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Abstract. This paper concerns the motion of the supersonic potential flow

in a two-dimensional expanding duct. In the case that two Riemann invariants
are both monotonically increasing along the inlet, which means the gases are

spread at the inlet, we obtain the global solution by solving the problem in

those inner and border regions divided by two characteristics in (x, y)-plane,
and the vacuum will appear in some finite place adjacent to the boundary of

the duct. In addition, we point out that the vacuum here is not the so-called
physical vacuum. On the other hand, for the case that at least one Riemann

invariant is strictly monotonic decreasing along some part of the inlet, which

means the gases have some local squeezed properties at the inlet, we show that
the C1 solution to the problem will blow up at some finite location in the

non-convex duct.

1. Introduction. In this paper, we are concerned with the motion of the super-
sonic potential flow in a two-dimensional expanding duct denoted by Ω (See Fig.1),
which is bounded by the lower wall Γlow = {(x, y)|y = −f(x), 0 ≤ x < +∞}, the
upper wall Γup = {(x, y)|y = f(x), 0 ≤ x < +∞} and the inlet Γin = {(x, y)|x =
ϕ(y), y ∈ [−f(0), f(0)]}. Here we assume that f(x) ∈ C2([0,+∞)) satisfies

f(0) > 0, f ′(x) > 0, f ′′(x) ≥ 0, f ′∞ = lim
x→+∞

f ′(x) exists, (1)

and ϕ(y) ∈ C2([−f(0), f(0)]) is an even function which satisfies

ϕ(−y) = ϕ(y), ϕ(±f(0)) = 0, ϕ′(±f(0)) = ∓f ′(0), ϕ′′ ≤ 0. (2)

At the inlet, the flow velocity is assumed to be along the normal direction of the
inlet and its speed is given by q0(y) ∈ C1[−f(0), f(0)]. Moreover, we require that
q0(y) satisfies

c∗ < c1 < q0(y) < c2 < q̂, (3)

where c1, c2 are positive constants, c∗ is the critical speed of the flow and q̂ is the
limit speed of the flow. This means the coming flow is supersonic and does not meet
vacuum at the inlet. On the two walls, the flow satisfies the solid wall condition,
namely

v

u
= tan θ = ±f ′(x), on y = ±f(x), (4)

where θ = arctan v
u is the angle of the velocity inclination to the x−axis.
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Fig.1 Supersonic flow in 2D convex duct

The supersonic flow in the duct is described by the 2-D steady isentropic com-
pressible Euler equations:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) = 0,

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p) = 0,

(5)

where (u, v), p, and ρ stand for the velocity, pressure, and density of the flow. For
the polytropic gas, the state equation is given by p = Aργ , where A is a positive
constant and γ > 1 is the adiabatic exponent. In addition, the gases are assumed
as irrotational. Thus the components (u, v) of the velocity satisfy

∂u

∂y
=
∂v

∂x
, (6)

then for polytropic gas, the following Bernoulli law holds

1

2
q2 +

c2

γ − 1
=

1

2
q̂2, (7)

where q =
√
u2 + v2 is the speed of the flow, c =

√
p′(ρ) is the sound speed, and q̂

is the limit speed, which is an identical constant over the whole flow. Therefore the
density ρ can be expressed by the function of q and the system (5) can be reduced
to a 2× 2 system with variables (u, v)

(c2 − u2)
∂u

∂x
− uv(

∂u

∂y
+
∂v

∂x
) + (c2 − v2)

∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
= 0,

(8)

Such problem (8) with initial data (3) and boundary condition (4) has already
been studied by Wang and Xin in [25]. In their paper, by introducing the velocity
potential ϕ and stream function ψ, in terms of hodograph transformation, they
proved the global solution with vacuum in the phase space (ϕ,ψ). Inspired by their
paper, in order to understand this problem more intuitively, we establish the global
existence of such problem in (x, y)-plane, and vacuum will appear in some finite
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place adjacent to the boundary of duct. In addition, we prove that the vacuum
here is not the so-called physical vacuum.

For better stating our results, we firstly give the description of domains Ωnon
and Ωvac, which are the domain before the vacuum appearance and the domain
adjoining the vacuum respectively (see Fig.2 below). Let M and N stand for the
first vacuum point on Γup and Γlow, where xM = xN . Choose a curve whose normal
direction coincides with the velocity of the incoming flow at x = xM . Denote it
as x = ψ(y) with ψ(±f(xM )) = xM . Set Ωnon as the open region bounded by
Γin, Γup, Γlow and x = ψ(y). Denote lup and llow as the vacuum boundaries
adjacent to Γup and Γlow respectively. Set Ωvac as the open region bounded by
x = ψ(y), lup and llow.
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Fig.2 A global smooth solution with vacuum in 2D convex duct

Our main results in the paper are:

Theorem 1.1. Assume that f ∈ C2([0,+∞)) satisfies (1), ϕ ∈ C2([−f(0), f(0)])
satisfies (2) and q0 ∈ C1[−f(0), f(0)] satisfies (3). If q0 satisfies

|q′0(y)| ≤ − ϕ′′(y)

1 + (ϕ′(y))2

q0c√
q2
0 − c2

on Γin, (9)

then two alternative cases will happen in the duct, one contains vacuum, and the
other does not. More concretely, the two cases are as follows:

(i) When vacuum actually appears in the duct, there exists a global solution
(u, v) ∈ C(Ωnon ∪ Ωvac)

⋂
C1(Ωnon ∪ Ωvac \ {lup, llow}) to the problem (8) with (3)

and (4). Moreover,

∂~nc
2 = 0, on lup ∪ llow \ {M,N}, (10)

here ∂~n stands for the normal derivative of vacuum boundary. This means the
vacuum here is not the physical vacuum.

(ii) If vacuum is absent in the duct, the problem (8) with (3) and (4) has a global
solution (u, v) ∈ C1(Ω̄).

Theorem 1.2. Assume that f(x) ∈ C2([0,+∞)) satisfies:

f(0) > 0, f ′(0) > 0, f ′∞ ≥ 0, f ′′(x) ≤ 0. (11)

If

|q′0(y)| > − ϕ′′(y)

1 + (ϕ′(y))2

q0c√
q2
0 − c2

on Γin, (12)
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then the C1 solution to the problem (8) with (3) and (4) will blow up at some finite
location in the duct.

Remark 1. The condition (9) is equivalent to that the two Riemann invariants
are both monotonically increasing along Γin (see Lemma 2.1). It means the gases
are spread at the inlet. In fact, this condition is very important to get the global
existence of solution. In order to understand this, we have a glimpse of the Cauchy
problem for the Burgers equation{

∂tu+ u∂xu = 0,

u(0, x) = u0(x).
(13)

As well known, if the initial data satisfies

min
x∈R

u′0(x) < 0, (14)

then the solution u(t, x) must blow up in finite time, and shock will be formed.
On the other hand, by introducing the Riemann invariants R± = θ ± F (q) with

F (q) =
∫ √q2−c2

qc dq, the equation (8) is actually equivalent to (20) (see Section 2).

Thus, we consider the global solution of following Cauchy problem for (20) with
initial data 

(∂x + λ−∂y)R+ = 0,

(∂x + λ+∂y)R− = 0,

R±(0, y) = R0
±(y).

(15)

By the results of [16] and [30], there exists a global solution of the Cauchy problem
(15) if and only if the two Riemann invariants R0

±(y) are both monotonically in-
creasing. Therefore, it seems that posing the condition (9) is reasonable to obtain
the global solution. As a contrast, in Theorem 1.2, (12) means that at least one
Riemann invariant is strictly monotonic decreasing along some part of the inlet.
Thus, the gases have some local squeezed properties at the inlet. Similar to the
case in Burgers equation, we prove that the C1 smooth solution to the problem
must blow up at some finite location in the straight duct. Actually, for different
initial data and structures of boundary, more totally different motions of gases can
be found in [7].

Remark 2. By the effect of expanding duct, as far as we know, it is hard to
give a necessary and sufficient condition to ensure that vacuum must form at finite
location in the duct. In Proposition 4.1, we will give a sufficient condition such that
the vacuum will appear in finite place.

Remark 3. For the M-D compressible Euler equations, if the gases are assumed
irrotational, by introducing the velocity potential ∇ϕ = ~u, the Euler system can be
changed into a quasi-linear hyperbolic equation (i.e. potential flow equation). It is
easy to check that this potential flow equation does not fulfill the “null condition”
put forward in [1],[2] and [14]. Thus, in terms of the extensive results of [1],[2] and so
on, the classical solution will blow up. On the other hand, if the rotation is involved,
in the general case, due to the possible compression of gases, the smooth solutions
will blow up and the shock is formed (see [6], [20], [21] and [23]). Meanwhile, if the
gases are suitably expanded or expanded into the vacuum, the global solutions can
exist(see [4], [5], [10], [11], [22], [24] and [27]-[29]).
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Remark 4. If the initial data contains a vacuum, especially for physical vacuum,
the local well-posedness results of the compressible Euler equations have been stud-
ied in [8], [9], [12], [13], [18] and so on. But in general, such a local classical solution
will blow up in finite time as shown in [3], [26] and the references therein.

Remark 5. For the case that Riemann invariants are both constants on Γin which
is a straight segment vertical to the velocity of the incoming flow, the problem has
been solved by Chen and Qu in [5]. Here we extend their work to a more general
case.

Remark 6. The symmetry of ϕ(y) in (2) and the duct with respect to x−axis is not
essential, by the same analysis as in this paper but more tedious computation, the
results can be extended to the non-symmetric case. So for the readers’ convenience,
we only consider the symmetric case.

The paper is organized as follows. In Section 2, we give some basic structures
of the steady plane isentropic flow and discuss the monotonicity of two Riemann
invariants R± along the inlet. In Section 3, we use the method of the characteristics
to divide the duct into several inner and border regions, and the problem is trans-
formed into some Goursat problems in the corresponding inner regions and some
boundary value problems in the corresponding border regions. Then the global
C1 solution is obtained before vacuum forms if R± are monotonically increasing
along the inlet. Meanwhile, for the case that at least one of R+ or R− is strictly
monotonic decreasing along some part of the inlet, we show that the C1 solution
to the problem will blow up at some finite location in the straight duct. In Section
4, we solve the problem when vacuum appears and obtain that the vacuum here is
not the so-called physical vacuum. Combining the results in Section 3 and Section
4, we finally get Theorem 1.1 and Theorem 1.2. At last, We will give a sufficient
condition concerning the geometric shape of the duct to ensure the formation of the
vacuum.

2. Preliminaries. In this section, we start with some basic structures of the steady
plane isentropic flow, which can be characterized by the Euler system (5).

Firstly, equation (8) can be written as the matrix form(
c2 − u2 −uv

0 −1

)
∂

∂x

(
u
v

)
+

(
−uv c2 − v2

1 0

)
∂

∂y

(
u
v

)
= 0. (16)

The characteristic equation of (16) is

(c2 − u2)λ2 + 2uvλ+ (c2 − v2) = 0.

So for the supersonic flow, (8) is hyperbolic and we can get two eigenvalues

λ+ =
uv + c

√
u2 + v2 − c2

u2 − c2
, λ− =

uv − c
√
u2 + v2 − c2

u2 − c2
. (17)

Correspondingly, the two families of characteristics in the (x, y) plane are defined
by

dy±
dx

= λ±. (18)

By standard computation, the Riemann invariants R± can be defined by

R± = θ ± F (q), (19)
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where F (q) =
∫ √q2−c2

qc dq. Since the Jacobian ∂(R+,R−)
∂(u,v) =

2
√
q2−c2
q2c > 0, then the

system (8) without vacuum is equivalent to the following equations{
(∂x + λ−∂y)R+ = 0,

(∂x + λ+∂y)R− = 0,
(20)

which can also be written as

∂±R∓ = 0 (21)

if we set ∂± as the differential operators ∂
∂x + λ±

∂
∂y .

Let A be the Mach angle defined by sinA = c/q, then we have that

λ± = tan(θ ±A). (22)

Under a proper coordinate rotation, the eigenvalues λ± can always be locally
bounded, and the system (21) in the new coordinate is also invariant.

From now on, we will discuss the monotonicity of the Riemann invariants R±
along the inlet, which will play a key role in the following analysis. Note that

θ = − arctanϕ′(y) on Γin, then R± = − arctanϕ′(y)±
∫ q0
c∗

√
q2−c2
qc dq on Γin. Some

properties can be obtained after direct computation.

Lemma 2.1. For R± defined on Γin above, we have that R± are both monotonically
increasing along Γin if and only if the initial speed q0 satisfies

|q′0(y)| ≤ − ϕ′′(y)

1 + (ϕ′(y))2

q0c√
q2
0 − c2

on Γin. (23)

Proof. Since R± = − arctanϕ′(y)±
∫ q0
c∗

√
q2−c2
qc dq on Γin, then direct computation

yields

R′±(y) = − ϕ′′(y)

1 + (ϕ′(y))2
±
√
q2
0 − c2
q0c

q′0(y) on Γin. (24)

Thus R± are monotonically increasing along Γin if and only if (24) are nonnegative,
which is equivalent to (23).

Due to Lemma 2.1, the following analysis will be focused on these two cases.

Case I. R± are both monotonically increasing on Γin;

Case II. At least one of R+, R− is strictly monotonic decreasing along some part
of Γin.

The next lemma shows the partial derivatives ∂λ+

∂R−
and ∂λ−

∂R+
are positive , which

will be often used in the following analysis.

Lemma 2.2. As the q, c, θ, and A defined above, for the supersonic flow, we have

∂λ+

∂R−
> 0 and

∂λ−
∂R+

> 0. (25)

Proof. By using (22) and the chain rule, it follows from direct computation that

∂λ+

∂R−
=

(γ + 1)q2

4(q2 − c2)
sec2(θ +A),

∂λ−
∂R+

=
(γ + 1)q2

4(q2 − c2)
sec2(θ −A), (26)

thus (25) holds true for the supersonic flow.
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3. The C1 solution before vacuum formation. In this section, the existence
of the C1 solution to the problem before vacuum formation will be proved for
case I. We shall use characteristics to divide the whole region into several inner
and border regions, where solutions are constructed successively by the method of
characteristics. As illustrated in Fig.3, we assume that the C− characteristic issuing
from point A1 intersects the lower wall at point B2 and the C+ characteristic issuing
from point B1 intersects the upper wall at point A2. These two characteristics
intersect at point C1. Denote the inner region surrounded by A1B1, A1C1, B1C1 as
region D1, which is the domain of determination of A1B1.

Next we solve the solution in the border region D2(D′2, resp.)bounded by A1C1,
A1A2, A2C1(B1C1, B1B2, B2C1, resp.). Note that R− (R+, resp.) has already
been defined in region D2(D′2, resp.). By the fixed wall condition R+ + R− =
2 arctan(±f ′(x)), we can know the value of R+ (R−, resp.) in region D2(D′2, resp.).
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Fig.3 Inner regions and border regions

Let the C− characteristic issuing from A2 and the C+ characteristic issuing from
B2 intersect at C2. Define the inner region D3 with boundaries A2C1, B2C1, A2C2

and B2C2. If the C− characteristic issuing from A2 approaches the lower wall at
B3 and the C+ characteristic issuing from B2 approaches the upper wall at A3,
we can get two border regions D4(D′4, resp.) with boundaries A2A3, A2C2, A3C2

(B2B3, B2C2, B3C2, resp.). Repeat this process until the vacuum forms. The inner
regions D1, D3 and the border regions D2(D′2, resp.), D4(D′4, resp.) are mainly
considered in this section.

Lemma 3.1. If (9) holds true, then for the C1 solution to the problem we have
∂+R+ ≥ 0, ∂−R− ≤ 0 in the duct before vacuum forms.

Proof. We will prove the conclusion between these inner and border regions sepa-
rately.

Step 1. Inner region D1.
For any fixed two points E,F on Γin and any C− characteristic l in region D1,

suppose the C+ characteristics issuing from E,F intersect l at E1, F1 and intersect
A1A2 at E2, F2 respectively. Since R− is constant along the C+ characteristic and
R− is monotonically increasing along Γin, then the value of R− at E1 is no less than
the value of R− at F1, which implies

∂−R− =
d

dx
(R−(x, y−(x))) ≤ 0 (27)
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along l in region D1. Similarly, ∂+R+ is nonnegative in region D1.

Step 2. Border region D2.
Next we consider the solution in border regionD2 bounded by A1C1, A1A2, A2C1.

From step 1, we know that R− is monotonically decreasing along A1C1. By the
same argument in region D1, we can get that ∂−R− ≤ 0 in region D2. Since the
value of R− at E2 is no less than the value of R− at F2, which means that R− is
monotonically decreasing along A1A2. Due to the solid wall condition

R+ +R− = 2 arctan f ′(x) , f ′′(x) ≥ 0 (28)

on A1A2, R+ is monotonically increasing along A1A2. Therefore we can get ∂+R+ ≥
0 in region D2 by the same argument in region D1. By analogous method, we also
have ∂+R+ ≥ 0, ∂−R− ≤ 0 in region D′2.

Repeating this process in inner region D2i+1(i ≥ 1) and border region D2i+2

(D′2i+2, resp)(i ≥ 1) until the vacuum forms, thus we prove Lemma 3.1.

We can ensure that the hyperbolic direction is always in the x -direction by a
proper rotation of coordinates if necessary. Without loss of generality, we may
assume that u2 > c2, which implies that λ+ > λ−.

Lemma 3.2. If (9) holds true, then we have ∂yR± ≥ 0 in the duct before vacuum
forms.

Proof. In terms of the definition of ∂±, one has

∂x =
λ+∂− − λ−∂+

λ+ − λ−
, ∂y =

∂+ − ∂−
λ+ − λ−

. (29)

Thus we have

∂yR+ =
∂+R+

λ+ − λ−
, ∂yR− =

−∂−R−
λ+ − λ−

. (30)

Combining this with Lemma 3.1 yields the result.

Corollary 1. Under the assumption that u2 > c2, by (21) and (29), we have that

|∂+R+| =
λ+ − λ−√
λ2
− + 1

|∇R+| and |∂−R−| =
λ+ − λ−√
λ2

+ + 1
|∇R−|. (31)

Lemma 3.3. Let ∂l = u∂x+v∂y stand for the derivative along the streamline, under
the assumption that u2 > c2, then the speed of the flow is monotonically increasing
along the streamline, that is to say ∂lq ≥ 0.

Proof. It follows from (29) that ∂l = u∂x + v∂y can be expressed as

∂l =
v − uλ−
λ+ − λ−

∂+ +
uλ+ − v
λ+ − λ−

∂−. (32)

which implies that

∂lq =
v − λ−u
λ+ − λ−

∂+q +
λ+u− v
λ+ − λ−

∂−q =
u( vu − λ−)

λ+ − λ−
∂+q +

u(λ+ − v
u )

λ+ − λ−
∂−q. (33)

Since u2 > c2, we know that θ±A is away from ±π2 . Thus the coefficients of the
right hand part of (33) are positive. So it remains to determine the symbol of ∂±q.
Due to (20) and Lemma 3.1, one has that ∂+R+ = ∂+(R+−R−) = 2F ′(q)∂+q ≥ 0,
which immediately indicates that ∂+q ≥ 0. Similarly, one can get that ∂−q ≥ 0.
Then the proof of Lemma 3.3 is completed.
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Corollary 2. Combining Lemma 3.3 and the Bernoulli law yields that the sound
speed is monotonically decreasing along the streamline, that is to say ∂lc ≤ 0.

We now focus on the solution in the inner regions D1 and D2i−1(i ≥ 2) bounded
by AiCi−1, BiCi−1, AiCi and BiCi. We only need to discuss the region D2i−1(i ≥
2), since same method can be used in region D1.

 
!
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"

 
#

! "!  
!

 
  # 

Fig.4 Goursat problem in inner region

Set R+(x, y) = W+(x, y) on AiCi−1 and R−(x, y) = W−(x, y) on BiCi−1. Thus
the solution in the region D2i−1 should be determined by solving a Goursat problem,
which is given by 

(∂x + λ−∂y)R+ = 0,

(∂x + λ+∂y)R− = 0,
in D2i−1

R+(x, y) = W+(x, y) on AiCi−1,

R−(x, y) = W−(x, y) on BiCi−1.

(34)

By standard iteration method, the local existence of the problem (34) can be
achieved, one can also see [4] and [15] for more details. In order to get the global
solution to the problem (34) in the region D2i−1(i ≥ 2), some prior estimates about
R± and ∇R± are needed.

Lemma 3.4. If (9) holds true, then |∂+R+| is monotonically decreasing along C−
characteristics and |∂−R−| is monotonically decreasing along C+ characteristics
before vacuum formation.

Proof. It comes from the definition of ∂± that

∂−∂+R+ = ∂−∂+R+ − ∂+∂−R+ = (∂−λ+ − ∂+λ−)∂yR+. (35)

Due to

∂−λ+ − ∂+λ− =
∂λ+

∂R−
∂−R− −

∂λ−
∂R+

∂+R+ ≤ 0 (36)

and ∂yR+ ≥ 0, then ∂−∂+R+ ≤ 0, which implies ∂+R+ is monotonically decreas-
ing along C− characteristics. By the same argument, we can get that ∂−R− is
monotonically increasing along C+ characteristics.

In terms of Lemma 3.1, one has ∂+R+ ≥ 0 and ∂−R− ≤ 0. This means that
|∂+R+| is monotonically decreasing along C− characteristics and |∂−R−| is mono-
tonically decreasing along C+ characteristics before vacuum formation. Thus we
complete the proof.
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Fig.5 The case that y(xN−1) = f(xN−1)

Lemma 3.5. Suppose that R±(x, y) are the classical solutions to the problem (34),
then R± and ∂±R± are uniformly bounded in the region D2i−1(i ≥ 2) if (9) holds
true.

Proof. Firstly, we give the estimates of |R±|.
For any point (x, y) in D2i−1(i ≥ 2), by the method of characteristics, we have

that

|R+(x, y)| ≤ ‖W+‖C(AiCi−1) , |R−(x, y)| ≤ ‖W−‖C(BiCi−1) (37)

in the region D2i−1(i ≥ 2). To be more specific, we shall point out that
‖W+(x, y)‖C(AiCi−1) and ‖W−(x, y)‖C(BiCi−1) listed above only depend on ‖f‖C1

and ‖R±‖C(Γin).

Fix (x0, y0) ∈ AiCi−1, let y = y
(1)
− (x) be the C− characteristic from (x0, y0),

which approaches either Γup or Γin at a point (x1, y1). If y1 = f(x1), then there

exists a C+ characteristic y = y
(2)
+ (x) from (x1, y1), which approaches either Γlow

or Γin at a point (x2, y2). If y2 = −f(x2), then there exists a C− characteristic

y = y
(3)
− (x) from (x2, y2), which approaches either Γup or Γin at a point (x3, y3).

Since the two eigenvalues λ± have the uniform upper or lower bound, then there
exists a positive N such that

x0 > x1 > ... > xN−1 > xN , xN = ϕ(yN ). (38)

If y(xN−1) = f(xN−1) (see Fig.5), then we get

W+(x0, y0) = 2 arctan f ′(x1)−R−(x1, y1) = 2 arctan f ′(x1)−R−(x2, y2)

= 2 arctan f ′(x1) + 2 arctan f ′(x2) +R+(x2, y2)

=

N∑
i=1

2 arctan f ′(xi)−R−(xN , yN ). (39)

Similarly, if y(xN−1) = −f(xN−1) (see Fig.6), then we get

W+(x0, y0) =

N∑
i=1

2 arctan f ′(xi) +R+(xN , yN ). (40)

Combining (39) and (40) yields that

‖W+‖C(AiCi−1) ≤ 2N arctan f ′∞ + max{‖R+‖C(Γin), ‖R−‖C(Γin)}. (41)

Analogously, the estimate of ‖W−‖C(BiCi−1) can also be obtained as (41).
Next, we give the estimates of |∂±R±|.
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Fig.6 The case that y(xN−1) = −f(xN−1)

It follows from Lemma 3.4 that

|∂+R+(x, y)| ≤ ‖∂+W+‖C(AiCi−1) , |∂−R−(x, y)| ≤ ‖∂−W−‖C(BiCi−1). (42)

As the process shown in the estimates of |R±|, we shall point out that
‖∂+W+‖C(AiCi−1) and ‖∂−W−‖C(BiCi−1) listed above only depend on ‖f‖C2 and
‖R±‖C1(Γin). To this end, we need to derive the boundary condition of ∂±R±. It
follows from (32) and the solid wall condition that

v − uλ−
λ+ − λ−

∂+R+ +
uλ+ − v
λ+ − λ−

∂−R− = ±2u
f ′′(x)

1 + (f ′(x))2
, on y = ±f(x). (43)

By the process of the reflection shown in the estimates of |R±| and Lemma 3.4, if
y(xN−1) = f(xN−1), we can get

∂+W+(x0, y0) ≤ ∂+R+(x1, y1)

=

(
2u
λ+ − λ−
v − uλ−

f ′′

1 + (f ′)2
− uλ+ − v
v − uλ−

∂−R−

)
(x1, y1)

≤
(

2u
λ+ − λ−
v − uλ−

f ′′

1 + (f ′)2

)
(x1, y1)−

(
uλ+ − v
v − uλ−

)
(x1, y1)

× ∂−R−(x2, y2)

=

(
2u
λ+ − λ−
v − uλ−

f ′′

1 + (f ′)2

)
(x1, y1) +

(
uλ+ − v
v − uλ−

)
(x1, y1)

×
(

2u
λ+ − λ−
uλ+ − v

f ′′

1 + (f ′)2

)
(x2, y2) +

(
uλ+ − v
v − uλ−

)
(x1, y1)

×
(
v − uλ−
uλ+ − v

)
(x2, y2)× ∂+R+(x2, y2) (44)

Since u2 > c2, then the coefficients

2u
f ′′

1 + (f ′)2
,

uλ+ − v
v − uλ−

,
λ+ − λ−
v − uλ−

,
λ+ − λ−
uλ+ − v

are uniformly bounded. Denote the maximum one of these bounds as the constant
G, thus (44) can be expressed as

∂+W+(x0, y0) ≤ ∂+R+(x1, y1) ≤ G2 −G∂−R−(x1, y1)

≤ G2 −G∂−R−(x2, y2) ≤ G2 +G3 +G2∂+R+(x2, y2)

≤
N∑
i=1

Gi+1 +GN∂+R+(xN , yN ). (45)
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Similarly, if y(xN−1) = −f(xN−1), then we also have

∂+W+(x0, y0) ≤
N∑
i=1

Gi+1 −GN∂−R−(xN , yN ). (46)

Combining (45), (46) and (31) yields that

‖∂+W+‖C(AiCi−1) ≤
N∑
i=1

Gi+1 +GN max{‖∂+R+‖C(Γin), ‖∂−R−‖C(Γin)}. (47)

Analogously, the same estimate of ‖∂−W−‖C(BiCi−1) holds true.
Thus, we complete the proof of Lemma 3.5.

Corollary 3. Based on Lemma 3.5, we have that |∇R±| . M , where M depends
on ‖f‖C2 , ‖R±‖C1(Γin) and the lower bound of the sound speed c in D2i−1(i ≥ 2).

Proof. Substituting (31) into (47) gives that

|∇R±| =

√
λ2
∓ + 1

λ+ − λ−
|∂±R±| .

1

c

(
N∑
i=1

Gi+1 +GN max{‖R+‖C1(Γin), ‖R−‖C1(Γin)}

)
.

(48)

Combining the local existence and the Corollary 3 induces the global C1 solution
to the problem (34) in the inner region D2i−1(i ≥ 2) before vacuum forms.

We now turn to consider the border region D2i(i ≥ 1), which is bounded by a
part of the upper wall AiAi+1, the C− characteristic AiCi, and the C+ characteristic
Ai+1Ci (see Fig.7). Then the problem in region D2i(i ≥ 1) can be generalized as
the following problem

(∂x + λ−∂y)R+ = 0,

(∂x + λ+∂y)R− = 0,
in D2i

R−(x, y) = Z−(x, y) on AiCi,

R+ +R− = 2 arctan f ′(x) on AiAi+1,

(49)

where Z−(x, y) is a known function. The local existence of the problem (49) can
be achieved by [15]. In order to get the global solution to the problem (49) in the
region D2i(i ≥ 1), some prior estimates about |R±|and|∇R±| are needed.
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Fig.7 Solution in border region

Lemma 3.6. Suppose that R±(x, y) are the classical solution to the problem (49),
then R± and ∂±R± are uniformly bounded in the region D2i(i ≥ 1).
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Proof. For any point (x, y) in D2i(i ≥ 1), by the method of characteristics and the
solid wall condition, we have that

|R−(x, y)| ≤ ‖Z−‖C(AiCi), |R+(x, y)| ≤ 2 arctan f ′∞ + ‖Z−‖C(AiCi). (50)

in the region D2i(i ≥ 1). It follows from Lemma 3.4 that

|∂−R−(x, y)| ≤ ‖∂−Z−‖C(AiCi), |∂+R+(x, y)| ≤ ‖∂+R+‖C(AiAi+1). (51)

Moreover, by (43), we have that

‖∂+R+‖C(AiAi+1) ≤ G2 +G‖∂−R−‖C(AiAi+1) ≤ G2 +G‖∂−Z−‖C(AiCi). (52)

By the same process shown in Lemma 3.5, we know that ‖∂−Z−‖C(AiCi) can be
controlled by ‖R±‖C1(Γin). And thus the proof is finished.

Corollary 4. Based on Lemma 3.6, we have that |∇R±| . M , where M depends
on ‖f‖C2 , ‖R±‖C1(Γin) and the lower bound of the sound speed c in D2i(i ≥ 1).

Combining the local existence and the Corollary 4 induces the global C1 solution
to the problem (49) in the border region D2i(i ≥ 1) before vacuum forms. The
problem in the border region D′2i(i ≥ 1) can be solved by the same way exactly.
After solving the problem in these inner and border regions successively, we have
that

Theorem 3.7. For case I, there exists a global C1 solution to the problem in (Ωnon\
{M,N}) and

∂+R+ ≥ 0, ∂−R− ≤ 0 in (Ωnon \ {M,N}). (53)

Moreover, there exists a constant C which only depends on the initial data and
‖f‖C2 , such that

|∂+R+|+ |∂−R−| ≤ C in (Ωnon \ {M,N}). (54)

So far we have established the global C1 solution before vacuum formation for
case I, where the initial speed q0 satisfies (9). The existence of solution after vacuum
formation will be established in Section 4.

Now we begin to consider the problem in case II. We will prove Theorem 1.2.

Proof of Theorem 1.2. Firstly, we consider the special case f ′′(x) = 0, i.e. the duct
is straight.
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Fig.8 Blowup in 2D straight duct

Suppose that R+ is strictly monotonic decreasing along arc MN on Γin(see
Fig.8). Assume that the C− characteristics issuing from M and N intersect Γlow
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at M1 and N1 respectively. Then it follows from the same argument in Lemma 3.1
that ∂+R+ < 0, which implies that ∂yR+ < 0 in the region MNM1N1.

Let y
(0)
− (x) be the C− characteristic from any point (x0, y0) on MN , i.e.

dy
(0)
− (x)

dx
= λ−,

y
(0)
− (x0) = ϕ−1(x0).

(55)

Then R+ is constant along the curve y = y
(0)
− (x), which means that R+(x, y

(0)
− (x)) =

R+(x0, ϕ
−1(x0)). Differentiating the first equation in (20) with respect to y yields

that

∂

∂x

(
∂R+

∂y

)
+ λ−

∂

∂y

(
∂R+

∂y

)
+
∂λ−
∂R−

∂R−
∂y

∂R+

∂y
= − ∂λ−

∂R+

(
∂R+

∂y

)2

.

Use the second equation in (20), we can get ∂R−
∂x + λ−

∂R−
∂y = (λ− − λ+)∂R−∂y , i.e.

∂R−
∂y

=
∂xR− + λ−∂yR−

λ− − λ+
.

Substitute it into the above identity to obtain that

∂

∂x

(
∂R+

∂y

)
+ λ−

∂

∂y

(
∂R+

∂y

)
+
∂λ−
∂R−

∂xR− + λ−∂yR−
λ− − λ+

∂R+

∂y
= − ∂λ−

∂R+

(
∂R+

∂y

)2

.

(56)

Define H0(x) := exp {
∫ x
x0

∂xR−+λ−∂yR−
λ−−λ+

∂λ−
∂R−

(s, y
(0)
− (s))ds}, then (56) can be trans-

formed into
d

dx
(H0(x)∂yR+)−1 =

∂λ−
∂R+

H−1
0 , (57)

where d
dx stands for the derivative along the curve y = y

(0)
− (x).

If y = y
(0)
− (x) intersects Γlow at point (x1, y1), then by integrating (57) from x0

to x1, we get that

∂R+

∂y
(x1, y1) =

∂yR+(x0, y0)

H0(x)(1 + ∂yR+(x0, y0)
∫ x1

x0

∂λ−
∂R+H

−1
0 (s, y

(0)
− (s))ds)

. (58)

SinceR+ is constant along y = y
(0)
− (x), thus the term 1

λ−−λ+

∂λ−
∂R−

is only the function

of R−. If we set h0(R−) =
∫ R−

0
1

λ−−λ+

∂λ−
∂R−

dR−, then H0(x) can be expressed by

H0(x) = exp{h0(R−(x, y
(0)
− (x))− h0(R−(x0, y0)}, (59)

and H0(x) is bounded.

Note that ∂yR+(x0, y0) < 0 and ∂λ−
∂R+ > 0. If we denote the positive lower bound

of ∂λ−
∂R+H

−1
0 by K0, then we have that

∂R+

∂y
(x1, y1) ≤ ∂yR+(x0, y0)

H0(x)(1 + ∂yR+(x0, y0)K0(x1 − x0))
. (60)

By the boundary condition (43), one has that

∂yR−(x1, y1) =

(
v − uλ−
uλ+ − v

∂yR+

)
(x1, y1) =

(
cos(θ +A)

cos(θ −A)
∂yR+

)
(x1, y1). (61)
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The coefficient cos(θ+A)
cos(θ−A) (x1, y1) is greater than 1, which implies that

∂yR−(x1, y1) < ∂yR+(x1, y1). (62)

Analogously, let y
(1)
+ (x) be the C+ characteristic from (x1, y1) on N1M1, i.e.

dy
(1)
+ (x)

dx
= λ+,

y
(1)
+ (x1) = y1.

(63)

one can obtain the similar equation of ∂yR− as (57) by

d

dx
(H1(x)∂yR+)−1 =

∂λ+

∂R−
H−1

1 , (64)

where H1(x) = exp {
∫ x
x1

∂xR++λ+∂yR+

λ+−λ−
∂λ+

∂R+
(s, y

(1)
+ (s))ds} and d

dx stands for the de-

rivative along the curve y = y
(1)
+ (x). In addition, H1(x) can be written as H1(x) =

exp{h1(R+(x, y
(1)
+ (x)) − h1(R+(x1, y1)} where h1(R+) =

∫ R+

0
1

λ+−λ−
∂λ+

∂R+
dR+. If

y = y
(1)
+ (x) intersects Γup at point (x2, y2), integrating (64) from x1 to x2 yields

that

∂R−
∂y

(x2, y2) =
∂yR−(x1, y1)

H1(x)(1 + ∂yR−(x1, y1)
∫ x2

x1

∂λ+

∂R−H
−1
1 (s, y

(1)
+ (s))ds)

. (65)

Note that ∂yR−(x1, y1) < 0 and ∂λ+

∂R− > 0. If we denote the positive lower bound

of ∂λ+

∂R−H
−1
1 by K1 and let K∗1 = min{K0,K1}, then we have that

∂R−
∂y

(x2, y2) ≤ ∂yR−(x1, y1)

H1(x)(1 + ∂yR−(x1, y1)K∗1 (x2 − x1))
. (66)

By the same process and after series of reflection if necessary, the denominator of
(66) will tend to −∞ at some finite location in the duct. Thus the C1 solution to
the problem will blow up at some finite location in the straight duct.

Next, we consider the case f ′′(x) ≤ 0.
The proof is very similar to the case f ′′(x) = 0, except for using following bound-

ary condition to replace (61) by(
(v − uλ−)∂yR+

)
(x1, y1)−

(
(uλ+ − v)∂yR−

)
(x1, y1)

= −2u(x1, y1)
f ′′(x1)

1 + (f ′(x1))2
. (67)

Thus we have

∂yR−(x1, y1) =

(
v − uλ−
uλ+ − v

∂yR+

)
(x1, y1)

+

(
2u

uλ+ − v

)
(x1, y1)× f ′′(x1)

1 + (f ′(x1))2

< ∂yR+(x1, y1). (68)

This is same as (62). So we omit the details of proof for the case f ′′(x) ≤ 0.
Therefore, we complete the proof of Theorem 1.2.
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4. Formation of vacuum. Due to the conservation of mass, vacuum can not
appear in the inner regions of the duct. So if vacuum exists, it must locate on the
two walls. On the other hand, since the two walls are the streamlines, Corollary 2
shows that the sound speed is monotonically decreasing along the two walls. When
the sound speed decreases to zero, it corresponds to the formation of vacuum.

First, we list some properties of the vacuum boundary, one can also see [4] and
[25] for more details.

Lemma 4.1. When the vacuum area actually appears, the first vacuum point M
and N must form at Γup and Γlow respectively. Furthermore, the boundary of the
vacuum lup or llow is a straight stream line which is tangential to Γup or Γlow at M
or N, where f ′′(xM ) = f ′′(xN ) > 0.

Based on Theorem 3.7, we have obtained the C1 solution to the problem for
(x, y) ∈ (Ωnon \ {M,N}) and ∂+R+ ≥ 0, ∂−R− ≤ 0 in (Ωnon \ {M,N}). We

now begin to solve the problem when vacuum forms. Set R+(x, y) = R̃+(y) and

R−(x, y) = R̃−(y) on x = ψ(y). Then R̃±(y) ∈ C1(−f(xM ), f(xM )) and R̃±(y)
are monotonically increasing along x = ψ(y). Since the problem is singular at M

and N, we choose Qn+ = (xn, yn), Qn− = (xn,−yn) on x = ψ(y) and R̃n±(y) ∈
C1[−f(xM ), f(xM )] such that

R̃n±(y) = R̃±(y), y ∈ [−yn, yn], f(xM )− yn =
1

n
, n = 1, 2, ...

|q′(y)| ≤ − ψ′′(y)

1 + (ψ′(y))2

qc√
q2 − c2

, y ∈ [−f(xM ),−yn] ∪ [yn, f(xM )].
(69)

Consider the problem in the region Ωvac bounded by x = ψ(y), lup and llow with

initial value R̃n±(y). The local existence can be obtained by the method in [15].
For any point (x, y) ∈ Ωvac, the back−C+ characteristic from it must intersect
Γlow or Γin and the back−C− characteristic from it must intersect Γup or Γin. Then
by Theorem 3.7, one has that ∂±R

n
± are uniformly bounded in Ωvac. Thus we can

get the global C1 solution Rn± to the problem in Ωvac with initial value R̃n±(y).
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Fig.9 Solution in Ωvac

Let y = yn+ stand for the C+ characteristic from (xn, yn) and y = yn− stand for
the C− characteristic from (xn,−yn). Then yn+(yn−, resp.) tends to lup(llow, resp.)
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as n→∞ and we can set

R±(x, y) = lim
n→∞

Rn±(x, y), (x, y) ∈ Ωvac. (70)

To sum up, we get that

Theorem 4.2. Assume that R̃±(y) ∈ C1(−f(xM ), f(xM )) and R̃±(y) are mono-
tonically increasing along x = ψ(y). Then R±(x, y) defined by (70) is the unique
solution to the problem in Ωvac. Furthermore, R±(x, y) ∈ C1(Ωvac\{lup∪ llow}) and

∂+R+ ≥ 0, ∂−R− ≤ 0 in (Ωvac\{lup ∪ llow}). (71)

Next, we consider the regularity near vacuum boundary. In fact, there are many
results about physical vacuum singularity. A vacuum boundary (or singularity) is
called physical if

0 <

∣∣∣∣∂c2∂~n

∣∣∣∣ < +∞ (72)

in a small neighborhood of the boundary, where ~n is the normal direction of the
vacuum boundary. This definition of physical vacuum was motivated by the case of
Euler equations with damping studied in [17] and [19]. But the following Theorem
shows that the vacuum here is not the physical vacuum.

Theorem 4.3. Let ∂~n stand for the normal derivative on the vacuum boundary,
then for any point (x, y) near the vacuum line, we have ∂~nc

2(x, y) tends to zero as
(x, y) approaches to the vacuum line along the normal direction except the vacuum
point M and N.

Proof. For convenience, we only consider the case near the vacuum line llow, which is
tangential to Γlow at N. First, we derive the expression of ∂~nc

2, where ~n = (n1, n2).
Acting ∂~n on the Bernoulli law (7) yields that

∂~nc
2 = −(γ − 1)q∂~nq. (73)

By the relation R+ −R− = 2F (q), one has that

∂xq =
qc

2
√
q2 − c2

(∂xR+ − ∂xR−), ∂yq =
qc

2
√
q2 − c2

(∂yR+ − ∂yR−). (74)

Substituting it into (73) gives that

∂~nc
2 = − (γ − 1)q2c

2
√
q2 − c2

[(n2 − n1λ−)∂yR+ + (n1λ+ − n2)∂yR−]. (75)

Combining this with (30) yields that

∂~nc
2 = − (γ − 1)q2(u2 − c2)

4(q2 − c2)
[(n2 − n1λ−)∂+R+ − (n1λ+ − n2)∂−R−]. (76)

Construct a line NNh vertical to llow at the first vacuum point N, where h
represents the distance between N and Nh. Let Ch− be the C− characteristic through
Nh and intersect Γup at Ph. Fix a point S on llow. Make a line from S vertical to
llow and it intersects Ch− at Sh. Then we have that Nh → N,Sh → S as h→ 0. It
follows from (35) that

∂−∂+R+ =
∂−λ+ − ∂+λ−
λ+ − λ−

∂+R+. (77)
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Integrating (77) from Ph to Sh yields that

∂+R+(Sh) = ∂+R+(Ph) exp

{∫ Sh

Ph

∂−λ+ − ∂+λ−
λ+ − λ−

ds

}
. (78)

This together with (26) yields that

∂+R+(Sh) = ∂+R+(Ph) exp

{∫ Sh

Ph

γ + 1

8c
(−T1∂+R+ + T2∂−R−)ds

}
, (79)

where

T1 =
q2(u2 − c2) sec2(θ −A)

(q2 − c2)
3
2

, T2 =
q2(u2 − c2) sec2(θ +A)

(q2 − c2)
3
2

.
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Fig.10 The regularity near vacuum boundary

Since u2 > c2, then T1 and T2 have the uniform positive lower bound denoted as
g0.

We claim that lim
h→0

∂+R+(Sh) = 0 and lim
h→0

∂−R−(Sh) = 0, which immediately

implies that lim
h→0

∂~nc
2(Sh) = 0. For convenience, we only prove lim

h→0
∂+R+(Sh) = 0,

for the case lim
h→0

∂−R−(Sh) = 0 can be obtained by the same argument.

We will use the proof by contradiction to obtain above assertions. Assume that
lim
h→0

∂+R+(Sh) = ḡ > 0, where ḡ is a positive constant. Then there exists a sequence

Sḡn on ShS such that ∂+R+(Sḡn) ≥ ḡ
2 > 0 and |NNḡn | ≤ h

n , where Nḡn is the

intersection of the C− characteristic C ḡn− through Sḡn and the segment NNh. Let

the C− characteristic C ḡn− intersect Γup at Pḡn . Then it follows from Lemma 3.4
that

∂+R+(x, y) ≥ ∂+R+(Sḡn) ≥ ḡ

2
on (x, y) ∈ PḡnSḡn . (80)

By the fact that ∂−q ≥ 0 and the Bernoulli law, we can get ∂−c ≤ 0, which implies
that the value of c on NḡnSḡn is no greater than the value of c at Nḡn denoted by
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c(Nḡn). Thus we have lim
n→∞

c(Nḡn) = 0 and∫ Sḡn

Pḡn

γ + 1

8c
(−T1∂+R+ + T2∂−R−)ds ≤

∫ Sḡn

Nḡn

−γ + 1

8c
T1∂+R+ds

≤ − γ + 1

16c(Nḡn)
s0g0ḡ, (81)

where s0 = |NS|. Combining it with (79) yields that

∂+R+(Sḡn) ≤ ∂+R+(Pḡn) exp

{
− γ + 1

16c(Nḡn)
s0g0ḡ

}
. (82)

Note that Pḡn is away from the vacuum as n → ∞. If lim
n→∞

Pḡn = P , then

lim
n→∞

∂+R+(Pḡn) = ∂+R+(P ) and ∂+R+(P ) is bounded. Then let n → ∞ in (82),

we can get that

lim
n→∞

∂+R+(Sḡn) 6 ∂+R+(P ) lim
n→∞

exp

{
− γ + 1

16c(Nḡn)
s0g0ḡ

}
= 0, (83)

which is a contradiction. Thus, it follows

lim
h→0

∂+R+(Sh) = 0, lim
h→0

∂−R−(Sh) = 0. (84)

This together with (71) gives that

lim
h→0

∂+R+(Sh) = 0, lim
h→0

∂−R−(Sh) = 0. (85)

Combining it with (76) yields that

lim
h→0

∂c2

∂~n
(Sh) = 0. (86)

Note that c2 ∈ C(Ω̄vac), by the derivative limit theorem, we have that

∂c2

∂~n
= 0, on llow \ {N}. (87)

Similarly, one has that

∂c2

∂~n
= 0, on lup \ {M}. (88)

Thus, we prove the Theorem 4.2.

So far we have established the solution to the problem when vacuum actually
appears. When it comes to the case that there is no vacuum in the duct, by the
same prior estimates in Lemma 3.5 and Lemma 3.6, one only needs to check whether
the duct can be covered by characteristics in finite steps.

Theorem 4.4. Assume that f ∈ C2([0,+∞)) satisfies (1), ϕ ∈ C2([−f(0), f(0)])
satisfies (2) and q0 ∈ C1[−f(0), f(0)] satisfies (3), (9). If there is no vacuum in
the duct, then there exists a global C1 solution in the duct.
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Fig.11 The case without vacuum

Proof. It remains to check whether the duct can be covered by characteristics in
finite steps. Since the duct is convex, then there exists i0 such that we can find an arc
EF on Ai0Ai0+1 and f ′′ > 0 on EF . Let the C− characteristics CE− , C

F
− intersect

Ci0Ai0+1 at E1, F1, intersect Bi0+1Ci0+1 at E2, F2 and intersect Bi0+1Bi0+2 at
E3, F3. By Lemma 3.1 and (28), we know that ∂+R+ > 0 on E1F1 and E2F2.

Combining it with ∂+R− = 0 yields that Ẽ1F̃1, Ẽ2F̃2 which are the images of
E1F1, E2F2 in (u, v) plane have positive length. That is to say

|C̃i0Ãi0+1| > 0, |B̃i0+1C̃i0+1| > 0. (89)

Similarly, we can get that

|C̃i0+1B̃i0+2| > 0, |Ãi0+2C̃i0+2| > 0. (90)

Fig.12 The image in the (u, v)−plane

By the induction method, we have that

|C̃i0+2(k−1)Ãi0+2k−1| > 0, |B̃i0+2k−1C̃i0+2k−1| > 0,

|C̃i0+2(k−1)B̃i0+2k| > 0, |Ãi0+2kC̃i0+2k| > 0, k = 1, 2, ... (91)

Suppose that the image of the C+ characteristic through Ci0 in (u, v) plane intersects
the critical circle at C0

i0
and intersects the limiting circle at C1

i0
. Then

∠C0
i0OC

1
i0 =

π

2µ
, θB̃i0+1

= ∠C̃i0OB̃i0+1 > 0, (92)



GLOBAL SOLUTIONS OF 3-D EULER EQUATIONS 2097

where µ =
√

γ−1
γ+1 . By the same method in [5], we have that

i ≤ b π

2µθB̃i0+1

c, (93)

where b.c stands for the maximal integer no more than the number inside the
bracket.

Proof of Theorem 1.1. Under the assumptions of Theorem 1.1, Theorem 1.1 comes
from Theorem 3.1 and Theorem 4.1-4.3.

Finally, we give a sufficient condition to ensure that vacuum must form at finite
location in the duct.

Proposition 1. If f ′∞ > f ′(0) + 2

(γ−1)MB1

√
1+(f ′(0))2

, where MB1 represents the

Mach number at B1, then the vacuum will form at the finite locations on Γlow.

Proof. We will use the proof by contradiction. Assume that there is no vacuum on
Γlow. Let d

ds stand for the derivative along Γlow. By the relation R+−R− = 2F (q),
one has that

dq

ds
=
d(R+ −R−)

ds

1

2F ′(q)
=

qc

2
√
q2 − c2

(∂x(R+ −R−) + tan θ∂y(R+ −R−)). (94)

This together with (29) and (43) yields that

dq

ds
=

qc√
q2 − c2

(
tan θ − λ−
λ+ − λ−

∂+R+ +
f ′′(x)

1 + (f ′(x))2

)
. (95)

By (95) and the Bernoulli law (7), we get that

dc

ds
= − (γ − 1)q2

2
√
q2 − c2

(
tan θ − λ−
λ+ − λ−

∂+R+ +
f ′′(x)

1 + (f ′(x))2

)
. (96)

Since

cB1
= −

∫ +∞

0

dc

ds

√
1 + (f ′(x))2dx,

then

cB1
≥

∫ +∞

0

(γ − 1)q2

2
√
q2 − c2

f ′′(x)

1 + (f ′(x))2

√
1 + (f ′(0))2dx

≥ qB1
(γ − 1)

2

√
1 + (f ′(0))2

∫ +∞

0

− f ′′(x)

1 + (f ′(x))2
dx

=
qB1(γ − 1)

2

√
1 + (f ′(0))2(arctan f ′∞ − arctan f ′(0))

> cB1
, (97)

which is a contradiction. Thus, we complete the proof.
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[11] M. Hadžić and J. Jang, Expanding large global solutions of the equations of compressible

fluid mechanics, Invent. Math., 214 (2018), 1205–1266.

[12] J. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical
vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327–1385.

[13] J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical

vacuum, Comm. Pure Appl. Math., 68 (2015), 61–111.
[14] S. Klainerman, The null condition and global existence to nonlinear wave equations, in Non-

linear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in

Appl. Math., 23, Amer. Math. Soc., Providence, RI, 1986, 293–326.
[15] T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM: Research in

Applied Mathematics, 32, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
[16] D. Q. Li and T. H. Qin, A necessary and sufficient condition for the global existence of

smooth solutions to Cauchy problems for first-order quasilinear hyperbolic systems, Acta

Math. Sinica, 28 (1985), 606–613.
[17] T.-P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math., 13

(1996), 25–32.
[18] T.-P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam.

Systems, 4 (1998), 1–32.

[19] T.-P. Liu and T. Yang, Compressible flow with vacuum and physical singularity, Methods

Appl. Anal., 7 (2000), 495–509.
[20] J. Luk and J. Speck, Shock formation in solutions to the 2D compressible Euler equations in

the presence of non-zero vorticity, Invent. Math., 214 (2018), 1–169.
[21] M. A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions,

Proc. Amer. Math. Soc., 107 (1989), 705–714.

[22] D. Serre, Solutions classiques globales des équations d’Euler pour un fluide parfait compress-
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