ELECTRONIC RESEARCH ARCHIVE doi:10.3934 /era.2020112
Volume 29, Number 2, June 2021 pp. 21872221

PULLBACK ATTRACTORS FOR STOCHASTIC RECURRENT
NEURAL NETWORKS WITH DISCRETE AND
DISTRIBUTED DELAYS

MEIYU SUI AND YEJUAN WANG*

School of Mathematics and Statistics
Gansu Key Laboratory of Applied Mathematics and Complex Systems
Lanzhou University, Lanzhou 730000, China

PETER E. KLOEDEN

Mathematisches Institut, Universitat Tiibingen
Tibingen 72076, Germany

ABSTRACT. In this paper, we investigate a class of stochastic recurrent neural
networks with discrete and distributed delays for both biological and mathe-
matical interests. We do not assume any Lipschitz condition on the nonlinear
term, just a continuity assumption together with growth conditions so that the
uniqueness of the Cauchy problem fails to be true. Moreover, the existence of
pullback attractors with or without periodicity is presented for the multi-valued
noncompact random dynamical system. In particular, a new method for check-
ing the asymptotical compactness of solutions to the class of nonautonomous
stochastic lattice systems with infinite delay is used.

1. Introduction. Recurrent Neural Networks arise in a wide range of applications
such as classification, combinatorial optimization, parallel computing, signal pro-
cessing and pattern recognition, (see, e.g. [7, 9, 14, 16, 22, 23, 28]). Due to the
finite switching speed of neurons and amplifiers, time delays commonly occured in
neural networks. Since time delays will affect the stability of the neural system
and may lead to some complex dynamic behavior, it is critical to study delayed
recurrent neural networks. In particular, signal propagation is not instantaneous
and may not be suitably modeled with discrete delay, so it is more appropriate to
incorporate continuously distributed delays in neural network models.

Random effects arise naturally in neural network models to take into account the
uncertainty. Given 7 € R and t > 7, in this paper, we will consider the following
general class of stochastic neural networks with discrete and distributed delays:

i+N i+N )
Bi(t) =fi (@) + D ag()gr; (0w, 2;(8) + D bij(t)ga;(Ouw, x;(t — h(t)))
j=i—N j=i—N
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i+N 0
+ Z Cij(t)/ g3 (O, r i (t +1))dr + Ji(t), i€ Z, (1.1)
j=i—N -

with the initial condition
zi(t)=¢i(t—7), te€(—o0,7],i€Z, (1.2)

where Z denotes the integer set; x;(t) represents the state variable of the potential
for the i-th neuron at time ¢; f; denotes the behaved function; gx; (k = 1,2,3) are
activation functions of the neuron; a;;(t), b;;(t) and ¢;;(t) denote the connection
weight, discretely delayed connection weight and distributively delayed connection
weight, respectively, between the j-th and i-th neurons, a;;(t), b;;(t) and c;;(t)
belong to C(R; R); h(t) stands for discrete time varying delay and h(t) belongs to
C(R; [0, h]) with constant h > 0; J;(t) represents the external force.

Robust analysis for stochastic neural networks with time-varying delay can be
found in [20, 35]. Exponential stability of stochastic neural networks with constant
or time-varying delays has been studied in [8, 15, 16, 19, 21, 30]. Exponential
stability of stochastic recurrent neural networks with time-varying delays was in-
vestigated in [25]. Asymptotic stability of stochastic neural networks with discrete
and distributed delays has been developed, e.g., Markovian jumping parameters
[26, 27, 29], Brownian motion [12], impulsive effects [23], and infinite delay [2, 18].
There has, however, been little mention of pullback attractors for stochastic neural
networks.

The long-time behavior of multi-valued non-autonomous and random dynamical
systems has been extensively developed over the last one and a half decades; see,
e.g. [3, 4,10, 11, 13, 17, 24] etc. The theory of pullback attractors for single-valued
noncompact random dynamical systems has been established in [31]. The existence
of pullback attractors has been studied in [33] for reaction-diffusion equations on
an unbounded domain with non-autonomous deterministic as well as stochastic
forcing terms for which the uniqueness of solutions need not hold (see also [34] for
unbounded delay case). Based on the previous work, our main goal in this paper
is to develop new theory of multi-valued noncompact random dynamical systems
in a biological context to analyze the dynamics of a class of stochastic recurrent
neural networks with discrete and distributed delays. It is worthy mentioning that
we do not assume any Lipschitz condition on the nonlinear term, just a continuity
assumption together with growth conditions.

The paper is organized as follows. Section 2 gives some preliminary definitions
and results regarding pullback attractors of multi-valued noncompact random dy-
namical systems, while in Section 3 the existence of solutions for the multi-valued
noncompact random dynamical systems is considered. Sections 4-6 are devoted to
the existence of pullback attractors and periodic attractors for stochastic recurrent
neural networks with discrete and distributed delays.

2. Multi-valued noncompact random dynamical systems. We now recall
some basic definitions for multi-valued noncompact random dynamical systems and
some results ensuring the existence of a pullback attractor for these systems.

Let @ be a nonempty set, (2, F,P) be a probability space, and (X,d) be a
Polish space with Borel o-algebra B(X). Denote by P(X) and C(X) the sets of
all nonempty and nonempty closed subsets of X, respectively. Let also denote by
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dist(A, B) the Hausdorff semidistance, i.e., for given subsets A and B of X we have
dist(A, B) =sup{d(z, B) : xz € A},

where d(z, B) = inf{d(z, y) : y € B}. Finally, denote by N,.(A) the open r-
neighborhood {y € X : d(y, A) < r} of radius r > 0 of a subset A of X.

Assume that there are two groups {o;}ier and {6;}icr acting on @ and €,
respectively. Specifically, o : R x @ — @ is a mapping such that oq is the identity
on Q, ot1r =000, for all t,7 € R. Similarly, 6 : R x Q — Q is a (B(R) x F,F)-
measurable mapping such that 6y is the identity on Q, 64, = 0,06, for all t,7 € R
and 0;P = P for all ¢ € R. In the sequel, we will call both (Q,{o:}+cr) and
(Q, F,P,{0;}1er) parametric dynamical systems.

Definition 2.1. Let (@, {o¢}ier) and (2, F,P, {0; }1cr) be parametric dynamical
systems. A multi-valued mapping ® : RT x Q x Q x X — P(X) is called a multi-
valued cocycle on X over (Q, {0t }ier) and (Q, F,P, {0 }1er) if forall g € Q, w € 2
and t,7 € RT, the following conditions are satisfied:

(1) ®(0,q,w,-) is the identity on X;

(2) ®(t+7,q,w,) = P(t,0:q,0,w,P(1,q,w,)).

For the above composition of multi-valued mappings, we use that for any
nonempty set V C X, ®(t,q,w, V) is defined by

(I)(t, q,w, V) = U cb(ta q,w, 1’0)~
o€V
Definition 2.2. (See [3, 31, 33].) A set-valued mapping K : Q x Q — P(X) is
called measurable with respect to F in Q if the mapping w € Q — d(z, K(q,w)) is
(F, B(R))-measurable for every fixed z € X and ¢ € Q.

In what follows denote by D be a collection of some families of nonempty subsets
of X parametrized by g € @ and w € Q.

Definition 2.3. Let D be a collection of some families of nonempty subsets of X
parametrized by ¢ € @ and w € ). D is said to be neighborhood closed if for each
D ={D(q,w) : g € Q,w € Q} € D, there exists a positive number ¢ depending on
D such that the family

{B(q,w) : B(q,w) is a nonempty subset of NV.(D(q,w)), Vg € Q,Yw € Q} (2.1)
also belongs to D.

Note that the neighborhood closedness of D implies for each D € D,

{D(q,w) : D(q,w) is a nonempty subset of D(q,w),Vq € Q,Yw € Q} € D. (2.2)

A collection D satisfying (2.2) is said to be inclusion-closed in the literature, see,
e.g., [11].

Definition 2.4. (See [3, 31, 33].) Let D be a collection of some families of nonempty
subsets of X and K = {K(q,w) : ¢ € Q,w € Q} € D. Then K is called a D-pullback
absorbing set for ® if for all ¢ € Q, w € Q and for every B = {B(q,w) : ¢ € Q,w €
0} € D, there exists T = T(B, g, w) > 0 such that

D(t,0_1q,0_1w, B(o_1q,0_4w)) C K(q,w), forallt>T.

In addition, if K is measurable with respect to the P-completion of F, then K is
said to be a measurable D-pullback absorbing set for ®.



2190 MEIYU SUI, YEJUAN WANG AND PETER E. KLOEDEN

Definition 2.5. Let D be a collection of some families of nonempty subsets of
X. Then @ is said to be D-pullback asymptotically upper semicompact in X if for
all ¢ € Q and w € Q, any sequence y, € ®(t,,0_+, q,0_¢, w,z,) has a convergent
subsequence in X whenever ¢, — 400 (n — ), x, € B(o_;,q,0_,w) with
{B(q,w) : ¢ € Q,w € Q} € D.

Definition 2.6. Let D be a collection of some families of nonempty subsets of X
and A = {A(q,w) : g € Q,w € Q} € D. Then A is said to be a D-pullback attractor
for @ if it satisfies:

(1) A(g,w) is compact for all ¢ € @ and w € Q.
(2) A is invariant, that is, for every ¢ € @ and w € §,

O(t,q,w, Alq,w)) = A(orq, w), ¥Vt > 0.

(3) A attracts every member of D, that is, for every B = {B(¢q,w) : ¢ € Q,w €
2} € D and for every ¢ € @ and w € ,
tliin dist (® (t,0_¢q,0_sw, B(o_1q,0_w)), A(q,w)) = 0.
—+00
The following result shows a sufficient and necessary criterion for the existence

and uniqueness of pullback attractors associated to multi-valued cocycles [33], see
also [31] for the single-valued case.

Theorem 2.7. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and let ® be a multi-valued cocycle on X over (Q,{o¢}ier)
and (0, F,P,{0: }1cr) possessing the norm-to-weak upper semicontinuity on X, i.e.,
if ¢, = x in X, then for any y, € ®(t,q,w,x,), there exist a subsequence y,, and
ay € P(t,q,w,x) such that y,, — y (weak convergence). Then ® has a D-pullback
attractor A in D if and only if ® is D-pullback asymptotically upper semicompact in
X and ® has a closed D-pullback absorbing set K in D. The D-pullback attractor
A is unique and is given by, for each ¢ € Q and w € §,

Alg,w) = O(K,qw)= U O(B, q,w), (2.3)
BeD

where the family {O(B,q,w) : ¢ € Q,w € Q} is called the O-limit set of B defined
by

@(Bvqaw) = m U P (tvo-ftcbeftwaB(o—ft(bgftw))'

T20t>T

By the similar arguments of Theorem 2.25 in [31], we have a sufficient and nec-
essary criterion for the periodicity of pullback attractors of multi-valued cocycles.

Theorem 2.8. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and let ® be a norm-to-weak upper semicontinuous periodic
multi-valued cocycle with period T > 0 on X over (Q,{ot}ier) and (Q, F, P, {0; }1er),
i.e., for everyt >0, g € Q and w € Q, there holds

(I)(t7 org,w, ) = (P(t7 q,w, )

Suppose © has a D-pullback attractor A € D. Then A is periodic with period T,
i.e., Alorq,w) = A(q,w) for all ¢ € Q and w € Q if and only if ® has a closed
D-pullback absorbing set K € D with K being periodic with period T.



PULLBACK ATTRACTORS FOR STOCHASTIC RNNS 2191

3. The existence of solutions for random recurrent neural networks with
discrete and distributed delays without uniqueness. Let (€2, F,P) be a prob-
ability space. On this probability space we consider a measurable non-autonomous
group 6:

0:(RxQBR)RF)— (Q,F).

In addition, we assume that P is ergodic with respect to 6, which means that
every fs-invariant set has measure zero or one, t € R. Therefore P is invariant with
respect to 0. Then (Q, F, P, {0;}+cr), which is the model for a noise, is a parametric
dynamical system. Suppose @ = R. Define a family {o;}:cr of shift operators by
oi(s) =s+tforallt,seR.

We also recall the following well-known ergodic theorem.

Theorem 3.1. Suppose Y is a real random variable in L*. Then

t—+oo

1t
lim ;/ Y (0sw)ds = EY
0

on a {0;}rer-invariant set of measure one.
Outside this set of measure one we will replace the values of Y by EY so that
this version of Y has the above limit for all w € Q.

Let
P ={z = (z:)icz, 2 €R: Zx? < 400},
i€

and equip it with the inner product and norm as

(z,y) = inyiy ||33||2 =(z,2), Vo= (2i)icz,y = (Yi)icz € 12,
i€L

We denote by C., ;2 the space

Crir = {0 € C-00,01): lim_(s)e7 xists}.

where the parameter v > 0 will be determined later on. If we define

1

2

||90||Cw2:<z sup 6275|<pi(s)2> , YpeC, e,

icz S€(—00,0]

then (C, 42, | - [lc, ,.) is a Banach space. Given 7 € R, T > 7 and a function
x : (=00, T] — [, for each t € [r,T) we denote by z; the function defined on
(—00,0] by the relation z:(s) = z(t + s), s € (—00,0]. In the following sections, C
denotes an arbitrary positive constant, which may be different from line to line and
even in the same line.

We consider the following conditions:

(C1) The mappings w — gxj(w,x) are F-measurable for any fixed z € R, and the
mappings (¢, z) — g, (0w, ) are continuous from R x R into R for any fixed
w € R, where k = 1,2 and j € Z. Similarly, the mappings w — g3;(w,r, )
are F-measurable for any fixed (r,z) € R x R, and the mappings (¢,r,z) —
935 (0w, r, ) are continuous from R x R x R into R for any fixed w € Q, where
jeZ.
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(C2) For each i € Z, f; is continous, and there exist a positive constant hy > 0 and
hy = (hZi)iEZ € 12 such that

filx)x < —hyx® +h3;, Vi€Z, xR,
Besides, there exist a positive constant [; > 0 and Iy = (l3;)iez € [? such that
|fl($)| <l1|$|+121, V’LQZ,.’EER

(C3) For k = 1,2 and j € Z, there exist nonnegative functions py;, qi; : @ = R,
which are measurable with respect to F, such that

where the mappings t — py;(fiw) and t — gi;(0ww) are continuous from R
into R for any fixed w € €.
Besides, there exist nonnegative functions ps;, gs; : 2 x R — R such that

193 (w, 7, )| < P3j(w, )] + g3y (w, ), YweQ reR zeR,

where the mappings w — ps;(w,r) and w — §s;(w,r) are F-measurable for
any fixed r € R, and the mappings r — p3j(w,r) and r — §s;(w,r) are
continuous from R into R for any fixed w € Q.
Also, for any w € Q and t € R, we define
0

0
p3;j(Osw) 52/ e "p3; (0w, r)dr, g3;(0pw) ;:/ G35 (Opw, r)dr,

— 00 — 00
where the mappings ¢t — ps;(6;w,r) and t — §3;(6sw,r) are continuous from
R into R for any fixed w € 2 and r € R. In addition, there exists a measurable
mapping A : 2 x R — R such that the mapping t — A(f;w) is continuous
from R into R for any fixed w € 2, and

prj(w) < Aw), grj(w) < A(w), P3j < Aw), g3j < Aw), j €Z,k=1,2,w € Q.
(C4) For i,j € Z, aij, b;j and ¢;; belong to C(R;RT), and

Qij (t) < Eij, b”(t) < bij; Cij (t) < Eijv Vvt € R.

Moreover,
i+N
S % (@) <o
i€Z j=i—N

(C5) The external force (J;);cz belongs to C(R;1?), and

/ Ze%r\Ji(r)|2dr < oo, VreR,

X ez

which implies that

kEI-Poo - Z ethT|Ji(7')|2dr =0, VreR,
li| >k
where the constant h is the same as that of Assumption (C2).

(C6) The mappings t — p3;(6;w), t — p3;(0iw) and t — p3,(fyw) are sub-exponen-
tially growing as ¢ — £oo for any fixed w € 2, where j € Z. In other words,
for e > 0 and w € Q, there exists a to(e,w) > 0 such that for [t| > to(e,w) it
holds that

p%j(é’tw) <efltl) pgj(Htw) < efltl, ﬁ?,j(etw) < ettt
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Similarly, the mappings t — ¢7;(6:w), t — ¢5;(6:w) and t — G3;(6;w) are sub-
exponentially growing as t — doo for any fixed w € ), where j € Z, which
means that for e > 0 and w € Q, there exists a t{(s,w) > 0 such that for
|t| > t{(e,w) it holds that

G (0w) < el g3, (01w) < e G5 (Ohw) < el

(C7) We suppose that EA? < oo, and also that

t—+oo t 0

By the ergodicity assumption and Theorem 3.1 we obtain that
t
lim f/ A2(0,w)dr = EA? =: A,
0

on a {0;}ier-invariant set of full measure. Let us replace outside this set
(which has measure zero) the values of A%(w) by A.

Remark 1. Let us define
@ij(frw) == Zi?jp%j(etw) + g?jpgj (Orw) + E?jig?%j(etw)
and N
Bij(Orw) := 5123“1%3‘(9#*’) + b?quj(etw) + E?j‘ﬁj(otw)a
where 4,5 € Z. Then from Assumption (C6) we obtain that «;;(6,w) and S;;(6,w)
are sub-exponentially growing as t — +oo for any fixed w € .

Lemma 3.2. Let (C1)-(C5) hold. Then for any fited 7 € R, w € Q and each
M >0, there exists T(M,w) > 0 such that if ¢ € Cy 2 and [|¢l|c_ . < M, then
problem (1.1) and (1.2) admits at least a solution z(t) = x(t;7,w, d) defined on
[7,7 + T(M,w)], and = belongs to the space C([r, 7+ T(M,w)];1?).

The proof of Lemma 3.2 is given in the Appendix.

By slightly modifying the proof of Lemmas 4.1 and 4.2, we see that every solution
can be globally defined. Hence we now define a multi-valued mapping ® : R* x R x
Q x C’y,l2 — P(C%ZZ) by

O(t, 7w, P) = {x44, (-, 7,0_rw,¢) | z(-) is a solution of Egs. (1.1)-(1.2)
with ¢ € C, g2}

Lemma 3.3. The mapping ® is a multi-valued cocycle on C. ;2 over (R,{o}ier)
and (0, F,P, {0 }1er)-

Proof. We only need to check condition (2) in Definition 2.1, since condition (1)

follows immediately. Let z € ®(t+s, 7, w, ¢). Then there exists a solution x of (1.1)-

(1.2) such that z = zpyr45(-, 7, 0_rw, ¢). We define a function u by uiyr = Tiprts

fort > 0 and 7 € R. Tt is clear that u, = z,15, and the function u solves (1.1) with

w, aij(t), bw‘(t), Cij(t), Jz(t), il(t) replaced by Gsw, aij(t -+ S), b”(t -+ S), Cij(t -+ .S)7

Ji(t+s) and h(t+s), respectively, and ¢ = 2. Indeed, for r € [—t,0], we obtain
t+714+s+7r

Ut 4T (T) = Tt47+s (T) = ¢(O) + / f(ar’wv 7"/7 xr’)drl

r
t+T+s+r

T+s .
— 6(0) + / FOrw, " 2y )dr” + / FOrw,t” 2y )dr”

+s
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t+T+s+r

= x'rJrs(O) + / f(ar/wa T/a xr’)dr/

T+s

t+7+r .
= u,(0) —|—/ f(0,w, P + s, w0 )dr

where f( w7 ) = (fi(ﬁr/w,r’,xiw)>ie and fi(é’r/w,r’,xir/) = fi(z;(r"))

i+N i+N 7
+ 3000 N aii ()91 (0w, a5 (r ))+ZJ+7 O i3 (r')925 (Orw, 25 (r" = (1))
7 0 1 1"
+ Y v () [0 g3 (O, a7 ))dr "+ Ti().
Note that w4, (r) = x4(t + 7 + ) for r < —t. Therefore
2 €Ot T+ 8,0s5w,xr45) CP(t, 7+ 8, 05w, P(s,T,w, P)).
Since z is arbitrary, we have ®(t + s, 7,w, ) C ®(t, 7 + 8, Osw, (s, T, w, P)).

On the other hand, let z € ®(¢t,7 + s,0,w,P(s,7,w,¢)). Then there exist x
solving (1.1) and y solving (1.1)(with w, a;;(t), bi;(t), ci;(t), Ji(t) and h(t) replaced
by Osw, a;;(t+s), bij(t+s), ¢;j(t+s), Ji(t+s) and h(t+ s), respectively) and such
that y, = 254, and ys4- = z. Define the function

wo — 4 Tt ifr <t <s+r,
v Yt/ —s, if8+7<t/7

which is a solution to (1.1). Indeed, for ¢’ < s+ 7 the equality wy = zp ensures
that w(-) is a solution. If ¢ > s+ 7, then for r € [T + s — t/, 0] we have

t’ —s+r R
wt’(r) = yt’—S(T) = y.,-(O) + / f(er’+sw7 '+ S, yr’)drl
t,+'r‘ ~ 1" 1" t +r ~ 1" 1"
=2s1,-(0) + / fOrw,r jwe)dr =z (0)+ / fOrw,r Jwa)dr .
T+s T

Also, for r € [r —t/, 7+ s — t'] we find that
wy (1) = yp—s(r) = xS(t/ +r—s)

t' +r t'+r
= 2,(0) + / F(Opw, 7" 2 )dr’ = 2.(0) + / F(Opw, v we)dr'.
Finally, for r < 7 — t/ it is easy to see that
wy(r) =zt +r—35) =t +r—7).
Therefore, z = yrir = Wiprys € P(t + 8, 7,w,d). Since z is arbitrary, we obtain

that
O(t, 7+ s,0w, (s, 7,w,9)) C Pt +s,T,w,¢). O

4. Uniform estimates of solutions. In this section, we establish uniform esti-
mates of solutions of problem (1.1)-(1.2) which are needed for proving the existence
of pullback absorbing sets of the system.

Let B be a bounded nonempty subset of C. 2, and denote by ||Bllc, ,
supuep [l@llc, - Assume D = {D(r,w) : 7 € R,w € Q} is a family of bounded
nonempty subsets of C., ;2 satisfying, for every 7 € R and w € Q,

. LA 2 -
rl}rzlooe 27| D(T + er)Hsz =0, (4.1)
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where the constant h; is the same as that of Assumption (C2). Denote by D the
collection of all families of bounded nonempty subsets of C., ;> which fulfill condition
(4.1), i.e.,

D={D={D(r,w): 7 € R,w € Q} : D satisfies (4.1)}.
Obviously, D is neighborhood closed.

Lemma 4.1. Suppose (C1)-(C5) hold and assume that

5
Then for every T € R and w € 2, any solution x of Egs. (1.1)-(1.2) with w replaced
by 0_,w satisfies for all t > 0,

_ 8 2_2vh [0 ) i+ N B
lzr (-, 7 — ¢, G_Tw,gé)chwz < CeMttay @N+D2 M 2, 3 T au(asw)ds||¢||gcwz

0 i+N
e f (Z > &-j(eswwu(ws)|2+||h2||2>
—t \iez j=i—N

0.8 2 _2~vh i+ N L ’
s st np @GN R 30 3500 n @i (Orw)ds” g

’

where a;;(0sw) and B;;(8sw) are the same as those of Remark 1.
The proof of Lemma 4.1 is given in the Appendix.
Lemma 4.2. Let (C1)-(C7) and (4.2) hold. Also, assume that

i+N
S 1
82N +1)%" 3" Y (afj + 52 +E?j) EA? < Sh3. (4.3)
i€Z j=i—N

Then the closed ball K(7,w) in C, ;2 with center zero and random radius R(T,w)
where
0 i+N
2
(R =C [ | X (o) + 1+ 9 +
T \i€Z j=i—N

0 2 24h i+ N
% ehlsJFfs %(2N+1) e Y ez i N aij(oslw)dslds

is contained in D, and K = {K(1,w) : 7 € R,w € Q} is a measurable D-pullback
absorbing set for ®.

Proof. It follows from Remark 1 that for any fixed w € Q, the mappings t — 3;;(0:w)
are sub-exponentially growing for ¢ — o0, where ¢t € Z and j =¢— N,--- ;i + N.
Hence for 0 < & < 75hy and w € Q, there exists a t{ (e, w) such that for [¢| > t{(c,w),

Bij(Ow) < (a?j +Ezzj + EJZZJ) el
wheret € Zand j=i—N,--- ;i+ N.
Thanks to Assumptions (C4)-(C7), in view of Remark 1, we deduce that
0 i+N )
O [ 37T b RN B Tttt
i€z j=i—N

0
hir
< Ce2 / eslstrlghis
— 00

N2 S, SN (S, - ff)(AQ(Gsuw)—ix)ds”f/iQ s

X e
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0 :
I 8 2 _2vh i+N X
<Ced / p3elstr] hrs— i N1 5, SR ) MijRs g
— 00

0
< Ce<%h1—3€)’“/ e(3m=32)sgg < Ce(zm=39)r _y (4.4)

— 00
as 7 — —oo, where we have used the notations A = EA2? and

=2 72 ~2
and in the similar way, we have

hir

0
ce'® [ (7 +r+ 9+ hal?)

0 2 2~h i+ N
% €h18+f5 %(2N+1) e Ziez Z;:i—l\] aii(GS'Jrrw)dS/dS

0
< C*/ (177 + 7+ )| + [|h2?)

o st QNN SR M (2, — ) (A0 ) —A)ds” —Rs) o
e [0 2 2
< Ce (1T(T+ 7+ 9)|? + [|he]l?)

o oM sT2elstrl— B @N+D? e S, SR MR g

0
< Celm 2 [ (e 4 )P + ) 2220

1 T+T 1 7
< C’e‘(ihl—QE)T/ e(3h1—2¢e)s (1712 + [|h2]|?) ds’ — 0 (4.5)

— 00

as r — —oo. Therefore,

By 2
ez (R(r+r6,w))

. 0 i+N
—Ce™ / Yo Y Bii(Osrrw) + |1T(7 41+ )| + |l
% \i€Z j=i—N

ehls"l‘fso %(21\7%—1)2@27’1 ez E;i]f—N g (0504 pw)ds’

X ds —0 asr — —oo.

This implies that

lim e+ |K(r +r,6,w)% , =0, (4.6)

T——00

and thus K = {K(1,w) : 7 € R,w € Q} belongs to D. By (C7), (4.3) and the
ergodic Theorem 3.1 , we obtain that

e Al - TCORA 0 | A
v,

<e MY B(r —t,0_w)|% .0 (4.7)

as t — +oo, where ¢ € B(t —t,0_w) and B € D. Note that for each 7 € R,

(R(1,w))? : @ — Ris (F, B(R))-measurable. Then it follows from Lemma 4.1, (4.6)
and (4.7) that K = {K(1,w) : 7 € R,w € Q} is a closed measurable D-pullback
absorbing set in D for ®. This completes the proof of the lemma. O
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5. Estimate of the tails. In order to prove the asymptotically upper semicom-
pactness for the multi-valued cocycle ®, we need the following lemma.

Lemma 5.1. Suppose (C1)-(C7), (4.2) and (4.3) hold. Let T € R, w € Q and B =
{B(1,w) : 7 € R,w € Q} € D. Then for every e > 0, there exist T = T(7,w, B, ¢e) >
0 and N = N(7,w, B,e) > 0 such that any solution x(-) of Egs. (1.1)-(1.2), given
by x with 2 (-,7—t,0_,w, ) € O(t,7—t,0_,w,d) and ¢ € B(T —t,0_w), satisfies

Z sup e8|z (5,7 —t,0_rw,0)* <e, forallt>T. (5.1)
>N $€(—00,0]
Proof. Choose a smooth function p such that 0 < p(r) < 1 for r € RT, and
p(r)=0 for0<r <1, p(r)=1 forr>2.

Then there exists a constant Cy such that |p/(r)] < Cp for r € RT. Define pps(|i])
=p (%) Multiplying (1.1) by pas(|i])x; we have that

L pne (i (8) = pae (i flas ()

i+N

+ D7 par(lil)as; (g1 (B, ()i (8)
j=i—N
i+N R

+ > par([il)bij (£) g2 (B, a5 (t — R(t)))as (t)
j=i—N
i+N 0

+ ) pM(|i|)Cz‘j(t)l‘i(f)/ g3 (Os, 7,5 (t + 1)) dr + par([i]) Ji(8) 2 (8).
j=i—N —o0

In a similar way as in Lemma 4.1, by Assumptions (C2)-(C4), Young’s inequality,
2
and (Zjvzl Uj) < NZN u?, we obtain that

j=1"j
par([i]) fizi()zi(t) < —par([il)halai (@)* + par (i) h3;, (5.2)
i+N
D pnr(liDas(D)g1; (B, () 2:(t)
j=i—N
4 i+ N 1
< h71(2N+ 1) > pullilal;(6)gs; (0w, 2;(t)) + TGhlﬁM(\i|)|$i(t)|2
j=i—N
4 i+ N
<S—@N+1) > pullihagpl;(0w) sup  elaj(s))?
hy Plormd $€(—00,0]
] ‘ , 4 i+ N L
+ 1ghem (il ()" + E(2N+ D Y pm(liDagaf; (0w), (5.3)
j=i—N
i+ N

> parllil)bij (£)g2; (Brw, a5 (t — h(t)))a; (t)

j=i—N
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4 fany , .
< E(2N+ 1) > parl[i)b3(£)g3; (Brw, 25 (t — (t))) +
j=i—N
i+ N

4 N s
< H(2N+ 1) Y pulli)byps; (0r)e® ™" sup 162” |z5e(s)]?
j=i—N s€(—o0,0

1
EhlpM(|i|)|xi(t)|2

i+N

+1ghoal(iDlesOF + - CN+1) Y pur (18, (0, (5.4)
j=i—N

i+N 0

S par(lil)es (B0 / g3 (Bus 55 (t + 7)) dr

j=i—N oo
i+N 0
<Y pM(IiI)Cij(ﬂlxi(t)\/_ (P (e, ) |2 (t + )| + G (uw, 7)) dr

j=i—N

< Z pu([i])ci; <ﬁ3j(9tw) sup ) e |xji(s)] +53j(9tw)> |z (1)]

j=i—N s€(—oo,
i+N

4 ) s
S5 BN+ > pu(liDEp3;(6iw) sup ]62” Jje (s)|*
j=i—N s€(—o00,0

1 . 4 i+ N .
+ ghipm(li) i (t )P+ - (2N+ D Y pullil)esas; (0w), (5.5)
j=i—N

and
wlliF0)2:(0) < o (Dl + -pu(DIHOPR. (5:0)

Note that €2"* > 1. Then, from (5.2)-(5.6) it follows that

& (oaelliDlzs0) < = hapar(iDas o)
i+N

8 ) s
+ 52N+ Dpar(fil) Y ai(Bw)e™™  sup  €¥P0lag(s)?
1 J=i—N s€(—00,0]

i+N

8
o (DIHOF + - @N + Dou(li) 3 5iy(Ow) + 2o (i3, (57
j=i—N

where o;;(0w) and f;;(6,w) are given in Remark 1. And consequently,

d /s ) 5, s . d )
= (e onr(iDls(D?) = Fhaed onr(iDlas(®)2 + XM 2 (par(il) i (8))
1 éhlt . 2 8 sy
< —ghef o (liDlai () + = @N + Dpar(iNei™ Y 8;(0w)
1 j=i—N

m ()T T ()2 + 2par (Ji] e T10R3,
i+N

pr N D (i) 3 ai(B)ei™t swp ()P (58)

L8
i’
8
h j=i-N s€(—00,0]
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Integrating (5.8) over [T —¢,¢*] with ¢ > 0 and ¢* > 7, we find that for every w € €,

5 * . 5 — .
et pag([il) @it 7 — tow, @) P < T T ppr (i) |s(r — t, 7 — t,w, )|

| ,
g [ (il ~ o)
T—t
i+N

8 Y 5
o N+ 1 pa () / 3 i (Orw)eih
T—1 j=i—N

x sup  e¥|xj.(s, T —t,w, ¢)|Pdr
s€(—00,0]
* 4N

8 ¢ 5
N+ Do) [ Y By (Ot ar

h
1 Tt i N

.
. spr [ 8
fouri) [ e (RAneP + 2 ) an 59)

Neglecting the second term on the right-hand side of (5.9). Note that ghl < 7,

so e=3h)s <1 for s < 0. Setting t* + s instead of ¢*, multiplying (5.9) by

e~ #m (" +9)e27s and replacing w by 0_,w, we have that for all s € [r — ¢ — t*,0],
pM(”Dez’YS'xit* (87 T = ta 9—7’“7 ¢)|2

e i) o0 (i) |ai(r — t, 7 — ¢, 0_rw, §)|

8 B t*  i+N .
+ 3= (2N 4 1) e puy(Jif) / > aij(0prw)eitr
1 Tt i N
X sup 6278|.Tjr(577'7t,9_7w,¢)|2d’r
SE(—00,0]
8 i § t*  i+N B
+ —(2N + 1)e~ 1Mt pM(|¢|)/ Z Bij (0r—rw)etmTdr
hl Tt i N
j=i
Shit* v 5h 8 2 2
+ e aht pM(\ZD/ ea™M” (hJi(r” —|—2h2i> dr. (5.10)
T—t 1

Note that for all s € (—oo, 7 — t — t*],

> o (i€ |wige (5,7 — £,0_7w, ¢) >
i€Z

- ZpM(m)6—27(15*+t—7)e2'y(s+t*_7—+t)|xi(t* +8,7—t,0_w, ¢)‘2

IEZL
< 67%h1(t*+t7’r) Z 2V (sHt" =T +1) |2 (t* 4+ 5,7 — t,0_w, ¢)|2
1€L
_5 * Lt
Le i+t T)H‘/bH%sz’

and
i+N

Z Z pM(“DQij(arf‘rw) sup 6278‘$jr(877'—t,9,7w7¢)‘2

i€ j=i—N §€(=00,0]
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i+N

< Z Z sup €|z (s, 7 — t,0_rw, $)|?

i€Z j=i—N s€(—00,0]

i+N

(Y2 D emlliDai (0r—rw)

i€Z j=i—N

< (2N +1) (Z sup  €*7°|wip(s, T —t79—7w7¢)|2>

ieZsG(foo,O]
i+N
S i 6w | - (5.11)
i€Z j=i—N

Let t* = 7. Then it follows that for all t > 0,
ZpM(‘ZD sup @275‘331'7-(8,7'—@0_7—(&],@5”2 S CeighltH(b”QC 2
icZ s€(—00,0] v

i+N

+CemimT / ST oarl(il)By (Or—rw)et T dr
—t

TVl j=i—N
et [T pur(iedtr () + 1) dr
T—t icZ
r i+N
5 . 5hir
—|—C€72h1'r/ Z Z pM(|Z|)Ozij(97-_7—w)e4h1 erH%’led’/’. (512)
—t ’

Tt ieZ j=i—N

Now we estimate each term on the right-hand side of (5.12). For the first term,
since ¢ € B(T —t,0_4w) and B € D, we see that

limsup Ce™ M%) ¢|2, < limsup Ce MY B(r — t,60_w)|[Z , =0.  (5.13)
t—+o00 v t—s+oo vl

For the third term, Assumption (C5) ensures that we can find N " large enough
such that for all £ > 0,

Ce‘%””/ > pm(ihed™ (17:(r)|? + h3,) dr
T—1

i€z
< ce*%hw/ > pur(ihe™ ™ (|1i(r) 2 + h3,) dr < Ce, if M > N". (5.14)
ez
Let € > 0 be given arbitrarily. Then there is N’ = N’(¢g) such that for all M > N’,
i+ N
D> pulliDMi; <e. (5.15)
i€Z j=i—N

where M;; = az; +gfj + ¢, is given in Lemma 4.2. By Assumption (C6) and
h

. Lh—8 (2N+1)2e2h S0, N M A
Remark 1, we see that for 0 < < min { 2t n( Ve S 2jmiow Mis

1
8 2
and w € Q, there exists a t, = t,(n,w) such that for [t| > tg,

ozij(Htw) < Mijenlt‘, ﬁij(Otw) < Mijemtl, (516)
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where i € Z and j =i—N,--- ,i+N. Hence, for the second term, using Assumption
(C6) and (5.16), we have that for all M > N’ and ¢ > 0,
i+N

Ce_%hﬁ/ > 2 pa (i) Bij (Or—rw)ed ™" dr
Tt €7 j=i—N
0 i+ N
- C/ ST pn(i)Bi(Orw)eit dr’
—tiez j=i—-N
0 i+N
S O/ SN pulliMige e dr!
— i€z j=i—-N
i+ N
<CY > puli)My; < Ce. (5.17)
i€Z j=i—N
Now we estimate the last term in (5.12). Similar to (5.17), we find that for all
M >N andt >0,
- i+N
CemimT / SN oar(fiDag (br—rw)e i dr
Tt €7 j=i—N
0 i+N
B C/ Yo > pulliDag(Brw)es™ ™ dr’
—tieZ j=i—N
0 i+ N
s C/ > D7 pulfil)Mijem ex™ " dy?
T 4eZ j=i—N
“+N
<CY Y pul|ihMy < Ce. (5.18)
i€Z j=i—N
Note that ¢ € B(1 —t,0_;w) and B € D, using Assumptions (C4), (C7) and the
ergodic Theorem 3.1, in view of (4.3), we deduce that

6—h1t+f_°t e N2 5, S i (Bsw)ds ||¢||:é
v,12

N

—hit [0, B (2N+1)2e2 S, SN M A% (0sw)ds 2

et e i M 612, .

= it N g Ty My (J2, (A% 0ow)—R)dsRe) g2
~,1

_1
<e 2h1tHB(T7t,0_tW)Hé%lz

% e—%hlt-&-}%(ZN-&-l)zemh Sien SN My ([0, (A% (0sw)—A)ds+At) -0 (5.19)

as t — 400. In a similar way as in (5.19), by Assumptions (C4) and (C7), (4.3),
(5.16) and Theorem 4.1, we have
E(2]\7 + ].) Z Zij:v Bi (9 w)ehlerst %(2N+1)2627h Yiez Zjii\iz\r aij(0,rw)ds’
h i€Z j=i—N .
< Ce*ﬂ8+h18+%(2N+1)2627h >iez Z;ii\i}v M;; (fso (AQ(HS/w)ff\)ds'ff\s)

8 2 _2~h i+ N A
< CeMmo=2msm iy QN2 5 STy Mighs (5.20)
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where we have used
8 i+N 0 ~
N RS ST My [ (A%(00w) - ) ds' < s
1 i€Z j=i—N s
for sufficiently large |s|. This and (5.20) ensure that for all ¢ > 0,
0 8 oy 0 8 2 _2vh i+ N ’
[ 2N s S et ROV D S 0
¢ hn i€Z j=i—N
<C, (5.21)

lp,— 8 (2N41)2e270 5 TN MiA
thanks to n < 2 iy ( S e 22’67‘ iz Miah g (4.3) we see that 7-(2N +

1)2e*h Y Z;’:Z\QN M;;A < Lhy. Then similar to (5.20), we obtain that

st ar N+ 5T, ST i (0,0 w)ds!

< ehls_ns_%@N"_l)%%h Yien Z;g\iw M;;As

for sufficiently large |s| and hy — n — ,%(2]\7 +1)2e" Y Z;—LJLN M\ > Lhy.
Hence it follows from Assumption (C5) that for all ¢ > 0,

0 , i y '
/ (hEHJ(T +9)[* + 2thl|2> et AT @NFD2I D T v s (0urw)ds o o
—t 1
(5.22)
Hence for the last term in (5.12), by (F.43), (5.18)-(5.19) and (5.21)-(5.22), we can
choose M and t sufficiently large such that
r i+N
—Shyr ) 5
et [T 503 pasis 0 sl e
Tt €7 j=i—N
< Ce—%thefhltJrf,ot %(2N+1)2€27h diez Zjii\iz\r Qij (esw)d5||¢”%
X ~,12

, i+N
/ SN par(lia (0, rw)ed T dr
7=l i€z j=i—N
- i+N
+O€7%h17/ Z Z PM(|i|)aij(9r_Tw)eihlrd7”
—t

Tl 4€Z j=i—N

0 i+N
x L TN DI D B0 + (7 +5)|E + 2ol
1€Z j=1—N
st A N2, ST (0 w)ds” g < Ce. (5.23)

Finally, if we take M and ¢ sufficiently large, then we deduce from (5.12)-(5.13),
(5.14), (5.17) and (5.23) that for all ¢ € B(r —t,0_,w),

sup 62A/S|xi7'(sa T ta 0—7“*]3 ¢)|2

Ji|>2n 5€(=00.0]
< ZpM(|i|) sup e ¥|zir(s, 7 — t,0_rw, P)|* < Ce. (5.24)
icZ s€(—00,0]

Thus the proof of this lemma is complete. O
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6. Existence of pullback attractors. First, let us prove some properties of the
multi-valued cocycle ®.

Lemma 6.1. Suppose (C1)-(C5), (4.2) and (4.3) hold. Let ¢" be a sequence con-
verging to ¢ in C ;2 and fir T > 0. Then for any 7 € R, w € 2 and € > 0, there
exist K*(g) and N*(e,w) such that for any solution x"(-) = (z}(,7,0_+w, d));cy
of problem (1.1) with w replaced by O_,w and n > K*(g) it follows

Yoo lar)P<e, Vrenr+1). (6.1)

[i|Z2N*(g,w)
Moreover, there exist 1y, (-) € ®(t,7,w,d) and a subsequence x™* satisfying

" — z in O([r,7 + T);1?) as k — . (6.2)

Proof. For any & > 0, there exist K’(¢) and N’(¢) such that

> s NN~ duls)P < o Vn > KGe),

icz S€(—00,0]
and . .
> oomllil) sup €gi(s)]? < 5, VM = N'(e).
‘ _ 8
icZ s€(—00,0]
Hence,
> om(lil) sup €|} (s)[?
ieZ s€(—00,0]
2( Y (i) sup  e¥7°|g) (s) P+ pu(li)) sup  e¥%[gi(s)[?
i€z 5€(—00,0] = 5€(—00,0]
<< (6.3)

2

if n > K’ and M > N’. On the other hand, by slightly modifying the proof of
Lemma 4.1, in view of ¢" — ¢ in C, ;2 and Assumptions (C'1)-(C5), there exists

R’(T, w) > 0 such that
Z |27 (r)|? < R/(r,w), Vr € [r,7+T), VYneN. (6.4)
i€l
Integrating (5.8) over [r,7 + t] with ¢t € [0,T], by (6.3)-(6.4), the continuity of
A(0,w), we can choose n and M sufficiently large such that for all ¢ € [0,T],
> parlliDla} (r + 1)
i€z
s i 8 .
<eTIES o (DIGTO) + - (2N 4+ 1) eI S o i)

1€EZL i€L

T+t ZJFN
/ ~2 +b2 + >A2(9 w)eiM”  sup 7|zl (s)Pdr

j=ie N s€(—00,0]
8 - *hl (T-‘rt) T Z+N ~2 ~2 ~2 2 §h11‘
h—(2N+ e« ZpM (|2]) (aij + bi; —i—cij) A (O,w)er™"dr
€7 j=i—N

T+t
e S i) [ et (,f|Ji<r>|2+2h%i)dr
1

€L
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4N
£ . ~2 72 ~2
< 5t C ;62 PM(\ZDJ_ El N (aij + b3 + Cij)

w0 [T o (A 1) i (65)

I€EZL

thanks to Assumptions (C4) and (C5). From (6.3) and (6.5), the conclusion (6.1)
follows immediately.

Now it only remains to prove (6.2). Fix now r € [r,7 + T|. Taking into account
(6.4), passing to a subsequence, we can state that ™ (r) — y weakly in /2. This and
(6.1) imply that for any n > 0, there exist K**(n) and N**(n) such that

Sl —wl < Yo ) —ul+ D] aPe) -l
i€l | |<N** Ji| >N **

< Z |27 (r) yl|2+2 Z |2 (r ‘2"'2 Z ‘y2|2<77» (6.6)

"LléN** |>N** ‘ |>N**

if n > K**(n). Therefore, 2"(r) — y strongly in [?, and consequently, z"(r) is
precompact for any 7.

On the other hand, in view of (6.4) and ¢ — ¢ in C, j2, by Assumptions (C1)-
(C4) we deduce that there exists R**(7,w) such that for all r € [r,7 +T)] and
n €N,

d n
o =D <5 [fil
i€Z ez
i+N 2
+5) | D ay(r)gy (0w, 27 (r))
i€Z |j=i—N
1+N ) 2
+5Z Z bij(r)g2; (9 w,xj(r—h(r)))
1€Z |j=i—N
2
—|—5Z ZC” / g3j (Opw, ', 2 (r+ 1)) dr’ —|—5Z|Ji(r)2
i€Z i€Z
i+N
10D (P + 52N +1) > Y @A (6w) [, (0)
iE€EZ i€ZL j=i—N
+N
5(2N +1) 2%2 Z b2 A2 (h sup 6275|:r?,,(s)|2
i€ j=i—N 56(700,0]
i+N
+102N + 1> Y A (Ow) sup  e¥[al (s)]?
i€Z j—i—N s€(—00,0]
i+N i+N

5EN+1)> 0 Y @A (w) +52N + 1)) Y bA%(0,w)

i€Z j=i—N 1€Z j=i—N
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i+N
+102N + 1)) Y @A (0,0) + 51T (7)1 + 10]|ia[|* < R™(7,w), (6.7)
i€Z j=i—N

thanks to (6.4), J € C(R;I?) and the continuity of A(f,w). This implies that

the sequence z™ is equi-continuous. Then the Arzela-Ascoli theorem ensures the

existence of a subsequence 2™ converging in C([r, 7+ T];1?) to some function z(-).

It is easy to show that z is a solution of (1.1). Also, it is clear that z(7) = ¢(0). O
From Lemma 6.1 we have the following two results.

Corollary 1. Suppose (C1)-(C5), (4.2) and (4.3) hold. Then for any T € R, w €
and t > 0, the map ®(t,7,w,-) has compact values.

Corollary 2. Suppose (C1)-(C5), (4.2) and (4.3) hold. Then for any T € R, w € Q
and t = 0, the map ¢ — O(t,7,w, P) is upper semi-continuous, i.e., if o™ — ¢ in
C, 2, then for any x}, (1) € ®(t,7,w,¢"), there exists a subsequence x™* and a
T, (-) € B(t, T, w, ¢) such that xF () = T4y (-) in Cyp2.

We are now ready to show the existence of pullback attractors for ®.

Theorem 6.2. Suppose (C1)-(C7), (4.2) and (4.3) hold. Then the multi-valued
cocycle ® associated with problem (1.1)-(1.2) has a unique D-pullback attractor A €
D in C’y,l"’ .

Proof. Note that by Lemma 4.2, Corollary 2 and Theorem 2.7, it only remains to
prove the asymptotically upper semicompactness for ®.

In order to prove the asymptotically upper semicompactness for ®, arguing as in
Theorem 2.5 in [34], we only need to show that for any fixed 7 € R, w € Q, every
B € D and any ¢ > 0, there exist 7§ = T (7,w, B,e) > 0, T* = T*(1,w, B,e) > 0,
am >0 and a § > 0 such that

(1) forallt > T*, () € ®(t, 7 — t,0_sw, B(T — t,0_w)),

Z sup e |xi(T +8)|? < ¢
icZ s€(—o0,—T§]

(2) for each fixed s € [T, 0],

U U (@i (T + 8))jij<m is bounded;
t2T* z.()eP(t, 7—t,0_tw,B(T—t,0_1w)) R2m+1
(3) forallt > T* z,() € ®(t, 7 —t,0_sw, B(T — t,0_4w)), s1, s2 € [-1§,0] with
‘52 — 81| < 5,

2
H(SL‘Z‘(T + 81) — ZL‘Z‘(T + 82))|i\<m|‘R2m+1 <¢g;
(4) forallt > T*, x,(-) € ®(t,7 —t,0_4w, B(T — t,0_w)),
Z ( sup 6275|xi(7—|—8)|2> <e.
li|>m s€[=Tg,0]

We divide the proof into two steps.

Step 1. For (1), by making use of (F.41) with ¢* replaced by 7+ s, we deduce that
for all t > 0 and s with —t < s <0,

62’Y5|xi(7— + §T — ta 9_7-(.«), ¢)|2 < 62’YS (Sup ! 6277'|:L-i(7_+s) (Ta T = ta 9_7-(.«), ¢)|2
re(—oo0,0
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L ePrhsemhit i (r —t 7 —1,0_w, $)[?

T+s +N

—l—Ce(Z”_hl)se_h”/ Z aij(erf‘rw)eh”d
Tt j=i—N

X sup 6273/|xjr(s',7—t,G,Tw,¢)|2dr

s’ €(—o00,0]

T+s +N

+C€(2’y_h1)se_hl‘r/ Z ﬁij(erf‘rw)ehlrd’l"
Tt j=i—N
T+

+ 06(27_h1)56_h”/ e (|JZ-(7“)|2 + h%l) dr,

T—1

and further by (F.43) with ¢* replaced by r, we obtain

6275|xi(7’ +s,7—t,0_,w, qﬁ)\Z < 6(277h1)567h1t|1‘i(7' —t,7—t,0_ w, qi))|2
i+N

+Ce(2’y_h1)s/t Z aij(Hrw)

“vj=i—N
“hat [T, A @NHD2 ST, SN (0 w)ds ) 2
et e Somm W GIE,

i+N

S X o)+ 1+ I+ ol

—t \iez j=i—N

r 8 2 _2vh i+ N "
« ehlslefs' H(2N+1) LD D Z;:iiNaij(esuw)dS d8/> dr

s i+N

+Ce(27_h1)5/ Z Bij(0,w)e " dr
¢

“tj=i—-N
+ Ce(QW—hl)S/ ehir (|Ji<7' + T>|2 + hi) dr. (6.8)
—t

Note that for all s < —t,

€2ﬂ/s|‘ri(7_ + 5T = t7 9_7—UJ, ¢)|2 = e_2vt627(s+t)|xi(7— + 5T = t7 9_7—(,07 ¢)‘2

e M |pi(r 45,7 — ,0_,w,9)|%, (6.9)

thanks to hy < 2v. Note that ¢ € B(r —t,0_,w) and B € D, by Assumption (C4),
(C7), and the ergodic Theorem 3.1, in view of (4.2), (4.3) and (5.16), we find that
there exists a T* > 0 and then we can choose Tj large enough such that for all
t> T

_ _ g
sup ey s 7 — 0w, 6)P < Mo, <,
‘o7 s€(~00,~T5] "
(6.10)

— _ _ 9
sup e (7 — 1,7 — 1,0 0w,0) P < e 0]1E , < 3
icz S€(—00,—Tg] v

(6.11)
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s i+N
sup 06(27_}"1)8/ g a;;(0rw)e et
icZ sE(—oo,—Té“] —t j=i—N
% efit %(2N+1)2627h Tier DLy i (B w)ds’ H¢||2C dr
v,12

i+N
<X w0 [YD e
Zse( oo, —T§] j=i—N
) T ONFD N S S M (10, = [2) (2 0,) -R)d +Ar40) 2 g
v,12
< Z sup  Ce®—hs
€7 s€(—o00,—Tg]
1+N ) _
/ 72nr7h1t+nt+%(2N+l)2ez”’h Sier DN v MijA(r+t) 6|2, dr
—t J=i—N i
1+N 1 8 1
gz sup Ce2v—h1)s Z Mije(—n—ghl)t/ e(5h1_4")rd7“\|¢||20 2
i€L s€(—o00,—Tj] j=i—N —t h
£ (6.12)

< Ce*(%hﬁrﬁ)t“él‘% B < §7
s

where M;; = a 4+ b2 + cl]7 and in a similar way, we have

i+N

sup Cer=h)s / Z a5 (6,w)

€L s€(—o0,~T7] j=i—N

5>

i+N
E Bij(0sw)e s+ 0w (2N+1)%e T ien Xy @i (6,1 w)ds ds'dr

1€Z j=i—N
1+N +N
<Z sup Ce27— hl)s/ Z M;je™ " / Z Z M;je™ ™ "thas’
ez S€(—00,—T5] j=i—N —tiez j=i—
o 5 (aN11)2e270 S, o Z;Jri\’ M ((IO J’O)(Az(os//w)—]\)ds +A(7‘—s')) ds'dr
i+N
< sup  Ce®— hl)s/ Z Mije™™

_27

<7 s€(—o0,—T(]

></ (ha=2n)s' —nr+ 72 @N+1)2e" 5, LYy MigA(r—s) g1 4.
—t

i+ N s r
sup Ce2v—h1)s Z Mzg/ e(%’n—?n)r/ e(zhi=20)s" 1o/ g
t —t

<
iez 5€(=00,=T5] j=i—N
< Ce™ %mm<%, (6.13)
i+N
| Ce >/ PO o) [ (137 + I + )
-

i€z s€(—o0,—
2 _2~h i+N "’
X e has'+[7 h1 (2N+1)%e™ Eiez jmi-n g (0 w)ds ds'dr
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i+ N

< Z sup 2’y h1) / Z Mue r/ (||J(T+Sl)||2+ ||h2||2) eh1s/
ieZsE(—oo,—T* Jj=i—N —t
o R N2 S SN M (S5 = ) (A0 ) =A)ds” +R =) gor
+N
<Z sup eZy=hu)s / Z M; e( ha=2n)r
i€Z 56(—‘”7—T* j=i—N

<[+ I+ o) 0

0
<[ M4+ ) erimo s < £ (6.4
i+N
sup Ce®~ hl)g/ Z Bij (0rw)e™ " dr
ieZsE(—oo,—T*] —tiZi_N
i+N
<Y sw (27— hl)s/ S Myeltmnrgy
icZ 56(700,7T* —ti—i_N
< Ce~ =15 < §7 (6.15)
sup Ce(2'y—h1)s/ ehr (|Ji(7“+7')|2 +h%i) dr
icZ s€(—o00,—T¢] —t
(2y—h1)TY O e 2 2 €
< Ce=M)Tg </ e ||J(r+7)||° + ||hz]] ) < 3 (6.16)

Inserting (6.11)-(6.16) into (6.8), in view of (6.10), we deduce that for all ¢t > T
and z,(-) € ®(7,7 — £, 0_w, B(T —t,0_w)),

Z sup 6275|$i(7+5,7'—t,9_7w7¢)|2 <g,
icZ s€(—o0,—T¢]

which implies that (1) holds true.
Step 2. Thanks to Lemmas 4.1-4.2 and 5.1, (2) and (4) follow immediately.

For (3), without loss of generality, we assume that si,s, € [-Tf,0] with 0 <
s1— s2 < 1, by (C1)-(C4) we have that for all r € [T + s2, 7 + s1],

2
|Gt = 00|, = D Jiilr T — 10w, 0
li|<m
5 Z (.fi(xi(r77- - t70—7w7¢)))2

lil<m
i+N

+5 Z Z a;j(1)g1j(0r—rw, zj(r,7 —t,0_;w, P))

jil<m |j=i—N

1+N

+5 Z Z bzg g2j r— Tw,xj(r—iL(r),T—t,H,Tw,qS))

li|<m |j=i—N
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2
i+N 0

+5 Z Z cij(r)/ 935 (Or—rw, v’ xi(r +0'))dr'| +5 Z BAGIE

jil<m |i=i-N —o0 jil<m

< 1002 Z lzs(r, T — t,0_rw, d)|?
fil<m
i+N
+ 10(2N + 1)e2h Z Z ij(0r—rw) sup €|z (s, T —t,0_rw, ¢)|?
li|<m j=i—N s€(=00,0]
i+N
+10@N +1) > D Bij(0p—rw) +5 > [L(r)P+10 Y13, (6.17)
il <m j=i—N jil<m fil<m

where «;;(0,_;w) and B;;(0,_,w) are given in Lemma 4.1. Using (F.43), (5.19),
(5.21)-(5.22) and (6.17), we obtain that for ¢ sufficiently large,

H(a:i(T—l—sl,T—t,G,Tw,qb) — (T + 82,7 — t,0_,w, ¢)) ‘

T+s1
g /
T+52
T+s1

<Clr-s)+C [ Y flnr 0w o)Pdr

T2 Ji|<m

R2m+1

(40,7 = .0, )1

R2m+1

T+s1

< C(s1 fsz)JrC'/ Z (lzi(r, 7 —t,0_rw, 0)* +13;) dr

TS Jil<m

H—N

T+51
+C’/ aij(HT_Tw) sup ¥ |z (s, 7 —t,0_,w,p)|Pdr
+s2 li \<mJ N s€(—00,0]

T+s1 i+N T+s1
+c/ > > Bijlbr_rw)dr + C > i) Pr

T+s2 |z‘\<mj=i—N T2 Ji|<m

<C(s1—s2)+C Z Z sup Bij (0r—rw)(s1 — 82)

li|<m j=i— N TE[T+s2,7+s1]

+C  sup [[J(0)]P(s1 - s2)
re€[T+s2,7+s1]

T+581
R EED D ST [l
li|<m j=i— N TE[THs2,T+s1] 452 ¥

<C(s1—s2)+C Z Z sup Bij (0r—rw)(s1 — s2)

li|<m j=i— Nr€[7'+92 T+51]

+Csup TP (51— s2)

r€[T+s2,7+s51]

o1 T a6l (e
|i|<m j=i— N TE[T+s2,7+51] v

X 6_h1t+f_0t %(21\74‘1)2627” ez E;ii\]—N aij(0sw)ds
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i+N
+C |1+ Z Z sup i (0r—rw) (e—h152 _ e—hls1)
|i|<m j=i—N r€[T+s2,7+51]
0 i+N
></ Z Z Bii(Osw) + || (T + 8)||1* + || he]?

—t \iez j=i—N

0 2 _2~vh i+ N
« 6h1$+f5 %(2N+1) e Ziez Z;':z‘—N aij(ﬁs/w)ds/ds

<C(s1—s2)+C (e*hls2 - e*hlsl) , (6.18)

thanks to the continuity of a;;(6,—,w), B;;(f,—,w) and J € C(R;(?), and thus (3)
holds. The proof is complete. O

By a similar argument as in [31], the following result can be obtained immediately
by using Theorem 2.8.

Theorem 6.3. Suppose (C1)-(C7T), (4.2) and (4.3) hold. If there exists T > 0 such
that for allt € R,

aij(t + T) = aij(t), bm(t + T) = bij(t), Cij(t + T) = Cij(t), (619)

Ji(t +T) = Jy(t), h(t +T) = h(t), (6.20)

where i € Z and j =i — N,--- ;i + N, then the multi-valued cocycle ® associated
with problem (1.1)-(1.2) has a unique periodic D-pullback attractor A € D in C, 2.

Appendix.

Proof of Lemma 3.2. Proof. Let us fix some w € Q. We can rewrite Eq. (1.1) as

x(t> = f(t,.’l?t),
where f(t,z;) == (ﬁ(t’xit))iez and

i+N
filtt,zi) = fimi()) + D ai(D)gr; (6w, (1) + Ji(t)
j=i—N
i+N N i+N 0
+ ) bi(t)ge; (B, it = h(1)) + Y Cij(t)/ 93j (Ow, r,2;(t +7))dr.
j=i-N j=i—N —oo

We divide the proof into two steps.
Step 1. f: R x Cyiz — 12 is well defined and bounded.
We note that f(t,v) = <fi(t, vl)) and
ez

i+ N i+ N
filt o) = Fi(wi(0) + Y ai(D)g1; (0w, 05(0) + Y big(t)g2; (B, v;(=h(t)))
j=i—N j=i—N

i+N 0
£ 3 ) / g3 (Buto, 70y () -+ T(8).
j=i—N >

In view of the Assumption (C2) and the trivial bound [lv(r)|| < ||vrllc, ., we can
obtain that

If(wODI? < 25 [l0llE , + 2]2]*. (F.21)
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y (C3) and using the fact that (Z - u]) < NN 42, we have

Jj=1"3

. 2
1+ N

> aij(t)gr; (6w, v;(0))
j=i—N
i+ N

EN+1)D 3 adi(t) (9} (0:0) v (0)] + a3 (Buw))

i€ZL j=1i—N

1+ N

ev 1 (3% w0 | 2.,

i€Z j=i—N
i+N

CN+1)Y " > af(t)ar;(0w). (F.22)

1€ZL j=1i—N

In a similar way as above, by (C3) we deduce that

i+N A 2
> bii (0925 (0w, v (—h(1))
j=i—N
1+ N
N+ D 030 (B3, 0w) o (~R(0) 2 + 63, (0,))
i€ZL j=1i—N
1+ N
N+ | D0 D7 083 (0) | 0l
i€Z j=i—N
i+N
+EN+1)Y > byt (0w), (F.23)
1€ZL j=1i—N
and
2
i+N 0
Z cl-j(t)/ 935 (0w, 7, v (r))dr
j=i—N —o0
2
i+N 0
SN Cij(t)/ (P3j (Orw, 7)|vi ()| + G3; (Osw, 7)) dr
i€Z \j=i—N -
2
i+N
<O D e (ﬁsj(9tw) sup e”|vj<s>|+agj<otw>>
ieZ \j=i—N SE(—00,0]
1+N
202N +1) Z Z p3] (Bw) sup  e*7%|v;(s))?
i€Z j=i—N s€(—00,0]
+N

202N +1) Z Z qgj (0rw)

1€Z j=i—N
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1+ N
2(2N +1)° Z Z Ps; (Orw) HU”QCW_Q
€L j=i—N '
i+N
22N +1)) 0 > (1), (0w). (F.24)
1€ZL j=i—N

Then, using (F.21)-(F.24) and the assumption on A we obtain that

2
i+N
1Fe o2 <5 (2 oli2 , +20l?) +530 [ D ai(tg B, v;(0))
' i€Z \j=i—N
2
i+N )
+5> D bis(t)ga (B, v (—h(1)))
i€Z \j=i—N
2
i+N 0
+52 Z cij(t)/ 935 (Orw, 7,05 (r))dr +52|Ji(t)2
i€Z \j=i—N e 1€Z
i+N
< 101?\\v||2~w2 +ERN 12D D ay | A% Gtw)llvllc
1€Z j=i—N
1+ N
+5(2N 4 1)? Z Z b A?(0yw) 2’VhHUHQ
i€Z j=i—N
1+ N
+10eN +1)2 (>0 Y & | A (0w) ol .
1€Z j=i—N
1+ N i+ N
+5N+ 1)) DT @A 0w) +52N +1)Y Y bEAY (Ow)
i€Z j=1i—N i€ZL j=1i—N
i+N
+102N + 1) 3T @ A% (0w) +5]|T(1)]|* + 10]|1z % (F.25)
i€Z j=i—N

Since A%(6;w) belongs to C(R; RY) for any fixed w € Q, in view of J(t) € C(R;[?),
it follows from (F.25) and ), Z;LZZ\LN (Zi%j +Z$j +Ez2j) < oo that f maps the
bounded sets of R x C, ;2 into the bounded set of 2.

Step 2. f RxC,p2 — 12 is continuous.

We consider {t,}nen C R and t € R such that ¢, — ¢, and {v"},en C C, 2
and v° € C, ;2 such that v™ — vY. Let € > 0 be given arbitrarily. Then there exists
k = k(e) such that for all n € N,

Zl% Z bup 6275\11?(8)|2<6, Z sup 27|l (s)]? <e, (F.26)

li|>k li| >k SE(—0 Ji|>k S€(=00.0]

i+N

> ¥ (a§j+5§j+zfj) <e. (F.27)

li| >k j=i—N
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Due to the continuity of f; and v™ — v%, in view of the Assumption (C2), for any
e > 0 and sufficiently large n, we have

S 1AR) — fido)

1E€L
<D FP0) = FY O +2 > 1fp )P +2 > [fi(w)
jil<k jil>k il >k
Z|f, |2+4Z W O) +13,) +4 > (P (0)]* +13,)
li|<k li|>k |i|>k
< Ce. (F.28)

By (C1), (C3)-(C4) and (F.27), in view of the continuity of a;;(t), we find that for
all n sufficiently large,

1+N 1+N 2
7 i (ta)gr (0r,w.07(0) = > ai;(t)g1; (0w, v2(0))
j=i—N j=i—N
i+ N i+N 2
<2|| Y ai(ta)gn (0, w,v7(0) = > aij(t)gr (0w, v} (0))
j=i—N j=i—N
i+N 1+N 2
+2| Y ai(t)g1;(0r,w,07(0) — D aii(t)gr; (B, v)(0))
j=i—-N j=i—N
i+N
22N +1)> > (ai(tn) — aij(£)* g7;(6r,w, v} (0))
i€Z j=i—N
+N )
22N +1)) > ad(t) (91(0r,w, 07 (0) — g15 (6w, 09(0)))
1€Z j=i—N
i+ N
2 n
22N +1) > > (aij(ta) — aii(t)? (A2(0r,w) 07 (0)[* + A(0,w))
li|<k j=i—N
i+N
1N +1) Y > 26 (A2(0,@) N + DI E,, + A2 (0,))
li|>k j=i—N ,
1+N 9
22N +1) > > @ (91(0r,w,0}(0) — g1 (0w, v9(0)))
li|<k j=i—N
i+N
12N+ > Y @ (A2 0,0)@N + |03, + A%(60,,0)
|i|>k j=i—N '
+A2(Gr0) (2N + 1)[0°)12, +A2(9tw)) < Ce, (F.29)

Arguing in the similar way as above, we deduce from (C1), (C3)-(C4), (F.27) and
the continuity of b;;(t), ¢i;(t), A(f;w) and h(t) that for all n sufficiently large,
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i+N R i+N ) 2
D bij(tn)ga; (Br,w, v (=h(tn))) — > bij(t)g2; (Brw, vf (—h(1)))
j=i—N j=i—N
2
i+N ) i+N R
D bi(tn) g2 (Oe,w, v} (=h(tn) = Y bij ()92 (01, w, v (=h(tn)))
Jj=i—N j=i—N
2
i+N i+N )
Z bij (t)g2;(6r, w, Z bij (t)g2; (fw, v (_h(t)))
j=t—N j=i—N
i+ N )
2(2N+1)Z Z (bij(tn) — by (1))? g3; (01, w, v (—h(tn)))
1€ZL j=1—N
i+N ) R 9
2N +1) D0 D7 03(0) (92500, 07 (<h(tn))) = 923 (O, v (~h(1)))
i€Z j=i—N
i+N R
22N +1) Y ST (bi(ta) — bi(t))? (A2(9tnw)|v§‘(—h(tn))|2+A2(9tnw))
li|<k j=i—N
i+N
4eN+1) Y Y 2 (A2 (0,0)e> " 2N + D02, |, + A2 (01, ))
li|>k j=i—N
i+N ) 2
AN +1) 37 D0 B (92 (01,007 (<h(t))) = g2 (0ueo, ) (<h(t)) )
li|<k j=i—N
i+N R R 2
4N +1) D D7 B (923 0w, 0 (<h(t0)) — g2 (0u0, ) (<h(1))))
li|<k j=i—N
i+N
42N +1 Z 3w (A2 (B, w)e> 2N + D02, + A (6, w)
li|>k j=i—N Y
+A2(B)e ™ 2N + D[0°)3, + A2(0tw)) < Ce, (F.30)
and
i+N 0 i+N 0 2
> cults) [ gl )= 3 eslt) [ gl ))dr
j=i—N —oo j=i—N e
i+N 0 2
<2 Y (eutta) = cu®) [ gniGrwrr oy o)r
j=i—N —oo
i+ N 0 0 2
12| 3 e ( [ gy - [ gsjwtw,r,v?(r))dr)
j=i—N —o© —o0
i+ N
2(2N +1) Z Z (cij(tn) — cij(1))?
i€Z j=i— N

2

9 ( [ GO )+ s 00m) )
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i+N 0 2
+2(2N +1) Z Z ) (/ (935 (B¢, w, 7,0} (r)) — g5 (Bsw, 7, ’U?(T))) dr)
i€Z j=i—N —oo
1+ N
4(2N + 1) Z Z (cij(tn) — ci;(1)?
|i|<k j=i—N

x (A?(omwxzzv 1" IE, , + A%(60,w))
i+N
8RN +1) Y Y0 28 (A (On,@)@N + DI 2, + A% (0r,))
li| >k j=i—N
i+ N 0 2
+2(2N +1) Z Z &, </ (935 (B¢, w, 7,07 (r)) — g5 (Osw, 7, v?(r))) dr)
|i|<k j=i—N —oo
i+N
8RN +1) Y 30 & (N On,@) N + D2, + A (0r,w)
li|>k j=i—N
i+ N

8eN+1) > Y cm( (0u)@N + DII°J2. , A2(9tw)) <Ce,  (F31)

|i|>k j=i—N

thanks to Assumption (C'1) and Lebesgue’s dominated convergence theorem.
Note that J(t) € C(R;I?), hence for sufficiently large n, we can deduce that

D ilta) = T = [T (t) = T <. (F.32)

€L

Then it follows from (F.28)-(F.32) that for all n sufficiently large,

1f (tn,0™) = F£ 00> <5 | filw — FiY 0D 45 [Ji(tn) = Ji(t)[?
i€z i€Z
i+N i+N 2
530S au(t)gn B0 0) = Y ais (0916, 0(0))
i€z ! j=i—N j=i—N
i+N R i+ N ) 2
+5Z Z bij(tn)g2; (01, w, v} (=h(tn))) — Z b; ()QZJ(etwvv( h(t)))
1€Z " j=i—N j=i—N
i+N 0
+5Z Z cij(tn)/ 935 (6, w, T, vj (r))dr
i€z | j=i—N —oo
i+ N 0 2
- Z cij(t)/ 935 (6sw, T,UJO(T‘))dT' < Ce. (F.33)
j=i—N —o0

This implies that f : R x C,, ;2 — [? is continuous. Thus, Theorem 4 in [5] ensures
that for any w € Q and ¢ € C, j2, there exists at least one solution z(-) € C*([r,7+
T(M,w)];1?). O

Proof of Lemma 4.1. Proof. Multiplying (1.1) by x; we obtain

1d i+N
53T OF = filzi(®)z:(®) + Y ai (g1 (O, i (0)xi(1)

j=i—N
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1+ N

+ ) bij(8)ga; (0w, ;i (t — h(t)))zi(t)
j=i—N
i+N

0
+ Z cij(t)z,(t / g3j (O, i (t +7))dr + J;(t)z(t).

j=i—N

Let 1,22, €3 and g4 be positive parameters to be fixed later on. Note that fz(t)
takes the value in [0, k). Then by making use of Young’s inequality, Assumptions

(C2)-(C4) and (Z;\Ll u]) NZ u?, we find that

filwi(t))zi(t) < —haa(t) + h3;, (F.34)
i+N
Z aij(t)g1; (O, x;(t)) i (t)
j=i—N
_@N+1)
481

i+N

Z a?j(t)g%j(gtwij(t)) +€1|xi(t)|2

j=i—N

IN + i+N N S

<CUED S @20300) swp (o)

L j=i-N s€(—00,0]
IN +1) &
+(Tl) Z a3;q1;(Ow) + x|z (1), (F.35)
j=i—N

1+N R
S bii(t)g;(Buo, x5 (¢ — h(t)))ai()
j=i—N
i+N
(QN“ 3" 03093, (G, w5 (t — h(t))) + enlzi(t)
j=i—N
i+N

Z bupgj(ﬁtw)e%h sup ¥z j(s)[?
J=i—N s$€(—00,0]

< (2N +1)
452

i+N

Y 0503 (0w) + ealai (), (F.36)
j=i—N

2N+1

i+N 0
PRCHGEN / 93j (Ogw, 7, (¢ +1))dr
j=i—-N e
i+N
< Z cij(t) (]33j(9tw) sup . e"|zj4(s)] +E]?%j@ﬁ”)) |z (2)]

j=i—N SE(*OO,

7 B3 (Ow) + 265l (1)), (F.37)

j=i—N
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and
1
Ji(t)zi(t) < ealzs(t)]® + flJi(t)IQ-
€4

Note that e27* > 1. Therefore,

d
a\xl(t)ﬁ < (—2hy + 221 + 269 + 4eg + 2¢24) |a:1(t)|2

i+N

1 ~ 1
+ Z (2N +1)e2h (%pu (Orw) + Eb?jp%j(gtw) + 253E?jf%j(@tﬁu))
j=i—N

1
X sup 62”’3|:th(8)|2 + T|Ji(t)|2 + 2h3;
5€(—00,0] €4
i+N

1 _ 1
+J ;N 2N + 1) <2 €1 zj(h] (etw) bz]qz](etw) + 263512](},?%](01550)> . (F38)

This implies that

d hit 2 hit 2 hit d 2
= (€2 (OF) = e o (0] + €™ — (1))
ehlt
— (h1 — 261 — 269 — de3 — 2e4) €™ |2, (1)]* + ?'Ji(t”? +2eMth2,
4
i+N 1 1
+ (2N +1)e" Z (%afjpfj(atw) bZJpQJ(Qtw) + 2@&%@(@@)
j=i—N
x et sup  e¥|aji(s)]?
$€(—00,0]
i+N 1 1
LN D) Y (G0 + T 0 + 5B 0 )
j=i—N

(F.39)
Integrating (F.39) over [r — ¢,t*] with ¢ > 0 and t* > 7, we obtain that for every
w € €,

hlt |x1( s T — t7w7 ¢)|2 < ehl(T_t)‘xi(T - tv T = t7w7 ¢)|2

.
 (hy — 261 — 265 — 42y — 254)/ M i (r T — 1w, 6)|Pdr
T—1

+* i+N
1 1 ~ 1 5
+ / (2N + 1)e" Z (25 azp1; (0rw) + 7252b§jp§j(97.w) 2€30$]p3j((9 w))
T—1

j=i—N

t* a
x e sup e |zjn(s, T —t,w, P)] dr—i—/ e (E\Ji(r)|2+2h§i) dr
T—t

5€(—00,0]

i+ N
2 2 15 o 1 52 hyr
(2N +1) /T . ;N ( ai;q15(0rw) + T&bijqzj(&w) + 20 —C;;q3;(Or w)) e dr.

(F.40)

Leteg =e9g =63 =¢4 = ’f—é. Then we can neglect the second term on the right-hand
side of (F.40). Note that % < %hl < v, s0 e?7=h1)s <1 for s < 0. Setting now
t* + s instead of t*, multiplying (F.40) by e~ " +9)¢27s and replacing w by _,w,
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we find that forall 7 —t —¢t* <s <0

)

6275|1'it* (Sa T = ta 9_7-(.4}, ¢)|2 g 67h1 (t"=r+) |$i (T - ta T = ta 0_7-(.41, ¢)|2

] . t*  i+N
+ h—(?N + 1)e2rhe Mt / Z ij (0r—rw)e™”
1 =t .
j=i—N

x sup eS|z (s, T —t,0_,w,¢)|*dr
s€(—00,0]

8 . t*  i+N
—|—h—1(2N—|—1)e*h1t / Z Bii (0r—_rw)e™ dr

Tt j—i—N
a 8
+ et / e (|Ji(r)|2 + 2h§z> dr,
T—t hy
where we have used the notations
aij(0r—rw) == azsz%j (0r—rw) + b?jpgj (0r—rw) + E?jﬁ%j (0r—rw),

Bij (Or—rw) := a?j‘]%j (0r—7w) + b?quj (Or—rw) + EzQ‘jZIJ?%j (0r—rw).
Note that for all s € (—oo, 7 —t — t*],
Z 6278|xit* (37 T — tv G—va ¢)‘2
€L
— e—2fy(t*+t—7—) 2627(s+t*_r+t)|xi(t* +8,7—t0_ w, ¢)|2
i€Z
< o—hi(t"+t=7) Z e27(s+t*,-r+t)|l,i(t* + 8,7 —t0_rw, ¢)|2
€L
Chy(E t—T) || 412
< g2,
Then, it holds
ehlt*

sup €278y (5,7 —t,0_rw, P)|?

il s€(—00,0]

—hq (t—
<emtIope, +

T—1

o
8
e (TP + 200l ) ar
1
8 t* 1+N
h ha
F N+t [ TS ST a0,
i€Z j=i—N
x sup ¥z (s,7 —t,0_,w, )| dr
$€(—00,0]
8 t* 1+N
- h—1(2N +1) /H e Z Z Bii (0 w)dr.
1€Z j=1—N
We observe that
i+N
Z Z @ij(0p—rw) sup €|z (s, T —t,0_rw, ¢)|?
ieZ j=i—N 5€(—00,0]

i+ N i+N

< Z Z sup €%z (s, 7 — t,0_,w, )| Z Z o (0r—rw)

i€ j=i—N $€(=00,0] i€Z j=i—N

(F.41)

(F.42)
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i+ N
< (2N +1) Z sup €278z (s, T — t,0_rw, d)|? Z Z a;j(Or—rw)
icz S€(=00,0] i€ j=i—N
Then (F.42) can be rewritten as
e’“t*nmt* b SR,
i+ N
N+ 1) / S ST By (0 rw)dr
1€Z j=i—N
t* 8
" / (th(r)n? 2l dr
T—t 1
8 i+N
)2e20h o 2
+ g N 1) / . %J;Naij(GT_Tw)H:ETHCWsz’.

Using Gronwall’s lemma, we have

||It* H2C < efhl(t*thfT)ef:it %(2N+1)2327h Sies E;J:V_N Olij(er—ﬂ'w)dT”(b”Q
v,12
+* 8 i+N
H [N DY D BOrri) + IO + 2 el
Tt 1 1€Z j=i—N
X e —hai(t” _T)‘f‘ft 2N+1)2 2 Elezzj i Naij(er/—q—w)drldr

. e 2 2+4h i+ N L
_ e*hl(t +t7-r)ef—t Ry (2N+1)%e ZiEZ Zj:i—N O‘”(GSW)dSHd)HQC

t*—1 8 i+N 8
2 2
+/_t h1(2N+1 Y Biibaw) h—1|\J(r+s)H +2||hs|
i€ZL j=1i—N
% e —h (=) [T A = (2N+1)%e SADIID DAl Naij(es/w)ds/ds' (F.43)

Let t* = 7, then for all t > 0 we have
erné < Ce_h1t+ (@N+1)2e™ [0 5 Y o an(9sw)d8||¢”2
12

i+N

0
20 [T X 80w + 196+ o)+ hal?

i€Z j=i—N

0 2_2+h
% eh13+f 7 (2N+1)%e® Z“EZZ] Al Naij(é)szw)ds’ds’

and thus the proof of this lemma is finished. O
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