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Abstract. In this paper, we study the large time behavior of the solution for

one-dimensional compressible micropolar fluid model with large initial data.
This model describes micro-rotational motions and spin inertia which is com-

monly used in the suspensions, animal blood, and liquid crystal. We get the

uniform positive lower and upper bounds of the density and temperature inde-
pendent of both space and time. In particular, we also obtain the asymptotic

behavior of the micro-rotation velocity.

1. Introduction and the main theorem. In this paper, we consider the one-
dimensional compressible micropolar fluid model in Lagrange coordinates:

vt = ux,

ut + Px = µ
(
ux
v

)
x
,

wt + νvw = λ
(
wx
v

)
x
,(

e+ u2

2

)
t

+ (Pu)x =
(
µuuxv + k θxv

)
x

+ νvw2 + λ
w2
x

v ,

e = cvθ, P = Rθ
v ,

(1.1)

where t > 0 is time, x ∈ Ω ⊆ R denotes the Lagrange mass coordinate, v = v(x, t) >
0, u = u(x, t), w = w(x, t), θ = θ(x, t) > 0, e and P , which represent the specific
volume, fluid velocity, micro-rotation velocity, absolute temperature, internal energy
and pressure, respectively. Moreover, µ > 0 is the viscosity coefficient, κ > 0 is the
heat conductivity coefficient, R > 0 is the specific gas constant, ν > 0 and λ > 0 are
the coefficients of micro-viscosity, cv is the heat capacity at constant volume. The
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model of micropolar fluid was first introduced by Eringen [7] in 1966. This model
can be used to describe the motions of a large variety of complex fluids consisting
of dipole elements such as the suspensions, animal blood, liquid crystal, etc. For
more physical background on this model, we can refer to [8, 15].

When w = 0, the system (1.1) reduces to the standard compressible Navier-
Stokes equations. It has attracted great interest among many analysts and there
have been many important developments. Kazhikhov and Shelukhin [12] firstly
obtained the global existence of solutions in bounded domains for large initial data.
Then, Jiang [10, 11] studied the large-time behavior of solutions to the compressible
Navier-Stokes system in unbounded domains for large initial data. He proved the
specific vomule was pointwise bounded from below and above independent of both
space and time. Recently, Li and Liang [13] proved the large-time behavior of
solutions to the initial and initial boundary value problems with large initial data.
They showed that the temperature was bounded from below and above independent
of both space and time. See also [5] for the spherically symmetric and cylindrically
symmetric non-barotropic flows.

When w 6= 0, we get the micropolar fluid model. Now more and more mathemati-
cians devoted to the research of micropolar fluid model (1.1). For the incompress-
ible fluid, we refer to [3] and references therein. For the complete fluid, Mujakovic
[16, 17] obtained a series of results about the local, global in time existence theorem
and regularity of solutions for the model with homogeneous boundary condition in
one dimension. Next, Chen [2] proved the global existence of strong solutions for
the initial boundary problem in one dimension that vacuum can be allowed initially.
Yin [19] established the stationary solutions to the inflow problem in a half-line, the
time asymptotically stability for the H1 solutions was also obtained. Recently, Cui
and Yin [6] obtained the convergence rates of global solutions toward correspond-
ing stationary solutions if the initial perturbation belongs to the weighted Sobolev
space. Qin et al. [18] studied the global existence and asymptotic behavior of H1

solutions to the Cauchy problem of one-dimensional model with the weighted small
initial data. Based on the assumption κ(θ) = O(1)(1 + θq) with q ≥ 0, Feng and
Zhu [9] considered the existence of global classical solution with large initial data
and vacuum. For three-dimensional micropolar fluid model, Chen et al. [4] gave the
global weak solutions with discontinuous initial data and vacuum. Liu and Zhang
[14] obtained the optimal time decay of the 3-dimensional compressible micropolar
fluid model.

In this paper, motivated by the result of [13], we get asymptotic behavior of the
one-dimensional compressible micropolar fluid model with large initial data. We
supplement the system (1.1) with the initial condition

(v, u, w, θ)|t=0 = (v0, u0, w0, θ0), (1.2)

and three types of far-field and boundary conditions:
(1) Cauchy problem

Ω = R, lim
|x|→∞

(v(x, t), u(x, t), w(x, t), θ(x, t)) = (1, 0, 0, 1), t > 0; (1.3)

(2) Boundary and far-field conditions for Ω = (0,∞)

u(0, t) = 0, θx(0, t) = 0, lim
x→∞

(v(x, t), u(x, t), w(x, t), θ(x, t)) = (1, 0, 0, 1), t > 0;

(1.4)
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(3) Boundary and far-field conditions for Ω = (0,∞)

u(0, t) = 0, θ(0, t) = 1, lim
x→∞

(v(x, t), u(x, t), w(x, t), θ(x, t)) = (1, 0, 0, 1), t > 0.

(1.5)
We now state the main result of this paper as follows:

Theorem 1.1. Consider the initial value problem given by (1.1)-(1.3), and initial-
boundary value problem given by (1.1), (1.2), (1.4) and (1.1), (1.2), (1.5). Assume
that v0(x) > 0, θ0(x) > 0, v0 − 1, u0, w0, θ0 − 1 ∈ H1(Ω) and the initial data
are compatible with boundary conditions. Then there exists a unique global strong
solution (v, u, w, θ) ∈ C([0,∞), H1(Ω)), (v − 1, u, w, θ − 1) ∈ L∞([0,∞), H1(Ω)),
and there exists positive constants C1 and C depending only on µ, κ, R, cv, ν
satisfying

1

C1
≤ v(x, t) ≤ C1, (1.6)

1

C
≤ θ(x, t) ≤ C, (1.7)

and for any t ≥ 0, p > 2

lim
t→∞

(‖ (v − 1, u, w, θ − 1)(t) ‖Lp(Ω) + ‖ (vx, ux, wx, θx)(t) ‖L2(Ω)) = 0.

Remark 1. Compared with the work [13], we have to deal with the strong couple
of the micro-rotation velocity w and the fluid motion, which will lead to some
difficulties. In particular, we solve it by obtaining some new estimates (2.16), (2.31).
We also obtain the asymptotic behavior of w(x, t).

2. Proof of Theorem 1.1.

2.1. Preliminaries.

Lemma 2.1. (Energy inequality) Under the conditions of Theorem 1.1, the follow-
ing inequality holds

sup
0≤t<∞

∫
Ω

(1

2
u2 +

1

2
w2 +R(v − ln v − 1) + cv(θ − ln θ − 1)

)
dx

+

∫ ∞
0

∫
Ω

(
µ
u2
x

vθ
+ κ

θ2
x

vθ2
+ λ

w2
x

vθ
+ ν

vw2

θ

)
dxds ≤ C0,

(2.1)

0 < α1 ≤
∫ i+1

i

vdx ≤ α2, 0 < α1 ≤
∫ i+1

i

θdx ≤ α2, (2.2)

and there are ai(t), bi(t) ∈ [i, i+ 1] satisfying

α1 ≤ v(ai(t), t) ≤ α2, α1 ≤ θ(bi(t), t) ≤ α2, (2.3)

where α1, α2 are two positive roots of the equation y − ln y − 1 = C0

min{R,cv} , i ∈ N
for the initial boundary value problems and i ∈ Z for the Cauchy problem.

Proof. The above estimates can been obtained by the similar arguments as that in
[10].

Lemma 2.2. Under the conditions of Theorem 1.1, there holds

sup
0≤t<∞

∫
Ω

1

2
w2dx+

∫ ∞
0

∫
Ω

(
λ
w2
x

v
+ νvw2

)
dxds ≤

∫
Ω

1

2
w2

0dx, (2.4)
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and

sup
0≤t<∞

∫
Ω

1

4
w4dx+

∫ ∞
0

∫
Ω

(
λ
w2w2

x

v
+ νvw4

)
dxds ≤

∫
Ω

1

4
w4

0dx. (2.5)

Proof. Multiplying (1.1)3 by w, using the boundary condition of w, one directly
gets (2.4).

Multiplying (1.1)3 by w3, using the boundary condition of w, one gets (2.5).

2.2. Uniform estimates of v. In this subsection, the specific volume v(x, t) is
proved to be bounded from below and above, independent of both time and space.

Lemma 2.3. Under the hypotheses of Theorem 1.1, it holds that

0 < C1
−1 ≤ v(x, t) ≤ C1. (2.6)

For more detailed proof of Lemma 2.3, refer to [5, 10, 11] and references therein.

2.3. Uniform estimates of θ.

Lemma 2.4. Under the conditions of Theorem 1.1, let (v, u, w, θ) be a solution to
the system (1.1) on Ω× [0, T ], it holds for any T > 0∫

Ω

(|θ−1|2 +u2θ+w2θ+u4)dx+

∫ T

0

∫
Ω

(
θ2
x+u2

xθ+w2
xθ+w2θ+u2u2

x

)
dxds ≤ C.

(2.7)

Proof. Motivated by [13], the proof will be divided into three steps.

Step 1. At first, for any t ≥ 0 and a > 1, denoting

Ωa(t) , {x ∈ Ω|θ(x, t) > a},

and we derive from (2.1) that

sup
0≤t<∞

∫
Ωa(t)

θ ≤ C(a) sup
0≤t<∞

∫
Ω

(θ − ln θ − 1) ≤ C(a).

Using (1.1)1, (1.1)3, (1.1)5, we rewrite (1.1)4 as

cvθt +
Rθux
v

= (
κθx
v

)x +
µu2

x

v
+ νvw2 +

λw2
x

v
. (2.8)

Multiplying (2.8) by (θ−2)+ = sup{θ−2, 0} and integrating the result over Ω×[0, T ],
we have

cv
2

∫
Ω

(θ − 2)2
+dx+ κ

∫ T

0

∫
Ω2(s)

θ2
x

v
dxds

=
cv
2

∫
Ω

(θ0 − 2)2
+dx−R

∫ T

0

∫
Ω

θux
v

(θ − 2)+dxds+ µ

∫ T

0

∫
Ω

u2
x

v
(θ − 2)+dxds

+λ

∫ T

0

∫
Ω

w2
x

v
(θ − 2)+dxds+ ν

∫ T

0

∫
Ω

vw2(θ − 2)+dxds.

(2.9)
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Next, multiplying (1.1)2 by 2u(θ − 2)+ and integrating the result over Ω × [0, T ],
we obtain∫

Ω

u2(θ − 2)+dx+ 2µ

∫ T

0

∫
Ω

u2
x

v
(θ − 2)+dxds

=

∫
Ω

u2
0(θ0 − 2)+dx+ 2R

∫ T

0

∫
Ω

θux
v

(θ − 2)+dxds+ 2R

∫ T

0

∫
Ω2(s)

θuθx
v

dxds

−2µ

∫ T

0

∫
Ω2(s)

uuxθx
v

dxds+

∫ T

0

∫
Ω2(s)

u2θsdxds.

(2.10)
Then multiplying (1.1)3 by 2w(θ − 2)+ and integrating the result over Ω × [0, T ],
yields∫

Ω

w2(θ − 2)+dx+ 2λ

∫ T

0

∫
Ω

w2
x

v
(θ − 2)+dxds+ 2ν

∫ T

0

∫
Ω

vw2(θ − 2)+dxds

=

∫
Ω

w2
0(θ0 − 2)+dx− 2λ

∫ T

0

∫
Ω2(s)

wwxθx
v

dxds+

∫ T

0

∫
Ω2(s)

w2θsdxds.

Adding the above three integral expressions together and using (2.8) to get∫
Ω

(
cv
2
(θ − 2)2+ + u2(θ − 2)+ + w2(θ − 2)+

)
dx+ κ

∫ T

0

∫
Ω2(s)

θ2
x

v
dxds

+µ

∫ T

0

∫
Ω

u2
x

v
(θ − 2)+dxds+ λ

∫ T

0

∫
Ω

w2
x

v
(θ − 2)+dxds

+ν

∫ T

0

∫
Ω

vw2(θ − 2)+dxds

=

∫
Ω

(
cv
2
(θ0 − 2)2+ + u2

0(θ0 − 2)+ + w2
0(θ0 − 2)+

)
dx+R

∫ T

0

∫
Ω

θux

v
(θ − 2)+dxds

+2R

∫ T

0

∫
Ω2(s)

θuθx
v

dxds− 2µ

∫ T

0

∫
Ω2(s)

uuxθx
v

dxds

+
1

cv

∫ T

0

∫
Ω2(s)

u2(µu2
x

v
−Rθux

v

)
dxds+

κ

cv

∫ T

0

∫
Ω2(s)

u2(θx
v

)
x
dxds

λ

cv

∫ T

0

∫
Ω2(s)

u2w2
x

v
dxds+

ν

cv

∫ T

0

∫
Ω2(s)

vu2w2dxds+
λ

cv

∫ T

0

∫
Ω2(s)

w2w2
x

v
dxds

+
1

cv

∫ T

0

∫
Ω2(s)

w2(µu2
x

v
−Rθux

v

)
dxds+

κ

cv

∫ T

0

∫
Ω2(s)

w2(θx
v

)
x
dxds

+
ν

cv

∫ T

0

∫
Ω2(s)

vw4dxds− 2λ

∫ T

0

∫
Ω2(s)

wwxθx
v

dxds

=:

∫
Ω

(
cv
2
(θ0 − 2)2+ + u2

0(θ0 − 2)+ + w2
0(θ0 − 2)+

)
dx+

12∑
j=1

Ij .

(2.11)

Now the main task is to estimate I1, I2, I3......, I12 term by term.
For I1, using Cauchy inequality and (2.6), one obtains

|I1| = R

∣∣∣∣ ∫ T

0

∫
Ω

θux
v

(θ − 2)+dxds

∣∣∣∣
≤ ε

∫ T

0

∫
Ω2(s)

u2
x

v
(θ − 2)+dxds+ C(ε)

∫ T

0

∫
Ω

θ2(θ − 2)+dxds
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≤ ε
∫ T

0

∫
Ω2(s)

u2
x

v
(θ − 2)+dxds+ C(ε)

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.

It follows from Cauchy inequality and (2.6) that for any ε > 0

|I2| = R

∣∣∣∣ ∫ T

0

∫
Ω2(s)

θuθx
v

dxds

∣∣∣∣
≤ ε

∫ T

0

∫
Ω2(s)

θ2
xdxds+ C(ε)

∫ T

0

∫
Ω2(s)

u2θ2dxds

≤ ε
∫ T

0

∫
Ω

θ2
xdxds+ C(ε)

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds,

where we have used the fact that∫ T

0

∫
Ω2(s)

u2θ2dxds ≤ 16

∫ T

0

∫
Ω

u2(θ − 3

2
)2
+dxds ≤ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.

(2.12)
Then for I3, it follows from Cauchy inequality and (2.12)

|I3| = 2µ

∣∣∣∣ ∫ T

0

∫
Ω2(s)

uuxθx
v

dxds

∣∣∣∣
≤ ε

∫ T

0

∫
Ω

θ2
xdxds+ C(ε)

∫ T

0

∫
Ω

u2u2
xdxds.

For I4,

|I4| ≤ C
∫ T

0

∫
Ω

u2u2
xdxds+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.

For any η > 0, set

χη(θ) =


0, θ ≤ 2,

θ − 2

η
, 2 ≤ θ ≤ η + 2,

2, θ ≥ η + 2.

For I5, we immediately get for any ε > 0

I5 =
κ

cv

∫ T

0

∫
Ω

lim
η→0

χη(θ)u2(
θx
v

)xdxds

= lim
η→0

κ

cv

∫ T

0

∫
Ω

(
− 2χη(θ)uux

θx
v
− χ′η(θ)u2 θ

2
x

v

)
dxds

≤ ε
∫ T

0

∫
Ω

θ2
xdxds+ C(ε)

∫ T

0

∫
Ω

u2u2
xdx.

It follows from Cauchy inequality that

|I6|+ |I7| ≤ C
∫ T

0

∫
Ω

u2w2
xdxds+ C

∫ T

0

∫
Ω

u2w2dxds.

For I8,

|I8| ≤ C
∫ T

0

∫
Ω

u2
xw

2dxds+ C

∫ T

0

∫
Ω2(s)

w2θ2dxds

≤ C
∫ T

0

∫
Ω

u2
xw

2dxds+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.
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For I9, using (2.5), we have

I9 =
κ

cv

∫ T

0

∫
Ω

lim
η→0

χη(θ)w2(
θx
v

)xdxds

= lim
η→0

κ

cv

∫ T

0

∫
Ω

(
− 2χη(θ)wwx

θx
v
− χ′η(θ)w2 θ

2
x

v

)
dxds

≤ ε
∫ T

0

∫
Ω2(s)

θ2
xdxds+ C

∫ T

0

∫
Ω

w2w2
xdxds

≤ ε
∫ T

0

∫
Ω2(s)

θ2
xdxds+ C.

For the terms I10-I12, it follows from Cauchy inequality that

|I10|+ |I11| ≤ C,
and

|I12| ≤ ε
∫ T

0

∫
Ω

θ2
xdxds+ C.

Noticing that∫ T

0

∫
Ω

(
θ2
x + u2

xθ + w2
xθ + w2θ

)
dxds

=

∫ T

0

∫
Ω3(s)

(
θ2
x + u2

xθ + w2
xθ + w2θ

)
dxds

+

∫ T

0

∫
Ω−Ω3(s)

(
θ2
x + u2

xθ + w2
xθ + w2θ

)
dxds

≤ 3

∫ T

0

∫
Ω3(s)

(
θ2
x + u2

x(θ − 2)+ + w2
x(θ − 2)+ + w2(θ − 2)+

)
dxds

+C

∫ T

0

∫
Ω

(
µ
u2
x

vθ
+ κ

θ2
x

vθ2
+ λ

w2
x

vθ
+ ν

vw2

θ

)
dxds

≤ C

∫ T

0

∫
Ω2(s)

(
κθ2
x

v
+
µu2

x

v
(θ − 2)+ +

λw2
x

v
(θ − 2)+ + νvw2(θ − 2)+

)
dxds+ C.

Then ∫
Ω

(
cv
2

(θ − 2)2
+ + u2(θ − 2)+ + w2(θ − 2)+

)
dx

+

∫ T

0

∫
Ω

(
θ2
x + u2

xθ + w2
xθ + w2θ

)
dxds

≤ C + C

∫ T

0

∫
Ω

u2u2
xdx+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds

+C

∫ T

0

∫
Ω

u2w2
xdxds+ C

∫ T

0

∫
Ω

u2w2dxds+ C

∫ T

0

∫
Ω

u2
xw

2dx.

(2.13)

Step 2. Multiplying (1.1)3 by 2u2w and integrating the result over Ω × [0, T ], we
have ∫

Ω

u2w2dx+ 2λ

∫ T

0

∫
Ω

u2w2
x

v
dxds+ 2ν

∫ T

0

∫
Ω

vu2w2dxds

=

∫
Ω

u2
0w

2
0dx− 4λ

∫ T

0

∫
Ω

uuxwwx
v

dxds+ 2

∫ T

0

∫
Ω

uusw
2dxds.
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Using (1.1)2, we obtain∫
Ω

u2w2dx+ 2λ

∫ T

0

∫
Ω

u2w2
x

v
dxds+ 2ν

∫ T

0

∫
Ω

vu2w2dxds

+2µ

∫ T

0

∫
Ω

u2
xw

2

v
dxds

=

∫
Ω

u2
0w

2
0dx− 4λ

∫ T

0

∫
Ω

uuxwwx
v

dxds− 4µ

∫ T

0

∫
Ω

uuxwwx
v

dxds

+2R

∫ T

0

∫
Ω

θuxw
2

v
dxds+ 4R

∫ T

0

∫
Ω

uθwwx
v

dxds =:

∫
Ω

u2
0w

2
0dx+

4∑
j=1

Jj .

(2.14)
What’s more, it follows from (2.1) and (2.6) that for any α ∈ [2, 3],

sup
0≤t≤T

∫
Ω

(v − 1)2dx+ sup
0≤t≤T

∫
Ω\Ωα

(θ − 1)2dx

≤ C sup
0≤t≤T

∫
Ω

(v − ln v − 1)dx+ C sup
0≤t≤T

∫
Ω

(θ − ln θ − 1)dx ≤ C.
(2.15)

Then we can estimate Jj(j = 1, 2, 3, 4),

|J1|+ |J2| ≤ C
∫ T

0

∫
Ω

u2u2
xdxds+ C

∫ T

0

∫
Ω

w2w2
xdxds

≤ C
∫ T

0

∫
Ω

u2u2
xdxds+ C,

|J3| ≤ µ
∫ T

0

∫
Ω

u2
xw

2

v
dx+ C

∫ T

0

∫
Ω2(s)

w2θ2dxds

≤ µ
∫ T

0

∫
Ω

u2
xw

2

v
dx+ C

∫ T

0

∫
Ω2(s)

w2θ2dxds+ C

∫ T

0

∫
Ω−Ω2(s)

w2θ2dxds

≤ µ
∫ T

0

∫
Ω

u2
xw

2

v
dx+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds+ C,

and

|J4| ≤ λ
∫ T

0

∫
Ω

u2w2
x

v
dx+ C

∫ T

0

∫
Ω2(s)

w2θ2dxds+ C

∫ T

0

∫
Ω−Ω2(s)

w2θ2dxds

≤ λ
∫ T

0

∫
Ω

u2w2
x

v
dx+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds+ C.

Therefore, we have∫
Ω

u2w2dx+

∫ T

0

∫
Ω

(
u2w2

x + u2w2 + u2
xw

2

)
dxds

≤ C + C

∫ T

0

∫
Ω

u2u2
xdxds+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.

(2.16)

And similarly,

sup
0≤t<∞

∫
Ω

u4dx+

∫ ∞
0

∫
Ω

u2u2
xdxds

≤ C + Cδ

∫ T

0

∫
Ω

θu2
xdxds+ C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.
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Adding all the above inequalities, one obtains∫
Ω

(
cv
2

(θ − 2)2
+ + u2(θ − 2)+ + w2(θ − 2)+ + u4

)
dx

+

∫ T

0

∫
Ω

(
θ2
x + u2

xθ + w2
xθ + w2θ + u2u2

x

)
dxds

≤ C + C

∫ T

0

sup
Ω

(θ − 3

2
)2
+ds.

(2.17)

Step 3. We estimate the last term on the right hand side of (2.17).∫ T

0

sup
Ω

(θ − 3

2
)2
+ds ≤ C(ε) + ε

∫ T

0

∫
Ω

θ2
xdxds. (2.18)

Then ∫
Ω

(
cv
2

(θ − 2)2
+ + u2(θ − 2)+ + w2(θ − 2)+ + u4

)
dx

+

∫ T

0

∫
Ω

(
θ2
x + u2

xθ + w2
xθ + w2θ + u2u2

x

)
dxds

≤ C.

(2.19)

The proof of Lemma 3.4 is complete.

2.4. Uniform estimates on the derivatives of v, u, w, θ.

Lemma 2.5. There exists a positive constant C such that for any T > 0, it holds
that

sup
0≤t≤T

∫
Ω

(v2
x + u2

x + θ2
x + w2

x)dx+

∫ T

0

∫
Ω

(θv2
x + u2

xx + θ2
xx + w2

xx)dxds ≤ C.

(2.20)

Moreover,
sup

Ω×[0,T ]

θ(x, t) ≤ C. (2.21)

Proof. The process will be divided into five steps:

Step 1. Integrating (1.1)2 × vx
v over Ω, we get by using (1.1)1

µ

2

d

dt

∫
Ω

(
vx
v

)2dx+R

∫
Ω

θv2
x

v3
dx =

d

dt

∫
Ω

u
vx
v
dx+R

∫
Ω

vxθx
v2

dx+

∫
Ω

u2
x

v
dx.

Integrating the above equality on [0, T ], we have∫
Ω

(
vx
v

)2dx+R

∫ T

0

∫
Ω

θv2
x

v3
dxds

≤ C +

∫
Ω

u
vx
v
dx+ C

∫ T

0

∫
Ω

(
vxθx
v2

+
u2
x

v
)dxds

≤ C + δ

∫
Ω

(
vx
v

)2dx+ C(δ)

∫
Ω

u2dx

+δ

∫ T

0

∫
Ω

θv2
xdxds+ C(δ)

∫ T

0

∫
Ω

θ2
x

θ
dxds.

It follows from Cauchy inequality, (1.6), (2.1), (2.6), (2.7) and (2.18) that

sup
0≤t≤T

∫
Ω

v2
xdx+

∫ T

0

∫
Ω

θv2
xdxds ≤ C. (2.22)
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Step 2. Integrating (1.1)2 × (−uxx) over Ω leads to

1

2

d

dt

∫
Ω

u2
xdx+ µ

∫
Ω

u2
xx

v
dx = µ

∫
Ω

uxvxuxx

v2
dx−R

∫
Ω

uxxθx
v

dx+R

∫
Ω

θvxuxx

v2
dx.

(2.23)
Using (2.7), (2.22) and Sobolev inequality, we get∫ T

0

| µ
∫

Ω

uxvxuxx

v2
dx−R

∫
Ω

uxxθx
v

dx+R

∫
Ω

θvxuxx

v2
dx | ds

≤ µ

4

∫ T

0

∫
Ω

u2
xx

v
dxds+ C

∫ T

0

∫
Ω

u2
xv

2
xdxds+ C

∫ T

0

∫
Ω

θ2
xdxds+ C

∫ T

0

∫
Ω

θ2v2
xdxds

≤ C +
µ

4

∫ T

0

∫
Ω

u2
xx

v
dxds+ C sup

Ω×[0,T ]

θ

∫ T

0

∫
Ω

θv2
xdxds+ C

∫ T

0

‖ ux ‖2L∞(Ω)ds

≤ C +
µ

2

∫ T

0

∫
Ω

u2
xx

v
dxds+ C sup

Ω×[0,T ]

θ,

(2.24)

then by using (2.23), one has

sup
0≤t≤T

∫
Ω

u2
xdx+

∫ T

0

∫
Ω

u2
xxdxds ≤ C + C sup

Ω×[0,T ]

θ. (2.25)

Step 3. Integrating (2.8)× (−θxx) over Ω leads to

1

2

d

dt

∫
Ω

θ2
xdx+ κ

∫
Ω

θ2
xx

v
dx = κ

∫
Ω

θxvxθxx
v2

dx− µ
∫

Ω

u2
xθxx
v

dx

+R

∫
Ω

θuxθxx
v

dx−
∫

Ω

νvw2θxxdx− λ
∫

Ω

w2
xθxx
v

dx,

(2.26)
then using Cauchy inequality, (2.7), (2.22), (2.25), Sobolev inequality, we get∫ T

0

| κ
∫

Ω

θxvxθxx
v2

dx− µ
∫

Ω

u2
xθxx
v

dx+R

∫
Ω

θuxθxx
v

−
∫

Ω

νvw2θxxdx

−λ
∫

Ω

w2
xθxx
v

dx | ds

≤ C

∫ T

0

‖ θxx ‖L2(Ω)‖ θx ‖L∞(Ω)‖ vx ‖L2(Ω) ds

+C

∫ T

0

‖ θxx ‖L2(Ω)‖ ux ‖L∞(Ω)‖ ux ‖L2(Ω) ds

+C

∫ T

0

‖ θxx ‖L2(Ω)‖ θ ‖L∞(Ω)‖ ux ‖L2(Ω) ds+ C

∫ T

0

‖ θxx ‖L2(Ω) ds

≤ C

∫ T

0

‖ θxx ‖L2(Ω) ‖ θx ‖
1
2

L2(Ω)‖ θxx ‖
1
2

L2(Ω) ‖ vx ‖L2(Ω) ds

+C

∫ T

0

‖ θxx ‖L2(Ω)‖ ux ‖H1(Ω)‖ ux ‖L2(Ω) ds

+C

∫ T

0

‖ θxx ‖L2(Ω)‖ ux ‖H1(Ω)‖ θ ‖L∞(Ω) ds+ C

∫ T

0

‖ θxx ‖L2(Ω) ds

≤ κ

4

∫ T

0

∫
Ω

θ2
xx

v
dxds+ C + C sup

Ω×[0,T ]

θ3.

(2.27)
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Hence we obtain by using (2.26) that

sup
0≤t≤T

∫
Ω

θ2
xdx+

∫ T

0

∫
Ω

θ2
xxdxds ≤ C + C sup

Ω×[0,T ]

θ3. (2.28)

Step 4. Integrating (1.1)3 × (−wxx) over Ω, we have

1

2

d

dt

∫
Ω

w2
xdx+ λ

∫
Ω

w2
xx

v
dx = λ

∫
Ω

wxvxwxx
v2

dx− ν
∫

Ω

vwwxxdx, (2.29)

using (2.1), (2.22) and Lemma 2.2, one has∫ T

0

| λ
∫

Ω

wxvxwxx
v2

dx− ν
∫

Ω

vwwxxdx | ds ≤
λ

4

∫ T

0

∫
Ω

w2
xx

v
dxds+ C. (2.30)

Then, by using (2.29), we get

sup
0≤t≤T

∫
Ω

w2
xdx+

∫ T

0

∫
Ω

w2
xxdxds ≤ C. (2.31)

Step 5. Using Sobolev inequality and (2.7), for any 0 ≤ t ≤ T

‖ θ − 1 ‖2C(Ω) ≤ C ‖ θ − 1 ‖L2(Ω)‖ θx ‖L2(Ω)

≤ C ‖ θx ‖L2(Ω) .
(2.32)

Combining (2.28), yields

sup
Ω×[0,T ]

(θ − 1)2 ≤ C + C max
Ω̄×[0,T ]

θ
3
2 .

It implies that there exists a positive constant C for any (x, t) ∈ Ω̄× [0, T ]

θ(x, t) ≤ C. (2.33)

Hence, putting together (2.22), (2.25), (2.28), (2.31) and (2.33), we finish the proof
of Lemma 2.5.

2.5. Large-time behavior of global solutions.

Lemma 2.6. Under the conditions of Theorem 1.1, it holds that

lim
t→∞

(‖ (v − 1, u, w, θ − 1)(t) ‖Lp(Ω) + ‖ (vx, ux, wx, θx)(t) ‖L2(Ω)) = 0, (2.34)

for any p > 2, there also exists a positive constant C2

C−1
2 ≤ θ(x, t) ≤ C2, for (x, t) ∈ Ω̄× [0,∞). (2.35)

Proof. First, it follows from (2.7), (2.20), (2.23), (2.24), (2.26), (2.27), (2.29) and
(2.30) that ∫ ∞

0

(‖ ux ‖2L2(Ω) + | d
dt
‖ ux ‖2L2(Ω)|)dt+

∫ ∞
0

(‖ θx ‖2L2(Ω)

+| d
dt
‖ θx ‖2L2(Ω)|)dt+

∫ ∞
0

(‖ wx ‖2L2(Ω) + | d
dt
‖ wx ‖2L2(Ω)|)dt

≤ C,

which directly gives

lim
t→∞

(‖ ux ‖L2(Ω) + ‖ θx ‖L2(Ω) + ‖ wx ‖L2(Ω)) = 0. (2.36)
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By applying (2.36) to (2.32), we get

lim
t→∞

‖ θ − 1 ‖C(Ω̄) = 0.

Hence, there exists some T ∗ > 0

1

2
≤ θ ≤ 3

2
, for any (x, t) ∈ Ω̄× [T ∗,∞). (2.37)

Combining (2.20), leads to ∫ ∞
T∗
‖ vx ‖2L2(Ω)ds ≤ C. (2.38)

Then combining (1.1)1 and (2.20), one has∫ ∞
T∗
| d
dt
‖ vx ‖2L2(Ω) | ds

= 2

∫ ∞
T∗
|
∫

Ω

uxxvxdx | ds

≤
∫ ∞
T∗

∫
Ω

u2
xxdxds+

∫ ∞
T∗

∫
Ω

v2
xdxds ≤ C,

which together with (2.38) implies

lim
t→∞

‖ vx ‖L2(Ω)= 0. (2.39)

Therefore, combining (2.1), (2.7), (2.36), (2.39) and (2.15), we can get (2.34).
Finally, we will establish the lower bound of θ. According to [1, 12], there exists

a constant C3 > 2

C−1
3 e−C3t ≤ θ, , for any (x, t) ∈ Ω̄× [0,∞),

which together with (2.37), yield

C−1
3 e−C3T

∗
≤ θ.

Combining (2.33) and (2.35), we choose C , max{C2, C3e
C3T

∗}. The proof of
Lemma 3.6 is finished.
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