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ABSTRACT. This paper is considered with the quasilinear elliptic equation
Apu = b(z) f(u), u(z) > 0, x € Q, where Q is an exterior domain with com-
pact smooth boundary, b € C(Q2) is non-negative in Q and may be singular or
vanish on 99, f € C[0, ) is positive and increasing on (0, co) which satisfies a
generalized Keller-Osserman condition and is regularly varying at infinity with
critical index p — 1. By structuring a new comparison function, we establish
the new asymptotic behavior of large solutions to the above equation in the
exterior domain. We find that the lower term of f has an important influence
on the asymptotic behavior of large solutions. And then we further establish
the uniqueness of such solutions.

1. Introduction and main results. This presentation will investigate the influ-
ence of the lower term of nonlinearity f on the asymptotic behavior and uniqueness
of large solutions u € W17 (Q) N C(9) to the following quasilinear elliptic equation

loc
Apu = b(x)f(u), u(z) >0, z € Q, (1)

where A,u := div(|Vu[P72Vu) stands for p-Laplacian operator with 1 < p < N
and Q2 C RY (N > 3) is an exterior domain with compact smooth boundary. We
say that u € VVlif (Q) is a local weak solution to Eq. (1) in Q means that for every
sub-domain D &€ €2, it holds

/ |VulP~2VuVedr = —/ b(x) f(u(x))p(x)dr, Vo € VVlicp(Q)
D D

A local weak solution u is said to be a large solution if u € C'(2) and satisfies
u(z) = o0 as || = oo and u(x) — oo as d(z) := d(z,0Q) — 0. (2)
In this paper we assume that the nonlinearity f satisfies the following hypotheses:

(f1): f € C[0,00), f(0)=0, f(t) >0,t>0, and f is increasing on [0, c0);
(f2): the following generalized Keller-Osserman condition holds,

/100(1?(5))—1/1’(13 < 400, F(t) :/0 f(s)ds.
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The weight b satisfies the following hypotheses, not necessarily simultaneously:
(b1): b€ C(R) is non-negative in €2, where 2 is an exterior domain with compact
smooth boundary;
(bz2): there exist § € A; and positive constant by such that

b(x)

m -———-—-7—

— Y0,
where A; denotes the set of all positive non-increasing functions § € C'[Ry, o)
N L'[Ry, o) (Ro > 0) which satisfy

d (9(15)) = Dy € (0,00), O(t) = /t°° 0(s)ds, ¢ > o

tggo dt 0(t)
(bg): there exist k € Ay and positive constant by such that
b(z)

lim ———*—=1b
a0 kP(d(z))
where Ay denotes the set of all positive monotonic functions k € C*(0, ) N
LY(0,60) (6o > 0) which satisfy

Jm, ;(Ilj((tt))) =Dy, €[0,00), K(t) ::/0 k(s)ds,

As was first introduced by Cirstea and Rddulescu [1] for non-decreasing func-
tions and by Mohammed [11] for non-increasing functions.

When  is a bounded domain, b = 1 in  and f(u) = «” with v > p — 1, Diaz
and Letelier [3] first studied the existence of large solutions to Eq. (1). Then, when
f satisfies (f1) (or f € C(R) is positive and increasing on R) and (fz), the exis-
tence and boundary behavior of large solutions to Eq. (1) are further investigated
by Matero [9] in a bounded domain Q@ C RM (N > 2) with a C%-boundary. In
particular, the author obtained the following boundary behavior:

)
d(x)—0 d(z) ’

where @ is given by

a(t) = / (/0 — V) F(s))Vrds.

If f further satisfies
lim inf P(N)

>1, VA e (0,1),

then u satisfies

lim ) =1

a0 W(d(z))
where W is the inverse of @, i.e., ¥ is given by

/ (/o — ) F(s)Vrds =1, t > 0. (3)

W(t)

Gladiali and Porru [6] showed that if b= 1 in bounded domain Q C RY, f satisfies
(f1) and t — F(¢)t~? is increasing for large ¢, then any large solution u to Eq. (1)
satisfies

|u(z) — ¥(d(x))] < cd(x)¥(d(x)) near ON.
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Furthermore, under the additional assumption F(t)t=2’ — oo as t — oo, they
obtained

u(z) — ¥(d(x)) — 0 as d(z) — 0.
Based on a comparison principle, Du and Guo [4] discussed the existence, unique-
ness and asymptotic behavior of various boundary blow-up solutions for a class of
quasilinear elliptic equations. Let © be a bounded domain, b satisfy (by) and

(C): If there exists xg € Q such that b(zg) = 0, then there exists a bounded
domain Qg (Qp € Q) containing xy such that b(z) > 0 for all x € 98,

f satisfy (f1) and (f2). Mohammed [10] showed that if the Poisson problem
—Apv(z) =b(x), € Q, v|pga =0

has a weak solution, then Eq. (1) admits a non-negative boundary blow-up solution.
Moreover, the author further established the asymptotic boundary estimates of such
blow-up solutions. Later, Mohammed [11] showed that if Q@ C RY is a bounded
domain with C%-boundary, b satisfies (by) and (bg) (k is non-increasing on (0, &y)),
f satisfies (f1) and f € RV, (please refer to Definition 2.1) with p > p — 2, then
any large solution u € Wli’cp(Q) NC(Q) to Eq. (1) satisfies

() N (p +Di(24p— p))” ey

d(z)—0 V(K (d(z))) bi1(2+p)
where U is given by (3). By introducing some structure condition, the result of
Mohammed in [11] was extended by Zhang [18] from f € RV, 1 with p > p—2to
the case that f € RV, with p > p—2or f is rapidly varying at infinity. Moreover,
the author also studied the boundary behavior of large solutions to Eq. (1) when
b is critical singular on the boundary. Inspired by the above results, by using
Karamata regular varying theory, Wan [14] investigated the asymptotic behavior
and uniqueness of entire large solutions to Eq. (1) in RY. For other related insight
on Eq. (1.1), please refer to [2], [8]-[7], [15]-[16].

In this paper, by structuring a comparison function, we establish the new asymp-
totic behavior of large solutions to problem (1)-(2) (including the case of p = 2)
when f € NRV,_;. Our results imply that the lower term of f has an important in-
fluence on the asymptotic behavior of large solutions to the above exterior domain
problem. Then, we further establish the uniqueness of the solutions to problem
(1)-(2).

To obtain our results, we further assume that f satisfies

)

(f3): there exist some constant ¢y > 0 and two functions f; and f2 such that

f() = f1(t) + fa(t), t > to,

where f; € C?[tg,00). If we denote g(t) := tfflll((tt)) —(p—1),t >t and g and
fo satisfy the following conditions:

(fa):

tg'(t)

> 1 = 1 =
g(t) > O? t - t07 tli>ngo g(t) O? t1l>r£o g(t) O?
. tg'(t) . P!
1 — kg €R, lim —— —=0;
O I A=y ey prTey S

(f5): for any £ >0
o 1260

=,
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and there exists Fy # 0 such that

) fa(t)
O A0
or
(fe):
fa(t)

lim ————

t=oc g(t) f1(t)

and there exists u < p — 1 such that for any £ > 0
lim f2(&t)

t—o00 f2 (t)

Our results are summarized as follows.

—¢r,

Theorem 1.1. Let f satisfy (f1)-(fg), b satisfy (b1)-(bz2). If
1
(N—p)Dp—p+1>0 and;)+/<ag >0,

then any solution u to problem (1)-(2) satisfies

u(z)

lim —————— = exp(), (4)
#1=20 (by 7 O(J]))
where 1 is uniquely determined by
& t
sfi(s g = — — 5
/w<t>( 1(e) (p—1)t/p ©)
and
13 —E—E +1(1+/€ )((N—p)D —-p+1)
0 » 2 D 1 » g 0
with

B {El, if (£5) holds; ©)

0, if (fs) holds.
Theorem 1.2. Let [ satisfy (f1)-(fs), b satisfy (b1) and (bs) with one of the
following conditions:
(I): k is non-decreasing on (0,0p);
(IT): k is non-increasing on (0,06y) with Dy > 1.
When (II) holds, we further assume ]% + Ky > 0. Then any solution u to problem
(1)-(2) satisfies

lim ——————— = exp(&1), (7)
400 (b} K (d(x))) 1
where 1 is uniquely determined by (5) and
1 1
51 = 2; 7E27 <p+/‘ﬂg>(1Dk),

where Ey is defined by (6).
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Remark 1.3. If we replace Dy > 1 by Dy, = 1 in (IT) of Theorem 1.2 and further
assume that

: , (N-1)C : . 5
hgz&pk‘ t)/k(t) < RrE and CE1€I}9f91717(ac) > —C,

where C is a positive constant and H is the mean curvature of 92, then Theorem
1.2 still holds.

Remark 1.4. In Theorems 1.1 and 1.2, the comparison function ¢ given by (5)
can not be replaced by ¥ given by the following integral equation

/ (sfi(s))"YPds =, t > 0.
w(t)

Remark 1.5. Some basic examples which satisfy all of our requirements in Theo-
rems 1.1-1.2 are the following;:
(i): f(t) = c1t?P~H(Int)PY + et (Int)*2, t > to, where a > 1, ¢; > 0, a1 <p—1
and ¢z, as € R. By a straightforward calculation, we obtain that

1 1
g(t) =pa(Int)™", t > to, kg = T
and
E2:{Cf;a’ ar=p—1, as = pa —1;
0, ar<p—lora;=p—1, as < pa—1;

e 1)
P(t) = exp (((a ))ll/p ) /=) ¢ > 0.

(ii): f(t) = crtP Lexp((Int)?) + cot® (Int)*2 exp((Int)*s), t > to, where ¢; > 0,
oy <p-—1,¢q az € (0,1), c2, s € R. By a straightforward calculation, we
obtain that

g(t) = q(Int)**, t > o, Ky =0
and
CCTQqa ar=p—1,as=q—1and az = q;

Ey,={0, ap<p—lorag=p—1,a,<qg—1and az =g;

0, a; =p—1and asz <q.

(iii): f(t) = c1t?P~(Int)P(In(Int))P¥+cot® (Int)?2 (In(Int)) 2, t > to, where ¢; >
0,a>1and a1 < p—1, ca, as, az € R. By a straightforward calculation, we
obtain that

gt) =p(Int) (1 + a(ln(lnt)) 1), t > to and Kg = —
and

co

o5 ay =as =p—1 and az = pa;

E2: 07 al<p_1ora1:p_17a2<p—landa3:q;

0, a; =ay =p—1and az < pa;

L/ 1/ (1—a)
P(t) = exp (eXp ((W) tl/(l“”)), t>0.
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Theorem 1.6. Let [ satisfy (f1) and

(fs): t — f(t)t'~P is non-decreasing on (0, 00),
b satisfy (b1), and wui,us be arbitrary positive solutions to problem (1)-(2) and
satisfy

<
=

&
—

i 9 —1

,  lim
|| =00 ’LLQ(iC) d(z)—0 ’LLQ(ZL')

b
then up = us in Q.

Corollary 1.7. If b, f satisfy the hypotheses in Theorems 1.1-1.2 and (fg) holds,
then the solution to problem (1)-(2) is unique.

The paper is organized as follows. In Section 2, we give some bases of Karamata
regular variation theory. In Section 3, we collect some preliminary considerations.
The proofs of our Theorems are given in Sections 4-6, respectively.

2. Some basic facts from Karamata regular variation theory. In this sec-
tion, we introduce some preliminaries of Karamata regular variation theory which
come from [12]-[13].

Definition 2.1. A positive continuous function f defined on [a, o), for some a > 0,
is called regularly varying at infinity with index p, denoted by f € RV, if for
each £ > 0 and some p € R,

L fGe)

Am ey =8 ®

In particular, when p = 0, f is called slowly varying at infinity.

Clearly, if f € RV, then L(t) := f(t)/t" is slowly varying at infinity.
We also see that a positive continuous function h defined on (0, a) for some a > 0,
is regularly varying at zero with index p (written as h € RV Z,,) if t — h(1/t) €
RV_,.
Proposition 2.1. (Uniform Convergence Theorem) If f € RV, then (8) holds
uniformly for & € [c1,ca] with 0 < ¢1 < ca.
Proposition 2.2. (Representation Theorem) A function L is slowly varying at

infinity if and only if it may be written in the form

L(t) = o(t)exp (/t yis)ds) t>an,

for some a1 > a, where the functions ¢ and y are continuous and for t — oo,
y(t) = 0 and p(t) — co, with co > 0. If ¢ = co, then L is called normalized
slowly varying at infinity and
f(t) =t*L(t), t > ay,
is called normalized regularly varying at infinity with index p (written as f €
NRV,).
A function f € C'[ay,00) for some a; > 0 belongs to NRV,, if and only if
/
lim 2M0)
t—00 f(t)
Similarly, h € C(0, a1] for some a; > 0 belongs to NRV Z,, if and only if
th'
o @)
t—0+ h(t)
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3. Auxiliary results. In this section, we collect some useful results.

Lemma 3.1. Let 0 € Ay, then
(i): ©'(¢) —0(t), t > Ry, limt_)oo% = Dy, i.e., © € NRV_y/p, and

(i): 1Moo @gift)“ = —1—Dy and 0 € NRV_ (1, p,)/p,-

Proof. (i) By the definition of A; and the I'Hospital’s rule, we obtain (i) holds.
(ii) A straightforward calculation shows that limg_ ., %?t)(t) = —1 — Dy. This
combined with (i) implies that 6 € NRV_(14p,)/D,- O
Lemma 3.2. ([17] , Lemma 2.1) Let k € Ao, then

(i): limy_,o+ % =0 and lim;_,o+ ng)g)(t) =1-— Dg;

(ii): when k is non-decreasing, Dy € [0,1]; when k is non-increasing, Dy > 1;
(iil) when Dy, >0, k € NRVZ(l—Dk)/Dka
(iv): when Dy =0, then lim;_,q+ t=™K(t) =0 for any m > 0.
Lemma 3.3. Let [ satisfy (f1)-(fe), 1 be the unique solution of (5), then
(D) ¥/(t) = = Goyre (GOSN, > 0 and limy g+ (1) = oo;
i) (= (1)P72Y"(t) = 50y (A1) + o) (1)), t > 0;
i) 1imy oo (9(t) 7 (62505 — 1) = Ing, £>0;
IV) hmt—>oo &p— 1;%5)21(,5) = E2; 5 > O

1 (tfr ()PP _
p—1g(t) f1(t) [ (sf1(s))~1/Pds — p—

<w»anmwww»>{lQ+w@“W”) @Hﬁ”)}z;—mag>m

(
(
(
(

v): limy_s oo —|— Kg)

- e
(vii): lim;_,o+ F T A — L2 > 0;

N T 1 RIOTACIO) N
(Viid): Hmor gy rgta N w@) = 51 (p T+ Ro)-

Proof. (i) By the definition of ¢ and a direct calculation, we see that (i)-(ii) hold.
(iii) If £ = 1, the result is obvious. Otherwise, by f € NRV,_1, we have

m_lzeXP<[£t@d7)_l’t>to' (9)

It follows by (f4) and Proposition 2.1 that lim;

g(ts) g(ts) _ 1

=0 and lim;_, OR

uniformly with respect to s € [c1, co]. Hence, we have
23 § t
lim @dT = lim / ﬁds =0.
t—o0 t T t—o0 1 S

By the Lebesgue’s dominated convergence theorem, we obtain

3 3
. g(st) _ -1 3. _
th_glo/l sg(t)ds— /1 s ds =In&. (10)

On the other hand, we see that
exp(t) —1~tast—0 (11)

tli)r&(g(t))_l (exp (/jt g(:)dT) -1- /ft *"(TT)dT> =0. (12)

and
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It follows by (9)-(12) that (iii) holds.

(iv) Since
. f2(&8) o fa(éY) fa(t)
P TG A e LR o g A0
we see that if (fs) holds, then

1 and li =F
t—r00 EP~1 fo (1) anc A% g(t) f1(t) L
if (fg) holds, then
. (8 f2(t)
lim = ¢+ Pt and lim —2—2— = 0.
SO S VIOTAG)
(v) By (f3)-(f4) and the 'Hospital’s rule, we obtain
p—1)/p
i L (00
taoop—lg ft (sf l/pds
, | go g<w—fmo%$
= lim —
tmoe p—1 (9(1))?
FHOL
1 (gt Foy — (- 1)) 1 (1 )
= lim + - = + K
tmoop—1 ((g(t))2 p 9(t) -1 !
(vi)-(viii) We conclude by (f3) and (iii)-(v) that (Vl)—(vul) hold. O

Lemma 3.4. ([11], Lemma 2.2) Let Q be a bounded domain and G : QxR — R be
non-increasing in the second variable and continuous. Let u, w € WP (Q) satisfy
the respective inequalities

/|Vu|p72Vu~V<pdx§/G(x,u)gadx;
Q Q

/\Vw\’FZVw'chde/G(z,w)g&dm,
Q Q

for all non-negative ¢ € Wol’p(Q). Then the inequality u < w on I implies u < w
in Q.

4. Proof of Theorem 1.1.
Proof. Take e € (0,min{&, bp}/2) and

bie = (bo+2)/7, boe = (by —)'/7,

Tre = exp(&o +¢), T = exp(§p — €).
A simple calculation shows that

exp(£0/2) < T_e < Tpe < exp(360/2), (b0/2)"/” < b < bie < (300/2)"/7.
For any constant R > Ry, we define
r:={x €¢RY :|2| > R}, (13)

where Ry is given by the definition A1 in (bg).
By Lemma 3.1 and Lemma 3.3 (vi)-(viii), we see that
1 1 1
li I (t -—1 —FEy + —— N —p)Dg — 1
i (e = =t B (L )@ - Do)

= 50 - lnT:tE = Fg,
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where

L (t.) = (g(b(0)~ (

Plreep®) 1 @OA@EO)P VP
() A () (o= DEDP g0 Ai(0(0)

« (=000, = 10C)
((p D=@m T e )

This implies that there exist a large constant R, > Ry and a small constant . > 0
corresponding to € such that

Y(t) f1((t)) fi Tis"/}(t))
(” ACIO) > 2 <t)>>

"=

\A\/

(3b0/2)V/PO(|z|) < 6., z € Qr. € Q
and for any (¢,2) € (0,20.) x Qg_, the following hold
Ii(t,|z]) <0and I_(t,]z|]) >0

In fact, we can always adjust R. such that for any = € Qp_, it holds

b(x)
ST

<bg+e.

Let u be the solution of problem (1)-(2) and take

o < min{d., (by/2)/PO(R.)}.

Set
Dg _=Qp \Q% _, Df = \ Q% |,
where
F.— ={r € Qr. 1 b_-0(|z]) < o}
and

Of. 4 = {2 € Qrotry 1 TP (040(|2]) + 0) < u(2)}, (14)

where r¢ is a large enough constant such that Dg,_, is an annular domain. Moreover,
by the definition of Q% __, we see that D% _ is also an annular domain.
Define

Ue(x) == TP(b_O(|z]) —0), x € Df__, u(x) := 7_Y(byO(|2]) +0), v € Df_,
By a straightforward calculation, we have for any z € D%__,
Apﬂa(m) - b(w)f(ﬂa(m))
= (- 1)u£b” (=4 (b-O(|z]) — 0))"~*¢" (b-:0(|2]) — 0)¥7 (|}
r- 1 2D 107 (1% (p—1)0'(|z]) N -1
= b() (f1 (149 (b-cO(|z]) = 0)) + fa(T4e9(b-:O(|2]) — 0)))
<A i (b-O(|2]) — 0))g((b-O(|2]) — )67 (|])
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(ot 0(al) = o)~ (5 (14 L= i Ol — ) )

A (b-8(x]) — o)) ) B folrect(b_0(z)) — )
PR @O _6(2) — o)) T gb0(z]) — o) i (% (b_O(|z]) — 7))
1 ((b_O(lz]) — o) f1 ((b_O(Ja]) — o)) P~/

(p D=0/ (b_.0(|z]) — 0)g((b-O(|z|) — 0)) f1 (Y (b-O(|z]) — 7))
b—eO(|z|) — U( O(lz)¢'(lz)) L (N-1)© (|xl)>} 1
X p—1 + < 7P
b-olen "~V @) ERIED *

x fi(@(b-O(|z]) — 0))g(v (b—O(|z]) — 0))0P(|2]) I+ (b-:O(|z|) — o, |z[) <0,
i.e., . is an upper solution to Eq. (1) in D%__. In a similar way, we can show that
U, is a lower solution to Eq. (1) in Df_,

We can choose a positive constant M independent of ¢ such that

u(z) <Te(r) + M and u (x) < u(z)+ M on 0Qg, . (15)

Next, we prove

u(r) < U (r) + M, x € DF__ (16)
and
u.(z) <u(z)+ M, z € Qg,. (17)

Since
u(z) < Te(z) = 00 on {z € RN : b_.O(|z|) = o},
we take a small enough positive constant p such that

sup  u(x) <Te(z), v € D\ D%E,, (18)

where R }
D% :=Qr \ Q% _
and :
0% ={zeQp :b_.0(z]) <o(l+p)}.
By (15) and (18), we have
u(z) < u.(z) + M, z € 9(D__).
On the other hand, combining (14) and (15), we obtain
u(x) <u(x) + M, xz € I(Dg_, ).
Since f is increasing on [0,00), we see that @, + M and u + M are both upper
solutions in D% _ and D, ., respectively. By Lemma 3.4, we have
u(z) <u.(r)+ M, z € 13}“35_ (19)
and
u(r) > u(r) + M,z € Dg_,. (20)
By (18)-(19), we obtain (16) holds. By (14) and (20), we obtain (17) holds. So,
passing to ¢ — 0, we have for x € Qp_,
— <7 and > Te— -
Pl—6() = T Bh_.6(l) ¥(b4:0(|z])) P(b4-0(|z]))
We obtain by Lemma 3.3 (i) that

lim sup @) < 7T4¢ and liminf u(@)

S 612D Y Se() ~
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Passing to € — 0, we obtain (4). O

5. Proof of Theorem 1.2.
Proof. Take ¢ € (0, min{&;,b1}/2) and
bie= (b1 +e)YP b = (by —e)'/P,
Tie = exp(&1 +¢€), T = exp(& — ).
A simple calculation shows that
exp(€1/2) < 7o < Fye < exp(361/2), (b1/2)/7 < b < byo < (301/2)7.
For any ¢ > 0, we define
Ds:={xe:0<d(x)<d} (21)

Since (2 is a smooth exterior domain in R¥, there exists §; > 0 such that (please
refer to Lemmas 14.16 and 14.17 in [5])

de C*®s,), |Vd(z)| =1, Ad(z) = —(N — 1)H(Z) + o(1), = € Ds,,

where for all x € D4, near the boundary of 2, z € 912 is the nearest point to z, and
H(z) denotes the mean curvature of 9Q at z.

Case 1. k is non-decreasing on (0,dp). By Lemma 3.2 (i) and Lemma 3.3 (vi)-
(viii), we see that

. 1 1
d(lﬂgr_l)g Ji(d(z)) = ]; —In7re. — Ey — (p + I€g> (1= Dy) = Fe,

where
2)) z -t L (b K (d(2))) f1 (¢ (bz K (d(2))))

T = ol KU (1 BT )
 AlfentGr K@) | Salret (b K (d(2))))

0w K(d() ) 7 g (b K (d(@))) f1(d (b= K (d(2))))
o p1l (e K@) A WG A@)) T K@)k )

(p =)@~V e K(d(2))g(¢ (b K (d(2))) (¢ (b K (d(2))))  k?(d(z))
K@) A (b K (@) (@) 5 g0

b (d(2))g( (b K (d(2)))) (% (b= K (d(2)))) k(d(z))
This implies that there exists a sufficiently small constant 0 < 6. < %1 corresponding
to € such that for any « € Dy5_, the following hold

Jy(d(x)) <0 and J_(d(x)) > 0.

As before, we can always adjust 6. such that for any « € Dqs_, it holds

b(x)
by —e < <b . 22
VS ) ST 2
Set o € (0,6.) and define
D = D5, \ Dy, DT 1= Do, _o (23)

and
di(z) :==d(z) — o, x € D7, dy(x) :=d(x) + 0, x € D].



2370 YONGXIU SHI AND HAITAO WAN

Let
e () = ﬁ_gw(l;_EK(dl(x))), x € D7, u ()= %_Ew(l~9+5K(dg(x))), r e DT.
By a straightforward calculation, we obtain that for any = € D7,

AT () — b(z) f (u(x))
= (p— DAV (= (b K (da(2))))" 20" (- K (dy ()P (di ()
— (p— DFTTP (= (b K (da(2))))P~ kP~ (da ())K' (di ()
— AN (b K (dy (2)))P T R (dy (@) Ad ()
— b(@) (f1(Fretp (b K (di(2)))) + fo(Fretp (b K (di (2)))))
< AP (DK (di (2))))g((b—e K (di (2))))kP (da () 4 (dy () < 0,

i.e., U, is an upper solution to Eq. (1) in DZ. In a similar way, we can show that
u, is a lower solution to Eq. (1) in DY.

Case 2. k is non-increasing on (0,dp). As before, by Lemma 3.2 (i) and Lemma
3.3 (vi)-(viii), we obtain

Jx(r,d(z)) = 1*1) —In7y. — By — (]19 + /<;g>(1 — Dy) =Fe, (24)

lim
(r,d(x))—(0,0)

where
Ji(r,d(z)) == (9(¥ (b KT (d(x )))))
L e KE (d() fi (6
) (p (1+ FL(bs KT (d )

Fi(Feet (b K (d(2))))
A Ak K (d(2))))
p—1 (1 (be
(» _1)(p O/ b KF(d(x)
K(d(z))k'(d(z)) K(d(z))

k2(d(z)) k(d(z))
(Vb KT (d())) fr (1 (b KT (d

KT

bee KT (d(2))g( (b= KT (d(2))) 1 (4 (b5

) fo(Feetp (b2 K7 (d(2))))
T2 (W (02 K7 (d(2))) 1 (4 (b2 KT (d(2))))

)
KF(d(x))) fr( (b5 KT ( d(x))))) (»=1)/p
)9 (9 (b KT (d(x)))) f1 (¢ (b KT (d())))
Ad(x)

(@)
G(bg K (d(x))))
with

KF(d(x)) := K(d(x)) ¥ K(r) > 0.

By (24), we see that there exists a small enough constant J. € (0,1 /2) correspond-
ing to € such that for any (r,z) € (0,.) X Das,, the following hold

Jy(r,d(z)) < 0and J_(r,d(z)) >0

and (22) holds here for any x € Dys._.
Take o € (0,0.) and let

Te(z) = 74 p(b_c K, (d(2))), © € D7, u (x) = F—etp(bs K} (d(x))), € DT,
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where DF are defined as (23). A straightforward calculation shows that for any
x € D7,
At () — b(x) f (u:())
= (p— DT (0 (b K (d(2)))P 0" (b-- K (d(2)))k? (d(2))
— (p = D (0 (b- K (d()))P P2 (d(2) K (d(@))

= A (0 (b K (d()))P R (d(2)) Ad ()
= b(@) (f1(Frev(b-c K (d(2)))) + fo(Fiet(b-o K, (d(2))))
< T (W (- K (d(2))))g($(b-c K, (d(x))))kP (d(x)

)
) )
x | (g((b- K (d(x)))) ™" (; (1 | $-eK,y ([d@))fi —J@(d(z)))))

AWK (d()))
FiFrebboc K <d<x>>>>) Fo(Fretb (o K5 (d(2))))
T AWK (@) 7 g Ky (@) f1 (0K (d(x))))
. p-l (b K5 (d())) f1 (b K5 (d(x))) "
= D5 52 () o0 0e K (40 F e K )
K (d@)k (d(x) K (d))
Bde) k@) S0

(Y(b_- K (d(x))) fL((b— K (d(z
(

f1(7+e¢(b K (d(I))))> ~f2(%+ew(5_ K7 (d(2))))
e fl( (b--K7 (d(x))))
(¥ (-

B_EK_(d x) 9(1/)(5-51(_ d(x)))) f1((b-c K5 (d(x)))
1 )

X —

(

 d(e)Ad(x) | Ko d)
p-ner k) O )itk
< A b () )oKy () (@) s (o, () < 0

i.e., U is an upper solutlon to Eq. (1) in D?. In a similar way, we can show that
U, is a lower solution to Eq. (1) in DT.

For case 1 and case 2, let u be an arbitrary solution of problem (1)-(2). Next,
we prove that there exists a large constant M > 0 such that

u(x) < (x) + M, z € D7 and u.(x) < u(x) + M, xz € DT. (25)
Obviously, we can always take a constant M > 0 independent of ¢ such that
u(z) <T(r)+ M,z e {xeQ:d(z) =20},
u (r) <ulz)+ M,z e {zeQ:dx)=20—o0}.
On the other hand, we have
u(z) < ue(r) =00, x € {x € Q:d(x) =0} and u_(x) < u(z) = 0o, x € IN.

(26)
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This implies that we can take a small enough positive constant p with 0 < p < J.
such that

sup u(x) < Te(x), z € D\ D7, sup u_(z) <u(zx), z € DT\ l~)ﬂ’r, (27)
z€D? z€DT

where . 3
Di = @255 \@(1+p)a, Di = @255_0 \Qﬂ

Since f is increasing on [0,00), we see that u. + M and u + M are both upper
solutions in D7 and Dﬂ’r, respectively. We conclude by (26)-(27) and Lemma 3.4
that

u(x) < Te(x) + M,z € D7, u(z) <u(x)+ M,z € D].
This fact, combined with (27), shows that (25) holds. So, passing to ¢ — 0, we
have for x € Dos_,

e e M and M@ . M
(b K(d(x))) P(b_cK(d(x))) Yoy K (d(x))) P(byeK(d()))
We obtain by Lemma 3.3 (i) that

lim sup % < 74. and lim inf& > 7.

d(x)—0 Y(b-_K(d(z))) dx)=0 P(by K (d(x)))
Passing to € — 0, we obtain (7). O

6. Proof of Theorem 1.6.

Proof. Let u; and ug be two positive solutions of problem (1)-(2). By

lim w(z) =1land lim w(@)
2|00 Uz () d(z)—0 ug(x)

:]_7

we see that for fixed ¢ > 0, there exist a sufficiently large constant R. and a
sufficiently small constant . such that

RN\ Q) UDs. CRY\ Qg,

and
(1—e)uz(z) <up(z) < (14 ¢e)uz(z), z € Qr. UDs,, (28)
where Qp_ and Ds, are defined as (13) and (21), respectively.
Let

ut(x) = (1 £ e)ua(x), v € Q.
The condition (fg) implies that
Aput < b(@)f(ut) and Apu~ < b(z)f(u”) in Q.
Assume that wug is the unique solution for
Apug = b(z) f(uo), € Qo, ulan, = u1,
where
Qo =0\ (Qr. UDs.).

It follows by Lemma 3.4 that

u” (z) < wuplx) <ut(x), x € Q. (29)
Since ug = uy in Qo, by (28)-(29) we have

(1 —cug(z) <ur(z) < (1 +e)uz(x), z€ Q=Qy UQr. UDs._.

It follows by passing to € — 0 that u; = us in Q. O
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