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THE GLOBAL SUPERSONIC FLOW WITH VACUUM STATE IN
A 2D CONVEX DUCT
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ABSTRACT. This paper concerns the motion of the supersonic potential flow
in a two-dimensional expanding duct. In the case that two Riemann invariants
are both monotonically increasing along the inlet, which means the gases are
spread at the inlet, we obtain the global solution by solving the problem in
those inner and border regions divided by two characteristics in (z,y)-plane,
and the vacuum will appear in some finite place adjacent to the boundary of
the duct. In addition, we point out that the vacuum here is not the so-called
physical vacuum. On the other hand, for the case that at least one Riemann
invariant is strictly monotonic decreasing along some part of the inlet, which
means the gases have some local squeezed properties at the inlet, we show that
the C! solution to the problem will blow up at some finite location in the
non-convex duct.

1. Introduction. In this paper, we are concerned with the motion of the super-
sonic potential flow in a two-dimensional expanding duct denoted by € (See Fig.1),
which is bounded by the lower wall I'ow = {(z,y)|ly = —f(2),0 < z < 400}, the
upper wall Ty, = {(z,9)|ly = f(x),0 < 2 < 400} and the inlet Ty, = {(z,y)|z =
©o(y),y € [ f(0), £(0)]}. Here we assume that f(z) € C?([0,+00)) satisfies

FO>0. F@)>0 @20, fo= lm f) edss ()
and ¢(y) € C?([—f(0), £(0)]) is an even function which satisfies
p(=y) =oy), @(Ef(0))=0, ¢'(£f(0)=7Ff(0), ¢"<0. (2)

At the inlet, the flow velocity is assumed to be along the normal direction of the
inlet and its speed is given by qo(y) € C[—£(0), £(0)]. Moreover, we require that
qo(y) satisfies

cx <1 < qoly) <eca2 <, (3)
where c1, co are positive constants, c, is the critical speed of the flow and ¢ is the
limit speed of the flow. This means the coming flow is supersonic and does not meet
vacuum at the inlet. On the two walls, the flow satisfies the solid wall condition,
namely

%:tan@z:l:f’(xL ony = +f(z), (4)

where § = arctan ¥ is the angle of the velocity inclination to the xr—axis.
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Fig.1 Supersonic flow in 2D convex duct

The supersonic flow in the duct is described by the 2-D steady isentropic com-
pressible Euler equations:

9 (ouy+ 2 (ow) =0,

ox dy
0 0
%(Puz +p) + 87/(/’“”) =0, (5)

0 0 9

—(puv) + —(pv° +p) =0,

5 PUY) a9 (pv” +p)

where (u,v),p, and p stand for the velocity, pressure, and density of the flow. For
the polytropic gas, the state equation is given by p = Ap?, where A is a positive
constant and vy > 1 is the adiabatic exponent. In addition, the gases are assumed
as irrotational. Thus the components (u,v) of the velocity satisfy

ou Ov
Yy z
then for polytropic gas, the following Bernoulli law holds
1, c? 1,
54 +’y—17§q’ (7)

where ¢ = vu2 4 v? is the speed of the flow, ¢ = 1/p/(p) is the sound speed, and §
is the limit speed, which is an identical constant over the whole flow. Therefore the
density p can be expressed by the function of ¢ and the system (5) can be reduced
to a 2 X 2 system with variables (u,v)

(- uz)@ - uv(% + @) + (c — 02)@ =0,
ox oy (8)
Oou Ov

Such problem (8) with initial data (3) and boundary condition (4) has already
been studied by Wang and Xin in [25]. In their paper, by introducing the velocity
potential ¢ and stream function 1, in terms of hodograph transformation, they
proved the global solution with vacuum in the phase space (¢, v). Inspired by their
paper, in order to understand this problem more intuitively, we establish the global
existence of such problem in (z,y)-plane, and vacuum will appear in some finite
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place adjacent to the boundary of duct. In addition, we prove that the vacuum
here is not the so-called physical vacuum.

For better stating our results, we firstly give the description of domains €,y
and Q,4c, which are the domain before the vacuum appearance and the domain
adjoining the vacuum respectively (see Fig.2 below). Let M and N stand for the
first vacuum point on I'y, and I'igy, where 37 = x. Choose a curve whose normal
direction coincides with the velocity of the incoming flow at x = x5;. Denote it
as ¢ = Y(y) with (L f(xp)) = xpm. Set Qpon as the open region bounded by
Tin, Tup, Tow and & = ¢(y). Denote ly, and liow as the vacuum boundaries
adjacent to I'y, and I'iow respectively. Set 2,4, as the open region bounded by
z = Y(y), lup and ligw.

supersonic flow

Fig.2 A global smooth solution with vacuum in 2D convex duct

Our main results in the paper are:

Theorem 1.1. Assume that f € C?([0,+00)) satisfies (1), p € C%([—£(0), £(0)])
satisfies (2) and qo € Ct[—f(0), £(0)] satisfies (3). If qo satisfies

©"(y) qoc

) <~ T

then two alternative cases will happen in the duct, one contains vacuum, and the
other does mot. More concretely, the two cases are as follows:

(i) When vacuum actually appears in the duct, there exists a global solution
(u,v) € C(non U Qvac) NC (non U Qvac \ {lup: liow }) to the problem (8) with (3)
and (4). Moreover,

on me (9)

aﬁc2 - 0, on lup U llow \ {Ma N}, (10)

here Oz stands for the normal derivative of vacuum boundary. This means the
vacuum here is not the physical vacuum.

(i1) If vacuum is absent in the duct, the problem (8) with (3) and (4) has a global
solution (u,v) € C1(9).

Theorem 1.2. Assume that f(x) € C%([0,+00)) satisfies:
f0) >0, f(0)>0, fi=0, f'(z)=<0. (11)

If
¢"(y) qoc¢

1+ (') /@g — 2

a0 ()l > — on T, (12)
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then the C' solution to the problem (8) with (3) and (4) will blow up at some finite
location in the duct.

Remark 1. The condition (9) is equivalent to that the two Riemann invariants
are both monotonically increasing along T'j, (see Lemma 2.1). It means the gases
are spread at the inlet. In fact, this condition is very important to get the global
existence of solution. In order to understand this, we have a glimpse of the Cauchy
problem for the Burgers equation

Oy + udzu = 0, (13)
(0, 2) = up(x).
As well known, if the initial data satisfies
min ug(z) < 0, (14)

z€R

then the solution u(¢,z) must blow up in finite time, and shock will be formed.
On the other hand, by introducing the Riemann invariants Ry = 6 £ F(q) with

Flg) = [ Y2 =%dq,

the equation (8) is actually equivalent to (20) (see Section 2).
Thus, we consider the global solution of following Cauchy problem for (20) with
initial data

(0z + A_0y)Ry =0,

(0z + A40y)R_ =0, (15)
R1(0,y) = Ri(y).

By the results of [16] and [30], there exists a global solution of the Cauchy problem
(15) if and only if the two Riemann invariants RY (y) are both monotonically in-
creasing. Therefore, it seems that posing the condition (9) is reasonable to obtain
the global solution. As a contrast, in Theorem 1.2, (12) means that at least one
Riemann invariant is strictly monotonic decreasing along some part of the inlet.
Thus, the gases have some local squeezed properties at the inlet. Similar to the
case in Burgers equation, we prove that the C'!' smooth solution to the problem
must blow up at some finite location in the straight duct. Actually, for different
initial data and structures of boundary, more totally different motions of gases can
be found in [7].

Remark 2. By the effect of expanding duct, as far as we know, it is hard to
give a necessary and sufficient condition to ensure that vacuum must form at finite
location in the duct. In Proposition 4.1, we will give a sufficient condition such that
the vacuum will appear in finite place.

Remark 3. For the M-D compressible Euler equations, if the gases are assumed
irrotational, by introducing the velocity potential V¢ = , the Euler system can be
changed into a quasi-linear hyperbolic equation (i.e. potential flow equation). It is
easy to check that this potential flow equation does not fulfill the “null condition”
put forward in [1],[2] and [14]. Thus, in terms of the extensive results of [1],[2] and so
on, the classical solution will blow up. On the other hand, if the rotation is involved,
in the general case, due to the possible compression of gases, the smooth solutions
will blow up and the shock is formed (see [6], [20], [21] and [23]). Meanwhile, if the
gases are suitably expanded or expanded into the vacuum, the global solutions can
exist(see [4], [5], [10], [11], [22], [24] and [27]-]29]).
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Remark 4. If the initial data contains a vacuum, especially for physical vacuum,
the local well-posedness results of the compressible Euler equations have been stud-
ied in [8], [9], [12], [13], [18] and so on. But in general, such a local classical solution
will blow up in finite time as shown in [3], [26] and the references therein.

Remark 5. For the case that Riemann invariants are both constants on I';, which
is a straight segment vertical to the velocity of the incoming flow, the problem has
been solved by Chen and Qu in [5]. Here we extend their work to a more general
case.

Remark 6. The symmetry of ¢(y) in (2) and the duct with respect to z—axis is not
essential, by the same analysis as in this paper but more tedious computation, the
results can be extended to the non-symmetric case. So for the readers’ convenience,
we only consider the symmetric case.

The paper is organized as follows. In Section 2, we give some basic structures
of the steady plane isentropic flow and discuss the monotonicity of two Riemann
invariants R4 along the inlet. In Section 3, we use the method of the characteristics
to divide the duct into several inner and border regions, and the problem is trans-
formed into some Goursat problems in the corresponding inner regions and some
boundary value problems in the corresponding border regions. Then the global
C' solution is obtained before vacuum forms if R4 are monotonically increasing
along the inlet. Meanwhile, for the case that at least one of Ry or R_ is strictly
monotonic decreasing along some part of the inlet, we show that the C'' solution
to the problem will blow up at some finite location in the straight duct. In Section
4, we solve the problem when vacuum appears and obtain that the vacuum here is
not the so-called physical vacuum. Combining the results in Section 3 and Section
4, we finally get Theorem 1.1 and Theorem 1.2. At last, We will give a sufficient
condition concerning the geometric shape of the duct to ensure the formation of the
vacuum.

2. Preliminaries. In this section, we start with some basic structures of the steady
plane isentropic flow, which can be characterized by the Euler system (5).
Firstly, equation (8) can be written as the matrix form

A—u? —uww \ 0 [ u —uv =02\ 0 [ u
(0 2w () 00 70 ) (h) =0 o
The characteristic equation of (16) is
(? —u*)A? + 2uv\ + (¢* —v?) = 0.

So for the supersonic flow, (8) is hyperbolic and we can get two eigenvalues

uv + cvu2 +v2 — 2 uv — evu2 +v2 — 2
Ay = 3 L Al = 3 . (17)
u? —c¢ u2 —c

Correspondingly, the two families of characteristics in the (x,y) plane are defined
by
dy+
— = Ai. 18
dx * (18)

By standard computation, the Riemann invariants R4 can be defined by

Ry = GiF(q), (19)
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where F(q) = [ Y ¢?—c? dq. Since the Jacobian 8((19%(2’%_) =2 ;1226_02 > 0, then the

system (8) Wlthout vacuum is equivalent to the following equations

Oy +A_0y)RyL =0,
( )Ry (20)
(31 + )\+8y)R7 = 07
which can also be written as
0+R+ =0 (21)
if we set 04+ as the differential operators % + /\ia%'
Let A be the Mach angle defined by sin A = ¢/q, then we have that
At = tan(6 + A). (22)

Under a proper coordinate rotation, the eigenvalues A1 can always be locally
bounded, and the system (21) in the new coordinate is also invariant.

From now on, we will discuss the monotonicity of the Riemann invariants R
along the inlet, which will play a key role in the following analysis Note that

0 = —arctan ¢’(y) on I'iy, then Ry = —arctan¢’(y) + fqo Ve dq on I'y,. Some

properties can be obtained after direct computatlon

Lemma 2.1. For Ry defined on I, above, we have that Ry are both monotonically
increasing along Ty, if and only if the initial speed qo satisfies

1!
qoc
) < ——2W e p (23)

L+ (¢ (y)* /g2 — 2

Proof. Since Ry = — arctan ¢’(y) + fqo Y= q — dq on I'yy, then direct computation
yields

¢"(y) % —
R (y)=— + ao(y) on Ty,. (24
R T 0 )
Thus R4 are monotonically increasing along I'yy, if and only if (24) are nonnegative,
which is equivalent to (23). O

Due to Lemma 2.1, the following analysis will be focused on these two cases.
Case I. R are both monotonically increasing on I'i,;

Case II. At least one of Ry, R_ is strictly monotonic decreasing along some part
of Ty

The next lemma shows the partial derivatives g’\+ and =5 8)‘* are positive , which
will be often used in the following analysis.

Lemma 2.2. As the q,c, 0, and A defined above, for the supersonic flow, we have

oAy OX_
— d — 2
3R 0 an oR. > 0. (25)
Proof. By using (22) and the chain rule, it follows from direct computation that
o\ 1)q? OM_ 1)q?
+ (’Y + )q sec2(9 + 14)7 — (7 + )q 8602(9 _ A), (26)

OR_  4(q% — ¢?) OR,  4(¢2—?)
thus (25) holds true for the supersonic flow. O
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3. The C! solution before vacuum formation. In this section, the existence
of the C' solution to the problem before vacuum formation will be proved for
case I. We shall use characteristics to divide the whole region into several inner
and border regions, where solutions are constructed successively by the method of
characteristics. As illustrated in Fig.3, we assume that the C_ characteristic issuing
from point A; intersects the lower wall at point By and the C characteristic issuing
from point B; intersects the upper wall at point A;. These two characteristics
intersect at point C7. Denote the inner region surrounded by A; B, A1Cy, B1C as
region D1, which is the domain of determination of A;B;.

Next we solve the solution in the border region Ds (DY), resp.)bounded by A;Cy,
A1A2,A201(BlCl,BlBg,BQC’l, resp.). Note that R_ (R+, resp.) has already
been defined in region Dy(Dj), resp.). By the fixed wall condition Ry + R_ =
2arctan(£f'(x)), we can know the value of Ry (R_, resp.) in region Dy(Dj, resp.).

Fig.3 Inner regions and border regions

Let the C_ characteristic issuing from A, and the C characteristic issuing from
Bs intersect at (5. Define the inner region D3 with boundaries A3C1, BoCy, AsCs
and BoCy. If the C_ characteristic issuing from As approaches the lower wall at
B3 and the Cy characteristic issuing from Bs approaches the upper wall at As,
we can get two border regions D4(D), resp.) with boundaries Ay A3z, A3Cs, A3Co
(B3Bs, BoCy, B3Co, resp.). Repeat this process until the vacuum forms. The inner
regions Dy, D3 and the border regions Dy(Dj, resp.), Dy(D}, resp.) are mainly
considered in this section.

Lemma 3.1. If (9) holds true, then for the C' solution to the problem we have
0+ Ry > 0,0-R_ <0 in the duct before vacuum forms.

Proof. We will prove the conclusion between these inner and border regions sepa-
rately.

Step 1. Inner region D;.

For any fixed two points E, F on I'j;, and any C_ characteristic [ in region D1,
suppose the C, characteristics issuing from FE, F' intersect [ at E7, F} and intersect
A1 As at Ey, F respectively. Since R_ is constant along the C, characteristic and
R_ is monotonically increasing along I'y,, then the value of R_ at E; is no less than
the value of R_ at F}, which implies

O_R_ = —(R_(z,y_())) <0 (27)

_d
T dx
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along [ in region D;. Similarly, 04 R+ is nonnegative in region D;.

Step 2. Border region Ds.

Next we consider the solution in border region Do bounded by A1 Cy, A1 As, AsCh.
From step 1, we know that R_ is monotonically decreasing along A;Cy. By the
same argument in region D;, we can get that 0_ R_ < 0 in region Dy. Since the
value of R_ at E» is no less than the value of R_ at F5, which means that R_ is
monotonically decreasing along A; As. Due to the solid wall condition

Ry + R_ =2arctan f'(z), f"'(z) >0 (28)

on A; As, R, is monotonically increasing along A; As. Therefore we can get 0, Ry >
0 in region Dy by the same argument in region D;. By analogous method, we also
have 0y Ry > 0,0_-R_ <0 in region Dj.

Repeating this process in inner region Dy;11(i > 1) and border region Da;io
(D345, resp)(i > 1) until the vacuum forms, thus we prove Lemma 3.1. O

We can ensure that the hyperbolic direction is always in the z-direction by a
proper rotation of coordinates if necessary. Without loss of generality, we may
assume that u? > 2, which implies that A, > A_.

Lemma 3.2. If (9) holds true, then we have OyR+ > 0 in the duct before vacuum
forms.

Proof. In terms of the definition of Jy, one has

AprO0— — A_04 0y — 0
= = - . 2
Oa PSR W (29)
Thus we have 0. R 0 R
S sk - U=
Oy Ry = . Oy R— N (30)
Combining this with Lemma 3.1 yields the result. O

Corollary 1. Under the assumption that u® > c*, by (21) and (29), we have that
Ay — A A — A

2t _Z-\VR,y| and |0_R_|= 1=
VA2 +1 VAL A+ 1

Lemma 3.3. Let 0; = u0, +v0y stand for the derivative along the streamline, under
the assumption that u®> > 2, then the speed of the flow is monotonically increasing
along the streamline, that is to say d;q > 0.

04 Ry | = VR (31)

Proof. Tt follows from (29) that 0; = w0, + vd, can be expressed as
U — UA_ Uy —

81:)\+_>\73++)\+_>\78_. (32)
which implies that
L v—Au Apu— v Cu(g —An) u(Ay —2)
g = N O4q+ S 0-q= S O+q+ DY d-q.  (33)

Since u? > 2, we know that 0 £+ A is away from +7. Thus the coefficients of the
right hand part of (33) are positive. So it remains to determine the symbol of d1q.
Due to (20) and Lemma 3.1, one has that 0+ Ry = 91 (Ry — R_) = 2F'(q)0+q > 0,
which immediately indicates that 0;g > 0. Similarly, one can get that d_q > 0.
Then the proof of Lemma 3.3 is completed. O
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Corollary 2. Combining Lemma 5.3 and the Bernoulli law yields that the sound
speed is monotonically decreasing along the streamline, that is to say Ojc < 0.

We now focus on the solution in the inner regions D7 and Ds;_1(i¢ > 2) bounded
by A;C;_1,B;C;_1, A;C; and B;C;. We only need to discuss the region Dg;_1(i >
2), since same method can be used in region D;.

A

i

B,

i

Fig.4 Goursat problem in inner region

Set Ry(x,y) = Wyi(x,y) on A;C;_1 and R_(x,y) = W_(z,y) on B;C;_;. Thus
the solution in the region Ds;_1 should be determined by solving a Goursat problem,
which is given by

(0z + A_0y)Ry =0,
(&C + >\+8y)R, - 07
Ri(z,y) = Wi(z,y) on A;C;_q,
R_(x,y) =W_(z,y) on B;C;_;.

in Dy; 1
(34)

By standard iteration method, the local existence of the problem (34) can be
achieved, one can also see [4] and [15] for more details. In order to get the global
solution to the problem (34) in the region Dy;_1(i > 2), some prior estimates about
R4 and VR4 are needed.

Lemma 3.4. If (9) holds true, then |04+ R4| is monotonically decreasing along C_
characteristics and |0—R_| is monotonically decreasing along Cy characteristics
before vacuum formation.

Proof. It comes from the definition of J1 that

878+R+ = 876+R+ - 6+67R+ = (8,)\+ - (“)+)\,)(“)yR+. (35)
Due to
W ON_
— = — _— <
e o o 9. R, <0 (36)

and dyRy > 0, then 0_0; Ry < 0, which implies d; Ry is monotonically decreas-
ing along C_ characteristics. By the same argument, we can get that _R_ is
monotonically increasing along C'; characteristics.

In terms of Lemma 3.1, one has 0; Ry > 0 and 0_R_ < 0. This means that
|0+ R4 | is monotonically decreasing along C_ characteristics and |0_ R_| is mono-
tonically decreasing along Cy characteristics before vacuum formation. Thus we
complete the proof. O
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Fig.5 The case that y(zy_1) = f(zn_1)

Lemma 3.5. Suppose that Ry(x,y) are the classical solutions to the problem (34),
then Ry and 0L Ry are uniformly bounded in the region Da;—1(i > 2) if (9) holds
true.

Proof. Firstly, we give the estimates of |[RL|.

For any point (x,y) in Dy;—1(i > 2), by the method of characteristics, we have

that

|R+(x,y)\ < ||W+HC(A1'Ci—1) ) |R—('Tay)| < IlW_HC(BiCi—l) (37)
in the region Dy;_1(i > 2). To be more specific, we shall point out that
Wi (2, y)llcaic, vy and [[W_(2,y)llc(s;c, ,) listed above only depend on || f||c:
and Ry |[c(r,,)-

Fix (xo,y0) € A;Ci—q, let y = y(,l)(x) be the C_ characteristic from (z,yo),
which approaches either I'y, or Ty, at a point (z1,y1). If y1 = f(z1), then there
exists a C4 characteristic y = yf)(z) from (z1,y1), which approaches either T'joy
or I';, at a point (z2,y2). If yo = —f(x2), then there exists a C_ characteristic
y = y@(x) from (z2,y2), which approaches either I'y, or I'y, at a point (z3,ys).
Since the two eigenvalues Ay have the uniform upper or lower bound, then there
exists a positive N such that

Xo>T1>...>TN_1 >IN, TN = gO(yN). (38)
If y(xny_1) = f(xn—1) (see Fig.5), then we get

Wi(zo,y0) = 2arctan f'(z1) — R—(21,y1) = 2arctan f'(z1) — R—(22,y2)
= 2arctan f'(z1) + 2arctan f'(z2) + Ry (22, y2)

N
ZQarctanf’(xi) — R_(zN,yn). (39)
i=1
Similarly, if y(xn_1) = —f(zn_1) (see Fig.6), then we get
N
Wi (z0,y0) = Y 2arctan f'(z;) + Ry (zn,yn). (40)

=1
Combining (39) and (40) yields that
IWilleac,_,) < 2N arctan fi + max{[|Ry|lcr,,), [R-llcw.) }- (41)

Analogously, the estimate of ||[W_||¢(p,c,_,) can also be obtained as (41).
Next, we give the estimates of |01 Ry |.
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Fig.6 The case that y(zy_1) = —f(zn_1)

It follows from Lemma 3.4 that
|8+R+(J?,y)| < H8+W+HC(A1.Ci71) ) |8*R*(‘/E’y)| < H87W7HC(B1'C1:—1)' (42)

As the process shown in the estimates of |Ry|, we shall point out that
10+ Willca,ciyy and [|0-W_|lc(B,c,_,) listed above only depend on | f|c= and
| R+llc1(r,,)- To this end, we need to derive the boundary condition of 0+ R+. It
follows from (32) and the solid wall condition that
uA_ Uy " (z)

VA 9 R+ TV R =y

VD W D Vs 1+ (f'(x)?
By the process of the reflection shown in the estimates of |Ry| and Lemma 3.4, if
y(En-1) = f(@N-1), we can get

0+ Wi(wo,y0) < O4Ri(x1,1)

ony = £f(z). (43)

)\+*>\_ f” UA_‘_*U
= 2 _
( U T )2 v—u)\,a R_ | (x1,31)
A — A " Uy — VU
< <2uv+_u/\ 1+f 2) 1,Y1) (v +u)\ >($1,y1)
X O_R_(x2,y2)
Ar — A UNL — U
= <2uv+—u/\ 1+ ) (x1,91) +( + ) (1,91)
Ao — A " UL — U
X <2uu§+—v1+f ) T2, Y2 +(v—+u/\ > (21,91)
UV — UA_
(U/\+_U> (fE2 y2) X a+R+(5'327y2) (44)

Since u? > ¢?, then the coefficients
il UAL —V AL — A AL — A
1+ (% v—ur" v—ul" uAp-—v
are uniformly bounded. Denote the maximum one of these bounds as the constant
G, thus (44) can be expressed as

Wi (xo,50) < 94Ry(w1,51) < G* = GI_R_(a1,1)
< G? - Ga_R_(IQ,yg) < G? + G? + G26+R+(I2, y2)

2u

IN

N
> G+ GNOL R (zy,yN). (45)

=1
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Similarly, if y(zy—1) = —f(xn_1), then we also have
N
8+W+(.%‘0, yo) S Z GH_l — GN(?,R, (LL'N7 yN). (46)

i=1

Combining (45), (46) and (31) yields that

N
10:Welleao, ) < DG + GV max{[|01 R [lom,), [0-R-low,) ). (47)
i=1

Analogously, the same estimate of [|0_W_||c(p,c,_,) holds true.
Thus, we complete the proof of Lemma 3.5. O

Corollary 3. Based on Lemma 3.5, we have that |VRy| S M, where M depends
on || fllc2, [[Rxllcr(r,,) and the lower bound of the sound speed c in Da;_1(i > 2).

Proof. Substituting (31) into (47) gives that

“A?F+1 1 N
|[VR| = |0+R+| S - :

P > G+ GN max{||Ry [lcr(ry,) IR- oo }
n i=1
(48)
]

Combining the local existence and the Corollary 3 induces the global C! solution
to the problem (34) in the inner region Dg;_1(i > 2) before vacuum forms.

We now turn to consider the border region Ds;(i > 1), which is bounded by a
part of the upper wall A;A;11, the C_ characteristic A;C;, and the C characteristic
A;11C; (see Fig.7). Then the problem in region D;(i > 1) can be generalized as
the following problem

(0r + A\_0y)R4: =0,
(0x + A+0y)R_ =0,
R_(x,y)=Z_(x,y) on A;C;,

Ry + R_ =2arctan f'(z) on A;A;41,

in Dgl'

(49)

where Z_(z,y) is a known function. The local existence of the problem (49) can
be achieved by [15]. In order to get the global solution to the problem (49) in the
region Dy;(i > 1), some prior estimates about |R4|and|V R4 | are needed.

Fig.7 Solution in border region

Lemma 3.6. Suppose that Ry (x,y) are the classical solution to the problem (49),
then Ry and O+ Ry are uniformly bounded in the region Da;(i > 1).
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Proof. For any point (z,y) in Ds;(i > 1), by the method of characteristics and the
solid wall condition, we have that

[R—(z,9)| < |1 Z-llc(aic)s |B+(z,y)| < 2arctan fi, + [ Z-[lc(a.c.)- (50)
in the region Dy, (i > 1). It follows from Lemma 3.4 that
0-R_(z,y)| < [0-Z_lcac, 10+ Bi(2,9)] < 104 Ryllca,ai,)- (51
Moreover, by (43), we have that
10+ Rilleaa < G2+ GlO-R-|lca,ai) <GP+ GO-Z-|oacy.  (52)

By the same process shown in Lemma 3.5, we know that |[0_Z_|¢(a,c,) can be
controlled by [|R+||c1(r,,). And thus the proof is finished. O

i+1

Corollary 4. Based on Lemma 3.6, we have that |VRy| < M, where M depends
on || fllc2, [|R+llcr(r,,) and the lower bound of the sound speed c in Do;(i > 1).

Combining the local existence and the Corollary 4 induces the global C! solution
to the problem (49) in the border region Ds;(i > 1) before vacuum forms. The
problem in the border region D};(i > 1) can be solved by the same way exactly.
After solving the problem in these inner and border regions successively, we have
that

Theorem 3.7. For case I, there exists a global C' solution to the problem in (ﬁnon\
{M,N}) and

8+R+ Z O7 O0_R_ S 0 (Qnon \ ‘{M,N}') (53)
Moreover, there exists a constant C which only depends on the initial data and
Ifllcz, such that

04 R +[0-R-| < Cin (Qnon \ {M, N}). (54)

So far we have established the global C! solution before vacuum formation for
case I, where the initial speed qq satisfies (9). The existence of solution after vacuum
formation will be established in Section 4.

Now we begin to consider the problem in case II. We will prove Theorem 1.2.

Proof of Theorem 1.2. Firstly, we consider the special case f”(z) =0, i.e. the duct
is straight.

B?

Fig.8 Blowup in 2D straight duct

Suppose that Ry is strictly monotonic decreasing along arc MN on T'j,(see
Fig.8). Assume that the C_ characteristics issuing from M and N intersect Ty
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at M7 and N; respectively. Then it follows from the same argument in Lemma 3.1
that 0, R4 < 0, which implies that 0,R, < 0 in the region M NM;N;.
Let y(_o)(a:) be the C_ characteristic from any point (zg,yo) on M N, i.e.

dy® ()
w0 (55)
y 9 (x0) = o~ (o)

Then R, is constant along the curve y = y© )( ), which means that R, (z, y© () =
R, (20, (z0)). Differentiating the first equation in (20) with respect to y yields
that

0 (OR. 9 (ORy\ | OA_OR_OR, 09X (0Ry\’
ox \ Oy T oy \ Oy OR_ 0y Oy  OR.\ Oy
Use the second equation in (20), we can get & + A 6{1;;/, (A_ — A, )28 gy 0 e
OR_  0,R_+ )\ 0,R_
oy A=Ay
Substitute it into the above identity to obtain that
0 (ORy 9 (ORy\ | OA_ 0.R_+\_9,R_OR. _ Or_ [OR.\"
ox \ Oy T oy \ Oy OR_ Al — Ay dy  OR,.\ Oy
(56)
Define Hy(x) := exp {fw ng (s, (0)( ))ds}, then (56) can be trans-
formed into
d OA_ . _
%(Ho(ﬂf)ay}ﬁ) EH (57)

where d stands for the derivative along the curve y = y( )( ).

If y = y(_)( ) intersects T'ow at point (z1,y1), then by integrating (57) from xq
to x1, we get that

OR, _ Oy Ry (o, yo)

T(ﬂclayl) = 1 ( ) :

Y Ho(z)(1+ 0y Ry (z0,v0) [ G35 Hy (5,5 (5))ds)

(58)

Since R is constant along Y= y( )( ), thus the term y——— )\ g; is only the function

of R_. If we set ho(R_) = [, ~ 1)\ gg‘ dR_, then Hy(z) can be expressed by

Hy () = explho(R_ (2,5 (x)) — ho(R— (w0, 0)}, (59)

and Hy(z) is bounded.
Note that 9y Ry (zo,yo) < 0 and /\+ > 0. If we denote the positive lower bound

of %Ho_l by Ky, then we have that
8R+ ayR+ (.130, yo)
I () < . 60
8y ) S @)1+ 8, R (w0, 90) Koles — a0) (60)

By the boundary condition (43), one has that

3yR,(x1,y1) = (uAUAE) R+> (96171/1) (Z(O)zgz—tjgayR+> (l'l,yl). (61)
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cos(0+A)

The coefficient cos(0—A)

(21,y1) is greater than 1, which implies that
OyR_(z1,y1) < OyRy(21,91). (62)

Analogously, let yg_l)(x) be the Cy characteristic from (x1,y;) on Ny My, i.e.

dy} (@) _ \
dzx + (63)
(1) _
Yy (z1) =y
one can obtain the similar equation of 9,R_ as (57) by
d 2
L (H@a, k) = (64)
where Hy(z) = exp{ [, M gi‘ﬁ( y+ )(s))ds} and 4 stands for the de-
rivative along the curve y = yi)( ). In addition, H;(x) can be written as Hy(x) =

exp{hi(Ry (2,5 (2)) = ha(Ry (w1,51)} where hy(Ry) = [ 51— Sx=dRy. If
y = yil)(x) intersects I'yp at point (z2,y2), integrating (64) from x; to zo yields

that
OR_ - OyR_(z1,91)
87(17%92) = T2 Oy 77—1 (1) ’
Y Hl(m)(l—i—@yR,(xl,yl)fl Fr=Hy (5,957 (s))ds)

x

(65)

Note that 9y R_(z1,y1) < 0 and % > 0. If we denote the positive lower bound

of ggf H;!' by K; and let K} = min{Ky, K1}, then we have that

OR_ O (o) < OyR_(z1,91)
oy Y = @)U+ 0,R_ (w1, ) K (w2 — 1))

(66)

By the same process and after series of reflection if necessary, the denominator of
(66) will tend to —oo at some finite location in the duct. Thus the C! solution to
the problem will blow up at some finite location in the straight duct.

Next, we consider the case f”(z) <0.

The proof is very similar to the case f”(x) = 0, except for using following bound-
ary condition to replace (61) by

(v =uA)9y Ry ) (w1, 51) — ((udy = v)3yR-) (21, 91)
fl/(xl)

= _2u($1,y1)w- (67)
Thus we have
OyR_(z1,11) = <u)\u>\3 R+) (z1,91)
2u 1 (xq)
(s e
< OyRi(z1,11). (68)

This is same as (62). So we omit the details of proof for the case f”(z) < 0.
Therefore, we complete the proof of Theorem 1.2. O
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4. Formation of vacuum. Due to the conservation of mass, vacuum can not
appear in the inner regions of the duct. So if vacuum exists, it must locate on the
two walls. On the other hand, since the two walls are the streamlines, Corollary 2
shows that the sound speed is monotonically decreasing along the two walls. When
the sound speed decreases to zero, it corresponds to the formation of vacuum.

First, we list some properties of the vacuum boundary, one can also see [4] and
[25] for more details.

Lemma 4.1. When the vacuum area actually appears, the first vacuum point M
and N must form at Iy, and I'jo,, respectively. Furthermore, the boundary of the
vacuum ly, orligy 15 a straight stream line which is tangential to I,y or Iy at M
or N, where f"(xp) = f"(zn) > 0.

Based on Theorem 3.7, we have obtained the C' solution to the problem for
(z,9) € (Qnon \ {M,N}) and 9, Ry > 0,0_-R_ < 0 in (Quon \ {M,N}). We
now begin to solve the problem when vacuum forms. Set R, (z,y) = Ry (y) and
R_(z,y) = R-(y) on x = ¢(y). Then Ryi(y) € C'(~f(xnm), f(za)) and Ri(y)
are monotonically increasing along x = v (y). Since the problem is singular at M
and N, we choose Q% = (¥n,yn), Q" = (¥n,—yn) on & = (y) and RL(y) €
Cl~f(zum), f(zar)] such that

N N 1
R?:(:U) = Ri<y)7 Yy e [_y’l’b?yn]a f(x]\/[) —Yn = Ea n= 1a27

, ) (69)
1)) €~ s Ty ¥ € A= Ul S o)

Consider the problem in the region 2,4, bounded by = = ¥(y), lup and lioy with
initial value ]?i(y) The local existence can be obtained by the method in [15].
For any point (z,y) € Qyac, the back—C, characteristic from it must intersect
INow or I'in and the back—C_ characteristic from it must intersect I';,, or I'i,. Then
by Theorem 3.7, one has that 04+ R?} are uniformly bounded in €,4.. Thus we can

get the global C*! solution R% to the problem in ,,. with initial value Ri (y).

Fig.9 Solution in ,,.

Let y = y% stand for the C'y characteristic from (z,,y,) and y = y” stand for
the C_ characteristic from (x,, —yy). Then y% (y", resp.) tends to lyp(liow, resp.)
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as n — oo and we can set
Ri(z,y) = lim RL(2,y), (2,y) € Quac. (70)
n— 00
To sum up, we get that

Theorem 4.2. Assume that Ri(y) € C*(—f(zar), f(zar)) and Ri(y) are mono-
tonically increasing along x = ¥(y). Then Ry(x,y) defined by (70) is the unique
solution to the problem in Qyac. Furthermore, Ry (x,y) € CY(Quac\{lupUliow}) and

8+R+ Z O,G_R_ S 0 m (Qvac\{lup U llow})- (71)

Next, we consider the regularity near vacuum boundary. In fact, there are many
results about physical vacuum singularity. A vacuum boundary (or singularity) is
called physical if

2

0< ==

on

in a small neighborhood of the boundary, where 7 is the normal direction of the

vacuum boundary. This definition of physical vacuum was motivated by the case of

Euler equations with damping studied in [17] and [19]. But the following Theorem
shows that the vacuum here is not the physical vacuum.

< 400 (72)

Theorem 4.3. Let 07 stand for the normal derivative on the vacuum boundary,
then for any point (z,y) near the vacuum line, we have Ozc*(xz,y) tends to zero as
(z,y) approaches to the vacuum line along the normal direction except the vacuum
point M and N.

Proof. For convenience, we only consider the case near the vacuum line [}y, which is
tangential to Iy at N. First, we derive the expression of d;¢?, where 7@ = (n1,n2).
Acting 97 on the Bernoulli law (7) yields that
Oc® = —(y — 1)gduq. (73)

By the relation Ry — R_ = 2F(q), one has that

qc
2 /q2 _ (32
Substituting it into (73) gives that
(v —1)g’c
2¢/q% — 2
Combining this with (30) yields that
(v = De*(w? = ¢)

4(q* =)

Construct a line NN}, vertical to [,y at the first vacuum point N, where h
represents the distance between N and Nj,. Let C" be the C_ characteristic through
Np, and intersect I'yp, at P. Fix a point S on liow. Make a line from S vertical to
liow and it intersects C”* at Sj,. Then we have that N, — N, S, — S as h — 0. It
follows from (35) that

qc

N

Bagq = (0.Ry — O,R_), dyq = (0,Ry —9,R_).  (74)

8;;02 = —

[(ne = niA_)0y Ry + (niAy — no)OyR_]. (75)

Oz = —

[(TLQ - n1>\_)a+R+ — (n1/\+ — ng)ﬁ_R_]. (76)

O\, — 0,

A
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Integrating (77) from P}, to S, yields that

b A — A

ShO_Ay — Oy A
8+R+(Sh):6+R+(Ph)exp{ / 9-Ar =04y L (78)

This together with (26) yields that

Sh

+1

6+R+(Sh> = 6+R+(Ph) exp {/P %(_T18+R+ + TQ@R)dS} 3 (79)
h

where

P (u? — P sec? (0 + A)
(-

L
'

Fig.10 The regularity near vacuum boundary

Since u? > ¢?, then T} and T have the uniform positive lower bound denoted as

go- L
We claim that }llin%)8+R+(Sh) =0 and lim 0_R_(S) = 0, which immediately
- h—0
implies that ’llin% 97¢2(Sy,) = 0. For convenience, we only prove ﬁ&r}h (Sp) =0,
— —

for the case lim 0_R_(Sy) = 0 can be obtained by the same argument.
h—0
We will use the proof by contradiction to obtain above assertions. Assume that
}lLin% 0+ R (Sn) = g > 0, where g is a positive constant. Then there exists a sequence
—
Sg, on SyS such that 9y R (S5,) > § > 0 and [NNg, | < %, where N, is the
intersection of the C_ characteristic CY through S5 and the segment NNj,. Let

the C'_ characteristic C7" intersect I'y, at P, . Then it follows from Lemma 3.4
that

Oy Ry(z,y) > 04 Ry (Sg,) > on (x,y) € Py, S, (80)

N |l

By the fact that 0_q > 0 and the Bernoulli law, we can get 0_c < 0, which implies
that the value of ¢ on Ny, S5, is no greater than the value of ¢ at Nj, denoted by
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¢(Ng,). Thus we have lim ¢(Nj,) =0 and

n—oo

/SQ" %(fﬂmm LTy R.)ds < /Sg" 78+ Yo, R, ds
< _1670(—1]_\7;)80909’ (81)
where so = |NS|. Combining it with (79) yields that
1R (55,) < OLR(Fy,) eXP{ the 5090?/} : (82)
16¢(Ng,,)
Note that P is away from the vacuum as n — oo. If hm P, = P, then

hm 0+ R ( %) = 0+ R4 (P) and 04 R4 (P) is bounded. Then let n — oo in (82),

We can get that

S . y+1 |
nh_)ngoa+R+(Sc?n) <04 Ry (P) nh_{folo exp {—mc(Ngn)Sogog} =0, (83)
which is a contradiction. Thus, it follows
Timd; Ry (Sy) =0, lim d_R_(Sy) =0. (84)
h—0 h—0
This together with (71) gives that
lim 0, R, (Sp) =0, lim _R_(Sy) = 0. (85)
h—0 h—0
Combining it with (76) yields that
dc 2
lim aT(Sh) =0. (86)

Note that ¢? € C(Qyqc), by the derivative limit theorem, we have that

) 2

S==0. on Iy \ {N} (87)
Similarly, one has that

oc?

5=, on I\ {M}. (88)
Thus, we prove the Theorem 4.2. O

So far we have established the solution to the problem when vacuum actually
appears. When it comes to the case that there is no vacuum in the duct, by the
same prior estimates in Lemma 3.5 and Lemma 3.6, one only needs to check whether
the duct can be covered by characteristics in finite steps.

Theorem 4.4. Assume that f € C?([0,+00)) satisfies (1), p € C*([—£(0), £(0)])
satisfies (2) and qo € C'[—f(0), f(0)] satisfies (3), (9). If there is no vacuum in
the duct, then there exists a global C1 solution in the duct.
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Fig.11 The case without vacuum

Proof. It remains to check whether the duct can be covered by characteristics in
finite steps. Since the duct is convex, then there exists i¢ such that we can find an arc
EF on Aj,Aiy4+1 and f” > 0 on EF. Let the C_ characteristics C¥, C¥' intersect
CioAig+1 at Eq, Fy, intersect B, 4+1Ci,4+1 at Ea, Fo and intersect B;,41Bi,+2 at
Es5, F3;. By Lemma 3.1 and (28), we know that 9y Ry > 0 on E1F; and EoFs.
Combining it with 0, R_ = 0 yields that E~1F1,E~2F2 which are the images of
E\Fy, E>F5 in (u,v) plane have positive length. That is to say

|CioAig11] > 0, |Big41Cig 41| > 0. (89)
Similarly, we can get that

Cig+1Big+2] > 0, [Ajg12Ci042] > 0. (90)

Fig.12 The image in the (u,v)—plane

By the induction method, we have that

‘éio+2(k71)121i0+2k—1| >0, |Biys2k—1Cigron—1] > 0,
|Ciot2(k—1)Big+2k] > 0, |Aig12kCigror] >0, k=1,2,... (91)

Suppose that the image of the Cy characteristic through C;, in (u, v) plane intersects
the critical circle at Cf and intersects the limiting circle at C} . Then

T
AC%OC}O =—, 0z

2;1, = 401‘00Bi0+1 > 0, (92)

ig+1
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where p = z—_d By the same method in [5], we have that
T
<lso—1 (93)
2u03i0+1

where |.| stands for the maximal integer no more than the number inside the
bracket. O

Proof of Theorem 1.1. Under the assumptions of Theorem 1.1, Theorem 1.1 comes
from Theorem 3.1 and Theorem 4.1-4.3. O

Finally, we give a sufficient condition to ensure that vacuum must form at finite
location in the duct.

Proposition 1. If fI_ > f/(0) + —TYY. \2/1+(f/(0))2’ where Mp, represents the

Mach number at By, then the vacuum will form at the finite locations on T'jyq,.

Proof. We will use the proof by contradiction. Assume that there is no vacuum on
Tiow. Let % stand for the derivative along I'ioy. By the relation R, — R_ = 2F(q),
one has that

dg _d(Ry —R_) 1 qc

ds ds 2F'(q) 2/ — & (0:(Ry — R-) +tan 9, (R4 — R-)). (94)

This together with (29) and (43) yields that

dqg qc tanf — A_ f(x)
ds =y =@\ o T T e ) (95)
By (95) and the Bernoulli law (7), we get that
de (v — 1)q2 tanf — A_ ()
s~ o=\ R T e ) (90)
Since
oo de
=— —4/1 "(x))2%dz,
== [ VI PP
then
+o00 ( _ 1) 2 f//
2
> sV 1 )2d
= /0 2\/m 1+ ( v
+oo //
g5, (v —1) f"(z)
> Y A0 e
- A / N
= w 1+ (f'(0))2(arctan f., — arctan f’(0))
> CBy, (97)
which is a contradiction. Thus, we complete the proof. O
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