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ABSTRACT. We study a continuous data assimilation (CDA) algorithm for a
velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases:
nudging applied to the velocity and vorticity, and nudging applied to the ve-
locity only. We prove that under a typical finite element spatial discretization
and backward Euler temporal discretization, application of CDA preserves the
unconditional long-time stability property of the velocity-vorticity method and
provides optimal long-time accuracy. These properties hold if nudging is ap-
plied only to the velocity, and if nudging is also applied to the vorticity then
the optimal long-time accuracy is achieved more rapidly in time. Numerical
tests illustrate the theory, and show its effectiveness on an application problem
of channel flow past a flat plate.

1. Introduction. Performing accurate simulations of complex fluid flows that
match real-world observations or experiments typically requires highly precise knowl-
edge of the initial data. However, such data is often known in very sparsely-
distributed locations, which is the case in, e.g., weather observation, ocean mon-
itoring, etc. Thus, accurate, deterministic simulations based on initial data are
often impractical. Data assimilation is a collection of methods that works around
this difficulty by incorporating incoming data into the simulation to increase ac-
curacy, hence data assimilation techniques are highly desirable to incorporate into
simulations. However, the underlying physical equations often suffer from stabil-
ity issues which can reduce the accuracy gained by using data assimilation. While
there are many ways to stabilize numerical simulations, it is far from obvious how
to adapt data assimilation techniques to combine them with cutting-edge stabiliza-
tion methods. Therefore it becomes worthwhile to seek new ways to incorporate
data assimilation into stabilized schemes. In this article, we propose and analyze

2020 Mathematics Subject Classification. Primary: 65M60; Secondary: 76D05.

Key words and phrases. Data assimilation, Navier-Stokes equations, velocity-vorticity scheme.
The second author is supported by NSF Grants DMS 1716801 and CMMI 1953346.

The third and fourth authors are supported by NSF Grant DMS 2011490.

2223


http://dx.doi.org/10.3934/era.2020113

2224 M. GARDNER, A. LARIOS, L. REBHOLZ, D. VARGUN AND C. ZERFAS

a new approach to this problem which combines continuous data assimilation with
velocity-vorticity stabilization.

Since Kalman’s seminal paper [29] in 1960, a wide variety of data assimilation
algorithms have arisen (see, e.g., [14, 32]).In [5], Azouani, Olson, and Titi proposed
a new algorithm known as continuous data assimilation (CDA), also referred to as
the AOT algorithm. Their approach revived the so-called “nudging” methods of the
1970’s (see, e.g., [4, 26]), but with the addition of a spatial interpolation operator.
This seemingly minor change had profound impacts, and the authors of [5] were
able to prove that using only sparse observations, the CDA algorithm applied to
the 2D Navier-Stokes equations converges to the correct solution exponentially fast
in time, independent of the choice initial data. This stimulated a large amount of
recent research on the CDA algorithm; see, e.g., [3, 6, 7, 10, 11, 13, 17, 18, 19, 20,
21, 22, 27, 31, 30, 35, 40, 41] and the references therein. The recent paper [15]
showed that CDA can be effectively used for weather prediction, showing that it
can indeed be a powerful tool on practical large scale problems. Convergence of
discretizations of CDA models was studied in [30, 41, 27, 21] , and found results
similar to those at the continuous level. Our interest in the CDA algorithm arises
from its adaptability to a wide range of nonlinear problems, as well as its small
computational cost and straight-forward implementation. These qualities make it
an ideal candidate for combining data assimilation with stabilization techniques;
in particular, with the recently developed velocity-vorticity stabilization, described
below.

Flows of incompressible, viscous Newtonian fluids are modeled by the Navier-
Stokes equations (NSE), which take the form

ug — vAu+ (u-V)u+ Vp =f, .
V- u =0, (1)

together with suitable boundary and initial conditions. Here, u denotes a velocity
vector field, p is pressure, f is external (given) force, and v > 0 represents the kine-
matic viscosity which is inversely proportional to the Reynolds number. Solving the
NSE is important in many applications, however it is well known that doing so can
be quite difficult, especially for small v. Many different tools have been used for
more accurate numerical simulations of the NSE, for example using NSE formula-
tions tailored to particular application problems [23, 12, 37, 33] or discretization and
stabilization methods [39, 28], and more recently using observed data to improve
simulation [5, 30, 43, 44, 8].

We consider in this paper discretizations of a continuous data assimilation (CDA)
enhancement applied to the following velocity-vorticity (VV) formulation of the 2D
NSE:

Uy —VAu+w xu+ VP = f
V.-u=0, (2)
wy — vAw + (u - V)w = rot f.

Here, w represents the (scalar) vorticity, P := p + %|u|2 is the Bernoulli pressure,

and rot is the 2D curl operation: rot (}C;) = % — %—J;l. In the NSE, the velocity and
vorticity are coupled via the relationship w = rot u (or equivalently, the Biot-Savart
Law). However, the VV formulation typically does not enforce this relationship, so
u and w are only coupled via the evolution equations in (2), and the relationship

w = rotw is recovered a posteriori, so that at the continuous level, (2) is formally
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equivalent to (1). However, in practice, discretizations of VV can behave quite
differently from typical discretizations of NSE, providing better stability as well as
accuracy (especially for vorticity) for vortex dominated or strongly rotating flows,
see [36, 37, 34, 2] and references therein. A very interesting property of (2) was
recently shown in [25], where it was proven that the system (2) when discretized
with standard finite elements and a decoupling backward Euler or BDF2 temporal
discretization was unconditionally long-time stable in both L? and H' norms for
both velocity and vorticity; no such analogous result is known for velocity-pressure
discretizations/schemes. Hence the scheme itself is stabilizing, even though it is
still formally consistent with the NSE. The recent work in [2] showed that these
unconditionally long-time stable schemes also provide optimal vorticity accuracy,
yielding a vorticity solution that is one full order of spatial accuracy better than for
an analogous velocity-pressure scheme.
We consider herein CDA applied to (2), which yields a model of the form

v — VAV +w X v+ Vg4 mlg(v —u) = f,
V-v=0, (3)

wy — VAW + (v - V)w + polg(w — w) =rot f,

where Iy is an appropriate interpolation operator, Iy (u) and Iy (w) are assumed
known from measurement data (i.e. u and w are known at some points in space),
and p1, pe > 0 are nudging parameters. If ps = 0, then vorticity is not nudged
and Iy (w) need not be assumed known. Due to the success of (2) in recent papers
[25, 2, 36] and that of CDA in the works mentioned above, combining these ideas
and studying (2) is a natural next step to see whether CDA will provide optimal
long-time accuracy for the VV schemes already known to be unconditionally long-
time stable. Herein, we do find that CDA provides convergence of (3), with any
initial condition, to the true NSE solution (up to optimal discretization error) and
moreover that CDA preserves the long-time stability.

This paper is organized as follows. In Section 2, we introduce the necessary
notation and preliminaries needed in the analysis. In Section 3, we propose and
analyze a fully discrete scheme for (3), and show that for nudging velocity and
vorticity together and nudging just velocity, algorithms are long-time stable in L2
and H' norms and long-time optimally accurate in L? velocity and vorticity (under
the usual CDA assumptions on the coarse mesh and nudging parameter). In Section
4, we illustrate the theory with numerical tests, and finally draw conclusions in
section 5.

2. Notation and preliminaries. We now provide notation and mathematical
preliminaries to allow for a smooth analysis to follow. We consider the domain
Q2 C R? to be the 27-periodic box, with the L?(Q2) norm and inner product denoted
by || - || and (-, -) respectively, while all other norms will be appropriately labeled.
For simplicity, we use herein periodic boundary conditions for velocity and vor-
ticity. Extension to full nonhomogeneous Dirichlet conditions can be performed
by following analysis in [34], although for no-slip velocity together with the more
physically consistent natural vorticity boundary condition studied in [36, 38] more
work would be needed to handle the boundary integrals. We denote the natural
corresponding function spaces for velocity, pressure, and vorticity by
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X = H;?&(Q)2 = {v € H}.(R)?, v is 27-periodic in each direction, / vdxr = O} ,
Q
Q:=L%(Q) = {q € L}.(R), g is 2n-periodic in each direction, / qdr = 0} ,
Q
W= H#(Q) = {v € H}(R), v is 27-periodic in each direction, / vdr = 0} .
Q

In X (and W), we have the Poincaré inequality: there exists a constant Cp
depending only on 2 such that for any ¢ € X (or W),

16l < Cp( V4]l

We define the skew-symmetric trilinear operator b* : X x W x W — R to use for
the nonlinear term in the vorticity equation, by

b* (u,w, x) == é ((u-Vw,x) — (u-Vx,w)).

The following lemma is proven in [30], and is useful in our analysis.

Lemma 2.1. Suppose constants r and B satisfy r > 1, B > 0. Then if the sequence
of real numbers {a,} satisfies

rant1 < ap + B,

n"t" B
Gnt1 < Qg - +

we have that

r—1
2.1. Discretization preliminaries. Denote by 7, a regular, conforming triangu-
lation of the domain €, and let X, C X, @ C @ be velocity-pressure spaces that
satisfy the inf-sup condition. We will assume the use of X, = X N Py(7,) and
Qr = QNP1 () Taylor-Hood or Scott-Vogelius elements (on appropriate meshes
and/or polynomial degrees, see [24] and references therein). The discrete vorticity
space is defined as W}, := WN Py (7,). Define the discretely divergence free subspace
by
Vi = {vn € Xp | (V- vn,qn) =0V gy € Qn}.

We will assume the mesh is sufficiently regular so that the inverse inequality

holds in X},: There exists a constant C' such that

IVxnll < CR7HIxall ¥ xa € X
The discrete Laplacian operator is defined as: For ¢ € H' ()2, Ap¢ € X, satisfies
(Ang,vp) = —=(Vo,Vup) Vo, € Xp. (4)
The definition for Ay is written the same way when applied in W}, since this is
simply the above definition restricted to a single component.
The discrete Stokes operator A is defined as: For ¢ € HY(Q)?, find Ap¢ € V},
such that for all vy, € V},,
(Ah¢7 Uh) = _(v¢a VU}L)' (5)
By the definition of discrete Laplace and Stokes operators, we have the Poincaré
inequalities
IVxull < Cpl|ArXall VXxu € Xa, (6)
IVor|l < CpllAndnll Yoén € Vi. (7)
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We recall the following discrete Agmon inequalities and discrete LP bounds [25]:

[onllzee < Cllonl|*2(|Apvnl|*/? Yop, € Vi, (8)
[onllze < Cllonll*2(|Apvall*/? You € Xa, 9)
IVonllzs < Cllonll? | Anon|*/? Yon € Xn. (10)

We note that all bounds above for X}, trivially hold in W, since W}, functions can
be considered as components of functions in Xj,.

A function space for measurement data interpolation is also needed. Hence we
require another regular conforming mesh 77, and define Xz = P,.(7g)? and Wy =
P, (1) for some polynomial degree . We require that the coarse mesh interpolation
operator Iy used for data assimilation satisfies the following bounds: for any w €
H'(Q)%,

1a (w) —w| < CH[|Vwl], (11)
[ (w)]| < Cllwl|. (12)

These are key properties for the interpolation operator that allow for both mathe-
matical theory as well as providing guidance on how small H should be (i.e. how
many measurement points are needed). We note the same Iy operator is used
for vector functions and scalar functions, with it being applied component-wise for
vector functions.

3. Analysis of a CDA-VV scheme. We consider now a discretization of (3) that
uses a finite element spatial discretization and backward Euler temporal discretiza-
tion. The backward Euler discretization is chosen only for simplicity of analysis;
all results extend to the analogous BDF2 scheme following analysis in [2, 25]. One
difference of our scheme below compared to other discretizations of CDA is that Iy
is also applied to the test functions in the nudging terms. This was first proposed
by the authors in [41], and allows for a simpler stability analysis as well as to the
use of special types of efficient interpolation operators.

Algorithm 3.1. Given v) € V, and w) € Wy, find (vZ“,wZH,P}’LLH) € (Xp, Wp,
Qp) forn=0,1,2, ..., satisfying

S T = o) + (X o xn) = (B V) + v(T0r V)
(@ =), Tn(a) = (), (13)
(V-vpthm) =0, (14)
A (0 =k n) 0 @ 0 ) + (VT T

)
) (rOtfn+lawh)7
(15)

+pn (T (wp ™ = rot ™), I (vn)

for all (xn,Yn,rn) € (Xn, Wn,Qpr), where Iy(u™t), Ig(rotu™t) are assumed
known for all n > 0.

We begin our analysis with long-time stability estimates, followed by long-time
accuracy.
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3.1. Stability analysis of Algorithm 3.1. In this subsection, we prove that
Algorithm 3.1 is unconditionally long-time L? and H' stable for both velocity and
vorticity. This property was proven for the scheme without nudging in [25], and so
these results show that CDA preserves this important property that is (seemingly)
unique to VV schemes of this form.

Lemma 3.2 (L2 stability of velocity and vorticity ). Let f € L°(0,00; L?) and u €
L>(0,00; HY). Then, for any At > 0, any integer n > 0, and nudging parameters
11, e > 0, velocity and vorticity solutions to Algorithm 3.1 satisfy

2 ccy,
lerel? <o Rl + =2 0 I e -y + alltl o, 022)) = C1y (16)

CC?
lwrll* <a™™flwhll* + —+

(V_1||f||%°°(0,oo;L2) + /J’QH rOtu||%°°(O,oo;L2)) = 027
(17)

where . =1+ VC;QAt.

Proof. Begin by choosing xj = 2Atv,’z+1 in (13), which vanishes the nonlinear and

pressure terms, and leaves

[op 12 = R 1P + [lop ™ = oplIP + 2880 || Vo2 + 288 m || Tg (v ) |12
= 2At(fm T, UZH) + 2Atpy (T (u™ ), IH(UZH)).
The first right hand side term is bounded using the dual norm and Young’s inequal-
ity via
2AH(fH o) < AT Y2+ A Vop
and for the interpolation term, we use Cauchy-Schwarz, the interpolation property
(12) and Young’s inequality to get
20t (T (w"*), T (v ™)) <20 pun [Tz (w™ ) ||| 1 (o)
<CAt |[u" [ T ()|
SOAtp [[u |2 4+ Atpun || T (o) )12,
n+1 n+1

Combining the above estimates and dropping || ™" — v}'[|* and || (v ™)||* from
the left hand side produces the bound

[op TP+ At || Vo 2 < Jlop || + At 2 + CAtp [Ju 2,
and thanks to the Poincaré inequality, we obtain
1+ Cp2Atw) o P < Jlopll? + CAE (= HIF 2y + pafluTH?)

Defining a =1 +C’1§2Atu > 1, and then applying Lemma 2.1 reveals the L? stability
bound (16) for the velocity solution of Algorithm 3.1.

Applying similar analysis to the above will produce the stated L? vorticity bound.

O

Lemma 3.3 (H® stability of velocity and vorticity ). Let f € L>(0,00; H') and u €
L>(0,00; HY). Then, for any At > 0, any integer n > 0, and nudging parameters
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11, o > 0, wvelocity and vorticity solutions to Algorithm 3.1 satisfy

IVoRl? < o™ (|Vup?

6’02
+

<||f||L°°(O oosL2) T 0201V + N%HUH%w(o,oo;Lz) + M%C%) =: C1,
(18)

[Vwp | < o™ Vuwp|®

20 B B

= (lxot 432 4 v-1C5CE + v 2CHCE + il rotu™ 2 4 33

(19)

C
+

where « = 1 + Z/CI;QAt.
Proof. After testing the velocity equation (13) with x, = 2AtAhv”+1 we obtain
Vo P = Vol + IV (0p ™ = vp) |2 + 2Atw|| Apop
< 2At(FE Apup ) 4 248 (wi x vt Apup )|
+ 20ty (T (u™ ™t — ’U;LH_I), IH(Ath"H)).

We now bound the right hand side terms. First, the forcing term is bounded by
Cauchy-Schwarz and Young’s inequalities via

QAL(f"H, Ayl ) < CA T Y2 %AtHAhU"HH?. (20)

Then, for the nonlinear terms, we again apply Holder, discrete Agmon (9) and
generalized Young inequalities, and the result of Lemma 3.2 to get

2A8|(wpy x vptt, Apop )| <208 wit|[[lvp | peo || Apop |
<CA[wi|[[vp M| Apop P2
<CAw =2 Jwp||*Jop ™ * + KAtIIAhv”“H?
<CC2C At + gAtHA o2,

Lastly, the interpolation term is bounded using Cauchy-Schwarz and interpolation
property 12, followed by Young’s inequality and the result of Lemma 3.2 to obtain

20ty (T (u™Th — o) T (Apop ™))
<28t (|(Tgu" Ty Apop ™| + [Ty ™ Ta Apop )
< OOt T | o Anef | + O | o T A
v
< CAtpivH[u" 12 + CAtpiv =10 + gAtHAhv""‘lHQ (21)

Combining all these bounds for right hand side terms and dropping nonnegative
term ||V (vt — v7)[|? on left hand side give us that

Vo2 + Aty Apoy T2 < [V |2 + CAty ™ T2 + v 3 ALtCCE 0y
+ At 1O w2 + CAtiv Oy
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By the Poincaré inequality (7), we now get
Al Ve < [P + At (vt
vECHC + P + e ).

where o = 1 + Z/C_2At Finally, we apply Lemma 2.1 and reveal (18).
For the vorticity estimate, choose ¢, = 2AtAhw”+1 in (15) to get

IV ™2 = IV + IV (wh ™ = wi) || + 24t ]| Apwy ™
< 2At|(rot T Apw )| 4 2480 (0T wl T Apwi )|
+ 2At o (I (rot u™ ™ — wi™), Ty (Apwith)).

From here, the proof follows the same strategy as the H' velocity proof above,
except the nonlinear term is handled slightly differently. We use the discrete Agmon
inequality (9), the discrete Sobolev inequality (10), the result of Lemma 3.2, the
H?' stability bound for vorticity (18) proven above, and the generalized Young’s
inequality, as follows.

2At‘b*( n+1 thrl A wn+1)|
1
<20 (174 Tup L Ao ]+ 1T Al ) )

< 20t v Lo [V T | La || Apw | 4+ At Vo lwp T pee || Apwp |
< CAMC [ M3 AP 4 CALC gt /2 A+ 2

< CAIOLCY ™ [P+ CAICLCY 2 g 2

< CAtv PCPC3 + CA™3CLC + At||Ahwn+1”2

Now proceeding as in the velocity H' bound will produce the H' vorticity stability
bound (19). O

3.2. Long-time accuracy of Algorithm 3.1. We now consider the difference
between the solutions of (13) - (15) to the NSE solution. We will show that the
algorithm solution converges to the true solution, up to an optimal O(At 4 h*+1)
discretization error, independent of the initial condition, provided a restriction on
the coarse mesh width and nudging parameters. We will give two results, the first
for ps > 0 and the second for us = 0; while they both provide optimal long-time
accuracy, when ps > 0 the convergence to the true solution occurs more rapidly in
time.

In our theory below for long-time accuracy of Algorithm 3.1, we assume the
use of Scott-Vogelius elements. This is done for simplicity, as for non-divergence-
free elements like Taylor-Hood elements, similar optimal results can be obtained
(although with some additional terms and different constants) but require more
technical details; see, e.g., [21]. We define the following projection operator, Py,
which will be used in the following accuracy analysis: Given ¢ € H!(Q) with
V.o =0, Py(¢) € V, satisties (V(¢p — Py(¢)), Vup) = 0 for all v, € V},. We also
define Py : H*(Q)) — W}, in the same way, with Vj, replaced by W},. The operators
Py and Py are known to have optimal approximation properties on the divergence
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free subspace of X and on W, respectively, in both L? and H! norms, provided
some commonly assumed properties of the domain [9, 42].

Theorem 3.4 (Long-time L? accuracy of Algorithm 3.1 with gy > 0 and pg > 0).
Let true solutions u € L*(0,00; H**2(Q)), p € L>(0, 00; HX(Q)) where k > 1 and
ug, ugy € L%°(0,00; HY). Then, assume that time step At is sufficiently small, and
that py and po satisfy

- Cv

Cv! (Jlo™ M3 + o™t = Purw™ ) < i < =,
-1 n+1y2 n+1 n+12 Cv
Cv= ! (JJu™ | 7s + [Ju" T = PuuH|7s) < pe < 3

where H is chosen so that this inequality holds. Then, for any timet™, n=0,1,2, ...,
we have for solutions of Algorithm 3.1 using Scott-Vogelius elements,

[ =" |I* + [lwp; = rotw” || < (14 XA (o — u”||* + [[wh — rotu”||*) + CAT'R,

where
Ri= (u ' A + py 'AC + v R g BT 2R

—2
and A = min {T el 2 } with C independent of At, h and H.

Proof. The true NSE solution satisfies the VV system

1
E(u’”r1 —u") +w" x " VPP AT = L Aty (£)
+ (W — W) x Tt (22)
V-u"tt =0, (23)
1
E(w"+1 —w") Fu™ Vo - DAW™MT = rot T At (H7),  (24)

where u” is the velocity at time t”, P™ the Bernoulli pressure, w™ := rotu”™, and
t*,t** € [t",t""1]. Note that by Taylor expansion, we can write w" — w"*! =
—Atwi(s*) where s* € [t", t" 1.

The difference equations are obtained by subtracting the solutions to Algorithm
3.1 from (22)-(24) after testing them with test functions from x; € Xy, r, € Qn
and ¥, € Wy, respectively. We define the differences between velocity and vorticity
as e, = vy —u" and e}, = wj —w", respectively. Next, we will decompose the
error into a term that lies in the discrete space V}, and one outside. To do so, add
and subtract the discrete Stokes projection of u", denoted Pyu™, to e and let
ny = Pyu —u", ¢y = vy — Pyu”. Then ef = ¢y  +n; and ¢ € Vp. In a
similar manner, by taking the H} projection of rot u™ into W}, denoted by Py w",
we obtain e}, = ¢}, ,, + 1, with ¢, € Vj,.

For velocity, since (Vn '+, V(;ﬁ"“) = 0, the difference equation becomes

mt[l\(b”“\\z —leiol® + 65t = SnlP]+ v IVeR SHIZ + pallg 1P

= At(ug(t*), ¢y t?
(ue(t™), @) — Al
— (@™ gt oty = 2 (T (B ) — oph L opth) — ot — op bt

pa (T ™ Ta i), (25)

iyt =, S = At(wi(s™), ) — (el x vpt gt
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and similarly for vorticity, we have

SRR = 10l + N5 = 08 2]+ VORI P + pall gt 1

* % 1 *
= Atlun(t), G 4) — S Ol — i ) + b (en L o)
L G b (e W G — 2 (T (0 ) — 6L o)

—M2||IH¢>7Hrl "+1||2 po (Tt 1 ¢"+1), (26)

where in (25) we have added and subtracted qi)ﬁ)tl to write it in the form found
above using

pn(Tey™ Trxn)
= NI(IH(?Z—;leHXh) + i (Tgny ™ Taxn)
= mIadptt = eptt + opt Tuxn — optt + opth) + ma (Laml ™, Tuxn)
= llgp 1?4+ IH¢”+1 [ Z,ﬁl) + m(OpE Tirxn — oY)
+ M1(IH¢H+1 ZIIJHXh - Z,JZI) + p(Lamy ™, xn),

and similarly for (26).

Next, we bound the terms on right hand side of difference equations, starting
with the velocity difference equation (25). The first three right hand side terms are
bounded using Cauchy-Schwarz and Young’s inequalities, via

At (ug (t7), nH) < Atflue|l oo (0,00522 () 197 il

< OAL py et | Lo (0,00:22(2)) + ||<15”“||2

|At(wie(5%), 5| < CALJwie ]| oo 0,002 o) 0" T | oo |9 |

< CAtzﬂflHwtt||2Loo(o,oo;L2(Q))||Un+1||%oo + ||¢n+1||2

1 n n * n
A =g et = (s, o))
< o (sl 7

éC‘uflllm,t(S*)\IQJr ||¢;; Y2,

where s* € [t", t" 1.

For nonlinear terms in (25), first we add and subtract e i

in the first component,
and u™*! in second component to get

( X U}T;-‘rl ¢n+1) (( n o _ n+1) X 6n+1 d)n-l—l)_'_( n+1 X 6n+1 ¢n+1)
Cw

+ ((ez _ €Z+1) n+17¢n+1) +( n+1 X un+17 Z—Zl)

w XMy

+ ((en _ GZ-H) n+1,¢n+1) +( n+1 % un+1, Z,—:l)

= (el — ™) <o G+ (en <ot o)
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The all resulting terms are bounded by Holder’s and Young’s inequalities to obtain

(e — ety < nut, 6t

< Cl b = Do My M lzallog 5 e + Cllmly = mi* Hlzee [l 1055
< v H|gp = Ot 1Pl M I + 5 ||V¢>"“||2

+ Cpy iy — ™ e P + H<b”“||2

(e x ™ optt) < Cllci)"“llIImHIILa||<25”+1||L6 + Ol e 0y 3

< Cv ot 1Pl IEs + 3 IIV¢"“II2

n n lul n
+ Cpy M PP s I + o 1%k HP

(e — enth) x unth, gt

< Clleh = Ghty Mw" el dh 3 e + Cllmg, — ni e el oh 5

<OV — O 1Pl HITs + 5 ||V<b"“||2
+Cpy ey — o Pl + H<b”“||2

(et > um™ gpth) < CII¢”“IIIIU"“||L3||¢>"+1||L6 + Cllm ™ |z gy |

< Cv ot IPleH 1Es + ||V<25"“||2

+ g P e + 5 II¢"+1II2

Then, for the last nonlinear term, we apply Hélder s, Pomcaré’s and Young’s in-
equalities and get

(W™ L gt < llw™ |z oyl
< CvH|w™ ([T lmy I + HV¢"+1II2

Next, the first interpolation term on the right hand side of (25) will be bounded
with Cauchy-Schwarz inequality and (11) to obtain

pTa (o5 = optt onth) < pllIu (o5 — o lllgn |
< mCH|[Vep I loh ||
< O H?|[Vey P + S5 ot I
For the second interpolation term, we apply inequality (12), Wthh yields
il Iadh = o P < CunH? [V 1.

Finally, the last interpolation term will be bounded using Cauchy-Schwarz, (12),
and Young’s inequality to get the bound

pa (Tt Ir g ) < Cpallnl ™% + ||<z’>"“||2

We now move on to the vorticity difference equation, ( ) All the linear terms are
majorized in a similar manner as in the velocity case, and so we show below the
bounds only for the nonlinear terms. Due to the use of Scott-Vogelius elements,
the skew-symmetric form reduces to the usual convective form, so b*(u,v,w) =
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(u- Vo, w), with ||V -u|| = 0. To bound the first nonlinear term on the right hand
side of (26), we begin by breaking up the velocity error term, then apply Holder’s
and Young’s inequalities, yielding
b* ( n+17,r]g)+17 Z—Z}l) 7( n+1 vnnJrl, Z—Z;l)
_ ( n+1 n+17 ¢n+1) ( n+1 vnn+1 n+1)

» P h,w
= (¢} "“ SVop ) A (- Veptl it
< CH¢>Z IV et +1||Loe + Cllny IV or S et e

< v e Pl - + 5 ||V<15"“||2 + v Iy P I e

Ve tP.
For the second nonlinear term, we use Holder’s, Péincare’s and Young’s inequalities,
which gives

O (T o) = (W Vgt o)

USSR it
< Ol 95 L |
< Oy B I + SV

For the last nonlinear term, we begin by breaking up the velocity error term, then
apply Holder’s and Young’s inequalities to get

b*(€n+1 wnJrl ¢n+1) (n+1 vwnJrl ¢n+1)
= (@h - V"L gt) + (it Vet g
:( n+1 v¢z+wl7 n—f—l)_"_( n+1 v¢2117 n+1)
<CII¢Z HIV R Hlw™ | Lo +CH??L’“IIIIV¢”“Hllw"“HLw

< I VIl IR + 15 IIV¢"“||2 +CvH Iy P e

||V<z5"“||2

Replacing the right hand sides of (25) and (26) with the computed bounds and
dropping nonnegative terms with Hqﬁ"“ — oy ||2 yields the bound

L vl G [ [

1 — n n n n
n (— C O (s + “nis)) 16— gl

2At
+ 2V + (5 = CraH?) 9717
f||V¢"“H + (4~ Crat?) [V
ELlonit 1P + (B = oo™ (o™ e + 1l 7)) lons 12

Bl 1P + (B2 = oo™ Ul 15s + o3 139)) Iohin 12
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2 - 2
e 1700 + fo ! HwttHLOO(o,oo;L2))

< CAt? (H;1|‘Utt|‘2Loo(o 00;L2) T Hf1||wtt|‘%W(o oo; LZ)HU
+ Ot (ot 0,00i22) + 1™ = mllZoe Iy
P e e 4 i = e
+ [lnatt o) 4 Ctz i | oo 0,00:22)
+ Cv ([l oo s ™1+ s ™ 1P I 1 Zoe

n+1 n+1 n+1 n+1 n+1 n+1
A P ™ e 4l I ™ 1o )+ Cpaallmy ™ HIZ + Cpaa g 1.

Il

Using the assumptions on H and the nudging parameters, the time step restriction,
and smoothness of the true solution, this reduces to

IOREM 2 + Ihtt 12 = Nl |12 = 67w l12) + IRt + ZIVant 2
+ Bl P + B lepit P

i

< O (" iy 4413 ") o+ Oy e 0 00112
+ O (e ey + ™ = 5
I P e = P+ )

o+ Cv (P e P o e+ L1 + 1)
+ Cpa | + Cpallpit )12

Now define
-2
p | vCp
A=
1 4 + 4 9
-2
pe | vCp
Ag == .
2=ty

Using this in the inequality after applying Poincare’s inequality and multiplying
each side by 2At, we get

(1+ A 6512 + (1 + Atr2) |6 |12
< CAL (i AP + g A + v TR B2 b g o+ 6wl

Then, with R = (py "A* + v A + v R2R+2 4 1 2042 4 1, h?%42) and A =
min {\1, A2}, we obtain the bound

(14 A0 (512 + 116t 17) < CALR + 65,112 + 6%
By Lemma 2.1, this implies
62 + 612 < OA Rt (L AA) =D (6 2+ 169, ).
Lastly, applying triangle inequality completes the proof. O

Theorem 3.5 (Long-time L? accuracy of Algorithm 3.1 with u; > 0,2 = 0).
Let true solution u € L*(0,00; H**2(Q)), p € L*>(0,00; H*(Q)) where k > 1
and ug, ug, € L°°(0,00; HY). Then, assume that time step At is sufficiently small,
w2 =0, and that uy satisfies

Cr~tmax{(Ju" 1 Foe + [0 — Pyu o), (lo™ 1300 + 0™ = Pyro™ |7 )}

SmS o
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where H is chosen so that this inequality holds. Then for any timet™, n =0,1,2, ...,
solutions of of Algorithm 3.1 using Scott- Vogelius elements satisfy

[vh —u™[|* + lwy —rotu™|* < (1 + XA " ([vh —u”||* + [|wh —rotu’||*) + CAT'R,
(27)

where
Ri= (py A+ v AP 4 v TR 4 h2EE2)

and A = Inin{“1 + ;2V C}Z V} with C independent of At, h and H .

Remark 1. Algorithm 3.1 converges to the true solutions up to optimal discretiza-
tion error in both cases p1, e > 0 and py > 0, o = 0. The key difference between
two cases is that when ps = 0, the convergence in time to reach optimal accuracy is
much slower since A does not scale with the nudging parameters. This phenomena
is illustrated in our numerical tests.

Proof. We follow the same steps with the proof of Theorem 3.4. The difference
equation for velocity is already the same with (25), and just two nonlinear terms
in the velocity difference equation are bounded with differently in this case. By
Hoélder, Poincaré and Young’s inequalities, we get the bounds

(e xmy ™ ot < Clloy b My leslldh 5 e + CHn"“IIHnZ“IIL loh
< Cpy IV 1P lE= + T4 ||¢”“H2
+ Cpg Il P s T + ||<z5"“||2

(et > u™ opth) < Cllop e zsllght s + Cll ™ lu™* | oo g7 |

< Cup VR I1° IIU"“IILer ||¢"+1||2

+ Coug P e 7 + 55 ||¢"+1||2

All terms on the right hand side of vorticity diﬁerence equation for Theorem 3.4
are bounded identically. Proceeding as in the previous proof, we arrive at

(ol A [ i)

+ (5 = O T = I ) ) I = ol
LR 4 (B = oo (o e+ I ) IR + Y IR

+ (f — O H?) [Voi it I1P + 21V en |

+ (& - ol la + ||n"“\|m>) IVer P

< CAE (1wl Foo 0,002y + 11wt |7 o0 0,002y 10" T 1200+t lwiee |7 o0 (0,00:1.2))
O (1t sty + I e 1 4 It P e

n+1 n n+1 n n+1 2
= P e+ P e ) + Cr T (™ e (1ol
A P e A P ™ oo A Nl I ™ ) e ) 4 Cpaa Il 1.

Provided At is sufficiently small and the restriction

Cv

max {Cv~ ([[u" [ Zoe + [l ™[ Toe), Cv7 (0" [ Toe + i 7)< 11 < 5
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holds, then applying Poincaré inequality to the terms on left hand side and using

A] :& 0521/
! 4 7
CHv
)\2 = IZL )

and assumptions on the true solution, we obtain
(1+ AtA) [t 12 + (1 + Atdg)[|gr |12
< CAt (uflAtQ + V—lAtQ + V—1h2k+2 + M1h2k+2) + ||¢Z,v||2 + |‘¢Z,w”2
From here, the proof is finished in the same way as the previous theorem. O

3.3. Second order temporal discretization. We now present results for a sec-
ond order analogue of the first order algorithm studied above.

Algorithm 3.6. Find (UZH,wZH,qZH) € (Xn, Wy, Qpn) for n =0,1,2, ..., satis-
fying
1 — n— n n
2At (3up™t = o +op ™ xn) + ((2wf —wp™h) x o™ ) — (PP V- xa)
(Vo™ V) + (L (o ™ = ™), Txa) = (£ xa),
(28)
(V : UZ—HvTh) =0,
(29)
1
— (Sw,’;'*'1 — 4wy — vz_l,wh) + (Pt Vot ) 4+ v(Vw T Vi)

2At
o (L (w ™ = rot u™™), T (¥n)) = (vot £, 9),
(30)

for all (xn,VYn,mh) € (Xp, Wh, Qn), with v° € X and Ig(u"tt), Ig(rotu™tl) given.

Stability and convergence results follow in the same manner as the first order
scheme results above, using G-stability theory as in [1, 2, 30].

Theorem 3.7 (Long-time stability and accuracy of Algorithm 3.6 with p; > 0 and
to > 0). For any time step At > 0, and any time t", n = 0,1,2, ..., we have that
solutions of Algorithm 3.0 satisfy

[opll + llwpll + [IVopll + Vg < €,

with C independent of n, At, h, H.

Furthermore, if we suppose the true solution u € L>(0,00; H**2(Q)), p €
L>(0,00; HE(Q)) where k > 1 and ug,us, € L(0,00; HY), that time step At
is sufficiently small, Scott-Vogelius elements are used, and that py and ps satisfy
C(u) < py, g < %, we have the bound

[vh —u™|* + flwp —rotu”(|* <
(1 + XA (o, — u®|? + [Jwhy — rot u®||® + |lop — u'||* + [Jwh — rotw'||®) + CAT'R,
where
Ro= (U7 A 4 pg AR T2 L 2 p2)

—2 —2
and A\ = min {% + VC;P B+ %} with C' independent of At, h and H.
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4. Numerical experiments. In this section, we illustrate the above theory with
two numerical tests, both using Algorithm 3.6. Our first test is for convergence
rates on a problem with analytical solution, and the second test is for flow past a
flat plate. For both tests, we report results only for (P, P;) Taylor-Hood elements
for velocity and pressure, and P» for vorticity; however we also tried Scott-Vogelius
elements on barycenter refined meshes that produced similar numbers of degrees of
freedom, and results were very similar to those of Taylor-Hood. The coarse velocity
and vorticity spaces Xy and Wy are defined to be piecewise constants on the same
mesh used for the computations. The interpolation operator Iy was taken to be
the L? projection operator onto X (or W), which is known to satisfy (11)-(12)
[16].

4.1. Experiment 1: Convergence rate test. For our first test, we investigate
the theory above for Algorithm 3.6. Here we use the analytic solution

_ [coswr(y ~1)

sin(w(:c—i-t))} ’ p= 1+t sin(z +y),

on the unit square domain = (0, 1)? with kinematic viscosity v = 1.0, and use the
NSE to determine f and boundary conditions. We take the final time T = 1, and
choose initials conditions for Algorithm 3.6’s velocity and vorticity to be 0. For the
discretization, (Ps, Py) Taylor-Hood elements are used for velocity and pressure, Ps
for vorticity, and a time step size of At = 0.001. From Section 3, we expect third
order spatial convergence rate in the L? norm for large enough times. Results are
presented below for two cases, s > 0 and 2 = 0.

4.1.1. Results for p; > 0 and ps > 0. To test this case, we first calculated spatial
convergence rates at the final time 7' = 1 with the L? error, using successively
refined uniform meshes and g3 = po = 100. Errors and rates are shown in table
1, and show clear third order spatial convergence of both velocity and vorticity.
Deterioration of the rates for the smallest h is expected since the time step At is
fixed while the spatial mesh width decreases.

h llew (T)]] rate llew (D)l rate
1/4 2.62008e-03 - 7.70647¢-03 -
1/8 3.20467e-04 | 3.0314 | 9.68456e-04 | 2.9923
1/16 | 3.97307e-05 | 3.0146 | 1.20888e-04 | 3.0041
1/32 | 4.94529¢-06 | 3.0061 | 1.50809e-05 | 3.0029
1/64 | 6.19332e-07 | 2.9973 | 1.99325¢-06 | 2.9195
1/128 | 8.13141e-08 | 2.9247 | 3.15236e-07 | 2.5855
TABLE 1. Shown above are L? velocity and vorticity errors and
convergence rates on varying mesh widths, at the final time 7' =1,
using Algorithm 3.6 with gy = pe = 100.

We next consider convergence to the true solution exponentially in time (up
to discretization error). Here we take h = 1/32, and compute solutions using
g1 = pg = p, with g = 1, 10, 100, 1000. Results are shown in figure 1, as L?
error versus time for velocity and vorticity. We observe exponential convergence
in time of both velocity and vorticity, up to about 10~°, which is consistent with
the choices of h and At and the accuracy of the method. We note that as pu is
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increased, convergence is faster in time, which is consistent with our theory for the
case of pp > 0 and py > 0.

——p=1 ——p=1
——u=10 ——p=10
#=100 4=100
& —-—-=1=1000 --—-—=1000
—=1
-
p=l
CI.C
>
10©
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time time

FIGURE 1. Shown above are L? velocity and vorticity errors for
Algorithm 3.6 with pu; = pus = w, with varying p > 0.

4.1.2. Results for 1 > 0 and pe = 0. We now consider the same tests as above, but
with po = 0. This is an important case, since it is not always practical to obtain
accurate vorticity measurement data. Just as in the first case, we first calculated
spatial convergence rates at the final time T = 1 for the L? error, on the same
successively refined uniform meshes, but now with ©; = 100 and ps = 0. Errors
and rates are shown in table 2, and show clear third order spatial convergence of
both velocity and vorticity. Deterioration of the rates for the smallest h is expected
since the time step At was fixed at 0.001, although the vorticity errors are slightly
worse than for the case of yus = 100 shown in table 1, and the deterioration of the
rates occurs a bit earlier. Hence we observe essentially the same velocity errors and
rates compared to the case of us = 100, and slightly worse vorticity error but still
with optimal L? accuracy.

h llew (T)]] rate llew (D)l rate
1/4 2.62003e-03 - 7.79431e-03 -
1/8 3.20466e-04 | 3.0313 | 9.70492¢-04 | 3.0056
1/16 | 3.97175e-05 | 3.0123 | 1.20897e-04 | 3.0049
1/32 | 4.94501e-06 | 3.0057 | 1.50883e-05 | 3.0023
1/64 | 6.17406e-07 | 3.0017 | 2.08215e-06 | 2.8573
1/128 | 8.11244e-08 | 2.9280 | 9.37122¢-07 | 1.1518

TABLE 2. Shown above are L? velocity and vorticity errors and
convergence rates on varying mesh widths, at the final time T =1,
using Algorithm 3.6 with p; = 100 and pe = 0.

To test exponential convergence in time for the case of us = 0, we again take
h = 1/32, and compute solutions using p; = 1, 10, 100, 1000. Results are shown
in figure 2, as L? error versus time for velocity and vorticity. Although we do
observe exponential convergence in time of both velocity and vorticity, up to about
10~® which is the same accuracy reached when uy = 100 above. An important
difference here compared to when pus = 100 is that the convergence of vorticity to
the true solution is independent of u1, and the convergence of velocity is slower for
larger choices of p1. This reduced dependence of the convergence on the nudging
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parameters when pus = 0 is consistent with our theory. Hence without vorticity
nudging, long-time optimal accuracy is still achieved, but it takes longer in time to
get there.

—— =1
—— =10
=100
«
L - 1=1000]
c
=
'
c <
>
0.8 1

time time

FIGURE 2. Shown above are L? velocity and vorticity errors (from
left to right) for Algorithm 3.6 with varying p; and ps = 0.

4.2. Experiment 2: Flow past a normal flat plate. To test Algorithm 3.6 on
a more practical problem, we consider flow past a flat plate with Re = 50. The
domain of this problem is [—7,20] x [-10, 10] rectangular channel with a 0.125 x 1
plate fixed ten units into the channel from the left, vertically centered. The inflow
velocity is u;; = (0,1), no-slip velocity and the corresponding natural vorticity
boundary condition from [36] are used on the walls and plate, and homogeneous
Neumann conditions are enforced weakly at the outflow. A setup for the domain
is shown in figure 3. There is no external forcing applied, f = 0. The viscosity is
taken to be v = 1/50 which is inversely proportional to Re, based on the height
of the plate. The end time for the test is 7" = 80. A DNS was run until for 160
time units (from t=-80 to t=80), and for ¢ > 0 measurement data for the VV-DA
simulation was sampled from the DNS.

Y Ty :u=(0,0)7
(Vxw)xn=—(Vp)xn
e 27
9.5
Tout © 7!/:% +!7;,1 =0
plate with dw ()
R . ',/ size 0.125x 1.0 on
M vertically centered q
Ty :u={0,0)7
(Vxw) xn=—(Vp)xn
9.5
; 20
Din tu = (1,0)T
L v=0 Ty :u=(0,0)7
(Vxw)xn=—(Vp)xn

FIGURE 3. Setup for the flow past a normal flat plate.

We computed solutions using a Delaunay generated triangular meshes that pro-
vided 27,373 total degree of freedom with (P, Py, P») velocity-pressure-vorticity
elements, and time step At = 0.02. We first compared convergence in time to the
DNS solution, for two cases: 1 = p > 0 and py > 0, pp = 0. Plots of L? velocity
and vorticity error for both of these cases are shown in figure 4, with varying nudg-
ing parameters. There is a clear advantage seen in the plots for the simulations
with ps > 0: when vorticity is nudged in addition to velocity, convergence to the



CDA APPLIED TO VV FORM OF NAVIER-STOKES 2241

true solution is much faster in time. The convergence when po = 0 appears to still
be occurring, but is much slower and even by ¢ = 80 the L? vorticity error is barely
smaller than O(1). We note that just like in the analytical test problem, when
2 = 0 the vorticity convergence in time is independent of u;.

10°
&
o
< 10°
. |
8
:
C3£ 10”10
10-15
time
i
i
e 101 |
=0
=] 3
3 \
EII
| 3
L ‘v“\/\ " = "o
i o
\ 10° .
M
14— e
0 20 40 60 50 0 20 0
time time

FIGURE 4. L? velocity and vorticity errors (from left to right) for
Algorithm 3.6 with g1 = p2 = > 0 (top) and g1 = p > 0,42 =0
(bottom)

To further illustrate the convergence of the DNS, we show contour plots of the
DNS solution, the VVDA solution, and their difference, in figures 5-8. For these
simulations, we used p; = po = 10 in figures 5-6, but used us = 0 for figures 7-8.
As expected due to the plots in figure 4, when p; = pe = 10 we observe rapid
convergence in the plots for VV-DA velocity and vorticity to the DNS velocity and
vorticity, and by ¢ = 1 the contour plots are visually indistinguishable. This is not
the case, however, when po = 0. In this case, while the velocity plots do agree
with DNS velocities by ¢ = 1 (in the eyeball norm), the vorticity error remains
observable at ¢ = 10 and even at ¢ = 20 there are some small difference. The
contour plots of the errors at early times for vorticity show the largest errors occur
near vortex centers, indicating that the VV-DA method is not accurately predicting
the strength of the vortices.

4.2.1. Re=100. We also tested Re = 100 for flow past a flat plate, using the same
discretization parameters as above for the Re = 50 case, and overall see similar
results as for the Re = 50 case. When both velocity and vorticity are nudged,
convergence to the true solution is exponential for both velocity and vorticity in the
L?(2) norm, and we observe that at early times the larger i convergence curves
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FIGURE 5. Contour plots of velocity for DNS (left), VV-DA with
11 = po = 10 (center), and their difference (right), for times ¢ =
0, 0.1, 1, 10, 20, 80 (top to bottom).

are steeper, but at later times p = 1 converges more rapidly. When only velocity
is nudged, larger p provides faster convergence of the velocity, but the vorticity
converges nearly independent of p.

5. Conclusions. We have analyzed a VV scheme for NSE enhanced with CDA,
using linearized backward Euler or BDF2 in time and finite elements in space. We
proved that applying CDA preserves the unconditional stability properties of the
scheme, and also yields optimal long-time accuracy if both velocity and vorticity
are nudged, or velocity-only. If only velocity is nudged, then the convergence in
time to the true solution is slower, but still exponentially fast in time. Numerical
tests illustrate the theory, including the difference between nudging only velocity or
also nudging vorticity.

For future directions, since nudging vorticity is difficult in practice due to accu-
rate measurement data not typically being available, one may try to obtain better
results for the velocity-only-nudging by penalizing the difference between wy, and
rot vy, in the vorticity equation. That is, by setting po = 0 and adding the term
~v(w —rot u) to the vorticity equation (3), it may be possible to analytically prove a
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FIGURE 6. Contour plots of vorticity for DNS (left), VV-DA with
11 = po = 10 (center), and their difference (right), for times ¢ =
0, 0.1, 1, 10, 20, 80 (top to bottom).

convergence result resembling Theorem 3.4. Determining whether this is possible,
and if so then for what values of v, and whether it works in practice (i.e. how large
are associated constants), would need a detailed further study which the authors
plan to undertake.
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