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Abstract. The main aim of this paper is to study the P1 nonconforming finite

element approximations of the variational inequality arisen from the Signorini
problem. We describe the finite dimensional closed convex cone approximation

in a meanvalue-oriented sense. In this way, the optimal convergence rate O(h)

can be obtained by a refined analysis when the exact solution belongs to H2(Ω)
without any assumption. Furthermore, we also study the optimal convergence

for the case u ∈ H1+ν(Ω) with 1
2
< ν < 1.

1. Introduction. The unilateral contact models are of great practical interest in
solid mechanics and many works have been contributed to their numerical analysis.
In fact, as a mostly powerful numerical method, the finite element methods for
the unilateral contact models have been highlighted in the numerical simulation of
variational inequalities for more than fifty years, interested readers please refer to
[14, 17, 22] and the references therein.

It is well known that the unilateral contact problems are typically represented by
Signorini’s model, which may cause some special difficulties in both mathematical
theory and numerical approximation. Most often, linear finite elements are used by
the practitioners for the approximation of contact problems with unilateral Signorini
boundary conditions. However, the numerical analysis of their convergence has been
explored a long way. The first error estimate of conforming linear finite element
approximations of this problem with frictionless boundary is probably given by
Scarpini and Vivaldi (cf. [21]). They proved O(h3/4) convergence rate with the
regularity u ∈ H2(Ω) (for simplicity, we call it “assumption A1”). In the same year,
Brezzi, Hager and Raviart (cf. [7]) obtained optimal convergence rate O(h) with
two additional conditions: u|∂Ω ∈W 1,∞(∂Ω) (“assumption A2”) and the number of
points in the free boundary where the constraint changes from binding to nonbinding
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is finite (“assumption A3”). In the subsequent more than twenty years, the finite
element methods for the these problems developed very quickly, nevertheless, the
convergence rates were still based on the results of Scarpini and Brezzi. Until 2000,
Belgacem (cf. [1]) presented the quasi-optimal convergence rate O(h| log h|1/2) by
a detailed analysis and novel approach under “assumption A1” and “assumption
A3”. And later, he and his colleague Renard improved it to O(h| log h|1/4) (cf. [2]),
Hüeber and Wohlmuth [14] obtained O(h) convergence by nonconforming domain
decomposition methods based on dual Lagrange multipliers, also with the additional
“assumption A3”.

In this work, we consider the nonconforming Crouzeix-Raviart (cf. [9]) finite
element approximations to the Signorini problem. Our motivation comes from the
numerical investigation, which shows that the convergence rate of P1 nonconform-
ing finite element method is optimal, please refer to section 5. Therefore, a natural
interest arises for a better understanding of the convergence properties of the P1

nonconforming element method. Our ultimate aim is to propose some locking-free
finite element methods for the Signorini problem in incompressible elasticity. It is
well-known that the linear nonconforming Crouzeix-Raviart element can avoid lock-
ing phenomena in some incompressible flows (see [6, 8, 11, 15]). What’s more, the
numerical results presented in [22] have showed that the nonconforming Crouzeix-
Raviart element behaves better than its conforming counterpart one when used to
solve some variational inequalities with small parameter.

In fact, the nonconforming Crouzeix-Raviart method was firstly considered by
Wang in [23] and O(h1/2) convergence is obtained therein. Later, Hua and Wang
improved it by O(h| log h|1/4) convergence (cf. [13]) with the additional “assump-
tion A3”, exactly the same as the rate of conforming linear finite element method.
However, [23] and [13] only consider the case u ∈ H2(Ω). We extend the method to
the case u ∈ H1+ν(Ω) with 1

2 < ν ≤ 1, which is more reasonable in practice. Some
new techniques in the estimate of the consistency error for nonsmooth solution are
developed in this paper.

Though nonconforming Crouzeix-Raviart element contains more degrees of free-
dom and thus involves more expensive computational cost, the results of linear
nonconforming finite element method may have some attractive features. For both
linear and nonlinear contact condition models, the optimal convergence rate O(h)
of the meanvalue-oriented approximation can be obtained for u ∈ H2(Ω) without
“assumption A3”. This optimal result can also be obtained for the linear contact
condition model by the midpoint-oriented approximation. As far as we know, this is
the first time to obtain the optimal convergence rate without any supplementary hy-
potheses. Meanwhile, the numerical investigation presented in section 5 also shows
that the P1 nonconforming finite element method is even slightly better than the
conforming one. On the other hand, nonconforming finite element methods have
the striking practical advantage that each degrees of freedom belongs to at most
two elements, which results in a cheap local communication and the method can be
parallelized in a highly efficient manner on MIMD-machines, see e.g. [10] and the
references therein.

An outline of this paper is as follows. Section 2 deals with some functional
tools and the continuous setting of the Signorini problem. In section 3, we define
a meanvalue-oriented type discretized method and obtain the optimal convergence
for the case u ∈ H1+ν(Ω) with 1

2 < ν < 1 with “assumption A3”. When u ∈
H2(Ω), for the meanvalue-oriented approximation, the optimal convergence rate
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O(h) can be obtained without “assumption A3”. Section 4 is concerned with the
convergence properties with a midpoint-oriented type discretized method for the
Signorini problem. Finally, in section 5, a numerical experiment is presented, where
conforming and nonconforming linear finite elements are compared.

2. Notations and the Signorini problem. For the sake of the hereafter analysis,
we firstly begin with some necessary notations and functional tools, then we give a
brief introduce of the Signorini problem.

Let Ω ⊂ R2 be a Lipschitz domain whose generic point of Ω is denoted by
x = (x1, x2). The Lebesgue space L2(Ω) is endowed with the inner product,

(φ, ψ) =

∫
Ω

φψdx, ∀φ, ψ ∈ L2(Ω),

and with the norm

‖ψ‖0,Ω =

(∫
Ω

ψ2dx

) 1
2

.

Then the standard Sobolev spaces Hm(Ω),m ≥ 1, are equipped with the norm

‖ψ‖m,Ω =

 ∑
0≤|α|≤m

‖ψ‖20,Ω

 1
2

,

where α = (α1, α2) is a multi-index in N2 and the symbol Dα = ∂|α|/∂xα1
1 ∂xα2

2

denotes a partial derivative. The convention H0(Ω) = L2(Ω) is adopted. The
fractional order Sobolev space Hν(Ω), ν ∈ R+ \N is defined by the norm:

‖ψ‖ν,Ω =

‖ψ‖2m,Ω +
∑
|α|=m

∫
Ω

∫
Ω

(Dαψ(x)−Dαψ(y))2

|x− y|2+2θ
dxdy

 1
2

, (2.1)

where ν = m+ θ,m is the integer part of ν and θ ∈ (0, 1) is the decimal part. The
closure in Hν(Ω) of D(Ω) is denoted Hν

0 (Ω), where D(Ω) is the space of infinitely
differentiable functions whose support is contained in Ω.

For any portion γ of the boundary ∂Ω and any ν > 0, the Hilbert space Hν(γ)

is defined as the range of Hν+ 1
2 (Ω) by the trace operator; it is then endowed with

the image norm

‖ψ‖ν,γ = inf
χ∈Hν+

1
2 (Ω),χ|γ=ψ

‖χ‖ν+ 1
2
.

Let the space H−ν(γ) stand for the topological dual space of Hν(γ) and the duality
paring be denoted < ·, · >ν,γ .

To be complete with the Sobolev functional tools for subsequent use, recall that
for ν > 3

2 , the trace operator

T : ψ 7→
(
ψ|∂Ω,

(
∂ψ

∂n

)
|∂Ω

)
is continuous from Hν(Ω) onto Hν− 1

2 (∂Ω)×Hν− 3
2 (∂Ω).

Suppose the boundary ∂Ω is a union of three nonoverlapping portions Γu,Γg and
ΓC . The vertices of ΓC are {c1, c2} and those of Γu are {c′1, c′2}. The part Γu of
nonzero measure is subjected to Dirichlet conditions while on Γg a Neumann con-
dition is prescribed, and ΓC is the candidate to be in contact with a rigid obstacle.
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To avoid technicalities arising from the special Sobolev space H
1
2
00(ΓC), we assume

that Γu and ΓC do not touch.
For the given data f ∈ L2(Ω), g ∈ H−

1
2 (Γg) and φ ∈ H

1
2 (ΓC), the Signorini

problem consists of finding u that verifies in a distributional sense:

−4u = f in Ω, (2.2)

u = 0 on Γu, (2.3)
∂u
∂n = g on Γg, (2.4)

u− φ ≥ 0, ∂u
∂n ≥ 0, (u− φ) ∂u∂n = 0 on ΓC = Γ0

C

⋃
Γ1
C , (2.5)

where n is the outward unit normal to ∂Ω and Γ0
C = {x ∈ ΓC : u(x) = ϕ},Γ1

C =
{x ∈ ΓC : u(x) > φ}.
Remark 2.1. If the function φ ∈ P1(ΓC), we can call the above model linear
contact condition model. Otherwise we call it nonlinear contact condition model.
Most papers (see [1, 2] only need to consider the case φ = 0, since their analysis
can be extended straightforwardly to the case φ 6= 0. However, in this paper, we
will show that the same approximation method may have different convergence
properties for the different contact condition model. Therefore, we must treat them
by different techniques.

The functional framework well suited to solve problem (2.2)-(2.5) consists in
working with a subset of the following Sobolev space:

H1
Γu(Ω) =

{
v ∈ H1(Ω), v|Γu = 0

}
,

equipedd with the seminorm

|v|1,Ω = ‖∇v‖0,Ω.

By the Friedrichs inequality, the semi-norm is actually a norm in H1
Γu

(Ω), which
is equivalent to the natural one ‖ · ‖1,Ω. In the weak formulation, the unilateral
contact condition on ΓC is taken into account by incorporating it in the closed cone

K(Ω) =
{
v ∈ H1

Γu(Ω), v|ΓC ≥ φ, a.e.
}
.

The primal variational principle for the Signorini problem produces the following
variational inequality: {

find u ∈ K(Ω), such that

a(u, v − u) ≥ L(v − u), ∀ v ∈ K(Ω),
(2.6)

where

a(u, v) =

∫
Ω

∇u∇vdx,

L(v) =

∫
Ω

fvdx +

∫
Γg

gvds.

Obviously, the bilinear and linear forms fulfill the Stampacchia theorem’s hypoth-
esis, the continuity for both of them and the ellipticity for a(·, ·). Thus, the weak
formulation (2.6) is well posed and has only one solution in K(Ω) that depends
continuously on the data (f, g, φ).
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3. A new Crouzeix-Raviart approximation. For simplicity and to avoid more
technicalities, suppose the domain Ω is polygonal in R2. Let Jh be a regular
triangulation of Ω with a maximum size h, and K ∈ Jh is the triangular element,

Ω =
⋃

K∈Jh

K.

Moreover, the family Jh is built in such a way that the end points {c1, c2, c
′
1, c
′
2}

are always chosen as the vertices of some triangular elements.
For any K ∈ Jh, Pk(K) stands for the set of polynomials of total degree ≤ k,

and ∀F ⊂ ∂K,K ∈ Jh, for any v ∈ H 1
2 (K), we define

MF (v) =
1

|F |

∫
F

vds, MK(vh) =
1

|K|

∫
K

vdx.

Then we introduce the Crouzeix-Raviart finite element space corresponding to the
partition Jh, which is defined as

Vh = {vh ∈ L2(Ω), vh|K ∈ P1(K), vh is continuous regarding MF (·),MF (vh) = 0, ∀F ⊂ Γu}.

It is easy to see that Vh is not a subspace of H1
Γu

(Ω) and is so-called nonconforming
linear finite element.

Suppose the local interpolation ΠK on an element K is defined as

MF (ΠKv) = MF (v), ∀v ∈ H 1
2 (K), (3.1)

and the global interpolation Πh,

Πh|K = ΠK , ∀K ∈ Jh.

Set the broken norm as

‖ · ‖h =

( ∑
K∈Jh

| · |21,K

) 1
2

. (3.2)

Obviously, ‖ · ‖h is a norm on Vh.
Then, we work with the following finite dimensional closed convex cone,

Kh(Ω) = {vh ∈ Vh, MF (vh) ≥MF (φ), ∀F ⊂ ΓC} . (3.3)

Note that we use a slight different discrete convex cone space from [13].
Now, we are in a position to define and study the nonconforming finite element

approximation to problem (2.6), that is to say,{
Find uh ∈ Kh(Ω), such that

ah(uh, vh − uh) ≥ L(vh − uh), ∀ vh ∈ Kh(Ω),
(3.4)

where

ah(uh, vh) =
∑
K∈Jh

∫
K

∇uh∇vhdx,

L(vh) =

∫
Ω

fvhdx +

∫
Γg

gvhds.

Since the ‖ · ‖h defined as (3.2) is a norm on Vh, by Stampacchia’s Theorem, it can
be proved that the discrete problem (3.4) has and only has one solution uh ∈ Kh(Ω).
Furthermore, the following abstract error estimate holds.
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Theorem 3.1. Let u ∈ K(Ω) be the solution of the variational Signorini inequality
(2.6), and uh ∈ Kh(Ω) be the solution of the discrete problem (3.4). Further assume
that f ∈ L2(Ω), u ∈ H1+ν(Ω), 1

2 < ν ≤ 1, then we have

‖u− uh‖h

≤C inf
vh∈Kh(Ω)

{
‖u− vh‖2h +

∑
F⊂ΓC

∫
F

∂u

∂n
(vh − uh)ds+ h2ν‖u‖21+ν,Ω + h2‖f‖20,Ω

} 1
2

.

(3.5)

Proof. Following the same lines of the proof of the second Strang lemma (cf. [5]),
for any vh ∈ Kh(Ω), we have

‖u− uh‖2h = ah(u− uh, u− uh)

= ah(u− uh, u− vh) + ah(u, vh − uh)− ah(uh, vh − uh) (3.6)

≤ ah(u− uh, u− vh) + Eh(u, vh − uh),

where

Eh(u, vh − uh) = ah(u, vh − uh)− L(vh − uh).

By Green’s formula and the Signorini model (2.2)-(2.5),

Eh(u, vh − uh) =
∑
K∈Jh

∫
K

∇u∇(vh − uh)dx−
∫

Ω

f(vh − uh)dx−
∫

Γg

g(vh − uh)ds

=
∑
K∈Jh

∑
F⊂∂K

∫
F

∇u · n(vh − uh)ds−
∫

Γg

g(vh − uh)ds.

(3.7)
Let us introduce the interpolation of zero order Raviart-Thomas element RT (cf.
[20]), which is defined by∫

li

(v−RT (v)) · nds = 0, i = 1, 2, 3, v ∈ H(div,Ω)

on every element K and li, i = 1, 2, 3 are three edges of K. RT (∇u) does make
sense because ∇u ∈ H(div,Ω). Moreover, from the definition of RT (∇u), we know
that RT (∇u) · n is constant and continuous on the edges of element, so

Eh(u, vh − uh)

=
∑
K∈Jh

∑
F⊂∂K

∫
F

(∇u−RT (∇u)) · n(vh − uh)ds

+
∑
F⊂Γg

∫
F

(RT (∇u)−∇u) · n(vh − uh)ds+
∑
F⊂ΓC

∫
F

RT (∇u) · n(vh − uh)ds

= I1 + I2 + I3.

(3.8)
By
∫
F

(∇u−RT (∇u)) · nds = 0 and Green’s formula, we have

I1 =
∑
K∈Jh

∑
F⊂∂K

∫
F

(∇u−RT (∇u)) · n
(
(vh − uh)−MK(vh − uh)

)
ds

=
∑
K∈Jh

∫
K

div(∇u−RT (∇u))
(
(vh − uh)−MK(vh − uh)

)
dx
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+
∑
K∈Jh

∫
K

(∇u−RT (∇u))∇(vh − uh)dx

= I11 + I12.

(3.9)

Since div(RT (∇u)) = MK(4u), so

I11 =
∑
K∈Jh

∫
K

f
(
(vh − uh)−MK(vh − uh)

)
dx ≤ Ch‖f‖0,Ω‖vh − uh‖h. (3.10)

A combination of (3.10) and the error of the interpolation RT gives

I1 ≤ C(h‖f‖0,Ω + hν |u|1+ν,Ω)‖vh − uh‖h. (3.11)

As for I2, noticing that RT (∇u) · n|F = MF ( ∂u∂n ),

I2 =
∑
F⊂Γg

∫
F

(
MF (

∂u

∂n
)− ∂u

∂n

)(
(vh − uh)−MK(vh − uh)

)
ds

≤
∑
F⊂Γg

∥∥∥∥MF (
∂u

∂n
)− ∂u

∂n

∥∥∥∥
0,F

∥∥∥(vh − uh)−MK(vh − uh)
∥∥∥

0,F

≤
∑
F⊂Γg

Chν−
1
2

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

{
h−1‖(vh − uh)−MK(vh − uh)‖20,K + h|vh − uh|21,K

} 1
2

≤
∑
F⊂Γg

Chν
∣∣∣∣ ∂u∂n

∣∣∣∣
ν− 1

2
,F

∣∣∣vh − uh∣∣∣
1,K

≤ Chν‖u‖1+ν,Ω‖vh − uh‖h.
(3.12)

Now we turn to I3, following the same argument of I2, we can obtain

I3 =
∑
F⊂ΓC

∫
F

(RT (∇u)−∇u) · n(vh − uh)ds+
∑
F⊂ΓC

∫
F

∇u · n(vh − uh)ds

≤ Chν‖u‖1+ν,Ω‖vh − uh‖h +
∑
F⊂ΓC

∫
F

∂u

∂n
(vh − uh)ds.

(3.13)

A combination of (3.6)-(3.13) yields

‖u− uh‖2h ≤ C inf
vh∈Kh(Ω)

{‖u− vh‖2h + (h‖f‖0,Ω + hν‖u‖1+ν,Ω)

(‖u− uh‖h + ‖u− vh‖h) +
∑
F⊂ΓC

∫
F

∂u

∂n
(vh − uh)ds}.

(3.14)

Then the Young’s inequality asserts the desired result.
For the sake of the subsequent analysis, set

ΓCh = {F : F ⊂ ∂K ∩ ΓC ,K ∈ Jh} , (3.15)

then we can divide ΓCh into the following three non-overlapping sets:
Γ0
Ch =

{
F ∈ ΓCh : F ⊂ Γ0

C

}
,

Γ1
Ch =

{
F ∈ ΓCh : F ⊂ Γ1

C

}
,

Γ−Ch =
{
F ∈ ΓCh : F ∩ Γ0

C 6= ∅, F ∩ Γ1
C 6= ∅

}
.

(3.16)

Now, we will present the main result of this section.
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Theorem 3.2. Let u ∈ K(Ω), uh ∈ Kh(Ω) be the solution of (3.4) and (3.6)
respectively.
i. Assume that f ∈ L2(Ω), u, φ ∈ H1+ν(Ω) with 1

2 < ν < 1 and that the number
of points in ΓC , where the constraint changes from binding to nonbinding, is finite.
Then, we have the following optimal error estimate,

‖u− uh‖h ≤ Chν(‖u‖1+ν,Ω + ‖φ‖1+ν,Ω + ‖f‖0,Ω). (3.17)

ii. Assume that f ∈ L2(Ω), u, φ ∈ H2(Ω). Then, we have the following optimal
error estimate,

‖u− uh‖h ≤ Ch(‖u‖2,Ω + ‖φ‖2,Ω + ‖f‖0,Ω). (3.18)

Proof. In view of Theorem 3.1, we only need to bound the approximation error and
J , where J =

∑
F⊂ΓC

∫
F
∂u
∂n (vh − uh)ds. Since Πhu ∈ Kh(Ω), we can take vh = Πhu

in (3.5). Then by the classical interpolation result (cf. [9]),

inf
vh∈Kh(Ω)

‖u− vh‖h ≤ ‖u−Πhu‖h ≤ Chν |u|1+ν,Ω,
1

2
< ν ≤ 1. (3.19)

Now, let us concentrate on the bound of J , which is also a hard work. Noticing
that (u− φ) ∂u∂n |ΓC = 0, we have

J =
∑

F∈ΓCh

∫
F

∂u

∂n
(Πhu− uh) ds

=
∑

F∈ΓCh

∫
F

∂u

∂n

(
Πh(u− φ)− (u− φ)

)
ds+

∑
F∈ΓCh

∫
F

∂u

∂n
(Πhφ− uh) ds

= J1 + J2.

(3.20)

By the definition of the interpolation (3.1), J1 can be written as

J1 =
∑

F∈ΓCh

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
Πh(u− φ)− (u− φ)

)
ds.

Observing that∥∥∥Πh(u− φ)− (u− φ)
∥∥∥

0,F

≤ C
{
h−1‖Πh(u− φ)− (u− φ)‖20,K + h|Πh(u− φ)− (u− φ)|21,K

} 1
2

≤ Ch 1
2 +ν
∣∣∣u− φ∣∣∣

1+ν,K
,

(3.21)

together with (see Lemma 7.1 of [3])∥∥∥∥∂u∂n −MF (
∂u

∂n
)

∥∥∥∥
0,F

≤ Chν− 1
2

∣∣∣∣∂u∂n
∣∣∣∣
ν− 1

2 ,F

, (3.22)

yield the estimate

J1 ≤
∑

F∈ΓCh

∥∥∥Πh(u− φ)− (u− φ)
∥∥∥

0,F

∥∥∥∂u
∂n
−MF (

∂u

∂n
)
∥∥∥

0,F

≤ Ch2ν
∣∣∣u− φ∣∣∣

1+ν,Ω

∣∣∣∂u
∂n

∣∣∣
ν− 1

2 ,ΓC
≤ Ch2ν(‖u‖21+ν,Ω + ‖φ‖21+ν,Ω).

(3.23)
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We are in a position to bound J2, it can be written as

J2 =
∑

F∈ΓCh

∫
F

∂u

∂n
(Πhφ− uh) ds

=
∑

F∈ΓCh

∫
F

∂u

∂n
(Πhφ− φ) ds+

∑
F∈ΓCh

∫
F

∂u

∂n
(φ− uh) ds

= J21 + J22.

(3.24)

By the same argument as J1, J21 can be estimated as

J21 =
∑

F∈ΓCh

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
Πhφ− φ

)
ds

≤ Ch2ν(‖u‖21+ν,Ω + ‖φ‖21+ν,Ω).

(3.25)

As for J22, since ∂u
∂n |F = 0, F ∈ Γ1

Ch, it can be decomposed as

J22 =
∑

F∈Γ0
Ch

∫
F

∂u

∂n
(φ− uh) ds+

∑
F∈Γ−Ch

∫
F

∂u

∂n
(φ− uh) ds

= J221 + J222.

(3.26)

Considering (u− φ)|F = 0,∀F ∈ Γ0
Ch and MF (uh) ≥MF (φ), we can derive

J221 =
∑

F∈Γ0
Ch

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
φ− uh

)
ds

+
∑

F∈Γ0
Ch

MF (
∂u

∂n
)

∫
F

(φ− uh) ds

≤
∑

F∈Γ0
Ch

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
u− uh

)
ds

=
∑

F∈Γ0
Ch

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
(u− uh)−MF (u− uh)

)
ds

≤
∑

F∈Γ0
Ch

∥∥∥∥∂u∂n −MF (
∂u

∂n
)

∥∥∥∥
0,F

∥∥∥(u− uh)−MF (u− uh)
∥∥∥

0,F

≤ Chν‖u‖1+ν,Ω‖u− uh‖h.

(3.27)

Now, the last work is to bound the term J222. For a given F ∈ Γ−Ch, if (φ−uh) ≤ 0

on F, since ∂u
∂n |ΓC ≥ 0, then ∫

F

∂u

∂n
(φ− uh)ds ≤ 0.

Therefore, we only consider F ∈ Γ−Ch on which there is a segment satisfies (φ−uh) >
0. On the other hand, for a such F , MF (uh) ≥MF (φ), namely,

∫
F

(φ− uh)ds < 0,
so there exists one point QF ∈ F , such that (φ− uh)(QF ) = 0. Bearing this fact in
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mind and applying Lemma 8.1 of [3], we have

∫
F

∂u

∂n
(φ− uh) ds =

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
φ− uh

)
ds+MF (

∂u

∂n
)

∫
F

(φ− uh) ds

≤
∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
φ− uh

)
ds

≤
∥∥∥∥∂u∂n −MF (

∂u

∂n
)

∥∥∥∥
0,F

∥∥∥φ− uh∥∥∥
0,F

≤ Ch 1
2 +ν

∣∣∣∣∂u∂n
∣∣∣∣
ν− 1

2 ,F

∥∥∥∥d(φ− uh)

ds

∥∥∥∥
0,F

≤ Ch 1
2 +ν

∣∣∣∣∂u∂n
∣∣∣∣
ν− 1

2 ,F

(∥∥∥∥d(φ− u)

ds

∥∥∥∥
0,F

+

∥∥∥∥d(u− uh)

ds

∥∥∥∥
0,F

)
.

(3.28)
Let us have a careful analysis of F ∈ Γ−Ch again. If meas(F

⋂
Γ0
C) = 0, then

(u − φ) > 0 and ∂u
∂n = 0 almost everywhere on F , in this case, the above term

−
∫
F
∂u
∂n (φ − uh) ds = 0. Otherwise, meas(F

⋂
Γ0
C) > 0, noticing that u − φ ∈

H1+ν(Ω) ↪→ C0(Ω), and by the Lebesgue theory, there must be a line segment

F ′ ⊂ F ∈ Γ−Ch such that (u − φ)|F ′ ≡ 0. Thus we have d(u−φ)(s)
ds |F ′ ≡ 0. Set

d(u−φ)(s)
ds = v(s), when 1

2 < ν < 1, we can derive

‖v‖0,F = ‖v −MF ′(v)‖0,F ≤ Chν−
1
2 ‖v‖ν− 1

2 ,F
. (3.29)

Here the constant C depends on F ′ ⊂ F , however, since the number of F ∈ Γ−Ch is
finite for the case 1

2 < ν < 1, we can choose the max of them and denote it by a
generic constant C.

Let us introduce the interpolation of conforming linear finite element Ih, noticing

that
∫
F
d(u−Ihu)

ds ds = 0 and d(Ihu)
ds is a constant function, then a combination of

(3.28) and (3.29) gives

J222 =
∑

F∈Γ−
Ch

∫
F

∂u

∂n
(φ− uh) ds

≤ Ch
1
2

+ν
∑

F∈Γ−
Ch

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

(∥∥∥∥d(u− uh)

ds

∥∥∥∥
0,F

+

∥∥∥∥d(φ− u)

ds

∥∥∥∥
0,F

)

≤ Ch
1
2

+ν
∑

F∈Γ−
Ch

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

(∥∥∥∥d(u− Ihu)

ds

∥∥∥∥
0,F

+

∥∥∥∥d(Ihu− uh)

ds

∥∥∥∥
0,F

+

∥∥∥∥d(φ− u)

ds

∥∥∥∥
0,F

)

≤ Ch2ν
∑

F∈Γ−
Ch

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

∣∣∣∣duds
∣∣∣∣
ν− 1

2
,F

+ Chν
∑

F∈Γ−
Ch

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

∣∣∣Ihu− uh∣∣∣
1,K

+ Ch2ν
∑

F∈Γ−
Ch

∣∣∣∣ ∂u∂n
∣∣∣∣
ν− 1

2
,F

∥∥∥∥d(φ− u)

ds

∥∥∥∥
ν− 1

2
,F

≤ Ch2ν(‖u‖21+ν,Ω + ‖φ‖21+ν,Ω) + Chν‖u‖1+ν,Ω‖u− uh‖h.
(3.30)
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When ν = 1, considering a point PF ∈ F ′ ⊂ F , v(PF ) = 0, then we can derive

‖v‖0,F =

{∫
F

∣∣v2(s)− v2(PF )
∣∣ ds} 1

2

=

{∫
F

∣∣∣∣∫ s

PF

dv2(t)

dt
dt

∣∣∣∣ ds} 1
2

≤ C
{∫

F

{∫ s

PF

|v(t)|
∣∣∣∣dv(t)

dt

∣∣∣∣ dt} ds

} 1
2

≤ C|F | 12
{
‖v‖ 1

2 ,F
‖dv
dt
‖− 1

2 ,F

} 1
2

≤ Ch 1
2 ‖v‖ 1

2 ,F
.

(3.31)

Combining (3.28) and (3.31), we can estimate J222 as

J222 =
∑

F∈Γ−Ch

∫
F

∂u

∂n
(φ− uh) ds

≤ Ch 3
2

∑
F∈Γ−Ch

∣∣∣∣∂u∂n
∣∣∣∣
1
2 ,F

(∥∥∥∥d(u− uh)

ds

∥∥∥∥
0,F

+

∥∥∥∥d(φ− u)

ds

∥∥∥∥
0,F

)

≤ Ch 3
2

∑
F∈Γ−Ch

∣∣∣∣∂u∂n
∣∣∣∣
1
2 ,F

((
h−1|u− uh|21,K + h|u|22,K

) 1
2

+

∥∥∥∥d(φ− u)

ds

∥∥∥∥
1
2 ,F

)

≤ Ch‖u‖2,Ω‖u− uh‖h + Ch2(‖u‖22,Ω + ‖φ‖22,Ω).

(3.32)
Then a combination of (3.5), (3.19), (3.23), (3.25), (3.27), (3.30) and (3.32)

completes the proof.

Remark 3.1. In fact, the results (ii) of Theorem 3.2 can also be extended to the
quadrilateral meanvalue-oriented nonconforming rotated Q1 finite element (cf. [19])
with a minor modification.

4. Another Crouzeix-Raviart element discretization. In this section, we will
discuss an alternative approximation to the numerical model of the contact condi-
tion. A distinct idea is to enforce the nonnegativity of the Lagrange degrees of
freedom of the discrete solution that are located on the contact region ΓC , i.e.,
(uh − φ)(mF ) ≥ 0, where mF is midpoint of F and F ∈ ΓCh. The approximation
of the closed convex cone is defined as

K̃h(Ω) =
{
vh ∈ Vh, (vh − φ)(mF ) ≥ 0, F ∈ ΓCh

}
. (4.1)

The discrete variational inequality is expressed in the same line as the model pre-
sented in previous section and can be described to be:{

Find ũh ∈ K̃h(Ω), such that

ah(ũh, ṽh − ũh) ≥ L(ṽh − ũh), ∀ ṽh ∈ K̃h(Ω),
(4.2)

Using again Stampacchia’s Theorem, we know that the approximation problem
(4.2) is well posed and the discrete solution is continuous with respect to the data
(f, g, φ). Moreover, the abstract error estimate in Theorem 3.1 is still valid. The
convergent properties can be summarized in the following two theorems.

Theorem 4.1. As for the linear contact condition model, that is to say, φ ∈
P1(ΓC), let u ∈ K(Ω) be the solution of the variational Signorini inequality (2.6),

and ũh ∈ K̃h(Ω) be the solution of the discrete problem (4.2).
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i. Assume that f ∈ L2(Ω), u, φ ∈ H1+ν(Ω) with 1
2 < ν < 1 and that the number

of points in ΓC , where the constraint changes from binding to nonbinding, is finite.
Then, we have the following optimal error estimate,

‖u− ũh‖h ≤ Chν(‖u‖1+ν,Ω + ‖φ‖1+ν,Ω + ‖f‖0,Ω). (4.3)

ii. Assume that f ∈ L2(Ω), u, φ ∈ H2(Ω). Then, we have the following optimal
error estimate,

‖u− ũh‖h ≤ Ch(‖u‖2,Ω + ‖φ‖2,Ω + ‖f‖0,Ω). (4.4)

Theorem 4.2. As for the nonlinear contact condition model, let u ∈ K(Ω) be

the solution of the variational Signorini inequality (2.6), and ũh ∈ K̃h(Ω) be the
solution of the discrete problem (4.2).
i. Assume that f ∈ L2(Ω), u, φ ∈ H1+ν(Ω) with 1

2 < ν < 1 and that the number
of points in ΓC , where the constraint changes from binding to nonbinding, is finite.
Then, we have the following optimal error estimate,

‖u− ũh‖h ≤ Chν(‖u‖1+ν,Ω + ‖φ‖1+ν,Ω + ‖f‖0,Ω). (4.5)

(ii) Assume f ∈ L2(Ω), u, φ ∈ H2(Ω) and that the number of points in ΓC , where
the constraints changes from binding to nonbinding, is finite, then we have

‖u− ũh‖h ≤ Ch| log h| 14 (‖u‖2,Ω + ‖φ‖2,Ω + ‖f‖0,Ω). (4.6)

(iii) Assume f ∈ L2(Ω), u, φ ∈ H2(Ω), and u|ΓC ∈ H
2− 1

p (ΓC), p > 2, then we
have

‖u− ũh‖h ≤ Ch(‖u‖2,Ω + ‖φ‖2,Ω + ‖f‖0,Ω + h
1
2−

1
p ‖u‖2− 1

p ,ΓC
). (4.7)

Proof of Theorem 4.1. Since φ ∈ P1(ΓC), then by Trapezoidal formula, we have

MF (vh) ≥MF (φ), ∀F ∈ ΓCh ⇐⇒ vh(mF ) ≥ φ(mF ), ∀F ∈ ΓCh, (4.8)

which implies that K̃h(Ω) = Kh(Ω). So Theorem 4.1 is followed by the results of
Theorem 3.2.

Regarding the nonlinear contact condition case, Πhu does not belong to Kh(Ω)

any more. Thus we need another interpolation Π̃h, which is defined to be

Π̃h|K = Π̃K , ∀K ∈ Jh, (4.9)

and for any v ∈ H2(K),

Π̃Kv(mF ) = v(mF ), mF is midpoint of F , ∀F ⊂ ∂K. (4.10)

Since Π̃hu ∈ K̃h(Ω), we can take Π̃hu in (3.5). Then by the known interpolation
result, we have

inf
vh∈K̃h(Ω)

‖u− vh‖h ≤ ‖u− Π̃hu‖h ≤ Chν |u|1+ν,Ω. (4.11)

Therefore, in order to prove Theorem 4.2, we only need to estimate J̃ =∑
F∈ΓCh

∫
F
∂u
∂n (Π̃hu− ũh) ds.

Lemma 4.3. Let u ∈ K(Ω) be the solution of the variational Signorini inequality

(2.6), and ũh ∈ K̃h(Ω) be the solution of the discrete problem (4.2). Assume f ∈
L2(Ω), u, φ ∈ H1+ν(Ω) with 1

2 < ν < 1 and that the number of points in ΓC , where
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the constraint changes from binding to nonbinding, is finite. Then, we have the
following optimal error estimate,

J̃ =
∑

F∈ΓCh

∫
F

∂u

∂n
(Π̃hu− ũh) ds ≤ Chν‖u‖1+ν,Ω‖u− ũh‖h + Ch2ν(‖u‖21+ν,Ω + ‖φ‖21+ν,Ω).

(4.12)

Proof. Follows (3.20), we have

J̃ =
∑

F∈ΓCh

∫
F

∂u

∂n

(
Π̃h(u−φ)− (u−φ)

)
ds+

∑
F∈ΓCh

∫
F

∂u

∂n
(Π̃hφ− ũh) ds = J̃1 + J̃2.

(4.13)

Noticing that ∂u
∂n |Γ+

C
= 0, J̃1 can be presented as

J̃1 =
∑

F∈Γ0
Ch

∫
F

∂u

∂n

(
Π̃h(u− φ)− (u− φ)

)
ds

+
∑

F∈Γ−Ch

∫
F

∂u

∂n

(
Π̃h(u− φ)− (u− φ)

)
ds

= J̃11 + J̃12.

(4.14)

Since (u− φ)|F = 0,∀F ∈ Γ0
Ch, then

J̃11 =
∑

F∈Γ0
Ch

∫
F

∂u

∂n

(
Π̃h(u− φ)

)
ds

=
∑

F∈Γ0
Ch

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
Π̃h(u− φ)

)
ds

+
∑

F∈Γ0
Ch

MF (
∂u

∂n
)

∫
F

Π̃h(u− φ) ds

=
∑

F∈Γ0
Ch

∫
F

(
∂u

∂n
−MF (

∂u

∂n
)

)(
Π̃h(u− φ)− (u− φ)

)
ds

≤
∑

F∈Γ0
Ch

∥∥∥∥∂u∂n −MF (
∂u

∂n
)

∥∥∥∥
0,F

∥∥∥Π̃h(u− φ)− (u− φ)
∥∥∥

0,F

≤ Ch2ν‖u‖1+ν,Ω‖u− φ‖1+ν,Ω.

(4.15)

As for J̃12, we use the arguments developed in ([1], Lemma 2.4). Setting p = 1
ν

and p′ = 1
1−ν , noticing that ∂u

∂n ∈ Hν− 1
2 (ΓC),u ∈ Hν+ 1

2 (ΓC) and the Sobolev
embedding theorem

Hν− 1
2 (ΓC) ⊂ Lp

′
(ΓC), Hν+ 1

2 (ΓC) ⊂ Lp(ΓC),

we have ∂u
∂n ∈ L

p′(ΓC) and u ∈ Lp(ΓC). Then Hölder inequality gives

J̃12 =
∑

F∈Γ−Ch

∫
F

∂u

∂n

(
Π̃h(u− φ)(u− φ)

)
ds

≤
∑

F∈Γ−Ch

∥∥∥∥∂u∂n
∥∥∥∥
Lp′ (F )

∥∥∥Π̃h(u− φ)− (u− φ)
∥∥∥
Lp(F )
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≤
∑

F∈Γ−Ch

∥∥∥∥∂u∂n
∥∥∥∥
Lp′ (F )

|F |
1
p

∥∥∥Π̃h(u− φ)− (u− φ)
∥∥∥
L∞(F )

. (4.16)

Resorting to the Gagliardo-Nirenberg inequality yields

‖Π̃h(u− φ)− (u− φ)‖L∞(F )

≤ ‖Π̃h(u− φ)− (u− φ)‖
1
2

L2(F )‖Π̃h(u− φ)− (u− φ)‖
1
2

1,F

≤ C|F |ν |u− φ|ν+ 1
2 ,F

.

(4.17)

Going back to (4.16), and recalling that the number of F ∈ Γ−Ch is bounded uni-
formly in h, we have

J̃12 ≤ C
∥∥∥∥∂u∂n

∥∥∥∥
Lp′ (F )

∑
F∈Γ−Ch

|F |2ν |u−φ|ν+ 1
2 ,F
≤ Ch2ν‖u‖1+ν,Ω‖u−φ‖1+ν,Ω. (4.18)

Following the same lines of the estimate of J2 in section 3, one can prove

J̃2 ≤ Chν‖u‖1+ν,Ω‖u− ũh‖h + Ch2ν(‖u‖21+ν,Ω + ‖φ‖21+ν,Ω). (4.19)

Then we complete the proof.

Lemma 4.4. Let u ∈ K(Ω) be the solution of the variational Signorini inequality

(2.6), and ũh ∈ K̃h(Ω) be the solution of the discrete problem (4.2). Assume f ∈
L2(Ω), u, φ ∈ H2(Ω) and that the number of points in ΓC , where the constraints
changes from binding to nonbinding, is finite, then we have

J̃ =
∑

F∈ΓCh

∫
F

∂u

∂n
(Π̃hu− ũh) ds ≤ Ch‖u‖2,Ω‖u− ũh‖h + Ch2(‖u‖22,Ω + ‖φ‖22,Ω).

(4.20)

Proof. Proceeding as the same lines of Lemma 4.3, the bounds of J̃11 and J̃2 are also

valid for the case ν = 1, but we need to reestimate J̃12. We adopt the techniques
developed in [1] (see Lemma 5.1),

J̃12 =
∑

F∈Γ−Ch

∫
F

∂u

∂n

(
Π̃h(u− φ)− (u− φ)

)
ds

≤
∑

F∈Γ−Ch

∥∥∥∥∂u∂n
∥∥∥∥

0,p′,F

∥∥∥Π̃h(u− φ)− (u− φ)
∥∥∥

0,p,F

≤ Ch1+ 1
p

∥∥∥∥∂u∂n
∥∥∥∥

0,p′,F

∑
F∈Γ−Ch

∣∣∣u− φ∣∣∣
2,K

≤ Ch1+ 1
p

∥∥∥∥∂u∂n
∥∥∥∥

0,p′,ΓC

∣∣∣u− φ∣∣∣
2,Ω

≤ C
√
p′h1+ 1

p

∥∥∥∥∂u∂n
∥∥∥∥

1
2 ,ΓC

∣∣∣u− φ∣∣∣
2,Ω
,

(4.21)

where 1
p + 1

p′ = 1, then we set p′ = | log h|, and obtain

J̃12 ≤ Ch2| log h| 12 ‖u‖2,Ω‖u− φ‖2,Ω. (4.22)

The proof of the lemma is completed.
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Lemma 4.5. Let u ∈ K(Ω) be the solution of the variational Signorini inequality

(2.6), and ũh ∈ K̃h(Ω) be the solution of the discrete problem (4.2). Assume u, φ ∈
H2(Ω), and u|ΓC ∈ H

2− 1
p (ΓC), p > 2, then we have

Ĩ3 ≤ Ch2(‖u‖22,Ω + ‖φ‖22,Ω + h1− 2
p ‖u‖22− 1

p ,ΓC
). (4.23)

Proof. We also only need to re-estimate J̃12. Observing that ∂u
∂n ∈W

1− 1
p ,2(ΓC) ↪→

C0(ΓC), then it is easy to know that ∀F ∈ ΓCh,
∂u
∂n vanishes at least once in F .

Then by Lemma 8.1 of [3], we have

J̃12 ≤
∑

F∈Γ−Ch

∥∥∥∥∂u∂n
∥∥∥∥

0,F

∥∥∥Π̃h(u− φ)− (u− φ)
∥∥∥

0,F

≤
∑

F∈Γ−Ch

Ch1− 1
p

∥∥∥∥∂u∂n
∥∥∥∥

1− 1
p ,F

Ch
3
2

∣∣∣u− φ∣∣∣
2,K

≤ Ch
5
2−

1
p

∥∥∥∥∂u∂n
∥∥∥∥

1− 1
p ,ΓC

∣∣∣u− φ∣∣∣
2,Ω
,

(4.24)

which implies the desired result.

Proof of Theorem 4.2. We put together Theorem 3.1 and Lemma 4.3, Lemma 4.4
and Lemma 4.5 to obtain point (i), (ii) and (iii) respectively.

Remark 4.1. Point (iii) in Theorem 4.2 is also valid for the linear conforming
finite element approximations considered in [1] and [2]. The optimal convergence
rate can be recovered without “Assumption A3” here, but with a slightly higher
regular condition of the exact solution on ΓC . In fact, from [18], we know that the
best u is expect to be of Hσ with σ < 5

2 in the vicinity of ΓC .

Remark 4.2. If u|ΓC ∈ W 1,∞(ΓC), the optimal convergence rate can also be
recovered with the additional “Assumption A3”. This result is the same as that of
linear conforming finite element approximation, which has been proved by Brezzi,
Hager and Raviart in [7].

Remark 4.3. The results for the case u ∈ H2(Ω) presented in this section can
also be extended to the quadrilateral midpoint-oriented nonconforming rotated Q1

finite element (cf. [19]) with a slightly modification.

5. Numerical test. In order to investigate the numerical behavior of the P1 non-
conforming finite element approximation to the Signorini problem, we consider the
following equation: 

−4u = 2π sin(2πx), in Ω,
u = 0, on Γu,
∂u
∂n = 0, on Γg,
u ≥ 0, ∂u

∂n ≥ 0, u ∂u∂n = 0, on ΓC

where Ω = [0, 1]× [0, 1], Γu = [0, 1]×{1} is the Dirichlet boundary, ΓC = [0, 1]×{0}
is the contact boundary and ∂Ω \ {Γu ∪ ΓC} is the Neumman boundary.

Since such a problem does not admit an analytic solution, in order to obtain
the convergence order, we must compute a reference solution corresponding to a
mesh which is refinement as possible as we can. In this example, we take the
discrete solutions of the quadratic triangular finite element with the structured
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meshes for mesh size h = 1
256 and h = 1

512 as the reference solutions (denote by u256

and u512 respectively). Then we compute uCh (resp. uNCh) by conforming (resp.
nonconforming) linear finite element methods using structured meshes for mesh
sizes h = { 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}, and we compare them with the reference solutions.

The detailed numerical results are listed in Table 5.1 and 5.2. Here a.c.e. denotes
the average convergence rate.

Table 5.1: L2-error and norm error based on u256

h ‖uCh − u256‖0,Ω ‖uNCh − u256‖0,Ω ‖uCh − u256‖h ‖uNCh − u256‖h
1/2 0.10075711 0.14182168 0.69049684 0.72541038
1/4 0.02822791 0.02318335 0.34569687 0.31868546
1/8 0.00858496 0.00637438 0.18155419 0.16303402
1/16 0.00199993 0.00163425 0.09269470 0.08283960
1/32 0.00053486 0.00042439 0.04658388 0.04170061
1/64 0.00014356 0.00009835 0.02335961 0.02090943
a.c.r. 1.89100246 2.09877300 0.97710934 1.02331438

Table 5.2: L2-error and norm error based on u512

h ‖uCh − u512‖0,Ω ‖uNCh − u512‖0,Ω ‖uCh − u512‖h ‖uNCh − u512‖h
1/2 0.10075495 0.14182150 0.69048776 0.72540780
1/4 0.02822581 0.02318398 0.34568311 0.31868764
1/8 0.00858278 0.00637450 0.18152995 0.16304308
1/16 0.00199802 0.00163432 0.09264809 0.08286176
1/32 0.00053274 0.00042440 0.04649183 0.04174806
1/64 0.00014134 0.00009866 0.02317579 0.02100774
a.c.r. 1.89549294 2.09786472 0.97938509 1.02195988

6. Conclusion. This paper deals with the convergence properties of the noncon-
forming Crouzeix-Raviart finite element approximations to the Signorini problem.
It is remarkable that the optimal convergence rate O(h) can be obtained by the
meanvalue-oriented discretized method for any φ ∈ H2(Ω) without the additional
assumption that the number of points in ΓC , where the constraints changes from
binding to nonbinding, is finite. Let us mention that the optimal convergence rate is
obtained without any additional assumptions. We note that though the conforming
linear finite element method exhibits better numerical results than the noncon-
forming one for many practical problems (second order elliptic problems etc.), but
this may not be true for the Signorini problem in incompressible elasticity. Then
an important and attractive direction is to develop a locking-free nonconforming
Crouzeix-Raviart finite element method for the Signorini problem in incompressible
elasticity, which is a future work of us.
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