = u2 in Ω.

Corollary 1.7. If b, f satisfy the hypotheses in Theorems 1.1-1.2 and (f8) holds,
then the solution to problem (1)-(2) is unique.

The paper is organized as follows. In Section 2, we give some bases of Karamata
regular variation theory. In Section 3, we collect some preliminary considerations.
The proofs of our Theorems are given in Sections 4-6, respectively.

2. Some basic facts from Karamata regular variation theory. In this sec-
tion, we introduce some preliminaries of Karamata regular variation theory which
come from [12]-[13].

Definition 2.1. A positive continuous function f defined on [a,∞), for some a > 0,
is called regularly varying at infinity with index µ, denoted by f ∈ RVµ, if for
each ξ > 0 and some µ ∈ R,

lim
t→∞

f(ξt)

f(t)
= ξµ. (8)

In particular, when µ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVµ, then L(t) := f(t)/tµ is slowly varying at infinity.
We also see that a positive continuous function h defined on (0, a) for some a > 0,
is regularly varying at zero with index µ (written as h ∈ RV Zµ) if t→ h(1/t) ∈
RV−µ.

Proposition 2.1. (Uniform Convergence Theorem) If f ∈ RVµ, then (8) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.2. (Representation Theorem) A function L is slowly varying at
infinity if and only if it may be written in the form

L(t) = ϕ(t)exp

(∫ t

a1

y(s)

s
ds

)
, t ≥ a1,

for some a1 ≥ a, where the functions ϕ and y are continuous and for t → ∞,
y(t) → 0 and ϕ(t) → c0, with c0 > 0. If ϕ ≡ c0, then L is called normalized
slowly varying at infinity and

f(t) = tµL̂(t), t ≥ a1,

is called normalized regularly varying at infinity with index µ (written as f ∈
NRVµ).

A function f ∈ C1[a1,∞) for some a1 > 0 belongs to NRVµ if and only if

lim
t→∞

tf ′(t)

f(t)
= µ.

Similarly, h ∈ C1(0, a1] for some a1 > 0 belongs to NRV Zµ if and only if

lim
t→0+

th′(t)

h(t)
= µ.
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3. Auxiliary results. In this section, we collect some useful results.

Lemma 3.1. Let θ ∈ Λ1, then

(i): Θ′(t) = −θ(t), t ≥ R0, limt→∞
Θ(t)
tθ(t) = Dθ, i.e., Θ ∈ NRV−1/Dθ and

limt→∞
Θ(t)
θ(t) =∞;

(ii): limt→∞
Θ(t)θ′(t)
θ2(t) = −1−Dθ and θ ∈ NRV−(1+Dθ)/Dθ .

Proof. (i) By the definition of Λ1 and the l’Hospital’s rule, we obtain (i) holds.

(ii) A straightforward calculation shows that limt→∞
Θ(t)θ′(t)
θ2(t) = −1 − Dθ. This

combined with (i) implies that θ ∈ NRV−(1+Dθ)/Dθ .

Lemma 3.2. ([17] , Lemma 2.1) Let k ∈ Λ2, then

(i): limt→0+
K(t)
k(t) = 0 and limt→0+

K(t)k′(t)
k2(t) = 1−Dk;

(ii): when k is non-decreasing, Dk ∈ [0, 1]; when k is non-increasing, Dk ≥ 1;
(iii): when Dk > 0, k ∈ NRV Z(1−Dk)/Dk ;

(iv): when Dk = 0, then limt→0+ t−mK(t) = 0 for any m > 0.

Lemma 3.3. Let f satisfy (f1)-(f6), ψ be the unique solution of (5), then

(i): ψ′(t) = − 1
(p−1)1/p

(ψ(t)f1(ψ(t)))1/p, t > 0 and limt→0+ ψ(t) =∞;

(ii): (−ψ′(t))p−2ψ′′(t) = 1
p(p−1)

(
f1(ψ(t)) + ψ(t)f ′1(ψ(t))

)
, t > 0;

(iii): limt→∞(g(t))−1
( f1(ξt)
ξp−1f1(t) − 1

)
= ln ξ, ξ > 0;

(iv): limt→∞
f2(ξt)

ξp−1g(t)f1(t) = E2, ξ > 0;

(v): limt→∞
1
p−1

(tf1(t))(p−1)/p

g(t)f1(t)
∫∞
t

(sf1(s))−1/pds
= 1

p−1

(
1
p + κg

)
;

(vi): limt→0+(g(ψ(t)))−1

[
1
p

(
1 +

ψ(t)f ′1(ψ(t))
f1(ψ(t))

)
− f1(ξψ(t))

ξp−1f1(ψ(t))

]
= 1

p − ln ξ, ξ > 0;

(vii): limt→0+
f2(ξψ(t))

ξp−1g(ψ(t))f1(ψ(t)) = E2, ξ > 0;

(viii): limt→0+
1

(p−1)(p−1)/p

(ψ(t)f1(ψ(t)))(p−1)/p

tg(ψ(t))f1(ψ(t)) = 1
p−1

(
1
p + κg

)
.

Proof. (i) By the definition of ψ and a direct calculation, we see that (i)-(ii) hold.
(iii) If ξ = 1, the result is obvious. Otherwise, by f ∈ NRVp−1, we have

f1(ξt)

ξp−1f1(t)
− 1 = exp

(∫ ξt

t

g(τ)

τ
dτ

)
− 1, t ≥ t0. (9)

It follows by (f4) and Proposition 2.1 that limt→∞
g(ts)
s = 0 and limt→∞

g(ts)
g(t) = 1

uniformly with respect to s ∈ [c1, c2]. Hence, we have

lim
t→∞

∫ tξ

t

g(τ)

τ
dτ = lim

t→∞

∫ ξ

1

g(st)

s
ds = 0.

By the Lebesgue’s dominated convergence theorem, we obtain

lim
t→∞

∫ ξ

1

g(st)

sg(t)
ds =

∫ ξ

1

s−1ds = ln ξ. (10)

On the other hand, we see that

exp(t)− 1 ' t as t→ 0 (11)

and

lim
t→∞

(g(t))−1

(
exp

(∫ ξt

t

g(τ)

τ
dτ

)
− 1−

∫ ξt

t

g(τ)

τ
dτ

)
= 0. (12)
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It follows by (9)-(12) that (iii) holds.
(iv) Since

lim
t→∞

f2(ξt)

ξp−1g(t)f1(t)
= lim
t→∞

f2(ξt)

ξp−1f2(t)
lim
t→∞

f2(t)

g(t)f1(t)
,

we see that if (f5) holds, then

lim
t→∞

f2(ξt)

ξp−1f2(t)
= 1 and lim

t→∞

f2(t)

g(t)f1(t)
= E1;

if (f6) holds, then

lim
t→∞

f2(ξt)

ξp−1f2(t)
= ξµ−p+1 and lim

t→∞

f2(t)

g(t)f1(t)
= 0.

(v) By (f3)-(f4) and the l’Hospital’s rule, we obtain

lim
t→∞

1

p− 1

(tf1(t))(p−1)/p

g(t)f1(t)
∫∞
t

(sf1(s))−1/pds

= lim
t→∞

− 1

p− 1

p−1
p g(t)− g′(t)t− 1

pg(t)
f ′1(t)t
f1(t)

(g(t))2

= lim
t→∞

1

p− 1

(
g′(t)t

(g(t))2
+

1

p

f ′1(t)t
f1(t) − (p− 1)

g(t)

)
=

1

p− 1

(
1

p
+ κg

)
.

(vi)-(viii) We conclude by (f3) and (iii)-(v) that (vi)-(viii) hold.

Lemma 3.4. ([11], Lemma 2.2) Let Ω be a bounded domain and G : Ω×R→ R be
non-increasing in the second variable and continuous. Let u, w ∈ W 1, p(Ω) satisfy
the respective inequalities∫

Ω

|∇u|p−2∇u · ∇ϕdx ≤
∫

Ω

G(x, u)ϕdx;∫
Ω

|∇w|p−2∇w · ∇ϕdx ≥
∫

Ω

G(x,w)ϕdx,

for all non-negative ϕ ∈W 1, p
0 (Ω). Then the inequality u ≤ w on ∂Ω implies u ≤ w

in Ω.

4. Proof of Theorem 1.1.

Proof. Take ε ∈ (0,min{ξ0, b0}/2) and

b+ε = (b0 + ε)1/p, b−ε = (b0 − ε)1/p,

τ+ε = exp(ξ0 + ε), τ−ε = exp(ξ0 − ε).
A simple calculation shows that

exp(ξ0/2) < τ−ε < τ+ε < exp(3ξ0/2), (b0/2)1/p < b−ε < b+ε < (3b0/2)1/p.

For any constant R > R0, we define

ΩR := {x ∈ RN : |x| > R}, (13)

where R0 is given by the definition Λ1 in (b2).
By Lemma 3.1 and Lemma 3.3 (vi)-(viii), we see that

lim
(t,r)→(0,∞)

I±(t, r) =
1

p
− ln τ±ε − E2 +

1

p− 1

(
1

p
+ κg

)
((N − p)Dθ − p+ 1)

= ξ0 − ln τ±ε = ∓ε,
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where

I±(t, r) := (g(ψ(t)))−1

(
1

p

(
1 +

ψ(t)f ′1(ψ(t))

f1(ψ(t))

)
− f1(τ±εψ(t))

τp−1
±ε f1(ψ(t))

)
− f2(τ±εψ(t))

τp−1
±ε g(ψ(t))f1(ψ(t))

+
1

(p− 1)(p−1)/p

(ψ(t)f1(ψ(t)))(p−1)/p

tg(ψ(t))f1(ψ(t))

×
(

(p− 1)
Θ(r)θ′(r)

θ2(r)
+

(N − 1)Θ(r)

rθ(r)

)
.

This implies that there exist a large constant Rε > R0 and a small constant δε > 0
corresponding to ε such that

(3b0/2)1/pΘ(|x|) < δε, x ∈ ΩRε ⊆ Ω

and for any (t, x) ∈ (0, 2δε)× ΩRε , the following hold

I+(t, |x|) ≤ 0 and I−(t, |x|) ≥ 0.

In fact, we can always adjust Rε such that for any x ∈ ΩRε , it holds

b0 − ε ≤
b(x)

θp(|x|)
≤ b0 + ε.

Let u be the solution of problem (1)-(2) and take

σ < min{δε, (b0/2)1/pΘ(Rε)}.

Set

Dσ
Rε− := ΩRε \ ΩσRε−, D

σ
Rε+ := ΩRε \ ΩσRε+,

where

ΩσRε− := {x ∈ ΩRε : b−εΘ(|x|) ≤ σ}

and

ΩσRε+ := {x ∈ ΩRε+r0 : τ−εψ(b+εΘ(|x|) + σ) ≤ u(x)}, (14)

where r0 is a large enough constant such that Dσ
Rε+

is an annular domain. Moreover,
by the definition of ΩσRε−, we see that Dσ

Rε− is also an annular domain.
Define

uε(x) := τ+εψ(b−εΘ(|x|)−σ), x ∈ Dσ
Rε−, uε(x) := τ−εψ(b+εΘ(|x|)+σ), x ∈ Dσ

Rε+.

By a straightforward calculation, we have for any x ∈ Dσ
Rε−,

∆puε(x)− b(x)f(uε(x))

= (p− 1)τp−1
+ε bp−ε(−ψ′(b−εΘ(|x|)− σ))p−2ψ′′(b−εΘ(|x|)− σ)θp(|x|)

+ τp−1
+ε bp−1

−ε (−ψ′(b−εΘ(|x|)))p−1θp(|x|)
(

(p− 1)θ′(|x|)
θ2(|x|)

+
N − 1

θ(|x|)|x|

)
− b(x)

(
f1(τ+εψ(b−εΘ(|x|)− σ)) + f2(τ+εψ(b−εΘ(|x|)− σ))

)
≤ τp−1

+ε bp−εf1(ψ(b−εΘ(|x|)− σ))g(ψ(b−εΘ(|x|)− σ))θp(|x|)
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×
[(
g(ψ(b−εΘ(|x|)− σ))

)−1
(

1

p

(
1 +

ψ(b−εΘ(|x|)− σ)f ′1(ψ(b−εΘ(|x|)− σ))

f1(ψ(b−εΘ(|x|)− σ))

)
− f1(τ+εψ(b−εΘ(|x|)− σ))

τp−1
+ε f1(ψ(b−εΘ(|x|)− σ))

)
− f2(τ+εψ(b−εΘ(|x|)− σ))

τp−1
+ε g(ψ(b−εΘ(|x|)− σ))f1(ψ(b−εΘ(|x|)− σ))

+
1

(p− 1)(p−1)/p

(
ψ(b−εΘ(|x|)− σ)f1(ψ(b−εΘ(|x|)− σ))

)(p−1)/p

(b−εΘ(|x|)− σ)g(ψ(b−εΘ(|x|)− σ))f1(ψ(b−εΘ(|x|)− σ))

× b−εΘ(|x|)− σ
b−εΘ(|x|)

(
(p− 1)

Θ(|x|)θ′(|x|)
θ2(|x|)

+
(N − 1)Θ(|x|)
|x|θ(|x|)

)]
≤ τp−1

+ε bp−ε

× f1(ψ(b−εΘ(|x|)− σ))g(ψ(b−εΘ(|x|)− σ))θp(|x|)I+
(
b−εΘ(|x|)− σ, |x|

)
≤ 0,

i.e., uε is an upper solution to Eq. (1) in Dσ
Rε−. In a similar way, we can show that

uε is a lower solution to Eq. (1) in Dσ
Rε+

.
We can choose a positive constant M independent of σ such that

u(x) ≤ uε(x) +M and uε(x) ≤ u(x) +M on ∂ΩRε . (15)

Next, we prove
u(x) ≤ uε(x) +M, x ∈ Dσ

Rε− (16)

and
uε(x) ≤ u(x) +M, x ∈ ΩRε . (17)

Since
u(x) < uε(x) =∞ on

{
x ∈ RN : b−εΘ(|x|) = σ

}
,

we take a small enough positive constant ρ such that

sup
x∈DσRε−

u(x) ≤ uε(x), x ∈ Dσ
Rε− \ D̃

σ
Rε−, (18)

where
D̃σ
Rε− := ΩRε \ Ω̃σRε−

and
Ω̃σRε− :=

{
x ∈ ΩRε : b−εΘ(|x|) ≤ σ(1 + ρ)

}
.

By (15) and (18), we have

u(x) ≤ uε(x) +M, x ∈ ∂(D̃σ
Rε−).

On the other hand, combining (14) and (15), we obtain

uε(x) ≤ u(x) +M, x ∈ ∂(Dσ
Rε+).

Since f is increasing on [0,∞), we see that uε + M and u + M are both upper

solutions in D̃σ
Rε− and Dσ

Rε+
, respectively. By Lemma 3.4, we have

u(x) ≤ uε(x) +M, x ∈ D̃σ
Rε− (19)

and
uε(x) ≥ u(x) +M, x ∈ Dσ

Rε+. (20)

By (18)-(19), we obtain (16) holds. By (14) and (20), we obtain (17) holds. So,
passing to σ → 0, we have for x ∈ ΩRε ,

u(x)

ψ(b−εΘ(|x|))
≤ τ+ε +

M

ψ(b−εΘ(|x|))
and

u(x)

ψ(b+εΘ(|x|))
≥ τ−ε −

M

ψ(b+εΘ(|x|))
.

We obtain by Lemma 3.3 (i) that

lim sup
|x|→∞

u(x)

ψ(b−εΘ(|x|))
≤ τ+ε and lim inf

|x|→∞

u(x)

ψ(b+εΘ(|x|))
≥ τ−ε.
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Passing to ε→ 0, we obtain (4).

5. Proof of Theorem 1.2.

Proof. Take ε ∈ (0,min{ξ1, b1}/2) and

b̃+ε = (b1 + ε)1/p, b̃−ε = (b1 − ε)1/p,

τ̃+ε = exp(ξ1 + ε), τ̃−ε = exp(ξ1 − ε).
A simple calculation shows that

exp(ξ1/2) < τ̃−ε < τ̃+ε < exp(3ξ1/2), (b1/2)1/p < b̃−ε < b̃+ε < (3b1/2)1/p.

For any δ > 0, we define

Dδ := {x ∈ Ω : 0 < d(x) < δ}. (21)

Since Ω is a smooth exterior domain in RN , there exists δ1 > 0 such that (please
refer to Lemmas 14.16 and 14.17 in [5])

d ∈ C2(Dδ1), |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), x ∈ Dδ1 ,

where for all x ∈ Dδ1 near the boundary of Ω, x̄ ∈ ∂Ω is the nearest point to x, and
H(x̄) denotes the mean curvature of ∂Ω at x̄.
Case 1. k is non-decreasing on (0, δ0). By Lemma 3.2 (i) and Lemma 3.3 (vi)-
(viii), we see that

lim
d(x)→0

J±(d(x)) =
1

p
− ln τ±ε − E2 −

(
1

p
+ κg

)
(1−Dk) = ∓ε,

where

J±(d(x)) := (g(ψ(b̃∓εK(d(x)))))−1

[
1

p

(
1 +

ψ(b̃∓εK(d(x)))f ′1(ψ(b̃∓εK(d(x))))

f1(ψ(b̃∓εK(d(x))))

)
− f1(τ̃±εψ(b̃∓εK(d(x))))

τ̃p−1
±ε f1(ψ(b̃∓εK(d(x))))

]
− f2(τ̃±εψ(b̃∓εK(d(x))))

τ̃p−1
±ε g(ψ(b̃∓εK(d(x))))f1(ψ(b̃∓εK(d(x))))

− p− 1

(p− 1)(p−1)/p

(
ψ(b̃∓εK(d(x)))f1(ψ(b̃∓εK(d(x))))

)(p−1)/p

b̃∓εK(d(x))g(ψ(b̃∓εK(d(x))))f1(ψ(b̃∓εK(d(x))))

K(d(x))k′(d(x))

k2(d(x))

−
(
ψ(b̃∓εK(d(x)))f1(ψ(b̃∓εK(d(x))))

)(p−1)/p

b̃∓εK(d(x))g(ψ(b̃∓εK(d(x))))f1(ψ(b̃∓εK(d(x))))

K(d(x))

k(d(x))
∆d(x).

This implies that there exists a sufficiently small constant 0 < δε <
δ1
2 corresponding

to ε such that for any x ∈ D2δε , the following hold

J+(d(x)) ≤ 0 and J−(d(x)) ≥ 0.

As before, we can always adjust δε such that for any x ∈ D2δε , it holds

b1 − ε ≤
b(x)

kp(d(x))
≤ b1 + ε. (22)

Set σ ∈ (0, δε) and define

Dσ
− := D2δε \ D̄σ, D

σ
+ := D2δε−σ (23)

and

d1(x) := d(x)− σ, x ∈ Dσ
−, d2(x) := d(x) + σ, x ∈ Dσ

+.
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Let

uε(x) := τ̃+εψ(b̃−εK(d1(x))), x ∈ Dσ
−, uε(x) := τ̃−εψ(b̃+εK(d2(x))), x ∈ Dσ

+.

By a straightforward calculation, we obtain that for any x ∈ Dσ
−,

∆uε(x)− b(x)f(uε(x))

= (p− 1)τ̃p−1
+ε b̃p−ε(−ψ′(b̃−εK(d1(x))))p−2ψ′′(b̃−εK(d1(x)))kp(d1(x))

− (p− 1)τ̃p−1
+ε b̃p−1

−ε (−ψ′(b̃−εK(d1(x))))p−1kp−2(d1(x))k′(d1(x))

− τ̃p−1
+ε b̃p−1

−ε (−ψ′(b̃−εK(d1(x))))p−1kp−1(d1(x))∆d(x)

− b(x)
(
f1(τ̃+εψ(b̃−εK(d1(x)))) + f2(τ̃+εψ(b̃−εK(d1(x))))

)
≤ τ̃p−1

+ε b̃p−εf1(ψ(b̃−εK(d1(x))))g(ψ(b̃−εK(d1(x))))kp(d1(x))J+(d1(x)) ≤ 0,

i.e., uε is an upper solution to Eq. (1) in Dσ
−. In a similar way, we can show that

uε is a lower solution to Eq. (1) in Dσ
+.

Case 2. k is non-increasing on (0, δ0). As before, by Lemma 3.2 (i) and Lemma
3.3 (vi)-(viii), we obtain

lim
(r,d(x))→(0,0)

J̃±(r, d(x)) =
1

p
− ln τ̃±ε − E2 −

(
1

p
+ κg

)
(1−Dk) = ∓ε, (24)

where

J̃±(r, d(x)) := (g(ψ(b̃∓εK
∓
r (d(x)))))−1

×
(

1

p

(
1 +

ψ(b̃∓εK
∓
r (d(x)))f ′1(ψ(b̃∓εK

∓
r (d(x))))

f1(ψ(b̃∓εK
∓
r (d(x))))

)
− f1(τ̃±εψ(b̃∓εK

∓
r (d(x))))

τ̃p−1
±ε f1(ψ(b̃∓εK

∓
r (d(x))))

)
− f2(τ̃±εψ(b̃∓εK

∓
r (d(x))))

τ̃p−1
±ε g(ψ(b̃∓εK

∓
r (d(x))))f1(ψ(b̃∓εK

∓
r (d(x))))

− p− 1

(p− 1)(p−1)/p

(
ψ(b̃∓εK

∓
r (d(x)))f1(ψ(b̃∓εK

∓
r (d(x))))

)(p−1)/p

b̃∓εK
∓
r (d(x))g(ψ(b̃∓εK

∓
r (d(x))))f1(ψ(b̃∓εK

∓
r (d(x))))

× K(d(x))k′(d(x))

k2(d(x))
− K(d(x))

k(d(x))
∆d(x)

×
(
ψ(b̃∓εK

∓
r (d(x)))f1(ψ(b̃∓εK

∓
r (d(x))))

)(p−1)/p

b̃∓εK
∓
r (d(x))g(ψ(b̃∓εK

∓
r (d(x))))f1(ψ(b̃∓εK

∓
r (d(x))))

with

K∓r (d(x)) := K(d(x))∓K(r) > 0.

By (24), we see that there exists a small enough constant δε ∈ (0, δ1/2) correspond-
ing to ε such that for any (r, x) ∈ (0, δε)×D2δε , the following hold

J̃+(r, d(x)) ≤ 0 and J̃−(r, d(x)) ≥ 0

and (22) holds here for any x ∈ D2δε .
Take σ ∈ (0, δε) and let

uε(x) := τ̃+εψ(b̃−εK
−
σ (d(x))), x ∈ Dσ

−, uε(x) := τ̃−εψ(b̃+εK
+
σ (d(x))), x ∈ Dσ

+,
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where Dσ
∓ are defined as (23). A straightforward calculation shows that for any

x ∈ Dσ
−,

∆uε(x)− b(x)f(uε(x))

= (p− 1)τ̃p−1
+ε b̃p−ε(−ψ′(b̃−εK−σ (d(x))))p−2ψ′′(b̃−εK

−
σ (d(x)))kp(d(x))

− (p− 1)τ̃p−1
+ε b̃p−1

−ε (−ψ′(b̃−εK−σ (d(x))))p−1kp−2(d(x))k′(d(x))

− τ̃p−1
+ε b̃p−1

−ε (−ψ′(b̃−εK−σ (d(x))))p−1kp−1(d(x))∆d(x)

− b(x)
(
f1(τ̃+εψ(b̃−εK

−
σ (d(x)))) + f2(τ̃+εψ(b̃−εK

−
σ (d(x))))

)
≤ τ̃p−1

+ε b̃p−εf1(ψ(b̃−εK
−
σ (d(x))))g(ψ(b̃−εK

−
σ (d(x))))kp(d(x))

×
[
(g(ψ(b̃−εK

−
σ (d(x)))))−1

(
1

p

(
1 +

ψ(b̃−εK
−
σ (d(x)))f ′1(ψ(b̃−εK

−
σ (d(x))))

f1(ψ(b̃−εK
−
σ (d(x))))

)
− f1(τ̃+εψ(b̃−εK

−
σ (d(x))))

τ̃p−1
+ε f1(ψ(b̃−εK

−
σ (d(x))))

)
− f2(τ̃+εψ(b̃−εK

−
σ (d(x))))

τ̃p−1
+ε g(ψ(b̃−εK

−
σ (d(x))))f1(ψ(b̃−εK

−
σ (d(x))))

− p− 1

(p− 1)(p−1)/p

(
ψ(b̃−εK

−
σ (d(x)))f1(ψ(b̃−εK

−
σ (d(x))))

)(p−1)/p

b̃−εK
−
σ (d(x))g(ψ(b̃−εK

−
σ (d(x))))f1(ψ(b̃−εK

−
σ (d(x))))

× K−σ (d(x))k′(d(x))

k2(d(x))
− K−σ (d(x))

k(d(x))
∆d(x)

×
(
ψ(b̃−εK

−
σ (d(x)))f1(ψ(b̃−εK

−
σ (d(x))))

)(p−1)/p

b̃−εK
−
σ (d(x))g(ψ(b̃−εK

−
σ (d(x))))f1(ψ(b̃−εK

−
σ (d(x))))

]
≤ τ̃p−1

+ε b̃p−εf1(ψ(b̃−εK
−
σ (d(x))))g(ψ(b̃−εK

−
σ (d(x))))kp(d(x))

×
[
(g(ψ(b̃−εK

−
σ (d(x)))))−1

(
1

p

(
1 +

ψ(b̃−εK
−
σ (d(x)))f ′1(ψ(b̃−εK

−
σ (d(x))))

f1(ψ(b̃−εK
−
σ (d(x))))

)
− f1(τ̃+εψ(b̃−εK

−
σ (d(x))))

τ̃p−1
+ε f1(ψ(b̃−εK

−
σ (d(x))))

)
− f2(τ̃+εψ(b̃−εK

−
σ (d(x))))

τ̃p−1
+ε g(ψ(b̃−εK

−
σ (d(x))))f1(ψ(b̃−εK

−
σ (d(x))))

+

(
ψ(b̃−εK

−
σ (d(x)))f1(ψ(b̃−εK

−
σ (d(x))))

)(p−1)/p

b̃−εK
−
σ (d(x))g(ψ(b̃−εK

−
σ (d(x))))f1(ψ(b̃−εK

−
σ (d(x))))

×
(
− p− 1

(p− 1)(p−1)/p

d(x)k′(d(x))

k(d(x))
− d(x)∆d(x)

)
K−σ (d(x))

d(x)k(d(x))

]
≤ τ̃p−1

+ε b̃p−εf1(ψ(b̃−εK
−
σ (d(x))))g(ψ(b̃−εK

−
σ (d(x))))kp(d(x))J̃+(σ, d(x)) ≤ 0,

i.e., uε is an upper solution to Eq. (1) in Dσ
−. In a similar way, we can show that

uε is a lower solution to Eq. (1) in Dσ
+.

For case 1 and case 2, let u be an arbitrary solution of problem (1)-(2). Next,
we prove that there exists a large constant M > 0 such that

u(x) ≤ uε(x) +M, x ∈ Dσ
− and uε(x) ≤ u(x) +M, x ∈ Dσ

+. (25)

Obviously, we can always take a constant M > 0 independent of σ such that

u(x) ≤ uε(x) +M, x ∈ {x ∈ Ω : d(x) = 2δε},
uε(x) ≤ u(x) +M, x ∈ {x ∈ Ω : d(x) = 2δε − σ}.

(26)

On the other hand, we have

u(x) < uε(x) =∞, x ∈ {x ∈ Ω : d(x) = σ} and uε(x) < u(x) =∞, x ∈ ∂Ω.
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This implies that we can take a small enough positive constant ρ with 0 < ρ < δε
such that

sup
x∈Dσ−

u(x) ≤ uε(x), x ∈ Dσ
− \ D̃σ

−, sup
x∈Dσ+

uε(x) ≤ u(x), x ∈ Dσ
+ \ D̃σ

+, (27)

where
D̃σ
− := D2δε \ D̄(1+ρ)σ, D̃

σ
− := D2δε−σ \ D̄ρ.

Since f is increasing on [0,∞), we see that uε + M and u + M are both upper

solutions in D̃σ
− and D̃σ

+, respectively. We conclude by (26)-(27) and Lemma 3.4
that

u(x) ≤ uε(x) +M, x ∈ D̃σ
−, uε(x) ≤ u(x) +M, x ∈ D̃σ

+.

This fact, combined with (27), shows that (25) holds. So, passing to σ → 0, we
have for x ∈ D2δε ,

u(x)

ψ(b̃−εK(d(x)))
≤ τ̃+ε+

M

ψ(b̃−εK(d(x)))
and

u(x)

ψ(b̃+εK(d(x)))
≥ τ̃−ε−

M

ψ(b̃+εK(d(x)))
.

We obtain by Lemma 3.3 (i) that

lim sup
d(x)→0

u(x)

ψ(b̃−εK(d(x)))
≤ τ̃+ε and lim inf

d(x)→0

u(x)

ψ(b̃+εK(d(x)))
≥ τ̃−ε.

Passing to ε→ 0, we obtain (7).

6. Proof of Theorem 1.6.

Proof. Let u1 and u2 be two positive solutions of problem (1)-(2). By

lim
|x|→∞

u1(x)

u2(x)
= 1 and lim

d(x)→0

u1(x)

u2(x)
= 1,

we see that for fixed ε > 0, there exist a sufficiently large constant Rε and a
sufficiently small constant δε such that

(RN \ Ω) ∪Dδε ⊆ RN \ Ω̄Rε

and
(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈ ΩRε ∪Dδε , (28)

where ΩRε and Dδε are defined as (13) and (21), respectively.
Let

u±(x) := (1± ε)u2(x), x ∈ Ω.

The condition (f8) implies that

∆pu
+ ≤ b(x)f(u+) and ∆pu

− ≤ b(x)f(u−) in Ω.

Assume that u0 is the unique solution for

∆pu0 = b(x)f(u0), x ∈ Ω0, u|∂Ω0
= u1,

where
Ω0 = Ω \ (ΩRε ∪Dδε).

It follows by Lemma 3.4 that

u−(x) ≤ u0(x) ≤ u+(x), x ∈ Ω0. (29)

Since u0 ≡ u1 in Ω0, by (28)-(29) we have

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈ Ω = Ω0 ∪ ΩRε ∪Dδε .

It follows by passing to ε→ 0 that u1 = u2 in Ω.
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