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Abstract. We study second order linear differential equations with analytic
coefficients. One important case is when the equation admits a so called reg-

ular singular point. In this case we address some untouched and some new

aspects of Frobenius methods. For instance, we address the problem of finding
formal solutions and studying their convergence. A characterization of regular

singularities is given in terms of the space of solutions. An analytic-geometric

classification of such linear polynomial homogeneous ODEs is obtained by the
use of techniques from geometric theory of foliations means. This is done by

associating to such an ODE a rational Riccati differential equation and there-

fore a global holonomy group. This group is a computable group of Moebius
maps. These techniques apply to classical equations as Bessel and Legendre

equations. We also address the problem of deciding which such polynomial
equations admit a Liouvillian solution. A normal form for such a solution is

then obtained. Our results are concrete and (computationally) constructive

and are aimed to shed a new light in this important subject.

1. Introduction and main results. Since the first appearance of Newton’s laws
of motion (see Axioms or Laws of Motion in [17] page 13), the study of ordinary
differential equations has been associated with fundamental problems in physics and
science in general. Many are the applications as universal gravitation and planetary
dynamics, dynamics of particles under the action of a force field as the electromag-
netic field, thermodynamics, meteorology and weather forecast, study of climate
phenomena as typhoons and hurricanes, aerodynamics and hydrodynamics, atomic
models, etc. Thanks to the nature of Newton’s laws and other laws as Maxwell’s
equations or Faraday’s and Kepler’s laws [12], most of the pioneering work is first
or second order ordinary differential equations (ODEs). Of special interest are the
laws of the oscillatory movement (pendulum equation and Hill lunar movement
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equation [11]) and Hooke’s law (spring extension or compression). A number of
classical equations are, or have nice approximations by, linear equations with ana-
lytic coefficients. Among the linear equations the homogeneous case is a first step
and quite meaningful. To be able to solve classical ordinary linear homogeneous dif-
ferential equations is an important and active subject in mathematics. The arrival
of features like scientific computing brings back the problem of finding solutions via
power series. In this direction, a classical and powerful method is due to Frobenius.
The main point is that Frobenius method works pretty well in a suitable class of
second order linear ODEs, so called regular singular ODEs.

In this paper we study second order linear differential equations with analytic
coefficients under the viewpoint of finding solutions and studying their convergence.
In very few words, we study forgotten as well as new aspects of Frobenius method.
We start with the convergence of formal solutions. We also discuss the character-
ization of the so called regular singularities in terms of the space of solutions. An
analytic-geometric classification of these polynomial ODEs is obtained via associat-
ing to such an ODE a Riccati differential equation and therefore a global holonomy
group. This group is a computable group of Moebius maps. Next we apply these
techniques and results to classical equations as Bessel and Legendre equations. Fi-
nally, we study the existence and form of Liouvillian solutions for polynomial ODEs.

Next we give a more detailed description of our results.

1.1. Convergence of formal solutions for second order linear homogenous
ODEs. In Section 3 we discuss the problem of convergence of formal solutions for
linear homogeneous ODEs of order two of the form

a(x)y′′ + b(x)y′ + c(x)y = 0 (1)

where a, b, c are analytic functions at x0 ∈ R. We recall that there are examples of
ODEs admitting a formal solution that is nowhere convergent (cf. Example 3.13).
Our next result may be seen as a version of a theorem due to Malgrange (see
[14,15]) and also to Mattei-Moussu (see [16]) for holomorphic integrable systems of
differential forms. By a formal solution centered at x0 ∈ R of an ODE we shall mean

a formal power series ŷ(x) =
∞∑
n=0

an(x− x0)n with complex coefficients an ∈ C. We

prove:

Theorem A. Consider a second order ordinary differential equation given by (1).
Suppose also that there exist two linearly independent formal solutions ŷ1(x) and
ŷ2(x) centered at x0 of equation (1). Then x0 is an ordinary point or a regular
singular point of (1). Moreover, ŷ1(x) and ŷ2(x) are convergent.

A formal solution associated to a regular singularity is always convergent:

Theorem B. Consider a second order ordinary differential equation given by (1).
Suppose (1) has at x0 an ordinary point or a regular singular point. Given a formal
solution ŷ(x) of (1) then this solution is convergent. Indeed, this solution converges
in the same disc type neighborhood where the coefficients a(x), b(x), c(x) are analytic.

1.2. Characterization of regular singular points in order two. We shall say
that a function u(x) for x in a disc |x| < R centered at the origin 0 ∈ R,C is
an analytic combination of log and power (anclop for short) if it can be written
as u(x) = α(x) + log(x)β(x) + γ(x)xr for some analytic functions α(x), β(x), γ(x)
defined in the disc |x| < R and r ∈ R or r ∈ C. In the real case we assume that
x > 0 in case we have β 6≡ 0 or γ 6≡ 0 and a power xr with r ∈ R \Q.
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Definition 1.1. A one-variable complex function u(z) considered in a domain U ⊂
C will be called analytic up to log type singularities (autlos for short) if:

1. u(z) is holomorphic in U \ σ where σ ⊂ U is a discrete set of points, called
singularities.

2. Given a singularity p ∈ σ either p is a removable singularity of u(z) or there
is a germ of real analytic curve γ : [0, ε) → U such that γ(0) = p and u(z) is
holomorphic in D \ γ[0, ε) for some disc D ⊂ U centered at p.

A one variable real function u(x) defined in an interval J ⊂ R will be called
analytic up to log type singularities (autlos for short) if, after complexification, the
corresponding function uC(z), which is defined in some neighborhood J × {0} ⊂
U ⊂ C is analytic up to log type singularities, as defined above.

With such notions we obtain the following characterization of regular singulari-
ties:

Theorem C (characterization of regular points). Consider a second order ordinary
differential equation given by (1). Then the following conditions are equivalent:

(i) The equation admits two linearly independent solutions y1(x), y2(x) which are
anclop (analytic combinations of log and power). Then x0 is an ordinary point
or a regular singular point for the ODE.

(ii) The equation admits two solutions y1(x), y2(x) which are autlos (analytic up
to logarithmic singularities).

(iii) The equation has an ordinary point or a regular singular point at x0.

1.3. Riccati model and holonomy of a second order equation. We start
with a polynomial second order linear equation of the form

a(z)u′′ + b(z)u′ + c(z)u = 0 (2)

with a, b, c are complex polynomials of a variable z. By introducing the change of
coordinates t = u′/u we obtain a first order Riccati equation which writes as

dt

dz
= −a(z)t2 + b(z)t+ c(z)

a(z)
.

Definition 1.2. The Riccati differential equation above is called Riccati model of
the ODE (2).

By its turn, since the work of Paul Painlevé (see [18]), a polynomial Riccati
equation is studied from the point of view of its transversality with respect to the
vertical fibers z = constant, even at the points at the infinity u = ∞. With the
advent of the theory of foliations, due to Ehresmann, the notion of holonomy was
introduced as well as the notion of global holonomy of a foliation transverse to the
fibers of a fibration. This is the case of a polynomial Riccati foliation once placed
in the ruled surface P1(C)×P1(C), where P1(C) = C∪{∞} is the Riemann sphere.
This allows us to introduce the notion of global holonomy of a second order linear
equation as above. Then we proceed the study of the equation from this group
theoretical point of view, since the global holonomy will be a group of Moebius
maps of the form t 7→ αt+β

γt+δ . We do calculate this group in some special cases and

reach some interesting consequences for the original ODE.

Theorem D. Consider a second order ODE given by u′′+b(z)u′+c(z)u = 0 where
b, c are complex polynomials of a variable z. Then the equation above admits a
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general solution of the form

u`,k(z) = k exp

(∫ z

0

`D(ξ)−B(ξ)

A(ξ)− `C(ξ)
dξ

)
, k, ` ∈ C

where A,B,C,D are entire functions satisfying AD −BC 6= 0.

We apply these techniques for studying the classical Bessel and Legendre equa-
tions (cf. Examples 5.10 and 5.13).

1.4. Liouvillian solutions. One important class of solutions for ODEs is the class
of Liouvillian solutions, following the work of Liouville, Rosenlicht and Ross among
other authors. The question whether a polynomial first order ODE admits a Liou-
villian solution or first integral has been addressed by M. Singer in [24] and others.
We refer to [24] for the notion of Liouvillian function in n complex variables. Such
a function has (holomorphic) analytic branches in some Zariski dense open subset
of Cn. In particular we can ask whether an ODE admits such a solution.

Question 1.3. What are the polynomial ODEs of the form (2) admitting a Liou-
villian solution u(z)? What are the possible Liouvillian solutions?

Our contribution to the above problem is:

Theorem E. Consider a complex ODE of the form L(u) := a(z)u′′ + b(z)u′ +
c(z)u = 0 where the coefficients a(z), b(z), c(z) are complex polynomials. Then we
have the following:

(i) If L[u] = 0 admits a solution satisfying a Liouvillian relation then it has a
Liouvillian first integral (cf. Corollary pages 674,675 [24]).

(ii) If L[u] = 0 admits a Liouvillian solution then it has a Liouvillian first integral
(cf. Corollary page 674,675 [24]).

(iii) If L[u] = 0 admits a Liouvillian first integral then its solutions are Liouvillian
and given by one of the forms below:

(a) u(z) = exp
(
−
∫ z
γ(η)dη

)[
k
∫ z

exp
( ∫ η 2γ(ξ)−b(ξ)

a(ξ) dξ
)
dη+`

]
for constants

k, ` ∈ C and γ(z) a rational solution for the Riccati equation.

(b) u(z) = k1 + k2

∫ z
exp

(
−
∫ η b(ξ)

a(ξ)dξ
)
dη, for constants k1, k2 ∈ C.

2. Frobenius method: Characterization of Euler equations. In this section
we recall briefly the classical Frobenius method. We consider equations that write in
the form a(x)y′′+b(x)y′+c(x)y = 0 for some real analytic functions a(x), b(x), c(x)
at some point x0 ∈ R. We say that x0 is an ordinary point if a(x0) 6= 0. Nevertheless,
most of the relevant equations are connected to the singular (non-ordinary) case.
We can mention the Bessel equation x2y′′ + xy′ + (x2 − ν2)y = 0, whose range of
applications goes from heat conduction, to the model of the hydrogen atom (see [1]).
This equation has the origin x = 0 as a singular point. Another remarkable equation
is the Laguerre equation xy′′+(ν+1−x)y′+λy = 0 where λ, ν ∈ R are parameters.
This equation is quite relevant in quantum mechanics, since it appears in the modern
quantum mechanical description of the hydrogen atom. According to Frobenius a
singular point x = x0 of the ODE a(x)y′′ + b(x)y′ + c(x)y = 0 is regular if the

following limits lim
x→x0

(x− x0) b(x)
a(x) and lim

x→x0

(x− x0)2 c(x)
a(x) exist and are finite.

The Frobenius method consists in associating to the original ODE an Euler
equation, i.e., an equation of the form A(x − x0)2y′′ + B(x − x0)y′ + Cy = 0 and
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looking for solutions (to this equation) of the form y0(x) = (x−x0)r. This gives an
algebraic equation of degree two Ar(r−1)+Br+C = 0, so called indicial equation,
whose zeroes r give solutions y0(x) = (x − x0)r of the Euler equation. The Euler
equation associated to the original ODE with a regular singular point at x = x0 is

given by (x − x0)2y′′ + p0(x − x0)y′ + q0y = 0 where p0 = lim
x→x0

(x− x0) b(x)
a(x) and

q0 = lim
x→x0

(x− x0)2 c(x)
a(x) .

In this case we have the following classical theorem of Frobenius:

Theorem 2.1 (Frobenius theorem, Theorem 5.6.1 in [2] pages 293,294, [8], Theorem
3 and 4 in [6] pages 158,175). Assume that the ODE

(x− x0)2y′′ + (x− x0)b(x)y′ + c(x)y = 0

has a regular singularity at x = x0, where the functions b(x), c(x) are analytic with
convergent power series in |x− x0| < R. Then there is at least one solution of the
form

y(x) = |x− x0|r
∞∑
n=0

dn(x− x0)n

where r is a root of the indicial equation, d0 = 1 where the series converges for
|x− x0| < R.

Frobenius method actually consists in looking for solutions of the form

y1(x) = |x− x0|r
∞∑
n=0

dn(x− x0)n (3)

where r is the zero of the indicial equation having greater real part. Whether
there is a second linearly independent solution is related to the roots of the indicial
equation. Indeed, there is some zoology and in general the second solution is of the
form

y2(x) = |x− x0|r̃
∞∑
n=0

d̃n(x− x0)n (4)

in case there is a second root r̃ of the indicial equation and this root is such that
r − r̃ 6∈ Z. If r̃ = r then there is a solution of the form

y2(x) = y1(x) log |x− x0|+ |x− x0|r+1
∞∑
n=0

d̂n(x− x0)n. (5)

Finally, if 0 6= r − r̃ ∈ N then we have a second solution of the form

y2(x) = ky1(x) log |x− x0|+ |x− x0|r̃
∞∑
n=0

ďn(x− x0)n. (6)

Each of the series in equations (3), (4), (5) and (6) converges for |x− x0| < R and
defines a function that is analytic in some neighborhood of x = x0.

As referred above, Frobenius theorem statement is found in the book of Boyce-
DiPrima and in the book of E. Coddington. Nevertheless, we are afraid that a more
detailed and complete proof of the convergence of the formal part of the solutions
in the disc |x− x0| < R (ie., in the common disc where the coefficients of the ODE
are analytic) can only be found in Coddington’s book.
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3. Convergence of formal solutions: Theorems A and B. Consider a second
order ordinary differential equation given by a(z)u′′+b(z)u′+c(z)u = 0 where a, b, c
are holomorphic in a neighborhood of the origin 0 ∈ C. We shall mainly address
two questions:

Question 3.1. (i) Under what conditions can we assure that the origin is an
ordinary point or a regular singular point of the equation?

(ii) Is it that a formal solution of the ODE is always convergent?

Let us fix some notations that will be used from now on:

• On = C{z1, . . . , zn} is the ring of holomorphic functions at 0 ∈ Cn.

• Ôn = C{{z1, . . . , zn}} is the ring of formal series in n indeterminates over C.
• Mn is the field of meromorphic functions.
• M̂n is the field of fractions of Ôn.

Recall that the field of fractions of an integral domain D is the smallest field in
which the field embeds. It consists of fractions having elements of D as numerator
and nonzero elements of D as denominator in the standard way. Thus M̂n is the

field consisting of fractions of the form f̂
ĝ where f̂ , ĝ ∈ Ôn and ĝ 6= 0.

Let us give a first proof of the convergence in Theorem A:

Proof of the convergence in Theorem A. In order to simplify our notation we shall
assume x0 = 0. We consider equation

a(z)u′′ + b(z)u′ + c(z)u = 0 (7)

where a, b, c are complex analytic (holomorphic) functions in neighborhood |z| < R.
According to [19] there is an integrable complex analytic one-form Ω in C3 defined
as follows

Ω = −a(z)ydx+ a(z)xdy + [a(z)y2 + b(z)xy + c(z)x2]dz.

Indeed,

dΩ = [2xc(z)+yb(z)+ya′(z)]dx∧dz+[2ya(z)+xb(z)−xa′(z)]dy∧dz+2a(z)dx∧dy

Ω ∧ dΩ = [−2y2a(z)2 − xya(z)b(z) + xya(z)a′(z)]dx ∧ dy ∧ dz

+[−2x2a(z)c(z)− xya(z)b(z)− xya(z)a′(z)]dx ∧ dy ∧ dz

+[2y2a(z)2 + 2xya(z)b(z) + 2x2a(z)c(x)]dx ∧ dy ∧ dz

= 0.

This one-form is tangent to the vector field in C3 associated to the reduction of
order of the ODE. Indeed, as a first step we perform the classical order reduction
process where equation (7) is rewritten after the following ‘change of coordinates’:
x = u, y = u′, z = z. We then obtain

x′ = u′ = y, y′ = u′′ = − b(z)
a(z)

u′ − c(z)

a(z)
u = − b(z)

a(z)
y − c(z)

a(z)
x, z′ = 1.

Therefore, a natural vector field X associated to equation (7) is given by

X(x, y, z) = y
∂

∂x
−
(
b(z)

a(z)
y +

c(z)

a(z)
x

)
∂

∂y
+

∂

∂z
.
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Note that

Ω(X) = −y2a(z)− xa(z)

(
b(z)

a(z)
y +

c(z)

a(z)
x

)
+ [y2a(z) + xyb(z) + x2c(z)] = 0.

Moreover, given two linearly independent solutions u1(z) and u2(z) of the ODE the
function

H(x, y, z) =
xu′1(z)− yu1(z)

xu′2(z)− yu2(z)

is a first integral for the form Ω, ie., dH ∧ Ω = 0. Indeed,

dH =
1

(xu′2 − yu2)2

[
y(u1u

′
2 − u′1u2)dx− x(u1u

′
2 − u′1u2)dy

−[y2(u1u
′
2 − u′1u2) + xy(u′′1u2 − u1u

′′
2) + x2(u′1u

′′
2 − u′′1u′2)]dz

]
note that

u′′1u2 − u1u
′′
2 =

b

a
(u1u

′
2 − u′1u2) and u′1u

′′
2 − u′′1u′2 =

c

a
(u1u

′
2 − u′1u2)

then

dH =
1

(xu′2 − yu2)2

[
y(u1u

′
2 − u′1u2)dx− x(u1u

′
2 − u′1u2)dy

−
[
y2(u1u

′
2 − u′1u2) + xy

b

a
(u1u

′
2 − u′1u2) + x2 c

a
(u1u

′
2 − u′1u2)

]
dz

]

= − u1u
′
2 − u′1u2

a(xu′2 − yu2)2

(
− aydx+ axdy + [ay2 + bxy + cx2]dz

)

= − u1u
′
2 − u′1u2

a(xu′2 − yu2)2
Ω.

By hypothesis there exist two linearly independent formal solutions û1 and û2 of
equation (7). Each solution writes as a formal complex power series

ûj(z) =

∞∑
n=0

ajnz
n ∈ C{{z}}.

According to the above, there exists a formal first integral

H(x, y, z) =
xû′1(z)− yû1(z)

xû′2(z)− yû2(z)

of the integrable one-form Ω above. Now note that H, 1/H /∈ Ô3. Indeed, if H ∈ Ô3

then there exist ai,j,k ∈ C such that

xû′1(z)− yû1(z)

xû′2(z)− yû2(z)
=

∞∑
i+j+k=0

ai,j,kx
iyjzk
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then

xû′1(z)− yû1(z)︸ ︷︷ ︸
formal series containing

only one term in x and y

= (xû′2(z)− yû2(z))︸ ︷︷ ︸
formal series containing

only one term in x and y

 ∞∑
i+j+k=0

ai,j,kx
iyjzk


︸ ︷︷ ︸
⇒ only depends on z

so there is f ∈ Ô1 such that

xû′1(z)− yû1(z) = (xû′2(z)− yû2(z))f(z)

equivalently

x[û′1(z)− f(z)û′2(z)] = y[û1(z)− f(z)û2(z)]

so we have

û1(z) = f(z)û2(z) and û′1(z) = f(z)û′2(z)

therefore û1 and û2 are linearly dependent which contradicts the hypothesis. Simi-
larly 1/H /∈ Ô3.

Now we recall the following convergence theorem:

Theorem 3.2 (Cerveau-Mattei, [5], Theorem 1.1 page 106). Let Ω be a germ at

0 ∈ Cn of an integrable holomorphic 1-form and H = f
g ∈ M̂n a purely formal

meromorphic first integral of Ω, i.e. Ω ∧ dH = 0 and H, 1/H /∈ Ôn. Then H
converges, i.e., H ∈Mn.

From the above theorem H = f
g where f, g ∈ O3 are relatively prime. Hence we

have

[xû′1(z)− yû1(z)]g(x, y, z) = [xû′2(z)− yû2(z)]f(x, y, z)

as f and g are relatively prime then f divides xû′1(z)− yû1(z) e g divides xû′2(z)−
yû2(z) from there exists α, β, ξ, η ∈ O1 and k ∈ Ô1 such that

xû′1(z)− yû1(z) = k(z)[xα(z)− yβ(z)] and xû′2(z)− yû2(z) = k(z)[xξ(z)− yη(z)]

equivalently we have

x[û′1(z)−k(z)α(z)] = y[û1(z)−k(z)β(z)] and x[û′2(z)−k(z)ξ(z)] = y[û2(z)−k(z)η(z)]

so we have

û′1(z) = k(z)α(z), û1(z) = k(z)β(z), û′2(z) = k(z)ξ(z) and û2(z) = k(z)η(z)

therefore
û′1(z)

û1(z)
=
α(z)

β(z)
and

û′2(z)

û2(z)
=
ξ(z)

η(z)

thus

û1(z) = A exp

(∫ z α(w)

β(w)
dw

)
and û2(z) = B exp

(∫ z ξ(w)

η(w)
dw

)
,

for some A,B constants, are convergent.

We stress the fact that we are not assuming the ODE to be regular at x0.
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3.1. The wronskian I. Consider the linear homogeneous second order ODE

a(x)y′′ + b(x)y′ + c(x)y = 0 (8)

where a(x), b(x), c(x) are differentiable real or complex functions defined in some
open subset U ⊂ R,C. We may assume that U is an open disc centered at the origin
0 ∈ R,C. We make no hypothesis on the nature of the point x = 0 as a singular
or ordinary point of (8). Given two solutions y1 and y2 of (8) their wronskian is
defined by W (y1, y2)(x) = y1(x)y′2(x)− y2(x)y′1(x).

Claim 3.3. The wronskian W (y1, y2) satisfies the following first order ODE

a(x)w′ + b(x)w = 0. (9)

This is a well-known fact and we shall not present a proof, which can be done by
straightforward computation. Most important, the above fact allows us to introduce
the notion of wronskian of a general second order linear homogeneous ODE as (8)
as follows:

Definition 3.4. The wronskian of (8) is defined as the general solution of (9).

Hence, in general the wronskian is of the form

W (x) = K exp

(
−
∫ x b(η)

a(η)
dη

)
(10)

where K is a constant.
A well-known consequence of the above formula is the following:

Lemma 3.5. Given solutions y1(x), y2(x) the following conditions are equivalent:

(i) W (y1, y2)(x) is identically zero.
(ii) W (y1, y2)(x) vanishes at some point x = x0.

(iii) y1(x), y2(x) are linearly dependent.

Let us analyze the consequences of this form. We shall consider the origin as
the center of our disc domain. In what follows the coefficients are analytic in a
neighborhood of the origin.

Case (1). If b
a has poles of order r > 1 at the origin: In this case we can write

b(x)

a(x)
=
Ar
xr

+ . . .+
A2

x2
+
A1

x
+ d(x)

where A1, A2, . . . , Ar are constant, Ar 6= 0 and d is analytic at the origin. Hence

W (x) = K|x|−A1 exp

(
Ar

(r − 1)xr−1
+ . . .+

A2

x

)
exp

(
d̃(x))

where d̃ is analytic. Now observe that exp
(

Ar
(r−1)xr−1 + . . .+ A2

x

)
is neither analytic

nor formal. Therefore, in this case, W is neither analytic nor formal.

Case (2): b
a has poles of order ≤ 1 at the origin. In this case b(x)

a(x) = A1

x + d(x)

and W (x) = K|x|−A1 exp
(
d̃(x)

)
. If W is analytic or formal then we must have

A1 ∈ {0,−1,−2,−3, . . .}.
Summarizing we have:

Lemma 3.6. Assume that the wronskian W of the ODE a(x)y′′+ b(x)y′+ c(x)y =
0, with analytic coefficients, is analytic or formal. Then b

a has a pole of order

r ≤ 1 at the origin. Moreover, we must have W (x) = K|x|−A exp
(
f(x)

)
, where

A ∈ {0,−1,−2,−3, . . .} and f is analytic.
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Now we are able to prove the remaining part of Theorem A:

End of the proof of Theorem A. We have already proved the first part. Let us now
prove that the origin is an ordinary point or a regular singularity of the ODE. This
is done by means of the two following claims:

Claim 3.7. The quotient b
a has poles of order ≤ 1 at the origin.

Proof. Indeed, since by hypothesis there are two formal linearly independent func-
tions, the wronskian is formal. Thus, from the above discussion we conclude.

The last part is done below. For simplicity we shall assume that x = z ∈ C and
that the coefficients are complex analytic (holomorphic) functions.

Claim 3.8. We have lim
z→0

z2 c(z)
a(z) ∈ C.

Proof. Write a(z)u′′+ b(z)u′+ c(z)u = 0 and a(z) = zk according to the local form

of holomorphic functions. Since lim
z→0

z
b(z)

a(z)
∈ C we must have b(z)

a(z) = b̃(z)
z for some

holomorphic function b̃(z) at 0. Assume that the Claim is not true, then c(z)
a(z) must

have a pole of order ≥ 3 at 0. Thus we may write c(z)
a(z) = c̃(z)

z3+ν for some holomorphic

function c̃(z) at 0 and some ν ∈ N. We may choose ν such that c̃(0) 6= 0. We have for

the ODE above z3+νu′′+z2+ν b̃(z)u′+c̃(z)u = 0. For sake of simplicity we will assume
that c̃(0) = 1 and ν = 0. This does not affect the argumentation below. We write

b̃(z) = b0+b1z+b2z
2+. . . and c̃(z) = 1+c1z+c2z

2+. . . in power series. Substituting
this in the ODE we obtain z3u′′+z2(b0+b1z+b2z

2+. . .)u′+(1+c1z+c2z
2+. . .)u = 0.

Now we write u(z) =
∞∑
n=0

anz
n in power series. Thus we have

∞∑
n=3

[
(n− 1)(n− 2)an−1 +

n∑
k=2

(k − 1)ak−1bn−k +

n∑
k=0

akcn−k

]
zn

+[a2c0 + a1(b0 + c1) + a1b0]z2 + (a0c1 + a1c0)z + a0c0

= 0

then a0 = a1 = a2 = 0 and for n ≥ 3 we have

(n− 1)(n− 2)an−1 +

n∑
k=2

(k − 1)ak−1bn−k +

n∑
k=0

akcn−k = 0.

Hence an = 0 for all n ≥ 0, ie., u = 0 is the only possible formal solution. This
proves the claim by contradiction.

The two claims above end the proof of Theorem A.

Next we present a proof that also implies Theorem A.

Proof of Theorem B. First of all we are assuming that the origin is an ordinary
point or a regular singularity of the ODE. If it is an ordinary point, then by the
classical existence theorem for ODEs there are two linearly independent analytic
solutions and any solution, formal or convergent, will be a linear combination of
these two solutions. Such a solution is therefore convergent.

Thus we may write the ODE as x2y′′ + xb(x)y′ + c(x)y = 0 where the new coef-
ficients b(x) and c(x), obtained after renaming xb(x)/a(x) and x2c(x)/a(x) conve-
niently, are analytic.
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Let us consider a formal solution ŷ(x) =
∞∑
n=0

dnx
n. We can write ŷ(x) = xr1(1 +

ϕ(x)) for some r1 ≥ 0 and ϕ(x) a formal function with ϕ(0) = 0. In other words,
r1 ∈ {0, 1, 2, . . .} is the order of ŷ(x) at the origin. Then we have ŷ′(x) = r1x

r1−1(1+
ϕ(x))+xr1ϕ′(x) and ŷ′′(x) = r1(r1−1)xr1−2(1+ϕ(x))+2r1x

r1−1ϕ′(x)+xr1ϕ′′(x).
Substituting this in the ODE x2ŷ′′(x) + xb(x)ŷ′(x) + c(x)ŷ(x) = 0 and dividing by
xr1 we obtain

x2ϕ′′(x) + x(2r1 + b(x))ϕ′(x) + (r1(r1 − 1) + r1b(x) + c(x))(1 + ϕ(x)) = 0.

For x = 0, since ϕ(0) = 0, we then obtain the equation r1(r1−1)+r1b(0)+c(0) = 0.
The above is exactly the indicial equation associated to the original ODE. We then
conclude that the original ODE has an indicial equation with a root r1 that belongs
to the set of non-negative integers. Let now r ∈ Z be the other root of the indicial
equation. There are two possibilities:
(i) r ≥ r1. In this case, then according to Frobenius classical theorem we conclude

that there is at least one solution yr(x) = xr
∞∑
n=0

enx
n which is convergent. There

are two possibilities:
(i.1) yr(x) and ŷ(x) are linearly dependent: in this case, yr(x) = ` · ŷ(x) for some
constant ` ∈ R,C. Then r = r1 and therefore yr(x) is analytic and the same holds
for ŷ(x). More precisely, ŷ(x) is analytic in the same neighborhood |x| < R where
b(x), c(x) are convergent.
(i.2) yr(x) and ŷ(x) are linearly independent: Since yr(x) is analytic and seeing yr(x)
as a formal solution, we have two linearly independent formal solutions. From what
we have seen above in Theorem A both solutions are convergent in the common
disc domain of analyticity of the functions b(x), c(x).
(ii) r1 ≥ r. In this case, then according to Frobenius classical theorem we conclude

that there is at least one solution ỹr1(x) = xr1
∞∑
n=0

fnx
n, where the power series is

convergent. There are two possibilities:
(ii.1) ỹr1(x) and ŷ(x) are linearly dependent: in this case, ỹr1(x) = ˜̀· ŷ(x) for some

constant ˜̀∈ R,C. Then r = r1 and therefore ỹr1(x) is analytic and the same holds
for ŷ(x). More precisely, ŷ(x) is analytic in the same neighborhood |x| < R where
b(x), c(x) are convergent.
(ii.2) ỹr1(x) and ŷ(x) are linearly independent: in this case, ỹr1(x) is analytic and
seeing ỹr1(x) as a formal solution, we have two linearly independent formal solutions.
From what we have seen above in Theorem A both solutions are convergent in the
common disc domain of analyticity of the functions b(x), c(x).

The above proof still makes use of the convergence part in Theorem A, thus it
cannot be used to give an alternative proof of Theorem A. Let us work on a totally
independent proof of Theorem A based only on classical methods of Frobenius and
ODEs. For this sake we shall need a few lemmas.

3.2. The wronskian II. We consider the ODE x2y′′+ xb(x)y′+ c(x)y = 0 with a
regular singular point at the origin.

Lemma 3.9. Let ŷ(x) be a formal solution of the ODE. Then we must have ŷ(x) =

xr(1 +
∞∑
n=1

anx
n) where r is a root of the indicial equation of the ODE.
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Remark 3.10. Let r ∈ {0, 1, 2, . . .} be a root of the indicial equation and assume
that we have two solutions ŷ1(x) = xr(1 + ϕ1(x)) and ŷ2(x) = xr(1 + ϕ2(x)) which
are formal. Then we have two cases: (i) r ≥ 1. In this case W (ŷ1, ŷ2)(0) = 0.
In this situation we must have W (ŷ1, ŷ2)(x) = 0 and therefore ŷ1, ŷ2 are linearly
dependent. (ii) r = 0.

Let us proceed. We are assuming now that we have two formal solutions ŷ1, ŷ2

for the ODE above. We write ŷj(x) = xrj (1 + ϕj(x)) for some formal series ϕj(x)
that satisfies ϕj(0) = 0. The exponents rj are non-negative integers and from what
we have seen above, these are roots of the indicial equation r(r−1)+rb(0)+c(0) = 0
of the ODE. We may assume that r1 ≥ r2.

So we have the following possibilities:
(i) r1 = r2. If this is the case we cannot a priori assure that the indicial equation
has only the root r = r1 = r2. Anyway, if r 6= 0 then from what we have seen
above the formal solutions ŷ1, ŷ2 are linearly dependent. This is a contradiction.
Thus we must have r = 0. If r = 0 is the only root of the indicial equation

then we have a basis of the solution space given by y1(x) = 1 +
∞∑
n=1

enx
n and

y2(x) = y1(x) log |x| +
∞∑
n=1

fnx
n. If a linear combination ŷ(x) = c1y1(x) + c2y2(x)

is a formal function then necessarily c2 = 0. Thus any two formal solutions are
linearly dependent. Assume now that r = 0 is not the only root of the indicial
equation. Denote by r̃ ∈ Z∗ the other root of the indicial equation. There are two
possibilities:

(a) r̃ > 0 then there is a basis of solutions given by y1(x) = xr̃(1 +
∞∑
n=1

gnx
n) and

y2(x) = ay1(x) log |x|+ |x|0(1+
∞∑
n=1

hnx
n). Let y(x) = c1y1(x)+c2y2(x) be a formal

power series. Then y(x) = (c1 + ac2 log |x|)xr̃(1 +
∞∑
n=1

gnx
n) + c2(1 +

∞∑
n=1

hnx
n).

If y(x) is a formal power series then we must have ac2 = 0 and therefore y(x) =

c1x
r̃(1+

∞∑
n=1

gnx
n)+c2(1+

∞∑
n=1

hnx
n). In particular, since r̃ ∈ N, y(x) is convergent.

This shows that the formal solutions ŷ1(x), ŷ2(x) are convergent and this is the only
possible case where they can be linearly independent.

(b) r̃ < 0 then there is a basis of solutions given by y1(x) = 1 +
∞∑
n=1

pnx
n and

y2(x) = ay1(x) log |x| + xr̃(1 +
∞∑
n=1

qnx
n). Write y(x) = c1y1(x) + c2y2(x) for a

linear combination of y1(x) and y2(x). Then y(x) = (c1+ac2 log |x|)(1+
∞∑
n=1

pnx
n)+

c2(xr̃(1 +
∞∑
n=1

qnx
n)). If y(x) is a formal series then necessarily ac2 = 0 (because

of the term log |x|) and also c2 = 0 in this case because r̃ < 0. Thus we get
y(x) = c1y1(x) which is convergent. This shows that again we must have that ŷ1

and ŷ2 are multiple of y1 and therefore they are linearly dependent, contradiction
again.
(ii) 0 < r1−r2 = N ∈ N. This case follows from facts already used above. Since r1 >
r2 and since each rj is a root of the indicial equation, we conclude that these are the
roots of the indicial equation. By Frobenius theorem there is a basis of the solutions
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given by y1(x) = xr1(1 +
∞∑
n=1

snx
n) and y2(x) = ay1(x) log |x|+ |x|r2(1 +

∞∑
n=1

tnx
n).

If y(x) = c1y1(x) + c2y2(x) is a formal power series then we must have ac2 = 0 and

y(x) = c1x
r1(1 +

∞∑
n=1

snx
n) + c2x

r2(1 +
∞∑
n=1

tnx
n) which is convergent. This shows

that ŷ1, ŷ2 must be convergent.
We are now in conditions of giving a second proof to Theorem A.

Alternative proof of Theorem A. Indeed, from the second part of the proof (which
is based only on classical methods of Frobenius and ODEs) we know that the origin
is an ordinary point or a regular singular point of the ODE. Given the two lin-
early independent formal solutions ŷj(x), j = 1, 2, from the above discussion, the
solutions ŷ1(x), ŷ2(x) are analytic.

3.3. The wronskian III: Some examples. The next couple of examples show
that the information on the wronskian (whether it is convergent, formal,etc) is not
enough to infer about the nature of the solutions.

Example 3.11 (convergent wronskian but no formal solution). This is an example
of an ODE with a convergent wronskian but admitting no formal solution. The
ODE x3y′′−x2y′−y = 0 has a non-regular singular point at the origin. From what
we have observed above the wronskian W of two linearly independent solutions of
the ODE satisfies the following first order ODE x3w′ − x2w = 0 whose solution is

of the form W (x) = K exp
( ∫ x η2

η3 dη
)

= Kx for some constant K. It is now easy

to check that there are no formal solutions besides the trivial.

3.4. A couple of nonconvergent examples. We now give an example of an
ODE with non-convergent wronskian and admitting no formal solution but the
trivial one.

Example 3.12 (non-convergent wronskian no formal solution). The ODE x3y′′ −
xy′ − y = 0 has a non-regular singular point at the origin. Indeed, the wronskian
is solution of the first order ODE x3w′ − xw = 0 which has solutions of the form

W (x) = K exp
( ∫ x η

η3 dη
)

= K exp
(
− 1

x

)
where K is a constant. The ODE only

admits the trivial formal solution.

Next we give an example of an equation admitting a formal but not a convergent
solution.

Example 3.13. Consider the equation x2y′′ − y′ − 1
2y = 0. The origin x0 = 0 is a

singular point, but not is regular singular point, since the coefficient -1 of y′ does
not have the form xb(x), where b is analytic for 0. Nevertheless, we can formally
solve this equation by power series

∑∞
k=0 akx

k, where the coefficients ak satisfy the

following recurrence formula (k+1)ak+1 =
[
k2−k− 1

2

]
ak, for every k = 0, 1, 2, . . . .

If a0 6= 0, applying the quotient test to this expression we have that∣∣∣∣ak+1x
k+1

akxk

∣∣∣∣ =

∣∣∣∣k2 − k − 1
2

k + 1

∣∣∣∣ · |x| → ∞,
when k → ∞, provided that |x| 6= 0. Hence, the series converges only for x = 0,
and therefore does not represent a function in a neighborhood of x = 0.
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4. Characterization of regular singular points: Proof of Theorem C. We
shall now prove Theorem C.

Proof of Theorem C. We shall first consider the complex analytic case. We start
then with a complex analytic ODE of the form a(z)u′′ + b(z)u′ + c(z)u = 0. Let us
assume that this equation admits two linearly independent solutions u1(z), u2(z),
which are of autlos type in some neighborhood of the origin z = 0 ∈ C.

The wronskian W (u1, u2)(z) satisfies the first order ODE a(z)w′ + b(z)w = 0
and since it is given by W (u1, u2)(z) = u′1(z)u2(z)− u1(z)u′2(z), it is also of autlos
type in some neighborhood of the origin z = 0 ∈ C. Using then the above first
order ODE and arguments similar to those in the proof of Lemma 3.6 we conclude
that b(z)/a(z) must have a pole of order ≤ 1 at the origin, otherwise W (u1, u2)(z)
would have an essential singularity at the origin. Following now a similar reasoning
in the proof of Claim 3.8 in the second part of the proof of Theorem A we conclude
that c(z)/a(z) must have a pole of order ≤ 2 at the origin. This shows that the
singularity at the origin is regular, or the origin is an ordinary point. If we start with
a real analytic ODE then we consider its complexification. The fact that there are
two linearly independent solutions of autlos type for the original ODE implies that
there are two linearly independent solutions for the corresponding complex ODE,
by definition these solutions will be of autlos type. Once we have concluded that
the complex ODE has a regular singularity or an ordinary point at the origin, the
same holds for the original real analytic ODE. Thus (ii) =⇒ (iii). The classical
Frobenius theorem shows that (iii) =⇒ (i). Finally, it is clear from the definitions
that (i) =⇒ (ii).

The next examples show how sharp is the statement of Theorem C.

Example 4.1. Consider the equation

z3u′′ − zu′ + u = 0. (11)

The origin z0 = 0 is a singular point, but not is regular singular point. It is easy
to see that u1 = z is a solution of equation (11). Making use of the method of
reduction of order we can construct a second solution u2 linearly independent with
u1. Hence we have that

u2(z) = z

∫ z
(

exp
(
−
∫ w −v

v3 dv
)

w2

)
dw = z exp

(
− 1

z

)
.

Note that u2 is not holomorphic.

Remark 4.2. Consider a second order differential equation of the form

z3a(z)u′′ + z2b(z)u′ + c(z)u = 0 (12)

where a, b, c are holomorphic at the origin with a(0) 6= 0 and c(0) 6= 0. We shall see

that (12) admits no formal solution. Indeed we assume that u(z) =

∞∑
n=0

dnz
n is a

formal solution of (12) then we have dn = 0 for all n ≥ 0. Observe that there exists

the limit lim
x→0

x3b(x)
x3a(x) = b0

a0
and the limit below does not exist lim

x→0

x2c(x)
x3a(x) .

Remark 4.3. Consider a second order differential equation of the form

z2a(z)u′′ + b(z)u′ + c(z)u = 0 (13)
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where a, b, c are holomorphic at the origin with a(0) 6= 0, b(0) 6= 0 and c(0) 6= 0. We
shall see that (13) always admits non trivial formal solution. Indeed we assume that

u(z) =

∞∑
n=0

dnz
n is a formal solution of (13) then d1 = − c0d0b0

, d2 =
(b1c0+c20+c1b0)d0

b20

and for n ≥ 2 we have

dn+1 = 1
b0(n+1)

(
− cnd0 −

∑n
k=1[k(k − 1)an−k + kbn−k+1 + cn−k]dk

)
.

Observe that the coefficients of the series depend on d0, since we look for non trivial
formal solutions it suffices to choose d0 6= 0. Hence, there exist non trivial formal

solution. Also note that there exists the limit lim
x→0

x2c(x)
x2a(x) = c0

a0
and the following

limit is not finite lim
x→0

xb(x)
x2a(x) .

Example 4.4. Consider a second order differential equation given by

z2u′′ + bu′ + cu = 0 (14)

where b and c are nonzero constants. Observe that the origin is a non regular
singular point of (14). Next we shall see that there exist non trivial formal solutions
for (14). Let us assume that

u(z) =

∞∑
n=0

anz
n (15)

is a non trivial formal solution of (14). We have a1 = − ca0b , a2 = c2a0
2b2 and

an+1 = − (n2 − n+ c)an
b(n+ 1)

, for all n = 2, 3, . . . . (16)

Observe that the coefficients of the series depend on a0, since we look for non trivial
formal solutions it suffices to choose a0 6= 0. Hence, there exist non trivial formal
solution. Observe now that this formal solution is not convergent. Applying the
ratio test to the expressions (15) and (16), we have that∣∣∣∣an+1z

n+1

anzn

∣∣∣∣ =

∣∣∣∣n2 − n+ c

b(n+ 1)

∣∣∣∣ · |z| → ∞,
when n→∞, whenever |z| 6= 0. Hence, the series converges only for z = 0.

5. Riccati model for a second order linear ODE. We shall now exhibit
method of associating to a homogeneous linear second order ODE a Riccati dif-
ferential equation. Consider a second order ODE given by

a(z)u′′ + b(z)u′ + c(z)u = 0

where a, b, c are analytic functions, real or complex, of a variable z real or complex,
defined in a domain U ⊂ R,C. According to [19] there is an integrable one-form

Ω = −a(z)ydx+ a(z)xdy + [a(z)y2 + b(z)xy + c(z)x2]dz

that vanishes at the vector field corresponding to the reduction of order of the ODE,
i.e., ω(X) = 0 where

X(x, y, z) = y
∂

∂x
−
(
b(z)

a(z)
y +

c(z)

a(z)
x

)
∂

∂y
+

∂

∂z
.

As a consequence the orbits of X are tangent to the foliation FΩ given by the Pfaff
equation Ω = 0.
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First of all we remark that we can write Ω as follows

Ω

x2
= a(z)d

(y
x

)
+

[
a(z)

(y
x

)2

+ b(z)
(y
x

)
+ c(z)

]
dz.

Thus, by introducing the variable t = y
x we see that the same foliation FΩ can

be defined by the one-form ω below:

ω = a(z)dt+ [a(z)t2 + b(z)t+ c(z)]dz.

By its turn ω = 0 defines a Riccati foliation which writes as

dt

dz
= −a(z)t2 + b(z)t+ c(z)

a(z)
.

Definition 5.1. The Riccati differential equation above is called Riccati model of
the ODE a(z)u′′ + b(z)u′ + c(z)u = 0.

Remark 5.2. The Riccati model can be obtained in a less geometrically clear
way by setting t = u′/u as a new variable. Sometimes it is also useful to con-
sider the change of variable w = u/u′ which leads to the Riccati equation dw

dz =
c(z)w2+b(z)w+a(z)

a(z) .

5.1. Holonomy of a second order equation. Let η = (E, π,B, F ) be a (locally
trivial) fibration with total space E, fiber F , base B and projection π : E → B.
A foliation F on E is transverse to the fibre bundle η if: (a) for each p ∈ E,
the leaf Lp of F with p ∈ Lp is transverse to the fiber π−1(q), q = π(p); (b)
dim(F) + dim(F ) = dim(E); (c) for each leaf L of F , the restriction π|L : L→ B is
a covering map. According to a theorem of Ehresmann (see [4, Ch. V], [9, Ch. II])
if the fiber F is compact, then conditions (a) and (b) together already imply (c).

Let us state the exact notion of Riccati foliation we consider. We shall consider a
complex manifold M admitting a locally trivial holomorphic fibration π : M → B,
onto a complex manifold B, with fiber F . A singular holomorphic foliation F on
M will be called a Riccati foliation on M if (i) codimF = dim F and (ii) there is a
ramification set σ ⊂ B, analytic of codimension ≥ 1, such that π−1(σ) is invariant
(a union of F-invariant fibers), and the restriction of F to M \π−1(σ) is a foliation
transverse to the fibre bundle π

∣∣
M\π1(σ)

: M \ π−1(σ)→ B \ σ in the classical sense

of Ehresmann (see for instance [4, Ch. V]). In particular we have sing(F) ⊂ π−1(σ).
Most relevant is the fact, well-known for foliations transverse to fibre bundles, that
(iii) in case the fundamental group of B \ σ is finitely generated, F|M\π−1(σ) is
conjugate to the suspension of a subgroup of holomorphic diffeomorphisms G ⊂
Diff(F ), given by a (so called holonomy or monodromy) homomorphism ϕ : π1(B \
σ)→ Diff(F ).

In view of (iii) our notion of Riccati foliation is quite general. Indeed, in our
framework, a Riccati foliation on a fibered space π : M → B, with fiber F , may
be seen as an extension, holomorphic with singularities, of a foliation given by
a suspension of a group of complex diffeomorphisms G ⊂ Diff(F ), obtained as a
representation π1(B \ σ) → Diff(F ), where σ is a codimension ≥ 1 analytic subset
of B. This idea is reinforced by the following. When M = P1(C) × P1(C), a

holomorphic foliation with singularities, is of Riccati type dy
dx = a(x)y2+b(x)y+c(x)

p(x) ,

if and only if, it is transverse to a generic vertical line P1(C)x0
= {x0} × P1(C) ⊂

P1(C) × P1(C). This fact, widely used by Paul Painlevé in his memoire (see [18]),
has been extended in a natural way in [21]. Indeed, in [21] the notion of Riccati
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foliation adopted is pretty much the same we use here, by considering suitable
(natural) fibrations.

It is well-known that a complex rational Riccati differential equation dy
dx =

a(x)y2+b(x)y+c(x)
p(x) induces in the complex surface P1(C) × P1(C) a foliation F with

singularities, having the following characteristics:

(i) The foliation has a finite number of invariant vertical lines {x0}×P1(C). These
lines are given by the zeroes of p(x) and possibly by the line {∞} × P1(C).

(ii) For each non-invariant vertical line {x0} × P1(C) the foliation has its leaves
transverse to this line.

(iii) From Ehresmann we conclude that the restriction of F to (P1(C)\σ)×P1(C),
where σ × P1(C) is the set of invariant vertical lines, is a foliation transverse
to the fibers of the fiber space (P1(C) \ σ) × P1(C) → P1(C) \ σ with fiber
P1(C) and projection given by π(x, y) = x.

(iv) The restriction π
∣∣
L

of the projection to each leaf L of the Riccati foliation

defines a covering map L→ P1(C) \ σ.

In particular, there is a global holonomy map which is defined as follows: choose
any point x0 6∈ σ as base point and consider the lifting of the closed paths γ ∈
π1(P1(C) \ σ) to each leaf L ∈ F by the restriction π

∣∣
L

above. Denote the lift

of γ starting at the point (x0, z) ∈ {x0} × P1(C) by γ̃z. If the end point of γ̃z is
denoted by (x0, hγ(z)) then the map z 7→ hγ(z) depends only on the homotopy
class of γ ∈ π1(P1(C) \ σ). Moreover, this defines a complex analytic diffeomor-
phism h[γ] ∈ Diff(P1(C)) and the map π1(P1(C) \ σ) → Diff(P1(C)), [γ] 7→ h[γ]

is a group homomorphism (see Proposition 1.16 in [13] page 24). The image
Hol(F) ⊂ Diff(P1(C)) is called global holonomy of the Riccati equation. It is
well-known from the theory of foliations transverse to fiber spaces that the global
holonomy classifies the foliation up to fibered conjugacy (see Theorem 3 in [4] page
99). This will be useful to us in what follows. Recall that Diff(P1(C)) as meant
above is the projectivization of the special linear group ie., Diff(P1(C)) ∼= PSL(2,C)
(see [10] page 64) meaning that every global holonomy map can be represented by
a Moebius map T (z) = a1z+a2

a3z+a4
where a1, a2, a3, a4 ∈ C and a1a4 − a2a3 = 1. Thus

the global holonomy group of a Riccati foliation identifies with a group of Moebius
maps. Another important fact which comes from the general theory of suspension
foliations is:
(v) Given a non-vertical leaf L of a Riccati foliation F in P1(C) × P1(C), the leaf
L is conformally equivalent, via the projection π

∣∣L : L → B = P1(C) \ σ, to the
holomorphic covering of B associate to the subgroup Fix(L) ⊂ Hol(F) stabilizer
of L in the global holonomy Hol(F).
(vi) Fix a point p ∈ {x0} × P1(C), x0 6∈ σ, and consider as transverse section the
germ of disc induced by the vertical fiber {x0}×P1(C). The holonomy group of the
non-vertical leaf L through this point p is conjugate to the subgroup of germs at p
of elements of the global holonomy group Hol(F) that fix the point p.

In particular, if the group Fix(L) is trivial then L is conformally equivalent to
the basis B = P1(C) \ σ.

Definition 5.3 (holonomy of a second order ODE). Given a linear homogeneous
second order ODE with complex polynomial coefficients

a(z)u′′ + b(z)u′ + c(z)u = 0
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we call the holonomy of the ODE the global holonomy group of the corresponding
Riccati model.

Remark 5.4. As we have seen above we can also obtain a Riccati model by any
of the changes of variables t = u′/u or w = u/u′. From the viewpoint of ODEs
these models may seem distinct. Nevertheless, they differ only up to the change of
coordinates t = 1/w. Moreover, both have the same global holonomy group, since
the point at infinity is always considered in the definition of global holonomy group.
Indeed, the ideal space for considering a Riccati equation from the geometrical
viewpoint, is the space C× C.

5.2. Trivial Holonomy: Theorem D. Let us investigate some interesting cases.
First consider a Riccati foliation F assuming that σ is a single point. Thus we
may assume that in affine coordinates (x, y) the ramification point is the point
x = ∞. Then we may write F as given by a polynomial differential equation
dy
dx = a(x)y2+b(x)y+c(x). The global holonomy of F is given by an homomorphism

φ : π1(P1(C) \ σ)→ Diff(P1(C)). Since σ is a single point we have P1(C) \ σ = C is
simply-connected and therefore the global holonomy is trivial. By the classification
of foliations transverse to fibrations (see [4, Ch. V]) there is a fibered biholomorphic
map Φ: C×P1(C)→ C×P1(C) that takes the foliation F into the foliation H given
by the horizontal fibers C× {y}, y ∈ P1(C).

Lemma 5.5. A holomorphic diffeomorphism Φ: C × P1(C) → C × P1(C) pre-
serving the vertical fibration writes in affine coordinates (x, y) ∈ C2 ⊂ C × P1(C)

as Φ(x, y) =
(
Ax + B, a(x)y+b(x)

c(x)y+d(x)

)
where a, b, c, d are entire functions satisfying

ad− bc 6= 0, 0 6= A,B ∈ C.

Proof of Lemma 5.5. The fact that the vertical fibration is preserved means that in
coordinates (x, y) ∈ C×CP 1(C) the map Φ is of the form Φ(x, y) = (f(x), g(x, y)).

Similarly, the inverse map Φ−1 is also of the form Φ−1(x, y) = (f̃(x), g̃(x, y)). The
holomorphic map f : C→ C is then an entire automorphism (diffeomorphism of C).
It is well-known that the automorphisms of C is the group of affine maps, so that
f(x) = Ax+B for some A,B ∈ C with A 6= 0. Again, since the vertical fibration x =
constant is preserved, for each fixed x ∈ C the map Φx : {x}×P1(C)→ {Ax+B}×
P1(C), (x, y) 7→ Φ(x, y) = (Ax + B, g(x, y)) is a diffeomorphism. In particular the
map gx : y 7→ g(x, y) is a holomophic diffeomorphism of P1(C). It is well-known that
the group of automorphisms (holomorphic diffeomorphisms) of the Riemann sphere

is the group of Moebius maps of the form y 7→ ay+b
cy+d with a, b, c, d ∈ C, ad− bc = 1.

Hence, locally we must have g(x, y) =
aj(x)y+bj(x)
cj(x)y+dj(x) for some holomorphic functions

aj(x), bj(x), cj(x), dj(x) satisfying satisfying aj(x)dj(x)− bj(x)cj(x) 6= 0, ∀x ∈ Dj ,
defined in some open subset Uj ⊂ C such that the union

⋃
j∈J

Uj is a cover of the

complex plane C. These functions aj(x), bj(x), cj(x), dj(x) are not unique, but they
are unique up to multiplication by a nonzero complex number, i.e., they correspond
to a unique element of the projectivization PGL(2,C). Because C is a simply-
connected domain, by standard analytic continuation we conclude that the map
g induces a holomorphic map C → GL(2,C),C 3 x 7→ gx(y) = g(x, y), ie, there
are entire functions a(x), b(x), c(x), d(x) satisfying ad − bc 6= 0 such that g(x, y) =
a(x)y+b(x)
c(x)y+d(x) .
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The map Φ(x, y) = (Ax + B, a(x)y+b(x)
c(x)y+d(x) ) takes leaves of F into leaves of the

horizontal fibration H : y = constant. Since the second projection map σ2 : C ×
P1(C)→ P1(C), (x, y) 7→ y is a first integral for H, it follows that the composition
g = σ2 ◦Φ: C×P1(C)→ P1(C) is a meromorphic first integral for F . Another point
is that, as already mentioned in (iv) above, given any leaf L of F , the restriction π

∣∣
L

of the projection to each leaf L of the Riccati foliation defines a covering map L→
P1(C)\σ. In our current situation we have σ = {(∞, 0)}, so that we have a covering
map L→ C. In particular we conclude that the leaves of F are diffeomorphic with
C (including the one contained in the invariant fiber {(0,∞)} × P1(C)).

Let us now apply this to our framework of second order linear ODEs.

Proof of Theorem D. Beginning with the ODE a(z)u′′ + b(z)u′ + c(z)u = 0 the
Riccati model is

dt

dz
= −a(z)t2 + b(z)t+ c(z)

a(z)
.

Thus if we assume that a(z) = 1 then we have for this Riccati equation that σ = {∞}
as considered in § 5.2 above. This implies that F admits a meromorphic first

integral g : C × P1(C) → P1(C) of the above form g(z, t) = A(z)t+B(z)
C(z)t+D(z) for some

entire functions A(t), B(t), C(t), D(t). Given a leaf L of the Riccati foliation there

is a constant ` ∈ P1(C) such that g(z, t) = ` for all (t, z) ∈ L. Hence t = `D(z)−B(z)
A(z)−`C(z)

for all (t, z) ∈ L. This defines a meromorphic parametrization z 7→ t(z) of the leaf.

Since we have t = y
x = u′

u therefore u(z) = k exp
( ∫ z

0
t(ξ)dξ

)
is a solution of the

ODE with k ∈ C a constant. This gives

u`,k(z) = k exp

(∫ z

0

`D(ξ)−B(ξ)

A(ξ)− `C(ξ)
dξ

)
, k, ` ∈ C;

as general solution of the original ODE. Notice that
u′`,k(z)

u`,k(z) = `D(z)−B(z)
A(z)−`C(z) so that

if `1 6= `2 then the corresponding solutions u`1,k1 and u`2,k2 generate a nonzero
wronskian, and therefore they are linearly independent solutions for all k1 6= 0 6=
k2.

Illustrating Theorem D we have:

Example 5.6. Consider the equation given by

u′′ − zu′ − u = 0. (17)

From what we have observed above we known that for a(z) = 1, b(z) = −z and
c(z) = −1 there exists a Riccati equation given by

dt

dz
= 1 + zt− t2.

It is not difficult to see that t = z is a solution of the differential Riccati model.
Hence

t =
exp

(
− z2

2

)
`+

∫ z
exp

(
− η2

2

)
dη

+ z,

where ` is constant, is a solution of the differential Riccati model. In the construction

of the Riccati equation associated to (17) it is considered that t = u′

u where u is a
solution of (17). Hence

u(z) = k exp
(
z2

2

)(
`+

∫ z
exp

(
− η2

2

)
dη
)
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where k is constant. It is a straightforward computation to show that u is a solution
of (17). Rewriting u we have

u(z) = k exp

(∫ z
[
η +

exp
(
− η2

2

)
`+

∫ η
exp

(
− ξ2

2

)
dξ

]
dη

)

= k exp

(∫ z `η −
[
− exp

(
− η2

2

)
− η

∫ η
exp

(
− ξ2

2

)
dξ
]∫ η

exp
(
− ξ2

2

)
dξ − `(−1)

dη

)
.

Note that A(η) =
∫ η

exp
(
− ξ2

2

)
dξ, B(η) = − exp

(
− η2

2

)
− η

∫ η
exp

(
− ξ2

2

)
dξ,

C(η) = −1 and D(η) = η are entire functions satisfying

A(η)D(η)−B(η)C(η) = − exp
(
− η2

2

)
6= 0.

5.3. Cyclic holonomy. Next we investigate the case where the ODE generates a
Ricatti foliation R having a ramification set σ that consists of two points. In this
case the holonomy group of the ODE is cyclic generated by a single Moebius map.
Let us make a general study of this case. We start by assuming that σ = {0,∞} i.e.,
that the invariant vertical lines are {0}×P1(C) and {∞}×P1(C) in P1(C)×P1(C).
The basis B \ σ is the Riemann sphere P1(C) minus two points, the origin and the
point at infinity. This corresponds to C minus the origin, which is kwnon as the
cylinder C∗. Since the fundamental group of the cylinder C∗ is isomorphic to Z, the
global holonomy group of R is cyclic generated by a single Moebius map. About
the conformal and topological type of the leaves of R we have:

Lemma 5.7. Each non-vertical leaf of R is either conformally equivalent to C or
to the cylinder C∗.

Proof. By a vertical leaf of R we mean a leaf contained in a vertical line z =
constant. Since R is a foliation transverse to a fibration in C∗ × P1(C), a non-
vertical leaf L of R is, by the second coordinate projection, a holomorphic covering
of the basis C∗. This leaf is then either conformally equivalent to C or to the cylinder
C∗. This is a simple consequence of the classical Riemann-Koebe uniformization
theorem (see [7]).

Indeed, we can state:

Proposition 5.8. The non-vertical leaves of R are diffeomorphic to the cylinder
C∗.

Proof. As we already observed a non-vertical leaf L of R is conformally equivalent
to C or to C∗. If L has trivial holonomy group then (as we have seen in the
final remarks preceding Definition 5.3) L is diffeomorphic to the basis B = C∗.
Assume now that the holonomy of L is not trivial. We claim that still in this
case L is diffeomorphic to C∗. Indeed, otherwise L mus be diffeomorphic to C, in
which case L is simply-connected and then its holonomy group must be trivial, a
contradiction.

Next we give a concrete example of a second order ODE having a cyclic global
holonomy group. This is an example that fits into Frobenius approach, since the
origin is a regular singularity.
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Example 5.9. Consider the equation given by

z2u′′ + u = 0.

From what we observed above we have that for a(z) = z2, b(z) = 0 and c(z) = 1
there exists a Riccati equation given by

dt

dz
=
z2 + t2

z2
.

This is a Riccati equation with a single vertical invariant line in C× P1(C), the
projective line {0}×P1(C). The line at infinity {∞}×P1(C) is also invariant, as it
follows from a simple change of coordinates z̃ = 1

z .
Before finishing this example, we give a word about the computation of the

global holonomy. Since it is a homogeneous equation, the solutions of the Riccati
differential equation are of the form

t =
K(1 + i

√
3)z1−i

√
3 − (1− i

√
3)z

2Kz−i
√

3 − 2

where K is constant. It is enough to compute a simple loop holonomy map with base
point at t = 0 for instance, z(θ) = z0e

iθ with 0 ≤ θ ≤ 2π. After the corresponding
computations we get a holonomy map as

h(t0) = t(z(2π)) = z0
(t0(1 + i

√
3)− 2z0)e2π

√
3 − t0(1− i

√
3) + 2z0(

2t0 − (1− i
√

3)z0

)
e2π
√

3 − 2t0 + (1 + i
√

3)z0

.

A fairly classical regular singularity type example is given below.

Example 5.10 (Bessel equation). Consider the complex Bessel equation given by

z2u′′ + zu′ + (z2 − ν2)u = 0

where z, ν ∈ C. Since a(z) = z2, b(z) = z and c(z) = z2 − ν2 the corresponding
Riccati model is

dt

dz
= −z

2t2 + zt+ z2 − ν2

z2

A change of coordinates to w = 1
z shows that the ramification set is σ = {0,∞}. We

are then in the cyclic global holonomy case. At this moment we shall not compute
the Moebius map that generates the global holonomy. We are more interested in
the geometry of the leaves which is given by Proposition 5.8.

A non-regular singularity example is given below. This example is specially
interesting in view of our Proposition 5.8. Indeed, it cannot be studied by the
classical Frobenius approach since the origin is not a regular singularity.

Example 5.11. Let us consider the following polynomial ODE

znu′′ + b(z)u′ + c(z)u = 0

where b, c are complex polynomials of a variable z. If n ≥ 2 and b(0) 6= 0 or if n ≥ 3
and c(0) 6= 0 or b(0).b′(0) 6= 0 then z = 0 is a non-regular singular point. Let us
assume that this is the case. The corresponding Riccati equation is

dt

dz
= −z

nt2 + b(z)t+ c(z)

zn
.

Changing coordinates w = 1/z we obtain

dt

dw
=
t2 + wnb(1/w)t+ wnc(1/w)

w2
=
wkt2 + b̃(w)t+ c̃(w)

w2+k
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for some polynomials b̃(w), c̃(w) and some k ∈ N. This shows that the ramification
set σ ⊂ P1(C) consists of the points z = 0 and z = ∞. The basis is then the
Riemman sphere minus two points. This corresponds to the complex plane C minus
one point, ie., to the cylinder C∗ = C \ {0}. The fundamental group of the basis is
then isomorphic to Z, being cyclic generated by a simple non-trivial loop homotopy
class. The holonomy of the ODE is then generated by a single Moebius map.

5.4. Two generators global holonomy case. Now we consider the case where
σ consists of three points. We may assume that these are the points z = ±1 and
z = ∞, i.e., σ = {1,−1,∞}. The considered Riccati foliation R on P1(C)× P1(C)
has three invariant vertical lines: the lines {1} × P1(C), {−1} × P1(C) and the line
{∞}× P1(C) where ∞ stands for the point at infinity in the horizontal coordinate.
The basis B = P1(C)\σ corresponds to the Riemann sphere minus three points. The
fundamental group π1(B) is then free with two generators. The global holonomy
group is therefore generated by two Moebius maps which we shall not compute.
Instead we shall work with the conformal type of the leaves as follows:

Proposition 5.12. The non-vertical leaves of R are parabolic (in the sense of
potential theory) Riemman surfaces of the form D/G where D is the unit disc and
G ⊂ SL(2,R) is a properly discontinous group.

Proof. Again this is a consequence of the uniformization theorem of Riemman-
Koebe: a non-vertical leaf admits a holomorphic covering onto the basis P1(C) \
{1,−1,∞}. Thanks to Picard little theorem there is no nonconstant holomorphic
map C → P1(C) \ {1,−1,∞} and therefore the universal covering of L is confor-
mally equivalent to the unit disc D. The fact that these leaves are parabolic is a
consequence of the fact that the basis P1(C) \ {1,−1,∞} is clearly parabolic (it is
a compact Riemann surface minus a finite number of points, therefore it does not
admit a non-constant bounded from above subharmonic function).

The following is an example with a holonomy group generated by two Moebius
maps.

Example 5.13 (Legendre equation). Consider the equation of Legendre given by

(1− z2)u′′ − 2zu′ + α(α+ 1)u = 0

where α ∈ C. From what we observed above we have that for a(z) = 1 − z2,
b(z) = −2z and c(z) = α(α+ 1) there exists a Riccati equation given by

dt

dz
= − (1− z2)t2 − 2zt+ α(α+ 1)

1− z2
.

Putting w = 1
z we have

dt

dw
=

(w2 − 1)t2 − 2wt+ α(α+ 1)w2

w2(w2 − 1)
.

As above, we are not aiming to compute the global holonomy at this time. We
want to hightlight the qualitative information we obtain about the nature of the
leaves by applying Proposition 5.12.

5.5. Application. As a final application of our methods we have:

Example 5.14 (an equation without solutions). We consider the ODE zu′′ + u′ +
zu = 0. In the Euler form we have z2u′′ + zu′ + z2u = 0 which was obtained
from Besssel equation (Example 5.10) for ν = 0. This last has indicial equation
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r(r−1)+r = 0 which gives as only solution r = 0. Then Frobenius theorem assures

the existence of an analytic solution of the form u(z) = z0
∞∑
n=0

anz
n. Let us take

t = u′/u and consider the corresponding Riccati equation

dt

dz
= −zt

2 + t+ z

z
.

Rewriting this equation we have

zt′(z) = −zt2(z)− t(z)− z (18)

Claim 5.15. Equation (18) admits no non-trivial formal solution.

Proof. Indeed, let us assume that t(z) =
∑∞
n=0 anz

n is a formal solution of (18).
Thus we have

∞∑
n=2

[(n+ 1)an + cn−1]zn + (2a1 + c0 + 1)z + a0 = 0

then a0 = 0, 2a1 + c0 + 1 = 0 and (n+ 1)an + cn−1 = 0 for all n = 2, 3, . . .. Hence
an = 0 for all n = 0, 1, 2, . . ..

The conclusion is that the solution given by Frobenius method vanishes at the
origin (easy to see already from Frobenius type computations of the solution) and
(more interesting) the solutions of the original ODE are Riemann surfaces of the

logarithmic, since each solution u is of the form u = Ke
∫
t for some constant K.

6. Liouvillian solutions: Theorem E. In this section we shall refer to the notion
of Liouvillian function as introduced in [24]. We stress the fact that the generating
basis field is the one of rational functions. Thus a Liouvillian function of n complex
variables x1, . . . , xn will be a function belonging to a Liouvillian tower of differential
extensions k0 ⊂ k1 ⊂ · · · ⊂ kr starting the field k0 of rational functions k0 =
C(x1, . . . , xn) equipped with the partial derivatives ∂

∂xj
.

Recall that a Liouvillian function is always holomorphic in some Zariski open
subset of the space Cn. Nevertheless, it may have several branches. Let us denote
by Dom(F ) ⊂ Cn the domain of F as the biggest open subset where F has local
holomorphic branches. This allows the following definition:

Definition 6.1 (Liouvillian solution, Liouvillian first integral, Liouvillian relation).
Given an equation a(z)u′′ + b(z)u′ + c(z)u = 0, a Liouvillian function u(z) of the
variable z will be called a solution of the ODE if we have a(z)u′′+ b(z)u′+ c(z)u =
0 in some nonempty open subset where u(z) is holomorphic. A three variables
Liouvillian function F (x1, x2, x3) will be called a first integral of the ODE if given
any local solution u0(z) of the ODE, defined for z in a disc D(z0, r) ⊂ C, we have
that F (z, u0(z), u′0(z)) is constant for |z − z0| < r provided that (z, u0(z), u′0(z)) ⊂
Dom(F ), for all z ∈ D(z0, r). Similarly we shall say that a solution u0(z) of the
ODE, defined for z ∈ Dom(u0) ⊂ C, satisfies a Liouvillian relation if there is a
Liouvillian function F (x1, x2, x3) such that {(z, u(z), u′(z)) ∈ C3, z ∈ Dom(u)} ∩
Dom(F ) 6= ∅ and F (z, u0(z), u′0(z)) = 0 in some dense open subset of Dom(u0).

Let us recall a couple of classical results:

Theorem 6.2 (Singer, [24]). Assume that the polynomial first order ODE dx
dz =

P (x, y), dy
dz = Q(x, y) admits a Liouvillian first integral. Then there are rational
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functions U(x, y), V (x, y) such that ∂U
∂y = ∂V

∂x and the differential form Q(x, y)dx−
P (x, y)dy admits the integrating factor R(x, y) = exp

[ ∫ (x,y)

(x0,y0)
U(x, y)dx+ V (x, y)dy

]
.

Theorem 6.3 (Rosenlicht [20], Singer [24]). Let p(z), q(z) be Liouvillian functions
and L(y) = y′′ + p(z)y′ + q(z)y. If L(y) = 0 has a Liouvillian first integral then
all solutions are Liouvillian. If L(y) = 0 has a nontrivial Liouvillian solution, then
this equation has a Liouvillian first integral.

Example 6.4 (Bernoulli ODEs). Recall that a Bernoulli differential equation of

power 1 is one of the form dy
dx = a1(x)y+a2(x)y2

p(x) . If we perform a change of variables

as (x, y) 7→ (x, y1/k) then we obtain an equation of the form dy
dx = yk+1a2(x)+ya1(x)

kp(x)

which will be called a Bernoulli equation of power k.
We prove the existence of a first integral for Ω = 0 of Liouvillian type. First we

observe that Ω = 0 can be given by

Ω

p(x)yk+1
= k

dy

yk+1
−
(
a2(x)

p(x)
+

a1(x)

p(x)yk

)
dx = 0.

Let now f(x) be such that f ′(x)
f(x) = −a1(x)

p(x) and let g(x) be such that g′(x) =

− a2(x)
p(x)f(x) . Then Ω = 0 can be given by

k
dy

yk+1
+ f(x)g′(x)dx+

f ′(x)

ykf(x)
dx = 0.

Therefore F (x, y) = g(x)− 1
f(x)yk

defines a first integral for Ω = 0 which is clearly

of Liouvillian type.

Before proving Theorem E we shall need a lemma:

Lemma 6.5. Let dydx = c(x)y2+b(x)y+a(x)
a(x) be a rational Riccati ODE, where a(x), b(x),

c(x) are complex polynomials. Assume that there is a Liouvillian first integral. Then
we have the following possibilities:

1. The equation is linear of the form a(x)y′ − b(x)y = a(x).
2. Up to a rational change of coordinates of the form Y = y − A(x)/B(x), the

equation is a Bernoulli equation dY
dx = c̃(x)Y 2+b̃(x)Y

ã(x) .

Proof. Let Ω = [c(x)y2 + b(x)y + a(x)]dx − a(x)dy. The ODE is equivalent to
Ω = 0. According to Singer [24] (Theorem 6.2 above) there is a rational 1-form
η = U(x, y)dx + V (x, y)dy such that dη = (∂U∂y −

∂V
∂x )dy ∧ dx = 0 and exp(

∫
η)

is an integrating factor for Ω. This means that d(Ω/ exp(
∫
η)) = 0 and therefore

dΩ = η ∧ Ω.
We shall split our argumentation in two cases according to the existence of an

invariant algebraic curve other than one of the vertical lines:

Case 1. Ω = 0 admits some invariant algebraic curve C ⊂ C2 which is not a
vertical line x = c ∈ C. First we let us prove that this curve is a graph of a rational
function y = R(x). We may choose an irreducible polynomial f(x, y) such that
f(x, y) = 0 describes this non-vertical algebraic solution. Now we observe that
the leaves of the Riccati foliation defined by Ω = 0 on P1(C) × P1(C) are, except
for those contained in the invariant vertical fibers, all transverse to the vertical
fibers {x} × P1(C) ⊂ P1(C)× P1(C). Thus we conclude that the partial derivative

fy(x, y) = ∂f
∂y (x, y) never vanishes for each x such that a(x) 6= 0. Since f(x, y) is a
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polynomial the partial derivative fy(x, y) is also a polynomial. Take a value of x such
that y 7→ fy(x, y) has no zero. Since this map is a polynomial, it must be constant

say fy(x) = B(x). In particular the second partial derivative fyy(x, y) = ∂2f
∂y2 (x, y)

is identically zero for all (x, y) except maybe for a finite number of values of x. Then
the polynomial fyy is identically zero and because f is a polynomial we must have
f(x, y) = A(x)+B(x)y for some polynomial A(x). This shows that the non-vertical

solution is a graph of the form y(x) = A(x)
B(x) .

Now, as a classical procedure we may perform a change of variables as follows:
write Y = y − y(x) to obtain:

dY

dx
=
c(x)Y 2 + (2c(x)y(x) + b(x))Y

a(x)
=
B(x)c(x)Y 2 + (b(x)B(x) + 2c(x)A(x))Y

a(x)B(x)
.

This is a Bernoulli type equation (see [23] Example 4.2 page 771).

Case 2. There is no invariant algebraic curve other than the vertical lines. Denote
by (η)∞ the polar divisor of η in C2. Let us prove that this polar divisor is a finite
union of invariant vertical lines: Firstly notice that the polar set of η is invariant
by Ω = 0 (see [3] or [23] Lemma 5.5 page 772). By the hypothesis we then conclude
that (η)∞ ⊆ {x ∈ C, a(x) = 0} × C is a union of vertical invariant lines.

Now, from the Integration lemma in [22, Page 174; 5, Page 5] we have

η =

r∑
j=1

λj
dx

x− xj
+ d

(
g(x, y)

r∏
j=1

(x− xj)nj−1

)

where g(x, y) is a polynomial function, xj ∈ C, λj ∈ C and nj ∈ N is the order of
the poles of Ω in the component (x = xj) of the polar set for every j = 1, ..., r. Now
we use the equation dΩ = η ∧ Ω to obtain

−[a′(x)+2yc(x)+b(x)]dx∧dy = −a(x)

r∑
j=1

λj
x− xj

dx∧dy+d

(
g(x, y)

r∏
j=1

(x− xj)nj−1

)
∧Ω

where

d

(
g(x, y)

r∏
j=1

(x− xj)nj−1

)
∧Ω =

dg
r∏
j=1

(x− xj)nj−1

∧Ω− ga(x)d

(
1

r∏
j=1

(x− xj)nj−1

)
∧ dy.

Notice that

dg
r∏
j=1

(x− xj)nj−1

∧Ω =
gy[c(x)y2 + b(x)y + a(x)]

r∏
j=1

(x− xj)nj−1

dx ∧ dy − gxa(x)
r∏
j=1

(x− xj)nj−1

dx ∧ dy

Notice that the left side is −[a′(x) + 2yc(x) + b(x)] has no term in y2 so that
we must have gyc(x) = 0 in the right side. If gy = 0 then g = g(x) and from the
left side we must have c(x) = 0. This shows that we must always have c(x) = 0.
This implies that the original equation is a linear homogeneous equation of the form
dy
dx = b(x)y+a(x)

a(x) which can be written as a(x)y′ − b(x)y = a(x).

Proof of Theorem E. Let us prove the second part, ie., the equivalence. We assume
that L[u](z) = a(z)u′′ + b(z)u′ + c(z)u = 0 admits a Liouvillian first integral. We
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consider the change of coordinates t = u′

u which gives the following Riccati model

R : dtdz = −a(z)t2+b(z)t+c(z)
a(z) . We claim:

Claim 6.6. The Riccati model R also admits a Liouvillian first integral.

Proof. By hypothesis the ODE L[u] = a(z)u′′+ b(z)u′+ c(z)u = 0 has a Liouvillian
first integral. By the Corollary in [24] page 674 all solutions of L[u] = 0 are Liou-
villian. This implies, by Theorem 1 in [24] page 674, that R admits a Liouvillian
first integral.

From the Lemma 6.5 have then two possibilities:

Case 1. There is a solution γ(z) = A(z)/B(z) for the Riccati equation, where
A,B are polynomials. In this case there is a rational change of coordinates of
the form T = t − A(z)/B(z) that takes the Riccati model R into a Bernoulli

foliation B: dT
dz = −T 2 − b̃(z)T where b̃(z) = b(z)

a(z) + 2γ(z). In this case the original

ODE L[u](z) = 0 becomes L̃[U ](z) = U ′′ + b̃(z)U ′ = 0 after a rational change of
coordinates

U = exp(
∫ z
Tdη) = u exp(−

∫ z
γ(η)dη)

where γ(z) = A(z)
B(z) . This shows that we have Liouvillian solutions to the ODE which

are given by

u(z) = exp
(∫ z

γ(η)dη
)[
`+ k

∫ z
exp

(
−
∫ η b(ξ)

a(ξ)dξ
)
· exp

(∫ η −2γ(ξ)dξ
)
dη
]

for constants k, ` ∈ C.

Case 2. We have c(z) = 0 and therefore the original ODE is of the form L[u] =
a(z)u′′ + b(z)u′ = 0. Thus the solutions are Liouvillian given by u(z) = k1 +

k2

∫ z
exp(−

∫ η b(ξ)
a(ξ)dξ)dη for constants k1, k2 ∈ C.
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