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Abstract. This paper deals with the limiting dynamical behavior of non-
autonomous stochastic reaction-diffusion equations on thin domains. Firstly,

we prove the existence and uniqueness of the regular random attractor. Then

we prove the upper semicontinuity of the regular random attractors for the
equations on a family of (n + 1)-dimensional thin domains collapses onto an

n-dimensional domain.

1. Introduction. Let Q ⊂ Rn be a bounded C2-domain and Oε ⊂ Rn+1 be the
domain

Oε = {x = (x∗, xn+1) |x∗ = (x1, . . . , xn) ∈ Q and 0 < xn+1 < εg (x∗)} ,

where g ∈ C2(Q, (0,+∞)) and 0 < ε ≤ 1. Since g ∈ C2(Q, (0,+∞)), there exist
two positive constants γ1 and γ2 such that

γ1 ≤ g (x∗) ≤ γ2, ∀x∗ ∈ Q. (1)

Denote O = Q× (0, 1) and Õ = Q× (0, γ2) which contains Oε for 0 < ε ≤ 1. Given
τ ∈ R, we will study the limit of asymptotical behavior of the following stochastic
reaction-diffusions equation with multiplicative noise defined on the thin domain
Oε as ε tends to 0: dûε −∆ûεdt = (H(t, x, ûε(t)) +G (t, x)) dt+

m∑
j=1

cj û
ε ◦ dwj , x ∈ Oε, t > τ,

∂ûε

∂νε
= 0, x ∈ ∂Oε,

(2)
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with the initial condition

ûε(τ, x) = φ̂ε(x), x ∈ Oε, (3)

where νε is the unit outward normal vector to ∂Oε, H is a superlinear source term,

G is a function defined on R × Õ, cj ∈ R for j = 1, 2, . . . ,m, wj , j = 1, 2, . . . ,m,
are independent two-sided real-valued Wiener processes on a probability space, and
the symbol ◦ indicates that the equation is understood in the sense of Stratonovich
integration.

As ε → 0, we will show in certain sense that the limiting behavior of (2) is
governed by the following equation:

du0 − 1
g

n∑
i=1

(
gu0

yi

)
yi
dt =

(
H(t, (y∗, 0), u0(t)) +G (t, (y∗, 0))

)
dt

+
m∑
j=1

cju
0 ◦ dwj , y∗ = (y1, . . . , yn) ∈ Q, t > τ,

∂u0

∂ν0
= 0, y∗ ∈ ∂Q,

(4)
with the initial condition

u0(τ, y∗) = φ0(y∗), y∗ ∈ Q, (5)

where ν0 is the unit outward normal to ∂Q.
Random attractors have been investigated in [2, 5, 10, 19, 9] in the autonomous

stochastic case, and in [3, 21, 22, 23] in the non-autonomous stochastic case. Re-
cently, the limiting dynamical behavior of stochastic partial differential equations
on thin domain was studied in [16, 20, 13, 14, 11, 12, 17, 4]. However, in [17, 13], we
only investigated the limiting behavior of random attractors in L2(O) of stochastic
evolution equations on thin domain. In this paper, we will prove the existence and
uniqueness of bi-spatial pullback attractor for the systems defined on fixed domain
O converted from (2)-(3) when the initial space is L2 (O) and the terminate space
is H1 (O) and establish upper semicontinuity result for the corresponding family of
random attractors in H1 (O) as ε approaches 0.

Let X be a Banach space. The norm of X is written as ‖ · ‖X . Let M = L2 (Q)
and N = L2 (O). We denote by (·, ·)Y the inner product in a Hilbert space Y . The
letter c and ci, i ∈ N, are generic positive constants which may change its values
from line to line.

We organize the paper as follows. In the next section, we establish the existence
of a continuous cocycle in N for the stochastic equation defined on the fixed domain
O converted from (2)-(3). We also describe the existence of a continuous cocycle
in M for the stochastic equation (4)-(5). Section 3 contains all necessary uniform
estimates of the solutions. We then prove the existence and uniqueness of regular
random attractors for the stochastic equations in section 4, and analyze convergence
properties of the solutions as well as the random attractors in H1(O) in section 5.

2. Cocycles associated with non-autonomous stochastic equations. Here
we show that there is a continuous cocycle generated by the reaction-diffusion equa-
tion defined on Oε with multiplicative noise and deterministic non-autonomous
forcing:
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dûε −∆ûεdt = (H(t, x, ûε(t)) +G (t, x)) dt+

m∑
j=1

cj û
ε ◦ dwj ,

x = (x∗, xn+1) ∈ Oε, t > τ,
∂ûε

∂νε
= 0, x ∈ ∂Oε,

(6)

with the initial condition

ûετ (x) = φ̂ε(x), x ∈ Oε, (7)

where νε is the unit outward normal to ∂Oε, G : R × Õ → R belongs to L2
loc(R,

L∞(Õ)), cj ∈ R, wj (j = 1, 2, . . . ,m) are independent two-sided real-valued Wiener
processes on a probability space which will be specified later, and H is a nonlinear

function satisfying the following conditions: for all x ∈ Õ and t, s ∈ R,

H (t, x, s) s ≤ −λ1 |s|p + ϕ1(t, x), (8)

|H (t, x, s)| ≤ λ2 |s|p−1
+ ϕ2(t, x), (9)

∂H (t, x, s)

∂s
≤ λ3, (10)∣∣∣∣∂H (t, x, s)

∂x

∣∣∣∣ ≤ ψ3 (t, x) , (11)

where p > 2, λ1 λ2 and λ3 are positive constants, ϕ1 ∈ L∞loc(R, L∞(Õ)) and ϕ2, ψ3 ∈
L2
loc(R, L∞(Õ)).
Throughout this paper, we fix a positive number λ ∈ (0, λ1) and write

h(t, x, s) = H(t, x, s) + λs (12)

for all x ∈ Õ and t, s ∈ R. Then it follows from (8)-(11) that there exist positive
numbers α1, α2, β, b1 and b2 such that

h (t, x, s) s ≤ −α1 |s|p + ψ1(t, x), (13)

|h (t, x, s)| ≤ α2 |s|p−1
+ ψ2(t, x), (14)

∂h (t, x, s)

∂s
≤ β, (15)∣∣∣∣∂h (t, x, s)

∂x

∣∣∣∣ ≤ ψ3 (t, x) , (16)

where ψ1(t, x) = ϕ1(t, x) + b1 and ψ2(t, x) = ϕ2(t, x) + b2 for x ∈ Õ and t, s ∈ R.
Substituting (12) into (6) we get for t > τ ,

dûε − (∆ûε − λûε) dt = (h(t, x, ûε(t)) +G (t, x)) dt+
m∑
j=1

cj û
ε ◦ dwj ,

x = (x∗, xn+1) ∈ Oε,
∂ûε

∂νε
= 0, x ∈ ∂Oε,

(17)

with the initial condition

ûετ (x) = φ̂ε(x), x ∈ Oε. (18)

We now transfer problem (17)-(18) into an initial boundary value problem on
the fixed domain O. To that end, we introduce a transformation Tε : Oε → O
by Tε(x

∗, xn+1) =
(
x∗, xn+1

εg(x∗)

)
for x = (x∗, xn+1) ∈ Oε. Let y = (y∗, yn+1) =

Tε(x
∗, xn+1). Then we have

x∗ = y∗, xn+1 = εg (y∗) yn+1.
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It follows from [18] that the Laplace operator in the original variable x ∈ Oε and
in the new variable y ∈ O are related by

∆xû(x) = |J |divy(|J |−1JJ∗∇yu(y)) =
1

g
divy(Pεu(y)),

where we denote by u(y) = û(x) and Pε is the operator given by

Pεu(y) =


guy1 − gy1yn+1uyn+1

...
guyn − gynyn+1uyn+1

−
n∑
i=1

yn+1gyiuyi + 1
ε2g (1 +

n∑
i=1

(εyn+1gyi)
2)uyn+1

 .

In the sequel, we abuse the notation a little bit by writing h(t, x, s) and G(t, x)
as h(t, x∗, xn+1, s) and G(t, x∗, xn+1) for x = (x∗, xn+1), respectively. With this
agreement, for any function F (t, y, s), we introduce

Fε (t, y∗, yn+1, s) = F (t, y∗, εg (y∗) yn+1, s) , F0 (t, y∗, s) = F (t, y∗, 0, s) ,

where y = (y∗, yn+1) ∈ O and t, s ∈ R, Then problem (17)-(18) is equivalent to the
following system for t > τ ,

duε − ( 1
gdivy(Pεu

ε)− λuε)dt = (hε (t, y, uε(t)) +Gε (t, y)) dt

+
m∑
j=1

cju
ε ◦ dwj , y = (y∗, yn+1) ∈ O,

Pεu
ε · ν = 0, y ∈ ∂O,

(19)

with the initial condition

uετ (y) = φε(y) = φ̂ε ◦ T−1
ε (y), y ∈ O, (20)

where ν is the unit outward normal to ∂O.
Given t ∈ R, define a translation θ1,t on R by

θ1,t (τ) = τ + t, for all τ ∈ R. (21)

Then {θ1,t}t∈R is a group acting on R. We now specify the probability space.
Denote by

Ω = {ω ∈ C (R,R) : ω (0) = 0} .
Let F is the Borel σ-algebra induced by the compact-open topology of Ω, and P
the corresponding Wiener measure on (Ω,F). There is a classical group {θt}t∈R
acting on (Ω,F , P ), which is defined by

θtω (·) = ω (·+ t)− ω (t) , ω ∈ Ω, t ∈ R. (22)

Then (Ω,F , P, {θt}t∈R) is a metric dynamical system (see [1]). On the other hand,
let us consider the one-dimensional stochastic differential equation

dz + αzdt = dw (t) , (23)

for α > 0. This equation has a random fixed point in the sense of random dynam-
ical systems generating a stationary solution known as the stationary Ornstein-
Uhlenbeck process (see [6] for more details). In fact, we have

Lemma 2.1. There exists a {θt}t∈R-invariant subset Ω
′ ∈ F of full measure such

that

lim
t→±∞

|ω (t)|
t

= 0 for all ω ∈ Ω
′
,
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and, for such ω, the random variable given by

z∗ (ω) = −α
∫ 0

−∞
eαsω (s) ds

is well defined. Moreover, for ω ∈ Ω
′
, the mapping

(t, ω)→ z∗ (θtω) = −α
∫ 0

−∞
eαsθtω (s) ds = −α

∫ 0

−∞
eαsω (t+ s) ds+ ω (t)

is a stationary solution of (23) with continuous trajectories. In addition, for ω ∈ Ω
′

lim
t→±∞

|z∗ (θtω)|
t

= 0, lim
t→±∞

1

t

∫ t

0

z∗ (θsω) ds = 0, (24)

lim
t→±∞

1

t

∫ t

0

|z∗ (θsω)| ds = E |z∗| <∞. (25)

Denote by z∗j the associated Ornstein-Uhlenbeck process corresponding to (23)
with α = 1 and w replaced by wj for j = 1, . . . ,m. Then for any j = 1, . . . ,m,
we have a stationary Ornstein-Uhlenbeck process generated by a random variable
z∗j (ω) on Ω

′

j with properties formulated in Lemma 2.1 defined on a metric dynamical

system (Ω
′

j ,Fj , Pj , {θt}t∈R). We set

Ω̃ = Ω
′

1 × · · · × Ω
′

m and F =
m
⊗
j=1
Fj ,

Then (Ω̃,F , P, {θt}t∈R) is a metric dynamical system.
Denote by

SCj (t)u = ecjtu, foru ∈ L2 (O) ,

and

T (ω) := SC1 (z∗1 (ω)) ◦ · · · ◦ SCm (z∗m (ω)) = e

m∑
j=1

cjz
∗
j (ω)

IdL2(O), ω ∈ Ω
′
.

Then for every ω ∈ Ω
′
, T (ω) is a homeomorphism on L2 (O), and its inverse

operator is given by

T −1 (ω) := SCm (−z∗m (ω)) ◦ · · · ◦ SC1 (−z∗1 (ω)) = e
−

m∑
j=1

cjz
∗
j (ω)

IdL2(O).

It follows that ‖T −1(θtω)‖ has sub-exponential growth as t → ±∞ for any ω ∈
Ω̃. Hence ‖T −1‖ is tempered. Analogously, ‖T ‖ is also tempered. Obviously,

sup
s∈[s0−a,s0+a]

‖T (θsω)‖ is still tempered for every s0 ∈ R and a ∈ R+.

On the other hand, since z∗j , j = 1, . . . ,m, are independent Gaussian random

variables, by the ergodic theorem we still have a {θt}t∈R-invariant set Ω̂ ∈ F of full
measure such that

lim
t→±∞

1

t

∫ t

0

‖T (θτω)‖2 dτ = E ‖T ‖2 =

m∏
j=1

E(e2cjz
∗
j ) <∞,

and

lim
t→±∞

1

t

∫ t

0

∥∥T −1 (θτω)
∥∥2
dτ = E

∥∥T −1
∥∥2

=

m∏
j=1

E(e−2cjz
∗
j ) <∞.
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Remark 1. We now consider θ defined in (22) on Ω̃∩Ω̂ instead of Ω. This mapping
possesses the same properties as the original one if we choose F as the trace σ-
algebra with respect to Ω̃ ∩ Ω̂. The corresponding metric dynamical system is still
denoted by (Ω,F , P, {θt}t∈R) throughout this paper.

Next, we define a continuous cocycle for system (19)-(20) in N . This can be
achieved by transferring the stochastic system into a deterministic one with random
parameters in a standard manner. Let uε be a solution to (19)-(20) and denote by

vε(t) = T −1 (θtω)uε(t) and δ (ω) =
m∑
j=1

cjz
∗
j (ω). Then vε satisfies


dvε

dt −
1
gdivy(Pεv

ε) = (−λ+ δ(θtω))vε + T −1 (θtω)hε (t, y, T (θtω) vε(t))

+T −1 (θtω)Gε (t, y) , y ∈ O, t > τ,
Pεv

ε · ν = 0, y ∈ ∂O,
(26)

with the initial conditions

vετ (y) = ψε (y) , y ∈ O, (27)

where ψε = (T −1(θτω))φε.
Since (26) is a deterministic equation, by the Galerkin method, one can show

that if H satisfies (8)-(11), then for every ω ∈ Ω, τ ∈ R and ψε ∈ N , (26)-(27) has
a unique solution vε (t, τ, ω, ψε) ∈ C

(
[τ, τ + T ) , L2(O)

)
∩L2

(
(τ, τ + T ) , H1(O)

)
∩

C
(
[τ + ε, τ + T ), H1(O)

)
with vτ (·, τ, ω, ψε) = ψε for every T > 0 and 0 < ε < T .

Furthermore, one may show that vε(t, τ, ω, ψε) is (F ,B(N ))-measurable in ω ∈ Ω
and continuous with respect to ψε in N for all t ≥ τ . Since uε (t, τ, ω, φε) =
T (θtω) vε (t, τ, ω, ψε) with φε = (T (θτω))ψε, we find that uε(t) is continuous in
both t ≥ τ and φε ∈ N and is (F ,B(N ))-measurable in ω ∈ Ω. In addition,
it follows from (26) that uε is a solution of problem (19)-(20). We now define
Φε : R+ × R× Ω×N → N by

Φε (t, τ, ω, φε) = uε (t+ τ , τ, θ−τω, φ
ε) = T (θt+τω) vε (t+ τ , τ, θ−τω, ψ

ε) ,

for all (t, τ, ω, φε) ∈ R+ × R× Ω×N . (28)

By the properties of uε, we find that Φε is a continuous cocycle on N over (R,
{θ1,t}t∈R) and (Ω,F , P, {θt}t∈R), where {θ1,t}t∈R and {θt}t∈R are given by (21) and
(22), respectively. In this paper, we will first prove the asymptotic compactness of
solutions in H1(O) and then establish the existence and upper semicontinuity in
H1(O) of (N , H1(O))-random attractors.

Let Rε : L2(Oε)→ L2(O) be an affine mapping of the form

(Rεφ̂ε)(y) = φ̂ε(T
−1
ε y), ∀ φ̂ε ∈ L2(Oε).

Given t ∈ R+, τ ∈ R, ω ∈ Ω and φ̂ε ∈ L2(Oε), we can define a continuous cocycle

Φ̂ε for problem (6)-(7) by the formula

Φ̂ε(t, τ, ω, φ̂ε) = R−1
ε Φε(t, τ, ω,Rεφ̂ε).
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The same change of unknown variable v0(t) = T −1 (θtω)u0(t) transforms equa-
tion (4) into the following random partial differential equation on Q:

dv0

dt −
n∑
i=1

1
g

(
gv0
yi

)
yi

= (−λ+ δ(θtω))v0 + T −1 (θtω)h0

(
t, y∗, T (θtω) v0(t)

)
+T −1 (θtω)G0 (t, y∗) , y∗ ∈ Q, t > τ,

∂v0

∂ν0
= 0, y∗ ∈ ∂Q,

(29)
with the initial conditions

v0
τ (y∗) = ψ0 (y∗) , y∗ ∈ Q, (30)

where ψ0 = (T̃ −1(θτω))φ0.
The same argument as above allows us to prove that problem (4) and (5) gener-

ates a continuous cocycle Φ0(t, τ, ω, φ0) in the space M.
Now we want to write equation (26)-(27) as an abstract evolutionary equation.

We introduce the inner product (·, ·)Hg(O) on N defined by

(u, v)Hg(O) =

∫
O
guvdy, for all u, v ∈ N

and denote by Hg(O) the space equipped with this inner product. Since g is a

continuous function on Q and satisfies (1), one easily shows that Hg(O) is a Hilbert
space with norm equivalent to the natural norm of N .

For 0 < ε ≤ 1, we introduce a bilinear form aε (·, ·): H1 (O)×H1 (O)→ R, given
by

aε (u, v) = (J∗∇yu, J∗∇yv)Hg(O) , (31)

where

J∗∇yu = (uy1 −
gy1
g
yn+1uyn+1

, . . . , uyn −
gyn
g
yn+1uyn+1

,
1

εg
uyn+1

).

By introducing on H1(O) the equivalent norm, for every 0 < ε ≤ 1,

‖u‖H1
ε (O) = (

∫
O

(|∇y∗u|2 + |u|2 +
1

ε2
u2
yn+1

)dy)
1
2 , (32)

we see that there exist positive constants ε0, η1 and η2 such that for all 0 < ε ≤ ε0

and u ∈ H1(O),

η1

∫
O

(|∇y∗u|2 +
1

ε2
u2
yn+1

)dy ≤ aε(u, u) ≤ η2

∫
O

(∇y∗u|2 +
1

ε2
u2
yn+1

)dy (33)

and

η1 ‖u‖2H1
ε (O) ≤ aε (u, u) + ‖u‖2L2(O) ≤ η2 ‖u‖2H1

ε (O) . (34)

Denote by Aε an unbounded operator on Hg(O) with domain

D (Aε) =
{
v ∈ H2 (O) , Pεv · ν = 0 on ∂O

}
as defined by

Aεv = −1

g
divPεv, v ∈ D (Aε) .

Then we have

aε (u, v) = (Aεu, v)Hg(O) ,∀u ∈ D (Aε) ,∀v ∈ H1(O). (35)
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Using Aε, (26)-(27) can be written as
dvε

dt +Aεv
ε = (−λ+ δ(θtω))vε + T −1 (θtω)hε (t, y, T (θtω) vε(t))

+T −1 (θtω)Gε (t, y) , y ∈ O, t > τ,
vετ = ψε.

(36)

To reformulate system (29)-(30), we introduce the inner product (·, ·)Hg(Q) on

M defined by

(u, v)Hg(Q) =

∫
Q
guvdy∗, for all u, v ∈M,

and denote by Hg(Q) the space equipped with this inner product. Let a0 (·, ·):
H1 (Q)×H1 (Q)→ R be a bilinear form given by

a0 (u, v) =

∫
Q
g5y∗u · 5y∗vdy∗.

Denote by A0 an unbounded operator on Hg(Q) with domain

D (A0) =

{
v ∈ H2 (Q) ,

∂v

∂ν0
= 0 on ∂Q

}
as defined by

A0v = −1

g

n∑
i=1

(gvyi)yi v ∈ D (A0) .

Then we have

a0 (u, v) = (A0u, v)Hg(Q) , ∀u ∈ D (A0) ,∀v ∈ H1(Q).

Using A0, (29)-(30) can be written as
dv0

dt +A0v
0 = (−λ+ δ(θtω))v0 + T −1 (θtω)h0

(
t, y∗, T (θtω) v0(t)

)
+T −1 (θtω)G0 (t, y∗) , y∗ ∈ Q, t > τ,

v0
τ (s) = ψ0(s), s ∈ [−ρ, 0].

(37)

Hereafter, we set X0 =M, Xε = L2(Oε) and X1 = N . For every i = ε, 0 or 1, a
family Bi = {Bi (τ, ω) : τ ∈ R, ω ∈ Ω} of nonempty subsets of Xi is called tempered
if for every c > 0, we have:

lim
t→−∞

ect‖Bi(τ + t, θtω)‖Xi = 0,

where ‖Bi‖Xi = supx∈Bi ‖x‖Xi . The collection of all families of tempered nonempty
subsets of Xi is denoted by Di, i.e.,

Di = {Bi = {Bi (τ, ω) : τ ∈ R, ω ∈ Ω} : Bi is tempered in Xi} .

Our main purpose of the paper is to prove that the cocycle Φ̂ε and Φ0 possess a
unique (L2(Oε), H1(Oε))-random attractor Âε and (M,J )-random attractor A0,

respectively. Furthermore Âε is upper-semicontinuous at ε = 0, that is, for every
τ ∈ R and ω ∈ Ω,

lim
ε→0

sup
uε∈Âε

inf
u0∈A0

ε−1 ‖uε − u0‖2H1(Oε) = 0. (38)

To prove (38), we only need to show that the cocycle Φε has a unique (N ,H)-
random attractor Aε and it is upper-semicontinuous at ε = 0 in the sense that for
every τ ∈ R and ω ∈ Ω,

lim
ε→0

distH (Aε (τ, ω) ,A0 (τ, ω)) = 0,
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which will be established in the last section of the paper.
Furthermore, we suppose that there exists λ0 > 0 such that

γ
∆
= λ0 − 2E(|δ(ω)|) > 0. (39)

Let us consider the mapping

γ(ω) = λ0 − 2|δ(ω)|. (40)

By the ergodic theory and (39) we have

lim
t→±∞

1

t

∫ t

0

γ (θlω)dl = Eγ = γ > 0. (41)

The following condition will be needed when deriving uniform estimates of solu-
tions:∫ τ

−∞
e

1
2γs(‖G (s, ·)‖2L∞(Õ) + ‖ϕ1 (s, ·)‖2L∞(Õ) + ‖ψ3 (s, ·)‖2L∞(Õ))ds <∞, ∀τ ∈ R.

(42)
When constructing tempered pullback attractors, we will assume

lim
r→−∞

eσr
∫ 0

−∞
e

1
2γs
(
‖G (s+ r, ·)‖2L∞(Õ)

+ ‖ϕ1 (s+ r, ·)‖2L∞(Õ) + ‖ψ3 (s+ r, ·)‖2L∞(Õ)

)
ds = 0, ∀σ > 0. (43)

Since ψ1 = ϕ1 + b1 for some positive constant b1, it is evident that (42) and (43)
imply∫ τ

−∞
e

1
2γs(‖G (s, ·)‖2L∞(Õ) + ‖ψ1 (s, ·)‖L∞(Õ) + ‖ψ3 (s, ·)‖2L∞(Õ))ds <∞, ∀ τ ∈ R

(44)
and

lim
r→−∞

eσr
∫ 0

−∞
e

1
2γs
(
‖G (s+ r, ·)‖2L∞(Õ) + ‖ψ1 (s+ r, ·)‖2L∞(Õ)

+ ‖ψ3 (s+ r, ·)‖2L∞(Õ)

)
ds = 0, (45)

for any σ > 0.

3. Uniform estimates of solutions. In this section, we recall and generalize some
results in [17] and derive some new uniform estimates of solutions of problem (36)
or (19)-(20) which are needed for proving the existence of D1-pullback absorbing
sets and the D1-pullback asymptotic compactness in H1(O) of the cocycle Φε.

Lemma 3.1. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < ε ≤
ε0, τ ∈ R, ω ∈ Ω, and D1 = {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, there exists
T = T (τ, ω,D1) ≥ 2, independent of ε, such that for all t ≥ T , λ1 > λ0 and
ψε ∈ D1 (τ − t, θ−tω), the solution vε of (36) with ω replaced by θ−τω satisfies

sup
−1≤s≤0

‖vε (τ + s, τ − t, θ−τω, ψε)‖2H1
ε (O) ≤ R2(τ, ω), (46)

where R2(τ, ω) is determined by

R2(τ, ω) = r1(ω)R1(τ, ω)

+ c

∫ 0

−∞
eγr‖T −1 (θrω) ‖2(‖G (r + τ, ·)‖2L∞(Õ) + ‖ψ3 (r + τ, ·)‖2L∞(Õ))dr, (47)
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where R1(τ, ω) is determined by

R1(τ, ω) = c

∫ 0

−∞
e
∫ r
0
γ(θlω)dl‖T −1 (θrω) ‖2 ‖G (r + τ, ·)‖2L∞(Õ)dr

+ c

∫ 0

−∞
e
∫ r
0
γ(θlω)dl‖T −1 (θrω) ‖2 ‖ψ1 (r + τ, ·)‖2L∞(Õ)dr, (48)

and r1(ω) is a tempered function, and c is independent of ε.

Proof. The proof is similar as that of Lemma 3.4 in [17], so we only sketch the proof
here. Taking the inner product of (36) with vε in Hg(O), we find that

1

2

d

dt
‖vε‖2Hg(O) ≤ −aε (vε, vε) + (−λ0 + δ(θtω))‖vε‖2Hg(O)

+
(
T −1 (θtω)hε (t, y, T (θtω) vε(t)) , vε

)
Hg(O)

+
(
T −1 (θtω)Gε (t, y) , vε

)
Hg(O)

. (49)

By (13), we have

d

dt
‖vε‖2Hg(O) + 2aε (vε, vε) +

λ0

2
‖vε‖2Hg(O) + 2α1γ1‖T −1 (θtω) ‖2 ‖uε‖pLp(O)

≤ (−λ0 + 2δ (θtω)) ‖vε‖2Hg(O) +
2

λ0
γ2|Õ|‖T −1 (θtω) ‖2 ‖G (t, ·)‖2L∞(Õ)

+ 2γ2|Õ|‖T −1 (θtω) ‖2 ‖ψ1(t, ·)‖L∞(Õ) . (50)

Then, we have for any σ ≥ τ ,

e
∫ σ
τ
γ(θlω)dl ‖vε (σ)‖2Hg(O) + 2

∫ σ

τ

e
∫ r
τ
γ(θlω)dlaε (vε (r) , vε (r)) dr

+
λ0

2

∫ σ

τ

e
∫ r
τ
γ(θlω)dl ‖vε (r)‖2Hg(O) dr

+ 2α1γ1

∫ σ

τ

‖T −1 (θrω) ‖2e
∫ r
τ
γ(θlω)dl ‖uε (r)‖pLp(O) dr

≤ ‖vε (τ)‖2Hg(O) +
2

λ0
γ2|Õ|

∫ σ

τ

e
∫ r
τ
γ(θlω)dl‖T −1 (θrω) ‖2 ‖G (r, ·)‖2L∞(Õ)dr

+ 2γ2|Õ|
∫ σ

τ

e
∫ r
τ
γ(θlω)dl‖T −1 (θrω) ‖2 ‖ψ1 (r, ·)‖2L∞(Õ)dr, (51)

where γ (θtω) = −λ0 + δ(θtω).
Thus by the similar arguments as Lemma 3.1 in [17] we get for every τ ∈ R,

ω ∈ Ω, and D1 ∈ D1, there exists T = T (τ, ω,D1) > 0 such that for all t ≥ T ,

‖vετ (·, τ − t, θ−τω, ψ)‖2L2(O) ≤ c
∫ 0

−∞
e
∫ r
0
γ(θlω)dl ‖ψ1 (r + τ, ·)‖2L∞(Õ) dr

+ c

∫ 0

−∞
e
∫ r
0
γ(θlω)dl‖T −1 (θrω) ‖2 ‖G (r + τ, ·)‖2L∞(Õ)dr

+ c

∫ 0

−∞
e
∫ r
0
γ(θlω)dl‖T −1 (θrω) ‖2 ‖ψ1 (r + τ, ·)‖2L∞(Õ)dr. (52)
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Moreover, taking the inner product of (36) with Aεv
ε in Hg(O), we find that

1

2

d

dt
aε (vε, vε) + ‖Aεvε‖2Hg(O)

≤ (−λ0 + δ(θtω))aε (vε, vε) +
(
T −1 (θtω)hε (t, y, T (θtω) vε(t)) , Aεv

ε
)
Hg(O)

+
(
T −1 (θtω)Gε (t, y) , Aεv

ε
)
Hg(O)

. (53)

By (15)-(16) we have

d

dt
aε (vε, vε) + ‖Aεvε‖2Hg(O) (54)

≤ (c+ 2δ (θtω)) aε (vε, vε) + c‖T −1 (θtω) ‖2(‖G (t, ·)‖2L∞(Õ) + ‖ψ3 (t, ·)‖2L∞(Õ)),

The left proof is similar of that Lemma 3.4 in [17], so we omit it here.

We are now in a position to establish the uniform estimates for the solution uε

of the stochastic equation (19)-(20) by using those estimates for the solution vε of
(36) and the relation between vε and uε.

Lemma 3.2. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < ε ≤
ε0, τ ∈ R, ω ∈ Ω, and D1 = {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, there exists T =
T (τ, ω,D1) ≥ 2, independent of ε, such that for all t ≥ T , λ1 > λ0 and φε ∈
D1 (τ − t, θ−tω), the solution uε of (19)-(20) with ω replaced by θ−τω satisfies

sup
−1≤s≤0

‖uε (τ + s, τ − t, θ−τω, φε)‖2H1
ε (O) ≤ r2(ω)R2 (τ, ω) , (55)

where r2(ω) is a tempered function and R2(τ, ω) is given by (47).

Lemma 3.3. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < ε ≤
ε0, τ ∈ R, ω ∈ Ω, and D1 = {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, there exists
T = T (τ, ω,D1) ≥ 2, independent of ε, such that for all t ≥ T , λ1 > λ0 and
ψε ∈ D1 (τ − t, θ−tω), the solution vε of (36) with ω replaced by θ−τω satisfies

sup
−1≤s≤0

‖vε (τ + s, τ − t, θ−τω, ψε)‖pLp(O)

+

∫ τ

τ−ρ
‖vε (r, τ − t, θ−τω, ψε)‖2p−2

L2p−2(O) dr ≤ R3 (τ, ω) , (56)

where R3(τ, ω) <∞ for every τ ∈ R and ω ∈ Ω.

Proof. The proof is similar as that of Lemma 3.6 in [14], so we omit it here.

Lemma 3.4. Assume that (8)-(11), (39) and (42) hold. Then for every η > 0, τ ∈
R, ω ∈ Ω, and D1 = {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, there exist T = T (τ, ω,D1) ≥
2, γ = γ(ω) > 0, a large M = M(τ, ω, η) > 0 and 0 < ε1 < ε0 such that for all
t ≥ T , λ1 > λ0, 0 < ε < ε1 and ψε ∈ D1 (τ − t, θ−tω), the solution vε of (36) with
ω replaced by θ−τω satisfies∫ 0

−1
eγM

p−2s

∫
{y∈O: vε(s+τ,τ−t,θ−τω,ψε)≥2M}

|vε(s+ τ, τ − t, θ−τω, ψε)|2p−2dyds ≤ η, (57)∫ 0

−1
eγM

p−2s

∫
{y∈O: vε(s+τ,τ−t,θ−τω,ψε)≤−2M}

|vε(s+ τ, τ − t, θ−τω, ψε)|2p−2dyds ≤ η. (58)
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Proof. Let M be a positive number to be specified later. Taking the scalar product
of (36) with (vε −M)p−1

+ , where (vε −M)+ = max{vε −M, 0}, we have

1

p

d

dt

∥∥(vε −M)+

∥∥p
Lp(O)

+ (p− 1)

∫
vε≥M

(vε −M)
p−2

aε(v
ε, vε)dx

≤
(
δ (θtω) vε, (vε −M)

p−1
+

)
+
(
T −1 (θtω)hε (t, y, T (θtω) vε) , (vε −M)

p−1
+

)
+
(
T −1 (θtω)Gε (t, y) , (vε −M)

p−1
+

)
. (59)

For the first term on the right side of (59) we have∣∣∣(δ (θtω) vε, (vε −M)
p−1
+

)∣∣∣
≤ 1

p
|δ (θrω)|p

∫
O
|vε|pdx+

p− 1

p

∫
O

(vε −M)
p
+dx. (60)

For the second term on the right-hand side of (59), by (8), we obtain, for vε > M ,

hε(t, y, T (θtω) vε) (vε −M)p−1
+ ≤ −α1‖T (θtω) ‖p−1(vε)p−1(v −M)p−1

+

+‖T (θtω) ‖−1ψ1(t, y∗, εg(y∗)yn+1)(vε)−1(vε −M)p−1
+

≤ −1

2
α1M

p−2‖T (θtω) ‖p−1(vε −M)p+ −
1

2
α1‖T (θtω) ‖p−1(vε −M)2p−2

+

+‖T −1 (θtω) ‖−1|ψ1(t, y∗, εg(y∗)yn+1)|(vε −M)p−2
+

which implies

(T −1 (θtω)hε(t, y, T (θtω) vε), (vε −M)p−1
+ )

≤ −1

2
α1M

p−2‖T (θtω) ‖p−2

∫
O
(vε −M)p+dx−

1

2
α1‖T −1 (θtω) ‖p−2

∫
O
(vε −M)2p−2

+ dx

+‖T (θtω) ‖−2

∫
O
|ψ1(t, y∗, εg(y∗)yn+1)|(vε −M)p−2

+ dx

≤ −1

2
α1M

p−2‖T (θtω) ‖p−2

∫
O

(vε−M)p+dx−
1

2
α1‖T (θtω) ‖p−2

∫
O

(vε−M)2p−2
+ dx

+
p− 2

p

∫
O

(vε −M)p+dx+
2

p
‖T (θtω) ‖−p

∫
O
|ψ1(t, y∗, εg(y∗)yn+1)|

p
2 dy. (61)

The last term in (59) is bounded by(
T −1 (θtω)Gε (t, y) , (vε −M)

p−1
+

)
≤ 1

8
α1‖T (θtω) ‖p−2

∫
O

(vε −M)
2p−2
+ dx

+
2

α1
‖T (θtω) ‖−p

∫
vε≥M

|Gε (t, y)|2dy. (62)

All above estimates yield

d

dt

∥∥(vε −M)+

∥∥p
Lp(O)

− (2p− 3− 1

2
pα1M

p−2‖T (θtω) ‖p−2)

∫
O

(vε −M)p+dx

+
1

4
pα1‖T (θtω) ‖p−2

∫
O

(vε −M)2p−2
+ dx

≤ |δ (θrω)|p
∫
O
|vε|pdx+ 2‖T (θtω) ‖−p

∫
O
|ψ1(t, y∗, εg(y∗)yn+1)|

p
2 dy

+
2p

α1
‖T (θtω) ‖−p

∫
O
|Gε (t, y)|2dy. (63)
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Multiplying (63) by e−
∫ t
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr, then integrating on (τ−1, τ)
we obtain

‖ (vε(τ, τ − t, ω, ψε)−M)+ ‖
p
Lp(O)

+
1

4
pα1

∫ τ

τ−1

‖T (θζω) ‖p−2e−
∫ ζ
τ

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr

×
∫
O

(vε(ζ, τ − t, ω, ψε)−M)2p−2
+ dxdζ

≤ e−
∫ τ−1
τ

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ (vε(τ − 1, τ − t, ω, ψε)−M)+ ‖
p
Lp(O)

+

∫ τ

τ−1

|δ(θζω)|pe−
∫ ζ
τ

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖vε(ζ, τ − t, ω, ψε)‖pLp(O)dζ

+2|O|
∫ τ

τ−1

‖T (θζω) ‖−pe−
∫ ζ
τ+ξ

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ψ1(ζ, ·)‖
p
2

L∞(Õ)
dζ.

+
2p|O|
α1

∫ τ

τ−1

‖T (θζω) ‖−pe−
∫ ζ
τ+ξ

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖G(ζ, ·)‖2
L∞(Õ)

dζ,

(64)
where |O| stands for the Lebesgue measure of O. Replacing ω by θ−τω in (64) we
get

1

4
pα1

∫ 0

−1

‖T (θζω) ‖p−2e−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr

×
∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dxdζ

≤ e−
∫−1
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ (vε(τ − 1, τ − t, θ−τω, ψε)−M)+ ‖
p
Lp(O)

+

∫ 0

−1

|δ(θζ+ξω)|pe−
∫ ζ
0 (2p−3− 1

2
pα1M

p−2‖T (θrω)‖p−2)dr‖vε(ζ + τ, τ − t, θ−τω, ψε)‖pLp(O)dζ

+2|O|
∫ 0

−1

‖T (θζω) ‖−pe−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ψ1(ζ + τ, ·)‖
p
2

L∞(Õ)
dζ.

+
2p|O|
α1

∫ 0

−1

‖T (θζω) ‖−pe−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖G(ζ + τ, ·)‖2
L∞(Õ)

dζ.

(65)
Since ω is continuous on [−1, 0], there exist c1 = c1(ω, p, α1) > 0 and c2 =
c2(ω, p, α1) > 0 such that

c1 ≤
1

2
pα1‖T (θrω) ‖p−2 ≤ c2 for all r ∈ [−ρ− 1, 0]. (66)

By (66) we obtain

ec2M
p−2ζ ≤ e

∫ ζ+ξ
ξ

1
2
pα1M

p−2‖T (θrω)‖p−2dr ≤ ec1M
p−2ζ for all ζ ∈ [−1, 0] and ξ ∈ [−ρ, 0].

(67)

For the left-hand side of (65), by (67) we find that there exists c3 = c3(ω) > 0 such
that

1

4
pα1

∫ 0

−1

‖T (θζω) ‖p−2e−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dxdζ

≥ c3
∫ 0

−1

ec2M
p−2ζ

∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dxdζ. (68)
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For the first term on the right-hand side of (65), by (67) we obtain

e−
∫−1
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ (vε(τ − 1, τ − t, θ−τω, ψε)−M)+ ‖
p
Lp(O)

≤ e2p−3e−c1M
p−2

‖ (vε(τ − 1, τ − t, θ−τω, ψε)−M)+ ‖
p
Lp(O)

≤ e2p−3e−c1M
p−2

‖vε(τ − 1, τ − t, θ−τω, ψε)‖pLp(O). (69)

Similarly, for the second terms on the right-hand side of (65), we have from (67)
there exists c4 = c4(ω) > 0 such that∫ 0

−1

|δ(θζω)|pe−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖vε(ζ + τ, τ − t, θ−τω, ψε)‖pLp(O)dζ

≤ c4
∫ 0

−1

ec1M
p−2ζ‖vε(ζ + τ, τ − t, θ−τω, ψε)‖pLp(O)dζ (70)

Since ϕ1 ∈ L∞loc(R, L∞(Õ)) and G ∈ L2
loc(R, L∞(Õ)), for the two three terms on

the right-hand side of (65), by (67) we obtain there exists c5 = c5(τ, ω) > 0 such
that

2|O|
∫ 0

−1

‖T (θζω) ‖−pe−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖ψ1(ζ + τ, ·)‖
p
2

L∞(Õ)
dζ.

+
2p|O|
α1

∫ 0

−1

‖T (θζω) ‖−pe−
∫ ζ
0

(2p−3− 1
2pα1M

p−2‖T (θrω)‖p−2)dr‖G(ζ + τ, ·)‖2
L∞(Õ)

dζ

≤ c5
∫ 0

−1

ec1M
p−2ζdζ ≤ c−1

1 c5M
2−p. (71)

By (68)-(71) we get from (65) that

c3

∫ 0

−1

ec2M
p−2ζ

∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dydζ

≤ e2p−3e−c1M
p−2

‖vε(τ − 1, τ − t, θ−τω, ψε)‖pLp(O)

+c4

∫ 0

−1

ec1M
p−2ζ‖vε(ζ + τ, τ − t, θ−τω, ψε)‖pLp(O)dζ + c−1

1 c5M
2−p,

which together with Lemma 3.2 and Lemma 3.3 implies that there exist c6 =
c6(τ, ω) > 0 and T = T (τ, ω,D1) ≥ 2 such that for all t ≥ T ,

c3

∫ 0

−1

ec2M
p−2ζ

∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dxdζ

≤ c6e−c1M
p−2

+c6

∫ 0

−1

ec1M
p−2ζdζ+c−1

1 c5M
2−p ≤ c6e−c1M

p−2

+c−1
1 (c5 +c6)M2−p.

(72)
Since p > 2, we find that for every η > 0, there exists M0 = M0(τ, ω, η) > 0 such
that for all M ≥M0 and t ≥ T ,∫ 0

−1

ec2M
p−2ζ

∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dydζ ≤ η. (73)

Note that |v| ≤ 2(v−M)+ for v ≥ 2M , which together with (73) yields that for all
M ≥M0 and t ≥ T ,∫ 0

−1

ec2M
p−2ζ

∫
{y∈O: vε(ζ+τ,τ−t,θ−τω,ψε)≥2M}

|vε(ζ + τ, τ − t, θ−τω, ψε)|2p−2dydζ
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≤ 22p−2

∫ 0

−1

ec2M
p−2ζ

∫
O

(vε(ζ + τ, τ − t, θ−τω, ψε)−M)2p−2
+ dxdζ ≤ 22p−2η. (74)

Similarly, one can verify that there exist M1 = M1(τ, ω, η) > 0 and T1 = (τ, ω,D) ≥
2 such that for all M ≥M1 and t ≥ T1,∫ 0

−1

ec2M
p−2ζ

∫
{y∈O: vε(ζ+τ,τ−t,θ−τω,ψε)≤−2M}

|vε(ζ+τ, τ−t, θ−τω, ψε)|2p−2dydζ ≤ 22p−2η.

(75)

Then Lemma 3.4 follows from (3) and (75) immediately.

Note that Aε is a family of linear operators in Yε, for 0 ≤ ε ≤ ε0, where Yε =
Hg(O), for 0 < ε ≤ ε0, and Y0 = Hg(Q), is self-adjoint and has a compact resolvent.
Then, σ(Aε) consists of only eigenvalues {λεn}∞n=1 with finite multiplicity:

0 ≤ λε1 ≤ λε2 ≤ . . . ≤ λεn ≤ · · · → +∞,

and their associated eigenfunctions {$ε
n}∞n=1 form an orthonormal basis of Yε.

It follows from Corollary 9.7 in [8] that the eigenvalues and the eigenfunctions of
Aε are convergent with respect to ε.

Next, we introduce the spectral projections. We use P εm to denote the projection
from Yε onto the eigenspace span{$ε

i }mi=1 given by

P εn(u) =

m∑
i=1

(u,$ε
i )Yε$

ε
i for u ∈ Yε.

We use Qεm to denote its orthogonal complement projection, i.e., P εm + Qεm = Iε,
where Iε is the identity operators on Yε. It is clear that

aε (u, u) = (Aεu, u)Hg(O) ≤ λ
ε
n (u, u)Hg(O) , ∀u ∈ P εnD

(
A1/2
ε

)
. (76)

and

aε (u, u) = (Aεu, u)Hg(O) ≥ λ
ε
m+1 (u, u)Hg(O) , u ∈ QεmD

(
A1/2
ε

)
. (77)

Let uε = uε1 + uε2 and vε = vε1 + vε2, where uε1 = P εmu
ε, uε2 = Qεmu

ε, vε1 = P εmv
ε,

and vε2 = Qεmv
ε, respectively.

Lemma 3.5. Assume that (8)-(11), (39) and (42) hold. Then for every τ ∈ R,
ω ∈ Ω, η > 0 and D1 = {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1, there exists T =
T (τ, ω,D1, η) ≥ 2, m = m(τ, ω,D, η) ∈ N and 0 < ε1 = ε1(n) < ε0 such that
for all t ≥ T , 0 < ε < ε1 and φε ∈ D1 (τ − t, θ−tω), the solution uε of (19)-(20)
with ω replaced by θ−τω satisfies

‖uε2 (τ, τ − t, θ−τω, φε)‖H1(O) ≤ η.

Proof. Taking the inner product (36) with Aεv
ε
2 in Hg (O), we get

1

2

d

dt
aε(v

ε
2, v

ε
2) + ‖Aεvε2‖

2 ≤ (δ (θtω) vε2, Aεv
ε
2)

+
(
QεnT −1 (θtω)hε (t, y, T (θtω) vε) , Aεv

ε
2

)
+
(
QεnT −1 (θtω)Gε (t, y) , Aεv

ε
2

)
. (78)

For the first term on the right-hand side of (78), we have

(δ (θtω) vε2, Aεv
ε
2) ≤ 1

8
‖Aεvε2‖

2
+ 2|δ (θtω)|2 ‖vε2‖

2
. (79)
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For the superlinear term, we have from (9) that(
QεnT −1 (θtω)hε (t, y, T (θtω) vε) , Aεv

ε
2

)
≤ 1

8
‖Aεvε2‖

2
+ 2

∥∥T −1 (θtω)
∥∥2
∫
O
|hε (t, y, T (θtω) vε)|2dy

≤ 1

8
‖Aεvε2‖

2
+ 2α2

∥∥T −1 (θtω)
∥∥2
∫
O

(
|T (θtω) vε|p−1

+ ψ2 (t, y∗, εg(y∗)yn+1)
)2

dy

≤ 1

8
‖Aεvε2‖

2
+ 4α2 ‖T (θtω)‖2p−4 ‖v‖2p−2

2p−2 + 4α2|O|
∥∥T −1 (θtω)

∥∥2 ‖ψ2(t, ·)‖2
L∞(Õ)

.

(80)

For the last term on the right-hand side of (78), we have(
QεnT

−1 (θtω)Gε (t, y) , Aεv
ε
2

)
≤ 1

8
‖Aεvε2‖

2
+ 2|O|

∥∥T−1 (θtω)
∥∥2 ‖G (t, ·)‖2L∞(Õ)

(81)

Noting that ‖Aεvε2‖
2 ≥ λεn+1aε(v

ε
2, v

ε
2), we obtain from all above estimates that

d

dt
aε(v

ε
2, v

ε
2) + λεn+1aε(v

ε
2, v

ε
2) ≤ 4δ2 (θtω) ‖vε2‖

2

+ 8α2 ‖T (θtω)‖2p−4 ‖vε‖2p−2
2p−2

+ c
∥∥T −1 (θtω)

∥∥2
(‖ψ2(t, ·)‖2

L∞(Õ)
+ ‖G (t, ·)‖2L∞(Õ)). (82)

Taking ξ ∈ (τ − 1, τ), multiplying (82) by eλ
ε
n+1t , first integrating with respect to t

on (ξ, τ), integrating with respect to ξ on (τ − 1, τ), and then replacing ω by θ−τω,
we get

aε(v
ε
2 (τ, τ − t, θ−τω, ψε) , vε2 (τ, τ − t, θ−τω, ψε))

≤
∫ τ

τ−1

eλ
ε
n+1(r−τ)aε(v

ε
2 (r, τ − t, θ−τω, ψε) , vε2 (r, τ − t, θ−τω, ψε))dr

+ 4δ2

∫ τ

τ−1

eλ
ε
n+1(r−τ)δ2 (θr−τω)aε(v

ε
2 (r, τ − t, θ−τω, ψε) , vε2 (r, τ − t, θ−τω, ψε))dr

+ 8α2

∫ τ

τ−1

eλ
ε
n+1(r−τ) ‖T (θr−τω)‖2p−4 ‖vε (r, τ − t, θ−τω, ψε)‖2p−2

2p−2dr

+ c

∫ τ

τ−1

eλ
ε
n+1(r−τ)

∥∥T −1 (θr−τω)
∥∥2

(‖ψ2(r, ·)‖2
L∞(Õ)

)dr

+ c

∫ τ

τ−1

eλ
ε
n+1(r−τ)

∥∥T −1 (θr−τω)
∥∥2 ‖G (r, ·)‖2L∞(Õ)dr. (83)

Since ϕ2, G ∈ L2
loc(R, L∞(Õ)), ‖T (θtω)‖ is continuous on [−1, 0] and λεn+1 ap-

proaches λ0
n+1 as ε → 0, we find that there exists c = c(ω) > 0 and 0 < ε∗ < ε0

such that for 0 < ε < ε∗,

aε(v
ε
2 (τ, τ − t, θ−τω, ψε) , vε2 (τ, τ − t, θ−τω, ψε))

≤ c
∫ 0

−1

eλ
ε
n+1r ‖vε (r + τ, τ − t, θ−τω, ψε)‖2p−2

2p−2dr

+ c

∫ 0

−1

eλ
ε
n+1raε(v

ε (r + τ, τ − t, θ−τω, ψε) , vε (r + τ, τ − t, θ−τω, ψε))dr
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+ c

∫ 0

−1

eλ
ε
n+1rdr

≤ c
∫ 0

−1

e(λ0
n+1−1)r ‖vε (r + τ, τ − t, θ−τω, ψε)‖2p−2

2p−2dr

+ c

∫ 0

−1

e(λ0
n+1−1)raε(v

ε (r + τ, τ − t, θ−τω, ψε) , vε (r + τ + s, τ − t, θ−τω, ψε))dr

+ c

∫ 0

−1

e(λ0
n+1−1)r ‖vε (r + τ − ρ0(r + τ + s), τ − t, θ−τω, ψε)‖2dr

+ c

∫ 0

−1

e(λ0
n+1−1)rdr. (84)

Given η > 0, let T = T (τ, ω,D1) ≥ 2, γ = γ(ω) > 0, M = M(τ, ω, η) ≥ 1 and
0 < ε1 < ε∗ be the constants in Lemma 3.4. Choose N1 = N1(τ, ω, η) ≥ 1 large
enough such that λ0

n+1 − 1 ≥ γMp−2 for all n ≥ N1. Then, by Lemma 3.4, we
obtain, for all t ≥ T , n ≥ N1 and 0 < ε < ε1,

c

∫ 0

−1

e(λ0
n+1−1)r ‖vε (r + τ, τ − t, θ−τω, ψε)‖2p−2

2p−2dr

≤ c
∫ 0

−1

e(λ0
n+1−1)r

∫
{y∈O:|vε|≥2M}

|vε (r + τ, τ − t, θ−τω, ψε)|2p−2dydr

+ c

∫ 0

−1

e(λ0
n+1−1)r

∫
{y∈O:|vε|<2M}

|vε (r + τ, τ − t, θ−τω, ψε)|2p−2dydr

≤ c
∫ 0

−1

eγM
p−2r

∫
{y∈O:|vε|≥2M}

|vε (r + τ, τ − t, θ−τω, ψε)|2p−2dydr

+ c

∫ 0

−1

e(λ0
n+1−1)r

∫
{y∈O:|vε|<2M}

|vε (r + τ, τ − t, θ−τω, ψε)|2p−2dydr

≤ η + c22p−2M2p−2|O|
∫ 0

−1

e(λ0
n+1−1)rdr ≤ η + c22p−2M2p−2|O| 1

λ0
n+1 − 1

. (85)

For the last three terms on the right-hand side of (84), by Lemma 3.1, we find that
there exist c1 = c1(τ, ω) > 0 and T1 = T1(τ, ω,D1) ≥ T such that for all t ≥ T1,

c

∫ 0

−1

e(λ0
n+1−1)raε(v

ε (r + τ, τ − t, θ−τω, ψε) , vε (r + τ, τ − t, θ−τω, ψε))dr

+ c

∫ 0

−1

e(λ0
n+1−1)rdr ≤ c1

∫ 0

−1

e(λ0
n+1−1)rdr ≤ c1

1

λ0
n+1 − 1

. (86)

Since λ0
n+1 → ∞ as n → ∞, we obtain from (84)-(86) that there exists N2 =

N2(τ, ω, η) ≥ N1 such that for all n ≥ N2, t ≥ T1 and 0 < ε < ε1,

aε(v
ε
2 (τ + s, τ − t, θ−τω, ψε) , vε2 (τ + s, τ − t, θ−τω, ψε)) ≤ 2η,

which together vε(t) = T −1 (θtω)uε(t) and (77) completes the proof.

4. Existence of pullback attractor. In this subsection, we establish the exis-
tence of D1-pullback attractor for the cocycle Φε associated with the stochastic
problem (19)-(20). We first show that problem (19)-(20) has a tempered pullback
absorbing set as stated below.
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Lemma 4.1. Suppose (8)-(11), (39) and (43) hold. Then the cocycle Φε associated
with problem (19)-(20) has a closed measurable D1-pullback absorbing set K =
{K (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1.

Proof. We first notice that, by Lemma 3.2, Φε has a closed D1-pullback absorbing
set K in H1(O). More precisely, given τ ∈ R and ω ∈ Ω, let

K (τ, ω) =
{
u ∈ H1(O) : ‖u‖2H1(O) ≤ L (τ, ω)

}
, (87)

where L (τ, ω) is the constant given by the right-hand side of (55). It is evident
that, for each τ ∈ R, L(τ, ·) : Ω → R is (F ,B(R))-measurable. In addition, for
every τ ∈ R, ω ∈ Ω, and D ∈ D1, there exists T = T (τ, ω,D) ≥ 2 such that for all
t ≥ T ,

Φε (t, τ − t, θ−tω,D (τ − t, θ−tω)) ⊆ K (τ, ω) .

Thus we find that K = {K (τ, ω) : τ ∈ R, ω ∈ Ω} is a closed measurable set and
pullback-attracts all elements in D1. By the similar argument as in [15] we can ob-
tain easily from (43) that K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered. Consequently,
K is a closed measurable D1-pullback absorbing set for Φε in D1.

Lemma 4.2. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle Φε is
D1-pullback asymptotically compact in H1(O); that is, for all τ ∈ R and ω ∈ Ω,
{Φε (tn, τ − tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in H1(O) whenever
tn →∞ and xn ∈ D1 (τ − tn, θ−tnω) with {D1 (τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1.

Proof. We will show that for every η > 0, the sequence {uε (τ, τ − tn, θ−τω, φε)}∞n=1

has a finite open cover of balls with radii less than η. By Lemma 3.5, we infer that
there exists N1 = N1(τ, ω,D1, η) ≥ 1, m0 = m0(τ, ω,D1, η) ∈ N and 0 < ε1 =
ε1(m0) < ε0 such that for all n ≥ N1 and 0 < ε < ε1,

‖uε2 (τ, τ − tn, θ−τω, φε)‖H1(O) = ‖Qm0u
ε (τ, τ − tn, θ−τω, φε)‖H1(O) <

η

4
. (88)

On the other hand, by Lemma 3.2 we find that the sequence
{Pm0

uε (τ, τ − tn, θ−τω, φε)}∞n=1 is bounded in the finite-dimensional space Pm0

H1(O) and hence is precompact, which together with (88) shows that the sequence
uε (τ, τ − tn, θ−τω, φε) has a finite open cover of balls with radii less than η in
H1(O), as desired.

Theorem 4.3. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle Φε
has a unique D1-pullback (N , H1(O))-attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω}.

Proof. First, we know from Lemma 4.1 that Φε has a a closed measurable D1-
pullback absorbing set K (τ, ω). Second, it follows from Lemma 4.2 that Φε is
D1-pullback asymptotically compact from N to H1(O). Hence, the existence of a
unique D1-pullback (N , H1(O))-attractor for the cocycle Φε follows from Proposi-
tion 2.5 in [7].

Analogous results also hold for the solution of (4)-(5). In particular, we have:

Theorem 4.4. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle Φ0

has a unique D0-pullback (M, H1(Q))-attractor A0 = {A0(τ, ω) : τ ∈ R, ω ∈ Ω}.
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5. Upper semicontinuity of attractors. The following estimates are needed
when we derive the convergence of pullback attractors. By the similar proof of that
of Theorem 5.1 in [14], we get the following lemma.

Lemma 5.1. Assume that (8)-(11) and (39) hold. Then for every 0 < ε ≤ ε0,
τ ∈ R, ω ∈ Ω, T > 0, and λ1 > λ0, the solution vε of (36) satisfies, for all
t ∈ [τ, τ + T ], ∫ t

τ

‖vε (r, τ, ω, ψε)‖2H1
ε (O)dr ≤ c ‖ψ

ε‖2N

+ c

∫ τ+T

τ

(
‖G (r, ·)‖2L∞(Õ) + ‖ψ1 (r, ·)‖2L∞(Õ)

)
dr,

where c is a positive constant depending on τ , ω, λ0 and T , but independent of ε.

Similarly, one can prove

Lemma 5.2. Assume that (8)-(11) and (39) hold. Then for every τ ∈ R, ω ∈ Ω,
T > 0, and λ1 > λ0, the solution v0 of (37) satisfies, for all t ∈ [τ, τ + T ],∫ t

τ

∥∥v0
(
r, τ, ω, ψ0

)∥∥2

H1(Q)
dr

≤ c
∥∥ψ0

∥∥2

M + c

∫ τ+T

τ

(
‖G (r, ·)‖2L∞(Õ) + ‖ψ1 (r, ·)‖2L∞(Õ)

)
dr,

where c is a positive constant depending on τ , ω, λ0 and T , but independent of ε.

In the sequel, we further assume the functions G and H satisfy that for all
t, s ∈ R,

‖Gε(t, ·)−G0(t, ·)‖L2(O) ≤ κ1(t)ε (89)

and

‖Hε(t, ·, s)−H0(t, ·, s)‖L2(O) ≤ κ2(t)ε, (90)

where κ1(t), κ2(t) ∈ L2
loc(R).

By (12) and (90) we have, for all x ∈ Õ and t, s ∈ R,

‖hε(t, ·, s)− h0(t, ·, s)‖L2(O) ≤ κ2(t)ε. (91)

Since M can be embedded naturally into N as the subspace of functions inde-
pendent of yn+1, we can consider the cocycle Φ0 as a mapping from M into N .
Therefore we can compare Φ0 with Φε.

Theorem 5.3. Suppose (8)-(11), (39), and (89)-(90) hold. Given τ ∈ R, ω ∈ Ω,
εn → 0 and a positive number L(τ, ω), if φεn ∈ H1

εn(O)) such that ‖φεn‖H1
εn

(O)) ≤
L(τ, ω), then there exists φ0 ∈M such that, up to a subsequence, for t ≥ 0,

lim
n→∞

∥∥Φεn (t, τ, ω, φεn)− Φ0

(
t, τ, ω, φ0

)∥∥
N = 0.

Proof. Since φεn ∈ H1
εn(O), there exists φ0 ∈M such that φεn → φ0 in N . By the

similar proof of that of Theorem 5.4 in [14], for any T > 0, we have for t ∈ [τ, τ +T ]∥∥vεn (t)− v0 (t)
∥∥2

N ≤ c
∥∥φεn − φ0

∥∥2

N + c max
ν∈[τ,t]

ξ (θνω)

∫ t

τ

∥∥vεn (s)− v0 (s)
∥∥2

Nds
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+ cεn max
ν∈[τ,t]

∥∥T −1 (θνω)
∥∥∫ t

τ

(
‖vεn(s)‖2H1

εn
(O) +

∥∥v0(s)
∥∥2

H1(Q)

)
ds

+ cεn max
ν∈[τ,t]

∥∥T −1 (θνω)
∥∥∫ t

τ

(
κ2

1(s) + κ2
2(s)

)
ds

+ cεn

∫ t

τ

(
‖vεn(s)‖2H1

εn
(O) +

∥∥v0(s)
∥∥2

H1(Q)

)
ds, (92)

where ξ(θtω) = β+ |δ(θtω)|. By Lemma 5.1 and Lemma 5.2 we find that there exists
a positive constant % = %(τ, ω, T ), independent of εn, such that for all t ∈ [τ, τ +T ],∥∥vεn (t)− v0 (t)

∥∥2

N ≤ e
c(1+ max

ν∈[τ,τ+T ]
ξ(θνω))T ∥∥φεn − φ0

∥∥2

N

+ %εne
c(1+ max

ν∈[τ,τ+T ]
ξ(θνω))T

[‖ψ0‖2M + ‖ψεn‖2N

+

∫ τ+T

τ

(
κ2

1(s) + κ2
2(s)

)
ds

+

∫ τ+T

τ

(‖G(s, ·)‖2
L∞(Õ)

+ ‖ψ1(s, ·)‖2
L∞(Õ)

)ds]. (93)

Notice that, for all t ∈ [τ, τ + T ],

‖uεn(t, τ, ω, φε)− u0(t, τ, ω, φ0)‖2N
≤ max

ν∈[τ,τ+T ]
‖T (θνω)‖2‖vεn(t, τ, ω, T −1(θτω)φε)− v0(t, τ, ω, T −1(θτω)φ0‖2N ,

which together with (93) implies the desired results.

The next result is concerned with uniform compactness of attractors with respect
to ε.

Lemma 5.4. Assume that (8)-(11), (39) and (43) hold. If εn → 0 and uεn ∈
Aεn (τ, ω), then there exist a subsequence of (uεn)n∈N, again denoted by (uεn)n∈N,
and u ∈ H1(Q) such that

lim
n→∞

‖uεn − u‖H1(O) = 0.

Proof. Take a sequence tn → ∞. By the invariance of Aεn there exists φεn ∈
Aεn (τ − tn, θ−tnω) such that

uεn = Φεn (tn, τ − tn, θ−tnω, φεn) . (94)

By Lemma 4.1, we have φεn ∈ K (τ − tn, θ−tnω) ∈ D1. Since εn → 0 and tn →∞,
By Lemma 3.5, for any η > 0, there exists a large enough N1 ∈ N such that for all
n ≥ N1, ∥∥QεnN1

uεn (τ, τ − tn, θ−τω, φεn)
∥∥
H1(O)

≤ η. (95)

By Lemma 3.2, we have

‖P εnN1
uεn (τ, τ − tn, θ−τω, φεn)‖H1(O) < M. (96)

It follows from (95) and (96) that (uεn (τ, τ − tn, θ−τω, φεn))n∈N is precompact in
H1(O). Since the estimate (55) holds, there exists u in H1(Q) and a subsequence
of (uεn)n∈N, again denoted by (uεn)n∈N, such that

lim
n→∞

‖uεn − u‖H1(O) = 0. (97)

This completes the proof.

Now we are in a position to prove the main result of this paper.
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Theorem 5.5. Assume that (8)-(11), (39), (43), and (89)-(90) hold. The attrac-
tors Aε are upper-semicontinuous at ε = 0, that is, for every τ ∈ R and ω ∈ Ω,

lim
ε→0

distH1(O) (Aε (τ, ω) ,A0 (τ, ω)) = 0.

Proof. Given τ ∈ R and ω ∈ Ω, by the invariance of Aε and (55) we find that there
exists ε0 > 0 such that

‖u‖2H1
ε (O) ≤ L(τ, ω) for all 0 < ε < ε0 and u ∈ Aε(τ, ω), (98)

where L(τ, ω) is the positive constant given by the right-hand side of (55) which is
independent of ε. If the theorem is not true, there exist δ > 0, a sequence (εn)n∈N of
positives constants, εn → 0, and a sequence (zn)n∈N, zn ∈ Aεn(τ, ω) for all n ∈ N,
such that

distH1(O) (zn,A0 (τ, ω)) ≥ δ for all n ∈ N. (99)

By Lemma 5.4 there exists z∗ in H1(Q) and a subsequence of (zn)n∈N, again denoted
by (zn)n∈N, such that

lim
n→∞

‖zn − z∗‖H1(O) = 0. (100)

By the invariance property of the attractor Aεn(τ, ω), for every t > 0 there exists
ytn ∈ Aεn (τ − t, θ−tω) such that

zn = Φεn
(
t, τ − t, θ−tω, ytn

)
. (101)

By Lemma 5.4 again there exists yt∗ in H1(Q) and a subsequence of (ytn)n∈N, again
denoted by (ytn)n∈N, such that

lim
n→∞

∥∥ytn − yt∗∥∥H1(O)
= 0. (102)

It follows from Theorem 5.3 that for every t > 0,

lim
n→∞

Φεn
(
t, τ − t, θ−tω, ytn

)
= Φ0

(
t, τ − t, θ−tω, yt∗

)
in N . (103)

By (100), (101), (103) and uniqueness of limits we obtain

z∗ = Φ0

(
t, τ − t, θ−tω, yt∗

)
in H1(O). (104)

Notice that Aεn(τ − t, θ−tω) ⊆ K(τ − t, θ−tω) and ytn ∈ Aεn(τ − t, θ−tω) for all
n ∈ N. Thus by (98) we have

lim sup
n→∞

∥∥ytn∥∥H1(O)
≤ ‖K (τ − t, θ−tω)‖H1(O) ≤ L (τ − t, θ−tω) . (105)

By (102) and (105) we get, for every t > 0,∥∥yt∗∥∥H1(Q)
≤ L (τ − t, θ−tω) . (106)

By K0 ∈ D0 and the attraction property of A0 in D0, we obtain from (104) and
(106) that

distH1(Q) (z∗,A0 (τ, ω))

= distH1(Q)

(
Φ0

(
t, τ − t, θ−tω, yt∗

)
,A0 (τ, ω)

)
≤ distH1(Q) (Φ0 (t, τ − t, θ−tω,K0 (τ − t, θ−tω)) ,A0 (τ, ω))

→ 0, as t→∞. (107)

This implies that z∗ ∈ A0(τ, ω) since A0(τ, ω) is compact. Therefore, we have

distH1(O) (zn,A0 (τ, ω)) ≤ distH1(O) (zn, z∗)→ 0,

a contradiction with (99). This completes the proof.
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