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Abstract. In this paper, we investigate a class of stochastic recurrent neural

networks with discrete and distributed delays for both biological and mathe-
matical interests. We do not assume any Lipschitz condition on the nonlinear

term, just a continuity assumption together with growth conditions so that the

uniqueness of the Cauchy problem fails to be true. Moreover, the existence of
pullback attractors with or without periodicity is presented for the multi-valued

noncompact random dynamical system. In particular, a new method for check-

ing the asymptotical compactness of solutions to the class of nonautonomous
stochastic lattice systems with infinite delay is used.

1. Introduction. Recurrent Neural Networks arise in a wide range of applications
such as classification, combinatorial optimization, parallel computing, signal pro-
cessing and pattern recognition, (see, e.g. [7, 9, 14, 16, 22, 23, 28]). Due to the
finite switching speed of neurons and amplifiers, time delays commonly occured in
neural networks. Since time delays will affect the stability of the neural system
and may lead to some complex dynamic behavior, it is critical to study delayed
recurrent neural networks. In particular, signal propagation is not instantaneous
and may not be suitably modeled with discrete delay, so it is more appropriate to
incorporate continuously distributed delays in neural network models.

Random effects arise naturally in neural network models to take into account the
uncertainty. Given τ ∈ R and t > τ , in this paper, we will consider the following
general class of stochastic neural networks with discrete and distributed delays:

ẋi(t) =fi (xi(t)) +

i+N∑
j=i−N

aij(t)g1j(θtω, xj(t)) +

i+N∑
j=i−N

bij(t)g2j(θtω, xj(t− ĥ(t)))
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+

i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr + Ji(t), i ∈ Z, (1.1)

with the initial condition

xi(t) = φi(t− τ), t ∈ (−∞, τ ], i ∈ Z, (1.2)

where Z denotes the integer set; xi(t) represents the state variable of the potential
for the i-th neuron at time t; fi denotes the behaved function; gkj (k = 1, 2, 3) are
activation functions of the neuron; aij(t), bij(t) and cij(t) denote the connection
weight, discretely delayed connection weight and distributively delayed connection
weight, respectively, between the j-th and i-th neurons, aij(t), bij(t) and cij(t)

belong to C(R;R+); ĥ(t) stands for discrete time varying delay and ĥ(t) belongs to
C(R; [0, h]) with constant h > 0; Ji(t) represents the external force.

Robust analysis for stochastic neural networks with time-varying delay can be
found in [20, 35]. Exponential stability of stochastic neural networks with constant
or time-varying delays has been studied in [8, 15, 16, 19, 21, 30]. Exponential
stability of stochastic recurrent neural networks with time-varying delays was in-
vestigated in [25]. Asymptotic stability of stochastic neural networks with discrete
and distributed delays has been developed, e.g., Markovian jumping parameters
[26, 27, 29], Brownian motion [12], impulsive effects [23], and infinite delay [2, 18].
There has, however, been little mention of pullback attractors for stochastic neural
networks.

The long-time behavior of multi-valued non-autonomous and random dynamical
systems has been extensively developed over the last one and a half decades; see,
e.g. [3, 4, 10, 11, 13, 17, 24] etc. The theory of pullback attractors for single-valued
noncompact random dynamical systems has been established in [31]. The existence
of pullback attractors has been studied in [33] for reaction-diffusion equations on
an unbounded domain with non-autonomous deterministic as well as stochastic
forcing terms for which the uniqueness of solutions need not hold (see also [34] for
unbounded delay case). Based on the previous work, our main goal in this paper
is to develop new theory of multi-valued noncompact random dynamical systems
in a biological context to analyze the dynamics of a class of stochastic recurrent
neural networks with discrete and distributed delays. It is worthy mentioning that
we do not assume any Lipschitz condition on the nonlinear term, just a continuity
assumption together with growth conditions.

The paper is organized as follows. Section 2 gives some preliminary definitions
and results regarding pullback attractors of multi-valued noncompact random dy-
namical systems, while in Section 3 the existence of solutions for the multi-valued
noncompact random dynamical systems is considered. Sections 4-6 are devoted to
the existence of pullback attractors and periodic attractors for stochastic recurrent
neural networks with discrete and distributed delays.

2. Multi-valued noncompact random dynamical systems. We now recall
some basic definitions for multi-valued noncompact random dynamical systems and
some results ensuring the existence of a pullback attractor for these systems.

Let Q be a nonempty set, (Ω,F ,P) be a probability space, and (X, d) be a
Polish space with Borel σ-algebra B(X). Denote by P (X) and C(X) the sets of
all nonempty and nonempty closed subsets of X, respectively. Let also denote by
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dist(A,B) the Hausdorff semidistance, i.e., for given subsets A and B of X we have

dist(A, B) = sup {d(x, B) : x ∈ A} ,

where d(x, B) = inf {d(x, y) : y ∈ B}. Finally, denote by Nr(A) the open r-
neighborhood {y ∈ X : d(y,A) < r} of radius r > 0 of a subset A of X.

Assume that there are two groups {σt}t∈R and {θt}t∈R acting on Q and Ω,
respectively. Specifically, σ : R×Q → Q is a mapping such that σ0 is the identity
on Q, σt+τ = σt ◦ στ for all t, τ ∈ R. Similarly, θ : R× Ω→ Ω is a (B(R)× F ,F)-
measurable mapping such that θ0 is the identity on Ω, θt+τ = θt ◦ θτ for all t, τ ∈ R
and θtP = P for all t ∈ R. In the sequel, we will call both (Q, {σt}t∈R) and
(Ω,F ,P, {θt}t∈R) parametric dynamical systems.

Definition 2.1. Let (Q, {σt}t∈R) and (Ω,F ,P, {θt}t∈R) be parametric dynamical
systems. A multi-valued mapping Φ : R+ ×Q × Ω ×X → P (X) is called a multi-
valued cocycle on X over (Q, {σt}t∈R) and (Ω,F ,P, {θt}t∈R) if for all q ∈ Q, ω ∈ Ω
and t, τ ∈ R+, the following conditions are satisfied:

(1) Φ(0, q, ω, ·) is the identity on X;
(2) Φ(t+ τ, q, ω, ·) = Φ(t, στq, θτω,Φ(τ, q, ω, ·)).

For the above composition of multi-valued mappings, we use that for any
nonempty set V ⊂ X, Φ(t, q, ω, V ) is defined by

Φ(t, q, ω, V ) =
⋃
x0∈V

Φ(t, q, ω, x0).

Definition 2.2. (See [3, 31, 33].) A set-valued mapping K : Q × Ω → P (X) is
called measurable with respect to F in Ω if the mapping ω ∈ Ω→ d(x, K(q, ω)) is
(F ,B(R))-measurable for every fixed x ∈ X and q ∈ Q.

In what follows denote by D be a collection of some families of nonempty subsets
of X parametrized by q ∈ Q and ω ∈ Ω.

Definition 2.3. Let D be a collection of some families of nonempty subsets of X
parametrized by q ∈ Q and ω ∈ Ω. D is said to be neighborhood closed if for each
D = {D(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D, there exists a positive number ε depending on
D such that the family

{B(q, ω) : B(q, ω) is a nonempty subset of Nε(D(q, ω)), ∀q ∈ Q,∀ω ∈ Ω} (2.1)

also belongs to D.
Note that the neighborhood closedness of D implies for each D ∈ D,

{D̃(q, ω) : D̃(q, ω) is a nonempty subset of D(q, ω),∀q ∈ Q,∀ω ∈ Ω} ∈ D. (2.2)

A collection D satisfying (2.2) is said to be inclusion-closed in the literature, see,
e.g., [11].

Definition 2.4. (See [3, 31, 33].) Let D be a collection of some families of nonempty
subsets of X and K = {K(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D. Then K is called a D-pullback
absorbing set for Φ if for all q ∈ Q, ω ∈ Ω and for every B = {B(q, ω) : q ∈ Q,ω ∈
Ω} ∈ D, there exists T = T (B, q, ω) > 0 such that

Φ(t, σ−tq, θ−tω,B(σ−tq, θ−tω)) ⊆ K(q, ω), for all t > T.

In addition, if K is measurable with respect to the P-completion of F , then K is
said to be a measurable D-pullback absorbing set for Φ.
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Definition 2.5. Let D be a collection of some families of nonempty subsets of
X. Then Φ is said to be D-pullback asymptotically upper semicompact in X if for
all q ∈ Q and ω ∈ Ω, any sequence yn ∈ Φ(tn, σ−tnq, θ−tnω, xn) has a convergent
subsequence in X whenever tn → +∞ (n → ∞), xn ∈ B(σ−tnq, θ−tnω) with
{B(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D.

Definition 2.6. Let D be a collection of some families of nonempty subsets of X
and A = {A(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D. Then A is said to be a D-pullback attractor
for Φ if it satisfies:

(1) A(q, ω) is compact for all q ∈ Q and ω ∈ Ω.
(2) A is invariant, that is, for every q ∈ Q and ω ∈ Ω,

Φ(t, q, ω,A(q, ω)) = A(σtq, θtω), ∀t > 0.

(3) A attracts every member of D, that is, for every B = {B(q, ω) : q ∈ Q,ω ∈
Ω} ∈ D and for every q ∈ Q and ω ∈ Ω,

lim
t→+∞

dist (Φ (t, σ−tq, θ−tω,B(σ−tq, θ−tω)) , A(q, ω)) = 0.

The following result shows a sufficient and necessary criterion for the existence
and uniqueness of pullback attractors associated to multi-valued cocycles [33], see
also [31] for the single-valued case.

Theorem 2.7. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and let Φ be a multi-valued cocycle on X over (Q, {σt}t∈R)
and (Ω,F ,P, {θt}t∈R) possessing the norm-to-weak upper semicontinuity on X, i.e.,
if xn → x in X, then for any yn ∈ Φ(t, q, ω, xn), there exist a subsequence ynk and
a y ∈ Φ(t, q, ω, x) such that ynk ⇀ y (weak convergence). Then Φ has a D-pullback
attractor A in D if and only if Φ is D-pullback asymptotically upper semicompact in
X and Φ has a closed D-pullback absorbing set K in D. The D-pullback attractor
A is unique and is given by, for each q ∈ Q and ω ∈ Ω,

A(q, ω) = Θ(K, q, ω) =
⋃
B∈D

Θ(B, q, ω), (2.3)

where the family {Θ(B, q, ω) : q ∈ Q,ω ∈ Ω} is called the Θ-limit set of B defined
by

Θ(B, q, ω) =
⋂
τ>0

⋃
t>τ

Φ (t, σ−tq, θ−tω,B(σ−tq, θ−tω)).

By the similar arguments of Theorem 2.25 in [31], we have a sufficient and nec-
essary criterion for the periodicity of pullback attractors of multi-valued cocycles.

Theorem 2.8. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and let Φ be a norm-to-weak upper semicontinuous periodic
multi-valued cocycle with period T > 0 on X over (Q, {σt}t∈R) and (Ω,F ,P, {θt}t∈R),
i.e., for every t > 0, q ∈ Q and ω ∈ Ω, there holds

Φ(t, σT q, ω, ·) = Φ(t, q, ω, ·).

Suppose Φ has a D-pullback attractor A ∈ D. Then A is periodic with period T ,
i.e., A(σT q, ω) = A(q, ω) for all q ∈ Q and ω ∈ Ω if and only if Φ has a closed
D-pullback absorbing set K ∈ D with K being periodic with period T .
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3. The existence of solutions for random recurrent neural networks with
discrete and distributed delays without uniqueness. Let (Ω,F ,P) be a prob-
ability space. On this probability space we consider a measurable non-autonomous
group θ:

θ : (R× Ω,B(R)⊗F)→ (Ω,F) .

In addition, we assume that P is ergodic with respect to θ, which means that
every θt-invariant set has measure zero or one, t ∈ R. Therefore P is invariant with
respect to θt. Then (Ω,F ,P, {θt}t∈R), which is the model for a noise, is a parametric
dynamical system. Suppose Q = R. Define a family {σt}t∈R of shift operators by
σt(s) = s+ t for all t, s ∈ R.

We also recall the following well-known ergodic theorem.

Theorem 3.1. Suppose Y is a real random variable in L1. Then

lim
t→±∞

1

t

∫ t

0

Y (θsω)ds = EY

on a {θt}t∈R-invariant set of measure one.
Outside this set of measure one we will replace the values of Y by EY so that

this version of Y has the above limit for all ω ∈ Ω.

Let

l2 = {x = (xi)i∈Z, xi ∈ R :
∑
i∈Z

x2
i < +∞},

and equip it with the inner product and norm as

(x, y) =
∑
i∈Z

xiyi, ‖x‖2 = (x, x), ∀x = (xi)i∈Z, y = (yi)i∈Z ∈ l2.

We denote by Cγ,l2 the space

Cγ,l2 =

{
ϕ ∈ C((−∞, 0]; l2) : lim

s→−∞
ϕ(s)eγs exists

}
,

where the parameter γ > 0 will be determined later on. If we define

‖ϕ‖Cγ,l2 =

(∑
i∈Z

sup
s∈(−∞,0]

e2γs|ϕi(s)|2
) 1

2

, ∀ϕ ∈ Cγ,l2 ,

then (Cγ,l2 , ‖ · ‖Cγ,l2 ) is a Banach space. Given τ ∈ R, T > τ and a function

x : (−∞, T ] → l2, for each t ∈ [τ, T ) we denote by xt the function defined on
(−∞, 0] by the relation xt(s) = x(t + s), s ∈ (−∞, 0]. In the following sections, C
denotes an arbitrary positive constant, which may be different from line to line and
even in the same line.

We consider the following conditions:

(C1) The mappings ω → gkj(ω, x) are F-measurable for any fixed x ∈ R, and the
mappings (t, x)→ gkj(θtω, x) are continuous from R×R into R for any fixed
ω ∈ R, where k = 1, 2 and j ∈ Z. Similarly, the mappings ω → g3j(ω, r, x)
are F-measurable for any fixed (r, x) ∈ R × R, and the mappings (t, r, x) →
g3j(θtω, r, x) are continuous from R×R×R into R for any fixed ω ∈ Ω, where
j ∈ Z.
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(C2) For each i ∈ Z, fi is continous, and there exist a positive constant h1 > 0 and
h2 = (h2i)i∈Z ∈ l2 such that

fi(x)x 6 −h1x
2 + h2

2i, ∀i ∈ Z, x ∈ R.

Besides, there exist a positive constant l1 > 0 and l2 = (l2i)i∈Z ∈ l2 such that

|fi(x)| 6 l1|x|+ l2i, ∀i ∈ Z, x ∈ R.

(C3) For k = 1, 2 and j ∈ Z, there exist nonnegative functions pkj , qkj : Ω → R,
which are measurable with respect to F , such that

|gkj(ω, x)|2 6 p2
kj(ω)|x|2 + q2

kj(ω), ∀ω ∈ Ω, x ∈ R,

where the mappings t → pkj(θtω) and t → qkj(θtω) are continuous from R
into R for any fixed ω ∈ Ω.

Besides, there exist nonnegative functions p̂3j , q̂3j : Ω× R→ R such that

|g3j(ω, r, x)| 6 p̂3j(ω, r)|x|+ q̂3j(ω, r), ∀ω ∈ Ω, r ∈ R, x ∈ R,

where the mappings ω → p̂3j(ω, r) and ω → q̂3j(ω, r) are F-measurable for
any fixed r ∈ R, and the mappings r → p̂3j(ω, r) and r → q̂3j(ω, r) are
continuous from R into R for any fixed ω ∈ Ω.

Also, for any ω ∈ Ω and t ∈ R, we define

p̃3j(θtω) :=

∫ 0

−∞
e−γrp̂3j(θtω, r)dr, q̃3j(θtω) :=

∫ 0

−∞
q̂3j(θtω, r)dr,

where the mappings t → p̂3j(θtω, r) and t → q̂3j(θtω, r) are continuous from
R into R for any fixed ω ∈ Ω and r ∈ R. In addition, there exists a measurable
mapping Λ : Ω × R → R such that the mapping t → Λ(θtω) is continuous
from R into R for any fixed ω ∈ Ω, and

pkj(ω) 6 Λ(ω), qkj(ω) 6 Λ(ω), p̃3j 6 Λ(ω), q̃3j 6 Λ(ω), j ∈ Z, k = 1, 2, ω ∈ Ω.

(C4) For i, j ∈ Z, aij , bij and cij belong to C(R;R+), and

aij(t) 6 ãij , bij(t) 6 b̃ij , cij(t) 6 c̃ij , ∀t ∈ R.

Moreover, ∑
i∈Z

i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
<∞.

(C5) The external force (Ji)i∈Z belongs to C(R; l2), and∫ τ

−∞

∑
i∈Z

e
h1
3 r|Ji(r)|2dr <∞, ∀τ ∈ R,

which implies that

lim
k→+∞

∫ τ

−∞

∑
|i|>k

e
h1
3 r|Ji(r)|2dr = 0, ∀τ ∈ R,

where the constant h1 is the same as that of Assumption (C2).
(C6) The mappings t→ p2

1j(θtω), t→ p2
2j(θtω) and t→ p̃2

3j(θtω) are sub-exponen-
tially growing as t → ±∞ for any fixed ω ∈ Ω, where j ∈ Z. In other words,
for ε > 0 and ω ∈ Ω, there exists a t0(ε, ω) > 0 such that for |t| > t0(ε, ω) it
holds that

p2
1j(θtω) 6 eε|t|, p2

2j(θtω) 6 eε|t|, p̃2
3j(θtω) 6 eε|t|.
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Similarly, the mappings t→ q2
1j(θtω), t→ q2

2j(θtω) and t→ q̃2
3j(θtω) are sub-

exponentially growing as t → ±∞ for any fixed ω ∈ Ω, where j ∈ Z, which
means that for ε > 0 and ω ∈ Ω, there exists a t′0(ε, ω) > 0 such that for
|t| > t′0(ε, ω) it holds that

q2
1j(θtω) 6 eε|t|, q2

2j(θtω) 6 eε|t|, q̃2
3j(θtω) 6 eε|t|.

(C7) We suppose that EΛ2 <∞, and also that

lim
t→±∞

1

t

∫ t

0

Λ2(θrω)dr = Λ̄.

By the ergodicity assumption and Theorem 3.1 we obtain that

lim
t→±∞

1

t

∫ t

0

Λ2(θrω)dr = EΛ2 =: Λ̄,

on a {θt}t∈R-invariant set of full measure. Let us replace outside this set
(which has measure zero) the values of Λ2(ω) by Λ̄.

Remark 1. Let us define

αij(θtω) := ã2
ijp

2
1j(θtω) + b̃2ijp

2
2j(θtω) + c̃2ij p̃

2
3j(θtω)

and

βij(θtω) := ã2
ijq

2
1j(θtω) + b̃2ijq

2
2j(θtω) + c̃2ij q̃

2
3j(θtω),

where i, j ∈ Z. Then from Assumption (C6) we obtain that αij(θtω) and βij(θtω)
are sub-exponentially growing as t→ ±∞ for any fixed ω ∈ Ω.

Lemma 3.2. Let (C1)-(C5) hold. Then for any fixed τ ∈ R, ω ∈ Ω and each
M > 0, there exists T (M,ω) > 0 such that if φ ∈ Cγ,l2 and ‖φ‖Cγ,l2 6 M , then

problem (1.1) and (1.2) admits at least a solution x(t) = x(t; τ, ω, φ) defined on
[τ, τ + T (M,ω)], and x belongs to the space C1([τ, τ + T (M,ω)]; l2).

The proof of Lemma 3.2 is given in the Appendix.
By slightly modifying the proof of Lemmas 4.1 and 4.2, we see that every solution

can be globally defined. Hence we now define a multi-valued mapping Φ : R+×R×
Ω× Cγ,l2 → P (Cγ,l2) by

Φ(t, τ, ω, φ) = {xt+τ (·, τ, θ−τω, φ) | x(·) is a solution of Eqs. (1.1)-(1.2)

with φ ∈ Cγ,l2
}
.

Lemma 3.3. The mapping Φ is a multi-valued cocycle on Cγ,l2 over (R, {σt}t∈R)
and (Ω,F ,P, {θt}t∈R).

Proof. We only need to check condition (2) in Definition 2.1, since condition (1)
follows immediately. Let z ∈ Φ(t+s, τ, ω, φ). Then there exists a solution x of (1.1)-
(1.2) such that z = xt+τ+s(·, τ, θ−τω, φ). We define a function u by ut+τ = xt+τ+s

for t > 0 and τ ∈ R. It is clear that uτ = xτ+s, and the function u solves (1.1) with

ω, aij(t), bij(t), cij(t), Ji(t), ĥ(t) replaced by θsω, aij(t + s), bij(t + s), cij(t + s),

Ji(t+ s) and ĥ(t+ s), respectively, and φ = xτ+s. Indeed, for r ∈ [−t, 0], we obtain

ut+τ (r) = xt+τ+s(r) = φ(0) +

∫ t+τ+s+r

τ

f̂(θr′ω, r
′, xr′)dr

′

= φ(0) +

∫ τ+s

τ

f̂(θr′ω, r
′, xr′)dr

′ +

∫ t+τ+s+r

τ+s

f̂(θr′ω, r
′, xr′)dr

′
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= xτ+s(0) +

∫ t+τ+s+r

τ+s

f̂(θr′ω, r
′, xr′)dr

′

= uτ (0) +

∫ t+τ+r

τ

f̂(θr′′+sω, r
′′

+ s, ur′′ )dr
′′
,

where f̂(θr′ω, r
′, xr′) =

(
f̂i(θr′ω, r

′, xir′)
)
i∈Z

and f̂i(θr′ω, r
′, xir′) = fi(xi(r

′))

+
∑i+N
j=i−N aij(r

′)g1j(θr′ω, xj(r
′)) +

∑i+N
j=i−N bij(r

′)g2j(θr′ω, xj(r
′ − ĥ(r′)))

+
∑i+N
j=i−N cij(r

′)
∫ 0

−∞ g3j(θr′ω, r
′′′
, xj(r

′ + r
′′′

))dr
′′′

+ Ji(r
′).

Note that ut+τ (r) = xs(t+ τ + r) for r < −t. Therefore

z ∈ Φ(t, τ + s, θsω, xτ+s) ⊂ Φ(t, τ + s, θsω,Φ(s, τ, ω, φ)).

Since z is arbitrary, we have Φ(t+ s, τ, ω, φ) ⊂ Φ(t, τ + s, θsω,Φ(s, τ, ω, φ)).
On the other hand, let z ∈ Φ(t, τ + s, θsω,Φ(s, τ, ω, φ)). Then there exist x

solving (1.1) and y solving (1.1)(with ω, aij(t), bij(t), cij(t), Ji(t) and ĥ(t) replaced

by θsω, aij(t+ s), bij(t+ s), cij(t+ s), Ji(t+ s) and ĥ(t+ s), respectively) and such
that yτ = xs+τ and yt+τ = z. Define the function

wt′ =

{
xt′ , if τ 6 t′ 6 s+ τ,
yt′−s, if s+ τ 6 t′,

which is a solution to (1.1). Indeed, for t′ 6 s + τ the equality wt′ = xt′ ensures
that w(·) is a solution. If t′ > s+ τ , then for r ∈ [τ + s− t′, 0] we have

wt′(r) = yt′−s(r) = yτ (0) +

∫ t′−s+r

τ

f̂(θr′+sω, r
′ + s, yr′)dr

′

= xs+τ (0) +

∫ t′+r

τ+s

f̂(θr′′ω, r
′′
, wr′′ )dr

′′
= xτ (0) +

∫ t′+r

τ

f̂(θr′′ω, r
′′
, wr′′ )dr

′′
.

Also, for r ∈ [τ − t′, τ + s− t′] we find that

wt′(r) = yt′−s(r) = xs(t
′ + r − s)

= xτ (0) +

∫ t′+r

τ

f̂(θr′ω, r
′, xr′)dr

′ = xτ (0) +

∫ t′+r

τ

f̂(θr′ω, r
′, wr′)dr

′.

Finally, for r < τ − t′ it is easy to see that

wt′(r) = xs(t
′ + r − s) = φ(t′ + r − τ).

Therefore, z = yt+τ = wt+τ+s ∈ Φ(t + s, τ, ω, φ). Since z is arbitrary, we obtain
that

Φ(t, τ + s, θsω,Φ(s, τ, ω, φ)) ⊂ Φ(t+ s, τ, ω, φ). 2

4. Uniform estimates of solutions. In this section, we establish uniform esti-
mates of solutions of problem (1.1)-(1.2) which are needed for proving the existence
of pullback absorbing sets of the system.

Let B be a bounded nonempty subset of Cγ,l2 , and denote by ‖B‖Cγ,l2 =

supϕ∈B ‖ϕ‖Cγ,l2 . Assume D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} is a family of bounded

nonempty subsets of Cγ,l2 satisfying, for every τ ∈ R and ω ∈ Ω,

lim
r→−∞

e
h1
2 r‖D(τ + r, θrω)‖2Cγ,l2 = 0, (4.1)
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where the constant h1 is the same as that of Assumption (C2). Denote by D the
collection of all families of bounded nonempty subsets of Cγ,l2 which fulfill condition
(4.1), i.e.,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (4.1)}.
Obviously, D is neighborhood closed.

Lemma 4.1. Suppose (C1)-(C5) hold and assume that

5

8
h1 < γ. (4.2)

Then for every τ ∈ R and ω ∈ Ω, any solution x of Eqs. (1.1)-(1.2) with ω replaced
by θ−τω satisfies for all t > 0,

‖xτ (·, τ − t, θ−τω, φ)‖2C
γ,l2

6 Ce
−h1t+ 8

h1
(2N+1)2e2γh

∫ 0
−t
∑
i∈Z

∑i+N
j=i−N αij(θsω)ds‖φ‖2C

γ,l2

+ C

∫ 0

−t

(∑
i∈Z

i+N∑
j=i−N

βij(θsω) + ‖J(τ + s)‖2 + ‖h2‖2
)

× eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z

∑i+N
j=i−N αij(θs′ω)ds

′
ds,

where αij(θsω) and βij(θsω) are the same as those of Remark 1.

The proof of Lemma 4.1 is given in the Appendix.

Lemma 4.2. Let (C1)-(C7) and (4.2) hold. Also, assume that

8(2N + 1)2e2γh
∑
i∈Z

i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
EΛ2 <

1

2
h2

1. (4.3)

Then the closed ball K(τ, ω) in Cγ,l2 with center zero and random radius R(τ, ω)
where

(R(τ, ω))
2

= C

∫ 0

−∞

∑
i∈Z

i+N∑
j=i−N

βij(θsω) + ‖J(τ + s)‖2 + ‖h2‖2


× eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds

is contained in D, and K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is a measurable D-pullback
absorbing set for Φ.

Proof. It follows from Remark 1 that for any fixed ω ∈ Ω, the mappings t→ βij(θtω)
are sub-exponentially growing for t→ ±∞, where i ∈ Z and j = i−N, · · · , i+N .
Hence for 0 < ε < 1

12h1 and ω ∈ Ω, there exists a t′0(ε, ω) such that for |t| > t′0(ε, ω),

βij(θtω) 6
(
ã2
ij + b̃2ij + c̃2ij

)
eε|t|,

where i ∈ Z and j = i−N, · · · , i+N .
Thanks to Assumptions (C4)-(C7), in view of Remark 1, we deduce that

Ce
h1r
2

∫ 0

−∞

∑
i∈Z

i+N∑
j=i−N

βij(θs+rω)eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′+rω)ds′ds

6 Ce
h1r
2

∫ 0

−∞
eε|s+r|eh1s

× e
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij

(
(
∫ 0
s+r
−
∫ 0
r )(Λ2(θ

s
′′ω)−Λ̄)ds

′′
−Λ̄s

)
ds
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6 Ce
h1r
2

∫ 0

−∞
e3ε|s+r|eh1s− 8

h1
(2N+1)2e2γh

∑
i∈Z
∑i+N
j=i−N MijΛ̄sds

6 Ce(
1
2h1−3ε)r

∫ 0

−∞
e(

1
2h1−3ε)sds 6 Ce(

1
2h1−3ε)r → 0 (4.4)

as r → −∞, where we have used the notations Λ̄ = EΛ2 and

Mij := ã2
ij + b̃2ij + c̃2ij ,

and in the similar way, we have

Ce
h1r
2

∫ 0

−∞

(
‖J(τ + r + s)‖2 + ‖h2‖2

)
× eh1s+

∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′+rω)ds′ds

6 Ce
h1r
2

∫ 0

−∞

(
‖J(τ + r + s)‖2 + ‖h2‖2

)
× eh1s+

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij

(
(
∫ 0
s+r
−
∫ 0
r )(Λ2(θ

s
′′ω)−Λ̄)ds

′′
−Λ̄s

)
ds

6 Ce
h1r
2

∫ 0

−∞

(
‖J(τ + r + s)‖2 + ‖h2‖2

)
× eh1s+2ε|s+r|− 8

h1
(2N+1)2e2γh

∑
i∈Z
∑i+N
j=i−N MijΛ̄sds

6 Ce(
1
2h1−2ε)r

∫ 0

−∞

(
‖J(τ + r + s)‖2 + ‖h2‖2

)
e(

1
2h1−2ε)sds

6 Ce−( 1
2h1−2ε)τ

∫ τ+r

−∞
e(

1
2h1−2ε)s′ (‖J(s′)‖2 + ‖h2‖2

)
ds′ → 0 (4.5)

as r → −∞. Therefore,

e
h1r
2 (R(τ + r, θrω))

2

= Ce
h1r
2

∫ 0

−∞

∑
i∈Z

i+N∑
j=i−N

βij(θs+rω) + ‖J(τ + r + s)‖2 + ‖h2‖2


× eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′+rω)ds′ds→ 0 as r → −∞.

This implies that

lim
r→−∞

e
h1r
2 ‖K(τ + r, θrω)‖2Cγ,l2 = 0, (4.6)

and thus K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} belongs to D. By (C7), (4.3) and the
ergodic Theorem 3.1 , we obtain that

e−h1t+
8
h1

(2N+1)2e2γh
∫ 0
−t
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds‖B(τ − t, θ−tω)‖2Cγ,l2

6 e−
1
2h1t‖B(τ − t, θ−tω)‖2Cγ,l2 → 0 (4.7)

as t → +∞, where φ ∈ B(τ − t, θ−tω) and B ∈ D. Note that for each τ ∈ R,

(R(τ, ω))
2

: Ω→ R is (F ,B(R))-measurable. Then it follows from Lemma 4.1, (4.6)
and (4.7) that K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is a closed measurable D-pullback
absorbing set in D for Φ. This completes the proof of the lemma.
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5. Estimate of the tails. In order to prove the asymptotically upper semicom-
pactness for the multi-valued cocycle Φ, we need the following lemma.

Lemma 5.1. Suppose (C1)-(C7), (4.2) and (4.3) hold. Let τ ∈ R, ω ∈ Ω and B =
{B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then for every ε > 0, there exist T = T (τ, ω,B, ε) >
0 and N̄ = N̄(τ, ω,B, ε) > 0 such that any solution x(·) of Eqs. (1.1)-(1.2), given
by x with xτ (·, τ − t, θ−τω, φ) ∈ Φ(t, τ − t, θ−τω, φ) and φ ∈ B(τ − t, θ−tω), satisfies∑

|i|>N̄

sup
s∈(−∞,0]

e2γs|xiτ (s, τ − t, θ−τω, φ)|2 6 ε, for all t > T. (5.1)

Proof. Choose a smooth function ρ such that 0 6 ρ(r) 6 1 for r ∈ R+, and

ρ(r) = 0 for 0 6 r 6 1, ρ(r) = 1 for r > 2.

Then there exists a constant C0 such that |ρ′(r)| 6 C0 for r ∈ R+. Define ρM (|i|)
:= ρ

(
|i|
M

)
. Multiplying (1.1) by ρM (|i|)xi we have that

1

2

d

dt
ρM (|i|)|xi(t)|2 = ρM (|i|)fi(xi(t))xi(t)

+

i+N∑
j=i−N

ρM (|i|)aij(t)g1j(θtω, xj(t))xi(t)

+

i+N∑
j=i−N

ρM (|i|)bij(t)g2j(θtω, xj(t− ĥ(t)))xi(t)

+

i+N∑
j=i−N

ρM (|i|)cij(t)xi(t)
∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr + ρM (|i|)Ji(t)xi(t).

In a similar way as in Lemma 4.1, by Assumptions (C2)-(C4), Young’s inequality,

and
(∑N

j=1 uj

)2

6 N
∑N
j=1 u

2
j , we obtain that

ρM (|i|)fi(xi(t))xi(t) 6 −ρM (|i|)h1|xi(t)|2 + ρM (|i|)h2
2i, (5.2)

i+N∑
j=i−N

ρM (|i|)aij(t)g1j(θtω, xj(t))xi(t)

6
4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)a2
ij(t)g

2
1j(θtω, xj(t)) +

1

16
h1ρM (|i|)|xi(t)|2

6
4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)ã2
ijp

2
1j(θtω) sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
1

16
h1ρM (|i|)|xi(t)|2 +

4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)ã2
ijq

2
1j(θtω), (5.3)

i+N∑
j=i−N

ρM (|i|)bij(t)g2j(θtω, xj(t− ĥ(t)))xi(t)
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6
4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)b2ij(t)g2
2j(θtω, xj(t− ĥ(t))) +

1

16
h1ρM (|i|)|xi(t)|2

6
4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)̃b2ijp2
2j(θtω)e2γh sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
1

16
h1ρM (|i|)|xi(t)|2 +

4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)̃b2ijq2
2j(θtω), (5.4)

∣∣∣∣∣∣
i+N∑
j=i−N

ρM (|i|)cij(t)xi(t)
∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr

∣∣∣∣∣∣
6

i+N∑
j=i−N

ρM (|i|)cij(t)|xi(t)|
∫ 0

−∞
(p̂3j(θtω, r)|xj(t+ r)|+ q̂3j(θtω, r)) dr

6
i+N∑
j=i−N

ρM (|i|)c̃ij

(
p̃3j(θtω) sup

s∈(−∞,0]

eγs|xjt(s)|+ q̃3j(θtω)

)
|xi(t)|

6
4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)c̃2ij p̃2
3j(θtω) sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
1

8
h1ρM (|i|)|xi(t)|2 +

4

h1
(2N + 1)

i+N∑
j=i−N

ρM (|i|)c̃2ij q̃2
3j(θtω), (5.5)

and

ρM (|i|)Ji(t)xi(t) 6
1

16
h1ρM (|i|)|xi(t)|2 +

4

h1
ρM (|i|)|Ji(t)|2. (5.6)

Note that e2γh > 1. Then, from (5.2)-(5.6) it follows that

d

dt

(
ρM (|i|)|xi(t)|2

)
6 −11

8
h1ρM (|i|)|xi(t)|2

+
8

h1
(2N + 1)ρM (|i|)

i+N∑
j=i−N

αij(θtω)e2γh sup
s∈(−∞,0]

e2γs|xjt(s)|2

+
8

h1
ρM (|i|)|Ji(t)|2 +

8

h1
(2N + 1)ρM (|i|)

i+N∑
j=i−N

βij(θtω) + 2ρM (|i|)h2
2i, (5.7)

where αij(θtω) and βij(θtω) are given in Remark 1. And consequently,

d

dt

(
e

5
4h1tρM (|i|)|xi(t)|2

)
=

5

4
h1e

5
4h1tρM (|i|)|xi(t)|2 + e

5
4h1t

d

dt

(
ρM (|i|)|xi(t)|2

)
6 −1

8
h1e

5
4h1tρM (|i|)|xi(t)|2 +

8

h1
(2N + 1)ρM (|i|)e 5

4h1t
i+N∑
j=i−N

βij(θtω)

+
8

h1
ρM (|i|)e 5

4h1t|Ji(t)|2 + 2ρM (|i|)e 5
4h1th2

2i

+
8

h1
(2N + 1)e2γhρM (|i|)

i+N∑
j=i−N

αij(θtω)e
5
4h1t sup

s∈(−∞,0]

e2γs|xjt(s)|2. (5.8)
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Integrating (5.8) over [τ − t, t∗] with t > 0 and t∗ > τ , we find that for every ω ∈ Ω,

e
5
4h1t

∗
ρM (|i|)|xi(t∗, τ − t, ω, φ)|2 6 e

5
4h1(τ−t)ρM (|i|)|xi(τ − t, τ − t, ω, φ)|2

− 1

8
h1

∫ t∗

τ−t
e

5
4h1rρM (|i|)|xi(r, τ − t, ω, φ)|2dr

+
8

h1
(2N + 1)e2γhρM (|i|)

∫ t∗

τ−t

i+N∑
j=i−N

αij(θrω)e
5
4h1r

× sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, ω, φ)|2dr

+
8

h1
(2N + 1)ρM (|i|)

∫ t∗

τ−t

i+N∑
j=i−N

βij(θrω)e
5
4h1rdr

+ ρM (|i|)
∫ t∗

τ−t
e

5
4h1r

(
8

h1
|Ji(r)|2 + 2h2

2i

)
dr. (5.9)

Neglecting the second term on the right-hand side of (5.9). Note that 5
8h1 < γ,

so e(2γ− 5
4h1)s 6 1 for s 6 0. Setting t∗ + s instead of t∗, multiplying (5.9) by

e−
5
4h1(t∗+s)e2γs and replacing ω by θ−τω, we have that for all s ∈ [τ − t− t∗, 0],

ρM (|i|)e2γs|xit∗(s, τ − t, θ−τω, φ)|2

6 e−
5
4h1(t∗+t−τ)ρM (|i|)|xi(τ − t, τ − t, θ−τω, φ)|2

+
8

h1
(2N + 1)e2γhe−

5
4h1t

∗
ρM (|i|)

∫ t∗

τ−t

i+N∑
j=i−N

αij(θr−τω)e
5
4h1r

× sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2dr

+
8

h1
(2N + 1)e−

5
4h1t

∗
ρM (|i|)

∫ t∗

τ−t

i+N∑
j=i−N

βij(θr−τω)e
5
4h1rdr

+ e−
5
4h1t

∗
ρM (|i|)

∫ t∗

τ−t
e

5
4h1r

(
8

h1
|Ji(r)|2 + 2h2

2i

)
dr. (5.10)

Note that for all s ∈ (−∞, τ − t− t∗],∑
i∈Z

ρM (|i|)e2γs|xit∗(s, τ − t, θ−τω, φ)|2

=
∑
i∈Z

ρM (|i|)e−2γ(t∗+t−τ)e2γ(s+t∗−τ+t)|xi(t∗ + s, τ − t, θ−τω, φ)|2

6 e−
5
4h1(t∗+t−τ)

∑
i∈Z

e2γ(s+t∗−τ+t)|xi(t∗ + s, τ − t, θ−τω, φ)|2

6 e−
5
4h1(t∗+t−τ)‖φ‖2Cγ,l2 ,

and ∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω) sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2
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6

∑
i∈Z

i+N∑
j=i−N

sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2


×

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)


6 (2N + 1)

(∑
i∈Z

sup
s∈(−∞,0]

e2γs|xir(s, τ − t, θ−τω, φ)|2
)

×

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)

 . (5.11)

Let t∗ = τ . Then it follows that for all t > 0,∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|xiτ (s, τ − t, θ−τω, φ)|2 6 Ce−
5
4h1t‖φ‖2Cγ,l2

+ Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)βij(θr−τω)e
5
4h1rdr

+ Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

ρM (|i|)e 5
4h1r

(
|Ji(r)|2 + h2

2i

)
dr

+ Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)e
5
4h1r‖xr‖2Cγ,l2dr. (5.12)

Now we estimate each term on the right-hand side of (5.12). For the first term,
since φ ∈ B(τ − t, θ−tω) and B ∈ D, we see that

lim sup
t→+∞

Ce−
5
4h1t‖φ‖2Cγ,l2 6 lim sup

t→+∞
Ce−

5
4h1t‖B(τ − t, θ−tω)‖2Cγ,l2 = 0. (5.13)

For the third term, Assumption (C5) ensures that we can find N
′′

large enough
such that for all t > 0,

Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

ρM (|i|)e 5
4h1r

(
|Ji(r)|2 + h2

2i

)
dr

6 Ce−
5
4h1τ

∫ τ

−∞

∑
i∈Z

ρM (|i|)e 5
4h1r

(
|Ji(r)|2 + h2

2i

)
dr 6 Cε, if M > N

′′
. (5.14)

Let ε > 0 be given arbitrarily. Then there is N ′ = N ′(ε) such that for all M > N ′,∑
i∈Z

i+N∑
j=i−N

ρM (|i|)Mij 6 ε. (5.15)

where Mij = ã2
ij + b̃2ij + c̃2ij is given in Lemma 4.2. By Assumption (C6) and

Remark 1, we see that for 0 < η < min

{
h1

8 ,
1
2h1− 8

h1
(2N+1)2e2γh

∑
i∈Z
∑i+N
j=i−N MijΛ̄

2

}
and ω ∈ Ω, there exists a t

′′

0 = t
′′

0 (η, ω) such that for |t| > t
′′

0 ,

αij(θtω) 6Mije
η|t|, βij(θtω) 6Mije

η|t|, (5.16)
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where i ∈ Z and j = i−N, · · · , i+N . Hence, for the second term, using Assumption
(C6) and (5.16), we have that for all M > N ′ and t > 0,

Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)βij(θr−τω)e
5
4h1rdr

= C

∫ 0

−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)βij(θr′ω)e
5
4h1r

′
dr′

6 C

∫ 0

−∞

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)Mije
−ηr′e

5
4h1r

′
dr′

6 C
∑
i∈Z

i+N∑
j=i−N

ρM (|i|)Mij 6 Cε. (5.17)

Now we estimate the last term in (5.12). Similar to (5.17), we find that for all
M > N ′ and t > 0,

Ce−
1
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)e
1
4h1rdr

= C

∫ 0

−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr′ω)e
1
4h1r

′
dr′

6 C

∫ 0

−∞

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)Mije
−ηr′e

1
4h1r

′
dr′

6 C
∑
i∈Z

i+N∑
j=i−N

ρM (|i|)Mij 6 Cε. (5.18)

Note that φ ∈ B(τ − t, θ−tω) and B ∈ D, using Assumptions (C4), (C7) and the
ergodic Theorem 3.1, in view of (4.3), we deduce that

e−h1t+
∫ 0
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds‖φ‖2Cγ,l2

6 e−h1t+
∫ 0
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ

2(θsω)ds‖φ‖2Cγ,l2

= e−h1t+
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij(

∫ 0
−t(Λ2(θsω)−Λ̄)ds+Λ̄t)‖φ‖2Cγ,l2

6 e−
1
2h1t‖B(τ − t, θ−tω)‖2Cγ,l2

× e−
1
2h1t+

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij(

∫ 0
−t(Λ2(θsω)−Λ̄)ds+Λ̄t) → 0 (5.19)

as t → +∞. In a similar way as in (5.19), by Assumptions (C4) and (C7), (4.3),
(5.16) and Theorem 4.1, we have

8

h1
(2N + 1)

∑
i∈Z

i+N∑
j=i−N

βij(θsω)eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′

6 Ce−ηs+h1s+
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij(

∫ 0
s (Λ2(θs′ω)−Λ̄)ds′−Λ̄s)

6 Ceh1s−2ηs− 8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ̄s, (5.20)
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where we have used

8

h1
(2N + 1)2e2γh

∑
i∈Z

i+N∑
j=i−N

Mij

∫ 0

s

(
Λ2(θs′ω)− Λ̄

)
ds′ 6 −ηs

for sufficiently large |s|. This and (5.20) ensure that for all t > 0,∫ 0

−t

8

h1
(2N + 1)

∑
i∈Z

i+N∑
j=i−N

βij(θsω)eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds

6 C, (5.21)

thanks to η <
1
2h1− 8

h1
(2N+1)2e2γh

∑
i∈Z
∑i+N
j=i−N MijΛ̄

2 . From (4.3) we see that 8
h1

(2N+

1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ̄ < 1

2h1. Then similar to (5.20), we obtain that

eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′

6 eh1s−ηs− 8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ̄s

for sufficiently large |s| and h1 − η − 8
h1

(2N + 1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ̄ > 1

2h1.

Hence it follows from Assumption (C5) that for all t > 0,∫ 0

−t

(
8

h1
‖J(τ + s)‖2 + 2‖h2‖2

)
e
h1s+

∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z

∑i+N
j=i−N αij(θs′ω)ds

′
ds 6 C.

(5.22)

Hence for the last term in (5.12), by (F.43), (5.18)-(5.19) and (5.21)-(5.22), we can
choose M and t sufficiently large such that

Ce−
5
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)e
5
4h1r‖xr‖2Cγ,l2dr

6 Ce−
1
4h1τe−h1t+

∫ 0
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds‖φ‖2Cγ,l2

×
∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)e
1
4h1rdr

+ Ce−
1
4h1τ

∫ τ

τ−t

∑
i∈Z

i+N∑
j=i−N

ρM (|i|)αij(θr−τω)e
1
4h1rdr

×
∫ 0

−t

 8

h1
(2N + 1)

∑
i∈Z

i+N∑
j=i−N

βij(θsω) +
8

h1
‖J(τ + s)‖2 + 2‖h2‖2


× eh1s+

∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds 6 Cε. (5.23)

Finally, if we take M and t sufficiently large, then we deduce from (5.12)-(5.13),
(5.14), (5.17) and (5.23) that for all φ ∈ B(τ − t, θ−tω),∑

|i|>2M

sup
s∈(−∞,0]

e2γs|xiτ (s, τ − t, θ−τω, φ)|2

6
∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|xiτ (s, τ − t, θ−τω, φ)|2 6 Cε. (5.24)

Thus the proof of this lemma is complete.
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6. Existence of pullback attractors. First, let us prove some properties of the
multi-valued cocycle Φ.

Lemma 6.1. Suppose (C1)-(C5), (4.2) and (4.3) hold. Let φn be a sequence con-
verging to φ in Cγ,l2 and fix T > 0. Then for any τ ∈ R, ω ∈ Ω and ε > 0, there
exist K∗(ε) and N∗(ε, ω) such that for any solution xn(·) = (xni (·, τ, θ−τω, φ))i∈Z
of problem (1.1) with ω replaced by θ−τω and n > K∗(ε) it follows∑

|i|>2N∗(ε,ω)

|xni (r)|2 6 ε, ∀r ∈ [τ, τ + T ]. (6.1)

Moreover, there exist xt+τ (·) ∈ Φ(t, τ, ω, φ) and a subsequence xnk satisfying

xnk → x in C([τ, τ + T ]; l2) as k →∞. (6.2)

Proof. For any ε > 0, there exist K̃ ′(ε) and Ñ ′(ε) such that∑
i∈Z

sup
s∈(−∞,0]

e2γs|φni (s)− φi(s)|2 <
ε

8
, ∀n > K̃ ′(ε),

and ∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|φi(s)|2 <
ε

8
, ∀M > Ñ ′(ε).

Hence,∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|φni (s)|2

6 2

(∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|φni (s)− φi(s)|2 +
∑
i∈Z

ρM (|i|) sup
s∈(−∞,0]

e2γs|φi(s)|2
)

6
ε

2
, (6.3)

if n > K̃ ′ and M > Ñ ′. On the other hand, by slightly modifying the proof of
Lemma 4.1, in view of φn → φ in Cγ,l2 and Assumptions (C1)-(C5), there exists

R̃′(τ, ω) > 0 such that∑
i∈Z
|xni (r)|2 6 R̃′(τ, ω), ∀r ∈ [τ, τ + T ], ∀n ∈ N. (6.4)

Integrating (5.8) over [τ, τ + t] with t ∈ [0, T ], by (6.3)-(6.4), the continuity of
Λ(θrω), we can choose n and M sufficiently large such that for all t ∈ [0, T ],∑
i∈Z

ρM (|i|)|xni (τ + t)|2

6 e−
5
4h1t

∑
i∈Z

ρM (|i|)|φni (0)|2 +
8

h1
(2N + 1)e2γhe−

5
4h1(τ+t)

∑
i∈Z

ρM (|i|)

×
∫ τ+t

τ

i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
Λ2(θrω)e

5
4h1r sup

s∈(−∞,0]

e2γs|xnjr(s)|2dr

+
8

h1
(2N + 1)e−

5
4h1(τ+t)

∑
i∈Z

ρM (|i|)
∫ τ+t

τ

i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
Λ2(θrω)e

5
4h1rdr

+ e−
5
4h1(τ+t)

∑
i∈Z

ρM (|i|)
∫ τ+t

τ

e
5
4h1r

(
8

h1
|Ji(r)|2 + 2h2

2i

)
dr
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6
ε

2
+ C

∑
i∈Z

ρM (|i|)
i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
+ C

∫ τ+t

τ

∑
i∈Z

ρM (|i|)e 1
3h1r

(
|Ji(r)|2 + h2

2i

)
dr 6 ε, (6.5)

thanks to Assumptions (C4) and (C5). From (6.3) and (6.5), the conclusion (6.1)
follows immediately.

Now it only remains to prove (6.2). Fix now r ∈ [τ, τ + T ]. Taking into account
(6.4), passing to a subsequence, we can state that xn(r)→ y weakly in l2. This and
(6.1) imply that for any η > 0, there exist K∗∗(η) and N∗∗(η) such that∑

i∈Z
|xni (r)− yi|2 6

∑
|i|6N∗∗

|xni (r)− yi|2 +
∑
|i|>N∗∗

|xni (r)− yi|2

6
∑
|i|6N∗∗

|xni (r)− yi|2 + 2
∑
|i|>N∗∗

|xni (r)|2 + 2
∑
|i|>N∗∗

|yi|2 < η, (6.6)

if n > K∗∗(η). Therefore, xn(r) → y strongly in l2, and consequently, xn(r) is
precompact for any r.

On the other hand, in view of (6.4) and φn → φ in Cγ,l2 , by Assumptions (C1)-
(C4) we deduce that there exists R∗∗(τ, ω) such that for all r ∈ [τ, τ + T ] and
n ∈ N,∥∥∥∥ ddrxni (r)

∥∥∥∥2

=
∑
i∈Z
|ẋni (r)|2 6 5

∑
i∈Z
|fi(xni (r))|2

+ 5
∑
i∈Z

∣∣∣∣∣∣
i+N∑
j=i−N

aij(r)g1j

(
θrω, x

n
j (r)

)∣∣∣∣∣∣
2

+ 5
∑
i∈Z

∣∣∣∣∣∣
i+N∑
j=i−N

bij(r)g2j

(
θrω, x

n
j (r − ĥ(r))

)∣∣∣∣∣∣
2

+ 5
∑
i∈Z

∣∣∣∣∣∣
N∑
j=1

cij(r)

∫ 0

−∞
g3j

(
θrω, r

′, xnj (r + r′)
)
dr′

∣∣∣∣∣∣
2

+ 5
∑
i∈Z
|Ji(r)|2

6 10l21
∑
i∈Z
|xni (r)|2 + 5(2N + 1)

∑
i∈Z

i+N∑
j=i−N

ã2
ijΛ

2 (θrω) |xnjr(0)|2

+ 5(2N + 1)e2γh
∑
i∈Z

i+N∑
j=i−N

b̃2ijΛ
2 (θrω) sup

s∈(−∞,0]

e2γs|xnjr(s)|2

+ 10(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c̃2ijΛ
2 (θrω) sup

s∈(−∞,0]

e2γs|xnjr(s)|2

+ 5(2N + 1)
∑
i∈Z

i+N∑
j=i−N

ã2
ijΛ

2(θrω) + 5(2N + 1)
∑
i∈Z

i+N∑
j=i−N

b̃2ijΛ
2(θrω)
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+ 10(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c̃2ijΛ
2 (θrω) + 5‖J(r)‖2 + 10‖l2‖2 6 R∗∗(τ, ω), (6.7)

thanks to (6.4), J ∈ C(R; l2) and the continuity of Λ(θrω). This implies that
the sequence xn is equi-continuous. Then the Arzelà-Ascoli theorem ensures the
existence of a subsequence xnk converging in C([τ, τ +T ]; l2) to some function x(·).
It is easy to show that x is a solution of (1.1). Also, it is clear that x(τ) = φ(0).

From Lemma 6.1 we have the following two results.

Corollary 1. Suppose (C1)-(C5), (4.2) and (4.3) hold. Then for any τ ∈ R, ω ∈ Ω
and t > 0, the map Φ(t, τ, ω, ·) has compact values.

Corollary 2. Suppose (C1)-(C5), (4.2) and (4.3) hold. Then for any τ ∈ R, ω ∈ Ω
and t > 0, the map φ → Φ(t, τ, ω, φ) is upper semi-continuous, i.e., if φn → φ in
Cγ,l2 , then for any xnt+τ (·) ∈ Φ(t, τ, ω, φn), there exists a subsequence xnk and a
xt+τ (·) ∈ Φ(t, τ, ω, φ) such that xnkt+τ (·)→ xt+τ (·) in Cγ,l2 .

We are now ready to show the existence of pullback attractors for Φ.

Theorem 6.2. Suppose (C1)-(C7), (4.2) and (4.3) hold. Then the multi-valued
cocycle Φ associated with problem (1.1)-(1.2) has a unique D-pullback attractor A ∈
D in Cγ,l2 .

Proof. Note that by Lemma 4.2, Corollary 2 and Theorem 2.7, it only remains to
prove the asymptotically upper semicompactness for Φ.

In order to prove the asymptotically upper semicompactness for Φ, arguing as in
Theorem 2.5 in [34], we only need to show that for any fixed τ ∈ R, ω ∈ Ω, every
B ∈ D and any ε > 0, there exist T ∗0 = T ∗0 (τ, ω,B, ε) > 0, T ∗ = T ∗(τ, ω,B, ε) > 0,
a m > 0 and a δ > 0 such that

(1) for all t > T ∗, xτ (·) ∈ Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),∑
i∈Z

sup
s∈(−∞,−T∗0 ]

e2γs|xi(τ + s)|2 < ε;

(2) for each fixed s ∈ [−T ∗0 , 0],∥∥∥∥∥∥
⋃
t>T∗

⋃
xτ (·)∈Φ(t,τ−t,θ−tω,B(τ−t,θ−tω))

(xi(τ + s))|i|6m

∥∥∥∥∥∥
R2m+1

is bounded;

(3) for all t > T ∗, xτ (·) ∈ Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)), s1, s2 ∈ [−T ∗0 , 0] with
|s2 − s1| < δ, ∥∥(xi(τ + s1)− xi(τ + s2))|i|6m

∥∥2

R2m+1 < ε;

(4) for all t > T ∗, xτ (·) ∈ Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),∑
|i|>m

(
sup

s∈[−T∗0 ,0]

e2γs|xi(τ + s)|2
)
< ε.

We divide the proof into two steps.

Step 1. For (1), by making use of (F.41) with t∗ replaced by τ + s, we deduce that
for all t > 0 and s with −t 6 s 6 0,

e2γs|xi(τ + s, τ − t, θ−τω, φ)|2 6 e2γs sup
r∈(−∞,0]

e2γr|xi(τ+s)(r, τ − t, θ−τω, φ)|2



2206 MEIYU SUI, YEJUAN WANG AND PETER E. KLOEDEN

6 e(2γ−h1)se−h1t|xi(τ − t, τ − t, θ−τω, φ)|2

+ Ce(2γ−h1)se−h1τ

∫ τ+s

τ−t

i+N∑
j=i−N

αij(θr−τω)eh1r

× sup
s′∈(−∞,0]

e2γs′ |xjr(s′, τ − t, θ−τω, φ)|2dr

+ Ce(2γ−h1)se−h1τ

∫ τ+s

τ−t

i+N∑
j=i−N

βij(θr−τω)eh1rdr

+ Ce(2γ−h1)se−h1τ

∫ τ+s

τ−t
eh1r

(
|Ji(r)|2 + h2

2i

)
dr,

and further by (F.43) with t∗ replaced by r, we obtain

e2γs|xi(τ + s, τ − t, θ−τω, φ)|2 6 e(2γ−h1)se−h1t|xi(τ − t, τ − t, θ−τω, φ)|2

+ Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

αij(θrω)

×
(
e−h1te

∫ r
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′‖φ‖2Cγ,l2

+

∫ r

−t

∑
i∈Z

i+N∑
j=i−N

βij(θs′ω) + ‖J(τ + s′)‖2 + ‖h2‖2


× eh1s
′
e
∫ r
s′

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′′ω)ds

′′

ds′
)
dr

+ Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

βij(θrω)eh1rdr

+ Ce(2γ−h1)s

∫ s

−t
eh1r

(
|Ji(r + τ)|2 + h2

2i

)
dr. (6.8)

Note that for all s 6 −t,

e2γs|xi(τ + s, τ − t, θ−τω, φ)|2 = e−2γte2γ(s+t)|xi(τ + s, τ − t, θ−τω, φ)|2

6 e−h1te2γ(s+t)|xi(τ + s, τ − t, θ−τω, φ)|2, (6.9)

thanks to h1 < 2γ. Note that φ ∈ B(τ − t, θ−tω) and B ∈ D, by Assumption (C4),
(C7), and the ergodic Theorem 3.1, in view of (4.2), (4.3) and (5.16), we find that
there exists a T ∗ > 0 and then we can choose T ∗0 large enough such that for all
t > T ∗,∑

i∈Z
sup

s∈(−∞,−T∗0 ]

e−h1te2γ(s+t)|xi(τ + s, τ − t, θ−τω, φ)|2 6 e−h1t‖φ‖2Cγ,l2 <
ε

8
,

(6.10)

∑
i∈Z

sup
s∈(−∞,−T∗0 ]

e(2γ−h1)se−h1t|xi(τ − t, τ − t, θ−τω, φ)|2 6 e−h1t‖φ‖2Cγ,l2 <
ε

8
,

(6.11)
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∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

αij(θrω)e−h1t

× e
∫ r
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′‖φ‖2Cγ,l2dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
−ηre−h1t

× e
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij((

∫ 0
−t−

∫ 0
r )(Λ2(θs′ω)−Λ̄)ds′+Λ̄(r+t))‖φ‖2Cγ,l2dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

×
∫ s

−t

i+N∑
j=i−N

Mije
−2ηr−h1t+ηt+

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N MijΛ̄(r+t)‖φ‖2Cγ,l2dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s
i+N∑
j=i−N

Mije
(−η− 1

2h1)t

∫ s

−t
e( 1

2h1−4η)rdr‖φ‖2Cγ,l2

6 Ce−( 1
2h1+η)t‖φ‖2Cγ,l2 <

ε

8
, (6.12)

where Mij = ã2
ij + b̃2ij + c̃2ij , and in a similar way, we have

∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

αij(θrω)

×
∫ r

−t

∑
i∈Z

i+N∑
j=i−N

βij(θs′ω)eh1s
′+
∫ r
s′

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′′ω)ds

′′

ds′dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
−ηr

∫ r

−t

∑
i∈Z

i+N∑
j=i−N

Mije
−ηs′+h1s

′

× e
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij

(
(
∫ 0
s′ −

∫ 0
r )(Λ2(θ

s
′′ω)−Λ̄)ds

′′
+Λ̄(r−s′)

)
ds′dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
−ηr

×
∫ r

−t
e(h1−2η)s′−ηr+ 8

h1
(2N+1)2e2γh

∑
i∈Z
∑i+N
j=i−N MijΛ̄(r−s′)ds′dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s
i+N∑
j=i−N

Mij

∫ s

−t
e( 1

2h1−2η)r

∫ r

−t
e( 1

2h1−2η)s′ds′dr

6 Ce−(2γ−4η)T∗0 <
ε

8
, (6.13)

∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

αij(θrω)

∫ r

−t

(
‖J(τ + s′)‖2 + ‖h2‖2

)
× eh1s

′+
∫ r
s′

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′′ω)ds

′′

ds′dr



2208 MEIYU SUI, YEJUAN WANG AND PETER E. KLOEDEN

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
−ηr

∫ r

−t

(
‖J(τ + s′)‖2 + ‖h2‖2

)
eh1s

′

× e
8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N Mij

(
(
∫ 0
s′ −

∫ 0
r )(Λ2(θ

s
′′ω)−Λ̄)ds

′′
+Λ̄(r−s′)

)
ds′dr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
( 1
2h1−2η)r

×
∫ r

−t

(
‖J(τ + s′)‖2 + ‖h2‖2

)
e( 1

2h1−η)s′ds′dr

6 C

(∫ 0

−∞
e
h1s
′

3 ‖J(τ + s′)‖2 + ‖h2‖2
)
e−(2γ− 1

2h1−2η)T∗0 <
ε

8
, (6.14)

∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

βij(θrω)eh1rdr

6
∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t

i+N∑
j=i−N

Mije
(h1−η)rdr

6 Ce−(2γ−η)T∗0 <
ε

8
, (6.15)

∑
i∈Z

sup
s∈(−∞,−T∗0 ]

Ce(2γ−h1)s

∫ s

−t
eh1r

(
|Ji(r + τ)|2 + h2

2i

)
dr

6 Ce−(2γ−h1)T∗0

(∫ 0

−∞
e
h1r
3 ‖J(r + τ)‖2 + ‖h2‖2

)
<
ε

8
. (6.16)

Inserting (6.11)-(6.16) into (6.8), in view of (6.10), we deduce that for all t > T ∗

and xτ (·) ∈ Φ(τ, τ − t, θ−tω,B(τ − t, θ−tω)),∑
i∈Z

sup
s∈(−∞,−T∗0 ]

e2γs|xi(τ + s, τ − t, θ−τω, φ)|2 < ε,

which implies that (1) holds true.

Step 2. Thanks to Lemmas 4.1-4.2 and 5.1, (2) and (4) follow immediately.
For (3), without loss of generality, we assume that s1, s2 ∈ [−T ∗0 , 0] with 0 <

s1 − s2 < 1, by (C1)-(C4) we have that for all r ∈ [τ + s2, τ + s1],∥∥∥(ẋi(r, τ − t, θ−τω, φ))|i|6m

∥∥∥2

R2m+1
=
∑
|i|6m

|ẋi(r, τ − t, θ−τω, φ)|2

6 5
∑
|i|6m

(fi(xi(r, τ − t, θ−τω, φ)))2

+ 5
∑
|i|6m

∣∣∣∣∣∣
i+N∑
j=i−N

aij(r)g1j(θr−τω, xj(r, τ − t, θ−τω, φ))

∣∣∣∣∣∣
2

+ 5
∑
|i|6m

∣∣∣∣∣∣
i+N∑
j=i−N

bij(r)g2j(θr−τω, xj(r − ĥ(r), τ − t, θ−τω, φ))

∣∣∣∣∣∣
2
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+ 5
∑
|i|6m

∣∣∣∣∣∣
i+N∑
j=i−N

cij(r)

∫ 0

−∞
g3j(θr−τω, r

′, xj(r + r′))dr′

∣∣∣∣∣∣
2

+ 5
∑
|i|6m

|Ji(r)|2

6 10l21
∑
|i|6m

|xi(r, τ − t, θ−τω, φ)|2

+ 10(2N + 1)e2γh
∑
|i|6m

i+N∑
j=i−N

αij(θr−τω) sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2

+ 10(2N + 1)
∑
|i|6m

i+N∑
j=i−N

βij(θr−τω) + 5
∑
|i|6m

|Ji(r)|2 + 10
∑
|i|6m

l22i, (6.17)

where αij(θr−τω) and βij(θr−τω) are given in Lemma 4.1. Using (F.43), (5.19),
(5.21)-(5.22) and (6.17), we obtain that for t sufficiently large,∥∥∥(xi(τ + s1, τ − t, θ−τω, φ)− xi(τ + s2, τ − t, θ−τω, φ))|i|6m

∥∥∥
R2m+1

6
∫ τ+s1

τ+s2

∥∥∥(ẋi(r, τ − t, θ−τω, φ))|i|6m

∥∥∥
R2m+1

dr

6 C(s1 − s2) + C

∫ τ+s1

τ+s2

∑
|i|6m

|ẋi(r, τ − t, θ−τω, φ)|2dr

6 C(s1 − s2) + C

∫ τ+s1

τ+s2

∑
|i|6m

(
|xi(r, τ − t, θ−τω, φ)|2 + l22i

)
dr

+ C

∫ τ+s1

τ+s2

∑
|i|6m

i+N∑
j=i−N

αij(θr−τω) sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2dr

+ C

∫ τ+s1

τ+s2

∑
|i|6m

i+N∑
j=i−N

βij(θr−τω)dr + C

∫ τ+s1

τ+s2

∑
|i|6m

|Ji(r)|2dr

6 C(s1 − s2) + C
∑
|i|6m

i+N∑
j=i−N

sup
r∈[τ+s2,τ+s1]

βij(θr−τω)(s1 − s2)

+ C sup
r∈[τ+s2,τ+s1]

‖J(r)‖2(s1 − s2)

+ C

1 +
∑
|i|6m

i+N∑
j=i−N

sup
r∈[τ+s2,τ+s1]

αij(θr−τω)

∫ τ+s1

τ+s2

‖xr‖2Cγ,l2dr

6 C(s1 − s2) + C
∑
|i|6m

i+N∑
j=i−N

sup
r∈[τ+s2,τ+s1]

βij(θr−τω)(s1 − s2)

+ C sup
r∈[τ+s2,τ+s1]

‖J(r)‖2(s1 − s2)

+ C

1 +
∑
|i|6m

i+N∑
j=i−N

sup
r∈[τ+s2,τ+s1]

αij(θr−τω)

 ‖φ‖2Cγ,l2 (e−h1s2 − e−h1s1
)

× e−h1t+
∫ 0
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds
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+ C

1 +
∑
|i|6m

i+N∑
j=i−N

sup
r∈[τ+s2,τ+s1]

αij(θr−τω)

(e−h1s2 − e−h1s1
)

×
∫ 0

−t

∑
i∈Z

i+N∑
j=i−N

βij(θsω) + ‖J(τ + s)‖2 + ‖h2‖2


× eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds

6 C(s1 − s2) + C
(
e−h1s2 − e−h1s1

)
, (6.18)

thanks to the continuity of αij(θr−τω), βij(θr−τω) and J ∈ C(R; l2), and thus (3)
holds. The proof is complete.

By a similar argument as in [31], the following result can be obtained immediately
by using Theorem 2.8.

Theorem 6.3. Suppose (C1)-(C7), (4.2) and (4.3) hold. If there exists T > 0 such
that for all t ∈ R,

aij(t+ T ) = aij(t), bij(t+ T ) = bij(t), cij(t+ T ) = cij(t), (6.19)

Ji(t+ T ) = Ji(t), ĥ(t+ T ) = ĥ(t), (6.20)

where i ∈ Z and j = i − N, · · · , i + N , then the multi-valued cocycle Φ associated
with problem (1.1)-(1.2) has a unique periodic D-pullback attractor A ∈ D in Cγ,l2 .

Appendix.

Proof of Lemma 3.2. Proof. Let us fix some ω ∈ Ω. We can rewrite Eq. (1.1) as

ẋ(t) = f̃(t, xt),

where f̃(t, xt) :=
(
f̃i(t, xit)

)
i∈Z

and

f̃i(t, xit) = fi(xi(t)) +

i+N∑
j=i−N

aij(t)g1j(θtω, xj(t)) + Ji(t)

+

i+N∑
j=i−N

bij(t)g2j(θtω, xj(t− ĥ(t))) +

i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr.

We divide the proof into two steps.

Step 1. f̃ : R× Cγ,l2 → l2 is well defined and bounded.

We note that f̃(t, v) =
(
f̃i(t, vi)

)
i∈Z

and

f̃i(t, vi) = fi(vi(0)) +

i+N∑
j=i−N

aij(t)g1j(θtω, vj(0)) +

i+N∑
j=i−N

bij(t)g2j(θtω, vj(−ĥ(t)))

+

i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, vj(r))dr + Ji(t).

In view of the Assumption (C2) and the trivial bound ‖v(r)‖ 6 ‖vr‖Cγ,l2 , we can

obtain that

‖f(v(0))‖2 6 2l21‖v‖2Cγ,l2 + 2‖l2‖2. (F.21)



PULLBACK ATTRACTORS FOR STOCHASTIC RNNS 2211

By (C3) and using the fact that
(∑N

j=1 uj

)2

6 N
∑N
j=1 u

2
j , we have

∥∥∥∥∥∥
i+N∑
j=i−N

aij(t)g1j(θtω, vj(0))

∥∥∥∥∥∥
2

6 (2N + 1)
∑
i∈Z

i+N∑
j=i−N

a2
ij(t)

(
p2

1j(θtω)|vj(0)|2 + q2
1j(θtω)

)

6 (2N + 1)2

∑
i∈Z

i+N∑
j=i−N

a2
ij(t)p

2
1j(θtω)

 ‖v‖2Cγ,l2
+ (2N + 1)

∑
i∈Z

i+N∑
j=i−N

a2
ij(t)q

2
1j(θtω). (F.22)

In a similar way as above, by (C3) we deduce that∥∥∥∥∥∥
i+N∑
j=i−N

bij(t)g2j(θtω, vj(−ĥ(t)))

∥∥∥∥∥∥
2

6 (2N + 1)
∑
i∈Z

i+N∑
j=i−N

b2ij(t)
(
p2

2j(θtω)|vj(−ĥ(t))|2 + q2
2j(θtω)

)

6 (2N + 1)2

∑
i∈Z

i+N∑
j=i−N

b2ij(t)p
2
2j(θtω)

 e2γh‖v‖2Cγ,l2

+ (2N + 1)
∑
i∈Z

i+N∑
j=i−N

b2ij(t)q
2
2j(θtω), (F.23)

and ∥∥∥∥∥∥
i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, vj(r))dr

∥∥∥∥∥∥
2

6
∑
i∈Z

 i+N∑
j=i−N

cij(t)

∫ 0

−∞
(p̂3j(θtω, r)|vj(r)|+ q̂3j(θtω, r)) dr

2

6
∑
i∈Z

 i+N∑
j=i−N

cij(t)

(
p̃3j(θtω) sup

s∈(−∞,0]

eγs|vj(s)|+ q̃3j(θtω)

)2

6 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c2ij(t)p̃
2
3j(θtω) sup

s∈(−∞,0]

e2γs|vj(s)|2

+ 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c2ij(t)q̃
2
3j(θtω)
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6 2(2N + 1)2

∑
i∈Z

i+N∑
j=i−N

c2ij(t)p̃
2
3j(θtω)

 ‖v‖2Cγ,l2
+ 2(2N + 1)

∑
i∈Z

i+N∑
j=i−N

c2ij(t)q̃
2
3j(θtω). (F.24)

Then, using (F.21)-(F.24) and the assumption on Λ we obtain that

‖f̃(t, v)‖2 6 5
(

2l21‖v‖2Cγ,l2 + 2‖l2‖2
)

+ 5
∑
i∈Z

 i+N∑
j=i−N

aij(t)g1j(θtω, vj(0))

2

+ 5
∑
i∈Z

 i+N∑
j=i−N

bij(t)g2j(θtω, vj(−ĥ(t)))

2

+ 5
∑
i∈Z

 i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, vj(r))dr

2

+ 5
∑
i∈Z
|Ji(t)|2

6 10l21‖v‖2Cγ,l2 + 5(2N + 1)2

∑
i∈Z

i+N∑
j=i−N

ã2
ij

Λ2(θtω)‖v‖2Cγ,l2

+ 5(2N + 1)2

∑
i∈Z

i+N∑
j=i−N

b̃2ij

Λ2(θtω)e2γh‖v‖2Cγ,l2

+ 10(2N + 1)2

∑
i∈Z

i+N∑
j=i−N

c̃2ij

Λ2(θtω)‖v‖2Cγ,l2

+ 5(2N + 1)
∑
i∈Z

i+N∑
j=i−N

ã2
ijΛ

2(θtω) + 5(2N + 1)
∑
i∈Z

i+N∑
j=i−N

b̃2ijΛ
2(θtω)

+ 10(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c̃2ijΛ
2(θtω) + 5‖J(t)‖2 + 10‖l2‖2. (F.25)

Since Λ2(θtω) belongs to C(R;R+) for any fixed ω ∈ Ω, in view of J(t) ∈ C(R; l2),

it follows from (F.25) and
∑
i∈Z
∑i+N
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
< ∞ that f̃ maps the

bounded sets of R× Cγ,l2 into the bounded set of l2.

Step 2. f̃ : R× Cγ,l2 → l2 is continuous.
We consider {tn}n∈N ⊂ R and t ∈ R such that tn → t, and {vn}n∈N ⊂ Cγ,l2

and v0 ∈ Cγ,l2 such that vn → v0. Let ε > 0 be given arbitrarily. Then there exists
k = k(ε) such that for all n ∈ N,∑
|i|>k

l22i 6 ε,
∑
|i|>k

sup
s∈(−∞,0]

e2γs|v0
i (s)|2 6 ε,

∑
|i|>k

sup
s∈(−∞,0]

e2γs|vni (s)|2 6 ε, (F.26)

∑
|i|>k

i+N∑
j=i−N

(
ã2
ij + b̃2ij + c̃2ij

)
6 ε. (F.27)
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Due to the continuity of fi and vn → v0, in view of the Assumption (C2), for any
ε > 0 and sufficiently large n, we have∑
i∈Z

∣∣fi(vni (0))− fi(v0
i (0))

∣∣2
6
∑
|i|6k

|fi(vni (0))− fi(v0
i (0))|2 + 2

∑
|i|>k

|fi(vni (0))|2 + 2
∑
|i|>k

|fi(v0
i (0))|2

6
∑
|i|6k

|fi(vni (0))− fi(v0
i (0))|2 + 4

∑
|i|>k

(
l1|vni (0)|2 + l22i

)
+ 4

∑
|i|>k

(
l1|v0

i (0)|2 + l22i
)

6 Cε. (F.28)

By (C1), (C3)-(C4) and (F.27), in view of the continuity of aij(t), we find that for
all n sufficiently large,

∥∥∥∥∥∥
i+N∑
j=i−N

aij(tn)g1j(θtnω, v
n
j (0))−

i+N∑
j=i−N

aij(t)g1j(θtω, v
0
j (0))

∥∥∥∥∥∥
2

6 2

∥∥∥∥∥∥
i+N∑
j=i−N

aij(tn)g1j(θtnω, v
n
j (0))−

i+N∑
j=i−N

aij(t)g1j(θtnω, v
n
j (0))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
i+N∑
j=i−N

aij(t)g1j(θtnω, v
n
j (0))−

i+N∑
j=i−N

aij(t)g1j(θtω, v
0
j (0))

∥∥∥∥∥∥
2

6 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

(aij(tn)− aij(t))2
g2

1j(θtnω, v
n
j (0))

+ 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

a2
ij(t)

(
g1j(θtnω, v

n
j (0))− g1j(θtω, v

0
j (0))

)2
6 2(2N + 1)

∑
|i|6k

i+N∑
j=i−N

(aij(tn)− aij(t))2 (
Λ2(θtnω)|vnj (0)|2 + Λ2(θtnω)

)
+ 4(2N + 1)

∑
|i|>k

i+N∑
j=i−N

2ã2
ij

(
Λ2(θtnω)(2N + 1)‖vn‖2Cγ,l2 + Λ2(θtnω)

)

+ 2(2N + 1)
∑
|i|6k

i+N∑
j=i−N

ã2
ij

(
g1j(θtnω, v

n
j (0))− g1j(θtω, v

0
j (0))

)2
+ 4(2N + 1)

∑
|i|>k

i+N∑
j=i−N

ã2
ij

(
Λ2(θtnω)(2N + 1)‖vn‖2Cγ,l2 + Λ2(θtnω)

+Λ2(θtω)(2N + 1)‖v0‖2Cγ,l2 + Λ2(θtω)
)
6 Cε, (F.29)

Arguing in the similar way as above, we deduce from (C1), (C3)-(C4), (F.27) and

the continuity of bij(t), cij(t), Λ(θtω) and ĥ(t) that for all n sufficiently large,
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∥∥∥∥∥∥
i+N∑
j=i−N

bij(tn)g2j(θtnω, v
n
j (−ĥ(tn)))−

i+N∑
j=i−N

bij(t)g2j(θtω, v
0
j (−ĥ(t)))

∥∥∥∥∥∥
2

6 2

∥∥∥∥∥∥
i+N∑
j=i−N

bij(tn)g2j(θtnω, v
n
j (−ĥ(tn)))−

i+N∑
j=i−N

bij(t)g2j(θtnω, v
n
j (−ĥ(tn)))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
i+N∑
j=i−N

bij(t)g2j(θtnω, v
n
j (−ĥ(tn)))−

i+N∑
j=i−N

bij(t)g2j(θtω, v
0
j (−ĥ(t)))

∥∥∥∥∥∥
2

6 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

(bij(tn)− bij(t))2
g2

1j(θtnω, v
n
j (−ĥ(tn)))

+ 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

b2ij(t)
(
g2j(θtnω, v

n
j (−ĥ(tn)))− g2j(θtω, v

0
j (−ĥ(t)))

)2

6 2(2N + 1)
∑
|i|6k

i+N∑
j=i−N

(bij(tn)− bij(t))2
(

Λ2(θtnω)|vnj (−ĥ(tn))|2 + Λ2(θtnω)
)

+ 4(2N + 1)
∑
|i|>k

i+N∑
j=i−N

2b̃2ij

(
Λ2(θtnω)e2γh(2N + 1)‖vn‖2Cγ,l2 + Λ2(θtnω)

)

+ 4(2N + 1)
∑
|i|6k

i+N∑
j=i−N

b̃2ij

(
g2j(θtnω, v

n
j (−ĥ(tn)))− g2j(θtω, v

0
j (−ĥ(tn)))

)2

+ 4(2N + 1)
∑
|i|6k

i+N∑
j=i−N

b̃2ij

(
g2j(θtω, v

0
j (−ĥ(tn)))− g2j(θtω, v

0
j (−ĥ(t)))

)2

+ 4(2N + 1)
∑
|i|>k

i+N∑
j=i−N

b̃2ij

(
Λ2(θtnω)e2γh(2N + 1)‖vn‖2Cγ,l2 + Λ2(θtnω)

+Λ2(θtω)e2γh(2N + 1)‖v0‖2Cγ,l2 + Λ2(θtω)
)
6 Cε, (F.30)

and∥∥∥∥∥
i+N∑
j=i−N

cij(tn)

∫ 0

−∞
g3j(θtnω, r, v

n
j (r))dr −

i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, v

0
j (r))dr

∥∥∥∥∥
2

6 2

∥∥∥∥∥
i+N∑
j=i−N

(cij(tn)− cij(t))
∫ 0

−∞
g3j(θtnω, r, v

n
j (r))dr

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
i+N∑
j=i−N

cij(t)

(∫ 0

−∞
g3j(θtnω, r, v

n
j (r))dr −

∫ 0

−∞
g3j(θtω, r, v

0
j (r))dr

)∥∥∥∥∥
2

6 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

(cij(tn)− cij(t))2

×
(∫ 0

−∞

(
p̂3j(θtnω, r)|v

n
j (r)|+ q̂3j(θtnω, r)

)
dr

)2
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+ 2(2N + 1)
∑
i∈Z

i+N∑
j=i−N

c2ij(t)

(∫ 0

−∞

(
g3j(θtnω, r, v

n
j (r))− g3j(θtω, r, v0j (r))

)
dr

)2

6 4(2N + 1)
∑
|i|6k

i+N∑
j=i−N

(cij(tn)− cij(t))2

×
(

Λ2(θtnω)(2N + 1)‖vn‖2C
γ,l2

+ Λ2(θtnω)
)

+ 8(2N + 1)
∑
|i|>k

i+N∑
j=i−N

2c̃2ij

(
Λ2(θtnω)(2N + 1)‖vn‖2C

γ,l2
+ Λ2(θtnω)

)

+ 2(2N + 1)
∑
|i|6k

i+N∑
j=i−N

c̃2ij

(∫ 0

−∞

(
g3j(θtnω, r, v

n
j (r))− g3j(θtω, r, v0j (r))

)
dr

)2

+ 8(2N + 1)
∑
|i|>k

i+N∑
j=i−N

c̃2ij

(
Λ2(θtnω)(2N + 1)‖vn‖2C

γ,l2
+ Λ2(θtnω)

)

+ 8(2N + 1)
∑
|i|>k

i+N∑
j=i−N

c̃2ij

(
Λ2(θtω)(2N + 1)‖v0‖2C

γ,l2
+ Λ2(θtω)

)
6 Cε, (F.31)

thanks to Assumption (C1) and Lebesgue’s dominated convergence theorem.
Note that J(t) ∈ C(R; l2), hence for sufficiently large n, we can deduce that∑

i∈Z
|Ji(tn)− Ji(t)|2 = ‖J(tn)− J(t)‖2 < ε. (F.32)

Then it follows from (F.28)-(F.32) that for all n sufficiently large,

‖f̃(tn, v
n)− f̃(t, v0)‖2 6 5

∑
i∈Z
|fi(vni (0))− fi(v0

i (0))|2 + 5
∑
i∈Z
|Ji(tn)− Ji(t)|2

+ 5
∑
i∈Z

∣∣∣∣ i+N∑
j=i−N

aij(tn)g1j(θtnω, v
n
j (0))−

i+N∑
j=i−N

aij(t)g1j(θtω, v
0
j (0))

∣∣∣∣2

+ 5
∑
i∈Z

∣∣∣∣ i+N∑
j=i−N

bij(tn)g2j(θtnω, v
n
j (−ĥ(tn)))−

i+N∑
j=i−N

bij(t)g2j(θtω, v
0
j (−ĥ(t)))

∣∣∣∣2

+ 5
∑
i∈Z

∣∣∣∣ i+N∑
j=i−N

cij(tn)

∫ 0

−∞
g3j(θtnω, r, v

n
j (r))dr

−
i+N∑
j=i−N

cij(t)

∫ 0

−∞
g3j(θtω, r, v

0
j (r))dr

∣∣∣∣2 6 Cε. (F.33)

This implies that f̃ : R× Cγ,l2 → l2 is continuous. Thus, Theorem 4 in [5] ensures
that for any ω ∈ Ω and φ ∈ Cγ,l2 , there exists at least one solution x(·) ∈ C1([τ, τ +
T (M,ω)]; l2).

Proof of Lemma 4.1. Proof. Multiplying (1.1) by xi we obtain

1

2

d

dt
|xi(t)|2 = fi(xi(t))xi(t) +

i+N∑
j=i−N

aij(t)g1j(θtω, xj(t))xi(t)
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+

i+N∑
j=i−N

bij(t)g2j(θtω, xj(t− ĥ(t)))xi(t)

+

i+N∑
j=i−N

cij(t)xi(t)

∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr + Ji(t)xi(t).

Let ε1, ε2, ε3 and ε4 be positive parameters to be fixed later on. Note that ĥ(t)
takes the value in [0, h]. Then by making use of Young’s inequality, Assumptions

(C2)-(C4) and
(∑N

j=1 uj

)2

6 N
∑N
j=1 u

2
j , we find that

fi(xi(t))xi(t) 6 −h1x
2
i (t) + h2

2i, (F.34)

i+N∑
j=i−N

aij(t)g1j(θtω, xj(t))xi(t)

6
(2N + 1)

4ε1

i+N∑
j=i−N

a2
ij(t)g

2
1j(θtω, xj(t)) + ε1|xi(t)|2

6
(2N + 1)

4ε1

i+N∑
j=i−N

ã2
ijp

2
1j(θtω) sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
(2N + 1)

4ε1

i+N∑
j=i−N

ã2
ijq

2
1j(θtω) + ε1|xi(t)|2, (F.35)

i+N∑
j=i−N

bij(t)g2j(θtω, xj(t− ĥ(t)))xi(t)

6
(2N + 1)

4ε2

i+N∑
j=i−N

b2ij(t)g
2
2j(θtω, xj(t− ĥ(t))) + ε2|xi(t)|2

6
(2N + 1)

4ε2

i+N∑
j=i−N

b̃2ijp
2
2j(θtω)e2γh sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
(2N + 1)

4ε2

i+N∑
j=i−N

b̃2ijq
2
2j(θtω) + ε2|xi(t)|2, (F.36)

∣∣∣∣∣∣
i+N∑
j=i−N

cij(t)xi(t)

∫ 0

−∞
g3j(θtω, r, xj(t+ r))dr

∣∣∣∣∣∣
6

i+N∑
j=i−N

cij(t)

(
p̃3j(θtω) sup

s∈(−∞,0]

eγs|xjt(s)|+ q̃3j(θtω)

)
|xi(t)|

6
(2N + 1)

4ε3

i+N∑
j=i−N

c̃2ij p̃
2
3j(θtω) sup

s∈(−∞,0]

e2γs|xjt(s)|2

+
(2N + 1)

4ε3

i+N∑
j=i−N

c̃2ij q̃
2
3j(θtω) + 2ε3|xi(t)|2, (F.37)
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and

Ji(t)xi(t) 6 ε4|xi(t)|2 +
1

4ε4
|Ji(t)|2.

Note that e2γh > 1. Therefore,

d

dt
|xi(t)|2 6 (−2h1 + 2ε1 + 2ε2 + 4ε3 + 2ε4) |xi(t)|2

+

i+N∑
j=i−N

(2N + 1)e2γh

(
1

2ε1
ã2
ijp

2
1j(θtω) +

1

2ε2
b̃2ijp

2
2j(θtω) +

1

2ε3
c̃2ij p̃

2
3j(θtω)

)
× sup
s∈(−∞,0]

e2γs|xjt(s)|2 +
1

2ε4
|Ji(t)|2 + 2h2

2i

+

i+N∑
j=i−N

(2N + 1)

(
1

2ε1
ã2
ijq

2
1j(θtω) +

1

2ε2
b̃2ijq

2
2j(θtω) +

1

2ε3
c̃2ij q̃

2
3j(θtω)

)
. (F.38)

This implies that

d

dt

(
eh1t|xi(t)|2

)
= h1e

h1t|xi(t)|2 + eh1t
d

dt
|xi(t)|2

6 − (h1 − 2ε1 − 2ε2 − 4ε3 − 2ε4) eh1t|xi(t)|2 +
eh1t

2ε4
|Ji(t)|2 + 2eh1th2

2i

+ (2N + 1)e2γh
i+N∑
j=i−N

(
1

2ε1
ã2
ijp

2
1j(θtω) +

1

2ε2
b̃2ijp

2
2j(θtω) +

1

2ε3
c̃2ij p̃

2
3j(θtω)

)
× eh1t sup

s∈(−∞,0]

e2γs|xjt(s)|2

+ (2N + 1)

i+N∑
j=i−N

(
1

2ε1
ã2
ijq

2
1j(θtω) +

1

2ε2
b̃2ijq

2
2j(θtω) +

1

2ε3
c̃2ij q̃

2
3j(θtω)

)
eh1t.

(F.39)

Integrating (F.39) over [τ − t, t∗] with t > 0 and t∗ > τ , we obtain that for every
ω ∈ Ω,

eh1t
∗
|xi(t∗, τ − t, ω, φ)|2 6 eh1(τ−t)|xi(τ − t, τ − t, ω, φ)|2

− (h1 − 2ε1 − 2ε2 − 4ε3 − 2ε4)

∫ t∗

τ−t
eh1r|xi(r, τ − t, ω, φ)|2dr

+

∫ t∗

τ−t
(2N + 1)e2γh

i+N∑
j=i−N

(
1

2ε1
ã2ijp

2
1j(θrω) +

1

2ε2
b̃2ijp

2
2j(θrω) +

1

2ε3
c̃2ij p̃

2
3j(θrω)

)

× eh1r sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, ω, φ)|2dr +

∫ t∗

τ−t
eh1r

(
1

2ε4
|Ji(r)|2 + 2h2

2i

)
dr

+ (2N + 1)

∫ t∗

τ−t

i+N∑
j=i−N

(
1

2ε1
ã2ijq

2
1j(θrω) +

1

2ε2
b̃2ijq

2
2j(θrω) +

1

2ε3
c̃2ij q̃

2
3j(θrω)

)
eh1rdr.

(F.40)

Let ε1 = ε2 = ε3 = ε4 = h1

16 . Then we can neglect the second term on the right-hand

side of (F.40). Note that h1

2 < 5
8h1 < γ, so e(2γ−h1)s 6 1 for s 6 0. Setting now

t∗ + s instead of t∗, multiplying (F.40) by e−h1(t∗+s)e2γs and replacing ω by θ−τω,
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we find that for all τ − t− t∗ 6 s 6 0,

e2γs|xit∗(s, τ − t, θ−τω, φ)|2 6 e−h1(t∗−τ+t)|xi(τ − t, τ − t, θ−τω, φ)|2

+
8

h1
(2N + 1)e2γhe−h1t

∗
∫ t∗

τ−t

i+N∑
j=i−N

αij(θr−τω)eh1r

× sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2dr

+
8

h1
(2N + 1)e−h1t

∗
∫ t∗

τ−t

i+N∑
j=i−N

βij(θr−τω)eh1rdr

+ e−h1t
∗
∫ t∗

τ−t
eh1r

(
8

h1
|Ji(r)|2 + 2h2

2i

)
dr, (F.41)

where we have used the notations

αij(θr−τω) := ã2
ijp

2
1j(θr−τω) + b̃2ijp

2
2j(θr−τω) + c̃2ij p̃

2
3j(θr−τω),

βij(θr−τω) := ã2
ijq

2
1j(θr−τω) + b̃2ijq

2
2j(θr−τω) + c̃2ij q̃

2
3j(θr−τω).

Note that for all s ∈ (−∞, τ − t− t∗],∑
i∈Z

e2γs|xit∗(s, τ − t, θ−τω, φ)|2

= e−2γ(t∗+t−τ)
∑
i∈Z

e2γ(s+t∗−τ+t)|xi(t∗ + s, τ − t, θ−τω, φ)|2

6 e−h1(t∗+t−τ)
∑
i∈Z

e2γ(s+t∗−τ+t)|xi(t∗ + s, τ − t, θ−τω, φ)|2

6 e−h1(t∗+t−τ)‖φ‖2Cγ,l2 .

Then, it holds

eh1t
∗∑
i∈Z

sup
s∈(−∞,0]

e2γs|xit∗(s, τ − t, θ−τω, φ)|2

6 e−h1(t−τ)‖φ‖2Cγ,l2 +

∫ t∗

τ−t
eh1r

(
8

h1
‖J(r)‖2 + 2‖h2‖2

)
dr

+
8

h1
(2N + 1)e2γh

∫ t∗

τ−t
eh1r

∑
i∈Z

i+N∑
j=i−N

αij(θr−τω)

× sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2dr

+
8

h1
(2N + 1)

∫ t∗

τ−t
eh1r

∑
i∈Z

i+N∑
j=i−N

βij(θr−τω)dr. (F.42)

We observe that∑
i∈Z

i+N∑
j=i−N

αij(θr−τω) sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2

6

∑
i∈Z

i+N∑
j=i−N

sup
s∈(−∞,0]

e2γs|xjr(s, τ − t, θ−τω, φ)|2
∑

i∈Z

i+N∑
j=i−N

αij(θr−τω)


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6 (2N + 1)

(∑
i∈Z

sup
s∈(−∞,0]

e2γs|xir(s, τ − t, θ−τω, φ)|2
)∑

i∈Z

i+N∑
j=i−N

αij(θr−τω)

 .

Then (F.42) can be rewritten as

eh1t
∗
‖xt∗‖2Cγ,l2 6 e−h1(t−τ)‖φ‖2Cγ,l2

+
8

h1
(2N + 1)

∫ t∗

τ−t
eh1r

∑
i∈Z

i+N∑
j=i−N

βij(θr−τω)dr

+

∫ t∗

τ−t
eh1r

(
8

h1
‖J(r)‖2 + 2‖h2‖2

)
dr

+
8

h1
(2N + 1)2e2γh

∫ t∗

τ−t
eh1r

∑
i∈Z

i+N∑
j=i−N

αij(θr−τω)‖xr‖2Cγ,l2dr.

Using Gronwall’s lemma, we have

‖xt∗‖2Cγ,l2 6 e−h1(t∗+t−τ)e
∫ t∗
τ−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θr−τω)dr‖φ‖2Cγ,l2

+

∫ t∗

τ−t

 8

h1
(2N + 1)

∑
i∈Z

i+N∑
j=i−N

βij(θr−τω) +
8

h1
‖J(r)‖2 + 2‖h2‖2


× e−h1(t∗−r)+

∫ t∗
r

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θr′−τω)dr′dr

= e−h1(t∗+t−τ)e
∫ t∗−τ
−t

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds‖φ‖2Cγ,l2

+

∫ t∗−τ

−t

 8

h1
(2N + 1)

∑
i∈Z

i+N∑
j=i−N

βij(θsω) +
8

h1
‖J(τ + s)‖2 + 2‖h2‖2


× e−h1(t∗−τ−s)+

∫ t∗−τ
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds. (F.43)

Let t∗ = τ , then for all t > 0 we have

‖xτ‖2Cγ,l2 6 Ce−h1t+
8
h1

(2N+1)2e2γh
∫ 0
−t
∑
i∈Z
∑i+N
j=i−N αij(θsω)ds‖φ‖2Cγ,l2

+ C

∫ 0

−t

∑
i∈Z

i+N∑
j=i−N

βij(θsω) + ‖J(τ + s)‖2 + ‖h2‖2


× eh1s+
∫ 0
s

8
h1

(2N+1)2e2γh
∑
i∈Z
∑i+N
j=i−N αij(θs′ω)ds′ds,

and thus the proof of this lemma is finished.
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