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ABSTRACT. This paper deals with the limiting dynamical behavior of non-
autonomous stochastic reaction-diffusion equations on thin domains. Firstly,
we prove the existence and uniqueness of the regular random attractor. Then
we prove the upper semicontinuity of the regular random attractors for the
equations on a family of (n 4 1)-dimensional thin domains collapses onto an
n-dimensional domain.

1. Introduction. Let @ C R™ be a bounded C?-domain and O, C R™*! be the
domain

O. ={x= (2" zpy1) 2" = (21,...,2,) € Qand 0 < x,,11 < €9 (z¥)},

where g € C?(Q,(0,4+00)) and 0 < ¢ < 1. Since g € C?(Q, (0, 400)), there exist
two positive constants v; and 7 such that

Y1 <g(a*) <va, Vate Q. (1)

Denote © = Q x (0,1) and O = Q x (0, 72) which contains O, for 0 < ¢ < 1. Given
7 € R, we will study the limit of asymptotical behavior of the following stochastic
reaction-diffusions equation with multiplicative noise defined on the thin domain
O, as ¢ tends to 0:

m
die® — Awdt = (H(t,z,u°(t)) + G (t,x))dt + > ¢;0° odw;, €O, t>T,

i=1
8"5
81;5 =0, z€d0,,

(2)
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with the initial condition
W (r,x) = ¢°(z), z¢€O., (3)

where v is the unit outward normal vector to 00., H is a superlinear source term,
G is a function defined on R x O, ¢; € R for j =1,2,...,m, w;, j =1,2,...,m,
are independent two-sided real-valued Wiener processes on a probability space, and
the symbol o indicates that the equation is understood in the sense of Stratonovich
integration.

As ¢ — 0, we will show in certain sense that the limiting behavior of (2) is
governed by the following equation:

du® —

1 :1 (9u,),, dt = (H(t, (5",0),u"(t)) + G (t. (4", 0))) dt

+ > ul odwj,  y* = (y1,...,yn) € Q, t >,
j=1
0]
2%0:07 y*eagv
(4)

with the initial condition
WC(ry*) =¢"(y), ¥ eQ, (5)

where vq is the unit outward normal to 00Q.

Random attractors have been investigated in [2, 5, 10, 19, 9] in the autonomous
stochastic case, and in [3, 21, 22, 23] in the non-autonomous stochastic case. Re-
cently, the limiting dynamical behavior of stochastic partial differential equations
on thin domain was studied in [16, 20, 13, 14, 11, 12, 17, 4]. However, in [17, 13], we
only investigated the limiting behavior of random attractors in L?(Q) of stochastic
evolution equations on thin domain. In this paper, we will prove the existence and
uniqueness of bi-spatial pullback attractor for the systems defined on fixed domain
O converted from (2)-(3) when the initial space is L? (O) and the terminate space
is H' (O) and establish upper semicontinuity result for the corresponding family of
random attractors in H! (O) as e approaches 0.

Let X be a Banach space. The norm of X is written as || - || x. Let M = L? (Q)
and N = L2 (O). We denote by (,-)y the inner product in a Hilbert space Y. The
letter ¢ and ¢;, ¢ € N, are generic positive constants which may change its values
from line to line.

We organize the paper as follows. In the next section, we establish the existence
of a continuous cocycle in N for the stochastic equation defined on the fixed domain
O converted from (2)-(3). We also describe the existence of a continuous cocycle
in M for the stochastic equation (4)-(5). Section 3 contains all necessary uniform
estimates of the solutions. We then prove the existence and uniqueness of regular
random attractors for the stochastic equations in section 4, and analyze convergence
properties of the solutions as well as the random attractors in H(QO) in section 5.

2. Cocycles associated with non-autonomous stochastic equations. Here
we show that there is a continuous cocycle generated by the reaction-diffusion equa-
tion defined on O, with multiplicative noise and deterministic non-autonomous
forcing;:
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dif — Aifdt = (H(t,z,0°(t)) + G (t,z)) dt + 3 c;i o duwy,
=1

J
r=(z",0p41) € Oc, t > 1, (6)

8G°
90 —0, z€d0.,

with the initial condition
i (x) = ¢°(x), @ €O, (7)
where v, is the unit outward normal to 0., G : R x 0O —>R belongs to L? (R,

loc
L>(0)), ¢; € R, w; (j =1,2,...,m) are independent two-sided real-valued Wiener
processes on a probability space which will be specified later, and H is a nonlinear

function satisfying the following conditions: for all z € O and t,s € R,

H(taIaS)SS _)\l‘s‘p+(p1(t7x)v (8)
|H (tvmv S)' < Ao |s|p71 + (pg(t, x)v (9)
0H (t,z,s)
<\ 10
Ds = A3, ( )
0H (t,z, s)
<L t 11
e R )
where p > 2, A\; A2 and A3 are positive constants, ¢ € LyS (R, L™ (6)) and 9,13 €
L},o(R, L>(0)).
Throughout this paper, we fix a positive number A € (0, A1) and write

h(t,xz,s) = H(t,z,s) + As (12)

for all z € O and t,s € R. Then it follows from (8)-(11) that there exist positive
numbers a1, as, B, by and by such that

h(t,z,s)s < —ay|s|’ +¥i(t, ), (13)
b (t,2,8)] < ao|s|P " + ha(t, 2), (14)
Oh (t,z,s)

h
2 < 1,0, (16)

where o1 (t,2) = @1(t, ) 4 by and (¢, ) = po(t,x) + by for z € O and t,s € R.
Substituting (12) into (6) we get for ¢ > T,

di® — (AGF — Aa®) dt = (h(t,z,05(t)) + G (t,z)) dt + > c;uf o dwj,
=1

J
€r = ($*7$n+1) € Og, (17)
g—fi =0, z€d0,,
with the initial condition
Wl (z) = ¢°(x), z€O.. (18)

We now transfer problem (17)-(18) into an initial boundary value problem on
the fixed domain O. To that end, we introduce a transformation 7. : O, — O

* Tn4l
> eg(x*)
T.(x*,xp41). Then we have

by T.(z*, zpy1) = (:1: ) for © = (", xpy1) € Oc. Let y = (¥*,ynt1) =

* *

zt =y, Tpy1 =9 (YY) Ynt1-
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It follows from [18] that the Laplace operator in the original variable z € O, and
in the new variable y € O are related by

N . 17 s 1.,
Agi(z) = |J|divy (|[J] 71T T Vyuly)) = gdlvy(PeU(y))’
where we denote by u(y) = 4(x) and P is the operator given by

Uy, = Gy1 Yn+1Uy,, 44

PE“(?/) = Uy, — Gy, Yn+1Uy,,
n

n
- ayn+1gyiuyi + ﬁ(l + 2:1 (Eyn+lgy'i)2)uy7z+1
i—

In the sequel, we abuse the notation a little bit by writing h(¢, z, s) and G(t, )
as h(t,z*, xp41,s) and G(t,2*,xp41) for x = (x*,2,41), respectively. With this
agreement, for any function F'(¢,y, s), we introduce

I (t, y*a Yn+1, 5) =F (t, y*, €g (y*) Yn+1, 5) ) Fy (t, y*a 5) =F (ta y*; 0, 5) )
where y = (y*, yn+1) € O and t, s € R, Then problem (17)-(18) is equivalent to the
following system for ¢t > T,

du® — (%divy(Peus) = Muf)dt = (he (t,y,us(t)) + Ge (t,y)) dt

+ Z cjus odwj, Y= (Y, Yn+1) € O, (19)

j=1
Puf-v=0, yeod0,

with the initial condition

ui(y) = ¢°(y) =" o T '(y), yeO, (20)
where v is the unit outward normal to 00.
Given t € R, define a translation 6, ; on R by
O14(t)=7+1t, forall T eR. (21)

Then {61.:}ier is a group acting on R. We now specify the probability space.
Denote by
O={weC(R,R):w(0)=0}.

Let F is the Borel o-algebra induced by the compact-open topology of 2, and P
the corresponding Wiener measure on (€2, F). There is a classical group {0:},.p
acting on (2, F, P), which is defined by

bw()=w(-+t)—w(t), we, teR. (22)
Then (Q, F, P,{0;: }+cr) is a metric dynamical system (see [1]). On the other hand,
let us consider the one-dimensional stochastic differential equation

dz+ azdt =dw(t), (23)

for > 0. This equation has a random fixed point in the sense of random dynam-
ical systems generating a stationary solution known as the stationary Ornstein-
Uhlenbeck process (see [6] for more details). In fact, we have

Lemma 2.1. There exists a {0;}ter-invariant subset Oer of full measure such
that

lim |w(t)|=0 for all weQ/,

t—+oo t
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and, for such w, the random variable given by

0
2" (w) = —a/ e*w(s)ds
is well defined. Moreover, for w € Q/, the mapping

0 0

(t,w) = 2" (Orw) = —a/ e hw (s)ds = —a/ ew(t+s)ds+w(t)

— 00 — 00

is a stationary solution of (23) with continuous trajectories. In addition, for w € Q

* 9 1 t
A G )] Ml*/ZW@@@:O, (24)
t—+oo t t—+oo t 0
1 t
Jim 7/ |2 (0.)| ds = E |2*] < oo. (25)
t—+oo t 0

Denote by z; the associated Ornstein-Uhlenbeck process corresponding to (23)
with o« = 1 and w replaced by w; for j = 1,...,m. Then for any j = 1,...,m,
we have a stationary Ornstein-Uhlenbeck process generated by a random variable

z}(w) on Q; with properties formulated in Lemma 2.1 defined on a metric dynamical

system (Q;,Fj,Pj, {0:}ier). We set

Q:Q;x-uxQ;n and F = gfj,
j=1

Then (Q, F, P, {0, }1cr) is a metric dynamical system.

Denote by
Sc, (t)u=e“'u, forue L*(0),
and
. . 5 % (@) ,
T (w) = Sc, (21 (W) 0+ 0 8¢, (2, (W) = &= Idp20), we.

Then for every w € Q, T (w) is a homeomorphism on L2 (O), and its inverse
operator is given by

T (W) = Se,, (=25, @) o- -0 80, (—2f (W) =€ =0 Tdpa(o).

It follows that |7 ~!(f;w)|| has sub-exponential growth as t — 4oco for any w €
Q. Hence |77 is tempered. Analogously, || 7| is also tempered. Obviously,

sup | T (Bsw)]| is still tempered for every so € R and a € R™.
s€lso—a,so+al
On the other hand, since z7,j = 1,...,m, are independent Gaussian random

variables, by the ergodic theorem we still have a {0;}, p-invariant set Q) e F of full
measure such that

1 . .
lim 7/ T (6;0)|)* dr =E||T]* = HE(@QCJ'ZJ') < 00,
t Jo

t—+oo et
and
. 1 ¢ -1 2 1 2 m e 2t
g [T o ar =7 <[ <o
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Remark 1. We now consider # defined in (22) on QN instead of Q. This mapping
possesses the same properties as the original one if we choose F as the trace o-
algebra with respect to €2 N 2. The corresponding metric dynamical system is still
denoted by (2, F, P, {0:}+cr) throughout this paper.

Next, we define a continuous cocycle for system (19)-(20) in . This can be
achieved by transferring the stochastic system into a deterministic one with random
parameters in a standard manner. Let u€ be a solution to (19)-(20) and denote by

ve(t) =T (Bw) us(t) and & (w) = Y ¢;2} (w). Then v° satisfies
j=1

B — Ldivy (Pov®) = (A +0(0,w))0% + T (0w) he (8, y, T (01) v° (1))
+T 1 (Ow)Ge (t,y), y€ O, t > T,
P.f-v=0, ye€00,
(26)
with the initial conditions

v (y)=v(y), yeO, (27)

where ¢ = (T 1 (0,w))¢".

Since (26) is a deterministic equation, by the Galerkin method, one can show
that if H satisfies (8)-(11), then for every w € Q, 7 € R and ¢° € N, (26)-(27) has
a unique solution v¢ (¢,7,w,¥°) € C ([r,7 + T),L*(0))NL* ((r,7+ T), H'(0)) N
C([r+e7+T),H(0)) with v, (-,7,w,9°) = ¢ for every T > 0 and 0 < € < 7.
Furthermore, one may show that v¢(t, 7,w,%°) is (F, B(N))-measurable in w € Q
and continuous with respect to ¥° in N for all + > 7. Since v (¢,7,w,¢®) =
T (Biw) v (t, 7, w,¥) with ¢* = (T (0,w))1°, we find that u®(¢) is continuous in
both ¢t > 7 and ¢ € N and is (F,B(N))-measurable in w € Q. In addition,
it follows from (26) that u® is a solution of problem (19)-(20). We now define
O, RTXxRxQxN —= N by

. (tv T, W, ¢8) = uf (t +7,7,0_rw, ¢E) = T(etJrTW) v° (t +7,7,0_;w, 1/15) )
for all (t,T,w,¢E)ER+XRXQXN. (28)

By the properties of u®, we find that ®. is a continuous cocycle on N over (R,
{01,t}1er) and (Q, F, P, {0; }1er), where {01 ; }1er and {0, }+cr are given by (21) and
(22), respectively. In this paper, we will first prove the asymptotic compactness of
solutions in H'(O) and then establish the existence and upper semicontinuity in
HY(O) of (N, H(O))-random attractors.

Let R. : L?(O.) — L?(O) be an affine mapping of the form

(Re¢:)(y) = 6=(T.y), V¢ € L*(O,).

Givent e RT, 7 € R, w € Q and dA)s € L?(0.), we can define a continuous cocycle
®. for problem (6)-(7) by the formula

<i>€(t, T, W, (;35) = R;1<I>5(t,7',w, Reés).
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The same change of unknown variable v°(t) = 71 (6;w) u°(¢) transforms equa-
tion (4) into the following random partial differential equation on Q:

% — ﬁ:l % (gvgi)yi = (—)\ + 5(9tw))'v0 471 (Qtw) hg (t’ y*77'(9tw) ,Uo(t))

+T 1 (0w) Gy (t,y*), y*€Q, t>r,
2 — 0, y* €O,
(29)
with the initial conditions

R =), v eQ, (30)
where ¢° = (T (6,w))¢".

The same argument as above allows us to prove that problem (4) and (5) gener-
ates a continuous cocycle ®q(t, 7, w, #°) in the space M.

Now we want to write equation (26)-(27) as an abstract evolutionary equation.
We introduce the inner product (-, -) H,(0) O N defined by

(4, 0) g1, (0) = / guvdy, for all u,v € N
o

and denote by Hy(O) the space equipped with this inner product. Since g is a
continuous function on Q and satisfies (1), one easily shows that H,(O) is a Hilbert
space with norm equivalent to the natural norm of .

For 0 < e < 1, we introduce a bilinear form a. (-,-): H* (O) x H' (0) — R, given
by

a: (u,v) = (J*Vyu, J*vyv)Hg(O) , (31)
where
J*Vyu = (uy, — giyn-i-luy 1 Uy, = gﬂym—luyr s Uy, )
[ [ g n+ Yn g Yn+ sg n+

By introducing on H'(O) the equivalent norm, for every 0 < e < 1,

1 1
lull g1 o) = (/O (IVy-ul® + u? + g“inﬂ)dy)% (32)

we see that there exist positive constants g, 1 and 72 such that for all 0 < & < g
and u € H'(0),

1 1
m [ (9 gl )y < acun) < m [ (TpuP i Ol (39)
and
2 2 2
m ||UHH;(O) < ac (u,u) + ||UHL2(O) < N2 ||UHH;(O) : (34)
Denote by A, an unbounded operator on Hy(O) with domain
D(A.)={veH?(O),Pv-v=0o0nd0}
as defined by
1
Av = —gdivPEU, veD(A).
Then we have

as (u,v) = (Acu, )y (o), Vu € D (Ac) Vv € HY(0). (35)
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Using A, (26)-(27) can be written as
G A = (A4 0(0))v + T (01w) he (1, y, T (B10) v°(1)
+T 7 (0w) Ge (ty), y € O, t > 7, (36)
vE = °.
To reformulate system (29)-(30), we introduce the inner product (-, ~)HQ(Q) on
M defined by

(u,v) g Q) :/ guvdy*, for all u,v € M,
! Q

and denote by Hy(Q) the space equipped with this inner product. Let ao (-,-):
H'(Q) x H' (Q) — R be a bilinear form given by

ag (u,v) = /ngy*u Sy vdy”.

Denote by Ag an unbounded operator on Hy(Q) with domain
D@%):{vefﬂ(gyéw200nag}
8u0
as defined by
1 n
Agv = 3 Z (gvy,)y:; v € D (Ao).
i=1
Then we have
ao (u,v) = (Aow,v) gy, Yu € D(Ag),Vv e HY(Q).
Using Ay, (29)-(30) can be written as
40 L Agr® = (=X + 8(0:0))0° + T2 (0,w) ho (£, 4%, T (6yw) 0°(t))
+T 1 (0iw) Go (t,y*), y* € Q, t > T, (37)
v (s) =v%s),  s€[-p,0]
Hereafter, we set Xo = M, X, = L?(0.) and X; = N. Foreveryi =¢,0or 1, a

family B; = {B; (T,w) : 7 € R,w € Q} of nonempty subsets of X is called tempered
if for every ¢ > 0, we have:

. ct . =
t_lir_nooe | Bi(T +t,0:;w)||x, =0,

where || B;||x, = sup,¢p, ||7||x,. The collection of all families of tempered nonempty
subsets of X; is denoted by D;, i.e.,

D;={B;, ={B;(r,w): T € R,w € 0} : B; is tempered in X;}.

Our main purpose of the paper is to prove that the cocycle d. and @ possess a
unique (L?(0,), H'(O,.))-random attractor A. and (M, J)-random attractor Ay,
respectively. Furthermore A, is upper-semicontinuous at € = 0, that is, for every
T €Rand w € Q,

. . _ 2
lim sup inf e {lue = uollyp1 0,y =0 (38)
EEAE

To prove (38), we only need to show that the cocycle @, has a unique (N, H)-
random attractor A, and it is upper-semicontinuous at € = 0 in the sense that for
every T € R and w € ,

lim disty; (Az (7,w) , Ao (7, w)) =0,
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which will be established in the last section of the paper.
Furthermore, we suppose that there exists A\g > 0 such that
_A
¥ =X — 2E(|0(w)]) > 0. (39)

Let us consider the mapping

Y(w) = Ao — 2[6(w)]- (40)
By the ergodic theory and (39) we have
.1t _
tilrinoo n /0 v (Ow)dl =Ey =7 > 0. (41)

The following condition will be needed when deriving uniform estimates of solu-
tions:

/ ) e (|G (5, )7 (&) + 01 (5 )I7 e (3) + 108 (5, )7 (5))ds < 00, VT €R.

— 00

(42)
When constructing tempered pullback attractors, we will assume
0
. or 1zg 2
R B (CIEE R
2 2
e (s + 7,03 () + 105 (57, )3 5) ) ds = 0, Vo > 0. (43)

Since ¥1 = 1 + by for some positive constant by, it is evident that (42) and (43)
imply

G 6 My + 1 (g + ¥ (5w s < o0, ¥ €
(44)
and

0
lim e [ b (16 s+ e o) + 61 5 e

r——00 oo

s (s 47, )y ds =0, (45)

for any o > 0.

3. Uniform estimates of solutions. In this section, we recall and generalize some
results in [17] and derive some new uniform estimates of solutions of problem (36)
or (19)-(20) which are needed for proving the existence of D;-pullback absorbing
sets and the D;-pullback asymptotic compactness in H'(O) of the cocycle ®..

Lemma 3.1. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < ¢ <
o, T €ER, weQ and Dy = {D1(r,w) : 7 € R, w € Q} € Dy, there exists
T = T(r,w,D1) > 2, independent of €, such that for allt > T, Ay > Ao and
Y& € Dy (1 —t,0_4w), the solution v¢ of (36) with w replaced by 0_,w satisfies
sup ||U€ (T + S, T — ta 0_7-(4), 1/15)”?{1((9) S RQ(T7W)7 (46)
—1<s<0 c
where Ry(T,w) is determined by

RQ(T, (.d) =T (w)Rl (T, w)

0
e [T Ow) UG 0+ 7)) + s (7)) (47)

—0o0
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where Ry (T,w) is determined by
0
Rilre) = o[ eS0T 60) 76+ 7 o)
0
e / eI AODUNT1 (G,00) 2 i (7 + 7, ) 5y (48)

and r1(w) is a tempered function, and c is independent of .

Proof. The proof is similar as that of Lemma 3.4 in [17], so we only sketch the proof
here. Taking the inner product of (36) with v° in H,(O), we find that

1d
> \UE||§{g(O) < —ae (v5,0%) + (<o + 8(0i0)) 071, o)

(T (o) he (8.3, T (0) 0°(1) 7). o)

+ (T (0w) G (t,y) ,v°) (49)

Hy(0) "

By (13), we have

d Ao _
= 107, o) + 202 (0%, 0%) + 2 0% I3, o) + 20017 (B10) 1 167 o)
2 e
< (S0 + 20 (0)) 077, 0) + 5, IONT ™ (0) PG (1) 5
+ 29| Ol T (00) 17 1t )| e 5 - (50)

Then, we have for any ¢ > 7,
71O |42 ()3, o) + 2 / el g, (o (1), 0 (1) dr
g [ el s ), oy ar
20 [T (0) 28O o (1) 0
< ot (DI 0 + fowlﬁlfj el YO T (9,0) PG (7, ) [ () O
+ 27|00 / e O (6,00) 2 [ (1, ) ) (51)

where 7y (f:w) = —Ag + 6(6w).
Thus by the similar arguments as Lemma 3.1 in [17] we get for every 7 € R,
w € Q, and Dy € Dy, there exists T = T'(7,w, D1) > 0 such that for all t > T

0
105 (o7 = £, 00, 9) 220 < / el5 YO |y (r 47, ) [ 5
0
+e / T YODET (0,0) |2 1G (r + 7))

0
e [ el 60) | [ 5 47,y (52)
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Moreover, taking the inner product of (36) with A.v® in Hy(O), we find that
1d
2dt

< (“Ao+0(0w))as (v, 0°) + (T (Bw) he (£, y, T (Biw) v° (1)) ’AE’UE)HQ(O)

2
ae (v5,v°) + ||A6U6||Hg(o)

+ (Til (QtCU) GE (ta y) 7A€UE)HQ(O) . (53)
By (15)-(16) we have
d € € €
7= (05,0) + [ A0l o) (54)

< (e+20(0w)) ac (v°,0%) +el| T (00) [P(IG (8 )1 3 + 10 ()2 (5)):
The left proof is similar of that Lemma 3.4 in [17], so we omit it here. O

We are now in a position to establish the uniform estimates for the solution u®
of the stochastic equation (19)-(20) by using those estimates for the solution v¢ of
(36) and the relation between v¢ and u®.

Lemma 3.2. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < & <
o, T €ER, w e Q, and Dy = {D;y(1,w): T € R,w € O} € Dy, there exists T =
T(r,w,D1) > 2, independent of €, such that for allt > T, A\y > Ao and ¢° €
Dy (1 —t,0_4w), the solution u® of (19)-(20) with w replaced by O0_,w satisfies

sup [Ju® (7 + 5,7 — £, 00, 6%) || 5110y < T2(w) Rz (1,w), (55)
—1<5<0 c

where ro(w) is a tempered function and Ro(T,w) is given by (47).

Lemma 3.3. Assume that (8)-(11), (39) and (42) hold. Then for every 0 < e <
o, T €ER, weQ and Dy = {D1(r,w) : 7 € R, w € Q} € Dy, there exists
T = T(r,w,Dy1) > 2, independent of €, such that for allt > T, Ay > Ao and
Y& € Dy (1 —t,0_4w), the solution v¢ of (36) with w replaced by 0_,w satisfies

Sup ||’UE (T+377—_t797‘rwa¢6)||zl)‘l)(o)
—1<s<0

+ / 0% (5,7 — 1,00, 6°) |22 s 0 i < R (,0) (56)
T—p

where R3(T,w) < 0o for every 7 € R and w € Q.

Proof. The proof is similar as that of Lemma 3.6 in [14], so we omit it here. O

Lemma 3.4. Assume that (8)-(11), (39) and (42) hold. Then for everyn >0, T €
R,we, and Dy ={D; (1,w) : 7 € R,w € Q} € Dy, there exist T = T(7,w,D1) >
2, v =7(w) >0, alarge M = M(T,w,n) >0 and 0 < 1 < &g such that for all
t>T, A\ >N, 0<e<e and ¥ € Dy (1 —t,0_,w), the solution v¢ of (36) with
w replaced by 0_,w satisfies

0 _
[ e | (s + 707 — 6,0y, 4°)[2P~2dyds < n,  (57)
-1 {(YEO: vE (57,7 — 1,0 rw, ) >2M}

0 _
/ M / [0°(s + 7,7 — t,0_70,9%)|?P " 2dyds < n. (58)
_1 {y€O: ve(s+7,7—t,0_,w,pe)<—2M}
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Proof. Let M be a positive number to be specified later. Taking the scalar product
of (36) with (v° — M)?~", where (v° — M), = max{v® — M, 0}, we have

p _ g _ p—2 g o€
e N Al B G ROt
< (6(0w) v, (0F = MPETH) + (T (0) e (6,9, T (010 0°) , (07 = MY
+ (T (0) Ge (y) (0 = M) (59)
For the first term on the right side of (59) we have
‘(5 (Orw) v°, (vF — M)P™ 1)‘
f|(5 W) / |v€|pdm+7/ v® — M)" dx. (60)

For the second term on the right-hand side of (59), by (8), we obtain, for v > M,
he(t,y, T (Bw) v°) (05 = M)T < —an | T (6) [P~ (0%)P (0 = M)
HIT (Ouw) |7 (t 9" eg(y )yn+1)( )7 - M)
< 5o M T (0) [P~ (0 — ML — Son| T (0w) [P (oF — M)~

T (0i0) | (857, 29y Yymn) | (05 = M)E?
which implies

(T (Buw) he(t,y, T (B:0) v°), (v — M7 )
< =5 2T O) 7 [ (0F = Mo = Jan |77 @) 772 [ (0 = MY
O

(@)
1T (Bu) |2 /O o6,y 29 (y Yy (0F — M2~ 2de

1 1 _
< —5nMP7H|T (Bhw) 772 / (v° = M)Ldz — Saa|T (0w) [P~ / (v" = M)P ™ da
O O

b= 2 e 2 — * * 2
+—— [ ("= M)Edz+ —||T (6w) || p/ i (t,y",eg(y™ )yns1)|2dy.  (61)
p Jo p o

The last term in (59) is bounded by

(77 0) Ge (1) (0° = 27") < G |IT (0 P2 [ (0F = M) e

2 _
F T @) [ (G )Py (62
a1 ve>M
All above estimates yield

c 1 - - .
G780, 0y = =3 ST ) P2 [ (07 = bt
1 _
+ qpan [T 0) 772 [ (07 = M) 2o
(@]
< 16O [ 1oPde+ 2T 0) 177 [ fin(ts” ot )] By

2
+ 2T (60) |7 [ 162 (). (63)
a1 o
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Multiplying (63) by e~ Jo (2p=3=3pan M2 T(#:)[""*)dr then integrating on (7—1, 7)
we obtain

|| (UE(T7 T = tMﬂPE) - M)+ ||1[)/P(O)

1 T 1 - b
g /T_l [T () |72 I Grmd=pea > 21T 0, ydr

« / (W (67 — £y, 6°) — M)~ 2dadg
O

< e e AT ORI (0 (1,7 0, 6%) = M), [0

+ / 18(8cw)|Pe I7 Cr=3=bpan MEEIT )50 e (¢ — 1, 0, °) [0 €
T—1

—loa MP2 W) |12 2)dr
420] [ 1T (B |7 oo AT O
2p0 ey —3-1,4 -2 DP—2)dr
+T|q| T (B e Fraelrmsmdpes T @I G, g de,

(64)
where |O| stands for the Lebesgue measure of O. Replacing w by 6_,w in (64) we
get

0
ipal / ||T(9Cw> Hp_Qe_ foc(Qp—:f—%poclM”’znT(grw)”p—z)dr
-1

[ @€+ T = 1.0 ) = MY g
(@)

< e Jo Crmam i MTEIT O (0 (7 — 1,7 — 1,00, 0%) = M), [ 0

0
¢ — —
*/ 18(0c¢ww)[Pe 0 2rm=pea MEEIT @) IP" Dy (¢ 4 0, ) |12, 0y dC

-1

+2|O|/ T (Bew) || Pe™ JE(@p—3—par MP~2|| T (0,w)||P~ 2)dr||¢1(g+7 )HLoo(o) dac.

2p|(9| —n — [S _ o p—2 WDP~2)dr
+ 20 [* 7 (g |rem S Comimhpontt T GG 4 7, )

(65)
Since w is continuous on [—1,0], there exist ¢; = ci1(w,p,a1) > 0 and ¢ =
co(w,p,aq) > 0 such that
1
c < §pa1||7'(0rw) |[P72 < ¢y forall re[—p—1,0]. (66)

By (66) we obtain

ec2MP” 2< eJe TS Bpaa MPTRIT(0,w) P Rdr o ea MPTRC g o) ¢ €[-1,0] and € € [—p,0].

(67)
For the left-hand side of (65), by (67) we find that there exists ¢s = ¢3(w) > 0 such
that

1 0 o -
me/, T (B) 772 B G701
L5 om0 ) = AR

0
> cg/ eczM”‘QC/ (W (¢ + 7T —t,0_rw,0°) — M) dxdC. (68)
(@]

-1
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For the first term on the right-hand side of (65), by (67) we obtain

- f;l<2p—sfépa1Mp-2||fr<erw>up-2>dr|\ (v (r = 1,7 —t,0_rw,¥%) = M), |7, 0
< 23 e~ 1M H (r—1,7—t,0_;w,Y%) — M>+ ||1£p(o)
< @23 MPT ||v5(7' -1,7—t0_;w, Tf)Hip(o)- (69)

Similarly, for the second terms on the right-hand side of (65), we have from (67)
there exists ¢4 = c4(w) > 0 such that

0
/1 ‘5(94w)|17€— f0<(2p—3—*pa1MP 2T (0rw) P~ 2)dr||v (C +7,7 -t 9—7%1?8)”1;;7(@)0!(

0
p=2 € €
<ey /71 e M E(CH T T — 0w, ) )||’£p(0)dg (70)
Since ¢1 € LS (R, L>(0)) and G € LZOC(RLOO(@)), for the two three terms on
the right-hand side of (65), by (67) we obtain there exists ¢5 = ¢5(7,w) > 0 such
that

2(0| / T (Ogw) ||Pe™ J5 CGrmamgmeadd 2UT Ol 2r sy (¢ 47|12 dC.

2p|O 1 p—2 w)|[P—2
#2O0 [ 7 (e i AT O 20 (¢

Loo(@) C

0
< 05/ eclMp72<d§ < cflc5M2_p. (71)

-1
By (68)-(71) we get from (65) that

0
C3/ eczMHC/ (VE(C+ 7,7 — t,0_w,0°) — M)2P2dyd(
-1 (@]
< BT M T o (r — 1 r — 10w, ] e

0
+ey / MY (C 4 Ty — 1,0, 1/)6)||’£p(o)dc +cytes M2,
-1

which together with Lemma 3.2 and Lemma 3.3 implies that there exist c¢g =
ce(T,w) >0 and T = T(7,w, D1) > 2 such that for all t > T,
0
o [ e (@G T — 0w, 07) - MY e
-1 o

0
—2 p—2 p—2
< cge” M +06/ e MTCAC+ e es MPTP < cgem M e (s +cg) MPTP.

- (72)

Since p > 2, we find that for every n > 0, there exists My = My(7,w,n) > 0 such
that for all M > My and t > T,

0
/ eCQMp72< / (Us (C + T, T — t7 9—Tw? ¢E) - M)ip_QdydC S UE (73)
—1 o

Note that |v| < 2(v— M) for v > 2M, which together with (73) yields that for all
M>Myand t > T,

0
/ eczMP*2§/ |’UE(C+T,T—t,G,TW,QZ)E)‘Qp_QdydC
-1 (YEO: ve (CH7,7—t0_rw %) >2M}
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0
< 2?72 / ees M / (W (C+ 7,7 = £,0_rw, %) — M)F2dwd( < 2%~ (74)
-1 o

Similarly, one can verify that there exist My = My (7,w,n) > 0and T} = (1,w, D) >
2 such that for all M > M, and t > T},

0 —
/ eo2M” 2C/ [0 (CH7, T—t, 0_rew, )PP 2dyd¢ < 2°P 2.
-1 {yeO: ve((+7,7—t,0_,w,ps)<—2M}

(75

oZg

Then Lemma 3.4 follows from (3) and (75) immediately.

Note that A, is a family of linear operators in Yz, for 0 < ¢ < gp, where Y, =
Hy(0), for 0 < e < eg, and Yy = H,(Q), is self-adjoint and has a compact resolvent.
Then, o(A.) consists of only eigenvalues {A}22 ; with finite multiplicity:

0<SAT <A< <X, < = oo,

and their associated eigenfunctions {w¢ }52 ; form an orthonormal basis of Y.
It follows from Corollary 9.7 in [8] that the eigenvalues and the eigenfunctions of
A, are convergent with respect to €.
Next, we introduce the spectral projections. We use P, to denote the projection
from Y onto the eigenspace span{w¢ }7, given by
Pg(u) =) (u,@f)y,@; forucY..
i=1
We use 5, to denote its orthogonal complement projection, i.e., P, + Q5, = I.,
where I. is the identity operators on Y.. It is clear that
e (1) = (A, ) g (0 < N (W), o) Yu€ PED (AY2). (76)
and
e (,0) = (A, @) g (0) = N (Us0) g, 0y 0 € Q5D (AY2). (1)
Let u® = uf + u§ and v® = v] + v5, where uj = P u®, u5 = Q5,u°, vi = P50,
and v§ = Q5,v°, respectively.
Lemma 3.5. Assume that (8)-(11), (39) and (42) hold. Then for every T € R,
w e Q n>0and Dy = {D(r,w):T€ER,weN} € Dy, there exists T =
T(r,w,D1,m) > 2, m = m(r,w,D,n) € N and 0 < g1 = e1(n) < g9 such that
forallt >T,0 < e <e and ¢° € Dy (T —t,0_4w), the solution u® of (19)-(20)
with w replaced by 6_,w satisfies
Jug (1,7 — 1, 0w, (bE)HHl(O) <.
Proof. Taking the inner product (36) with A.v5 in Hy (O), we get

1d
5 % vz, v2) + 15| < (8 (0iw) v, Acv3)

+ QT (6iw) he (t,y, T (yw) v°) , Acvs)
+(QRT " (6w) Ge (t,y) , Acvs) - (78)
For the first term on the right-hand side of (78), we have

& £ 1 £ &€
(8. (010) v3, Acv5) < o [ Av5|* + 206 (0re0) [ [[05] (79)



1984 DINGSHI LI AND XUEMIN WANG

For the superlinear term, we have from (9) that
(LT (0w) he (t,y, T (Bi0) v°) , Acv3)

1
< S 1A + 27 @)l [ 1he (.7 (00 0% )y

1 112 —1 2 ep—1 * * 2
<3 [Acvs||” + 202 [|[ T~ (Gw) | ; (|T(9tw)v |7 b2 (Y eg(y )yn+1)) dy

=(0)’
(80)

1 . - - _ 2
< g AP + daa [ T (0.0 [l0ll35 75 + 402|Of [ T (Go) | l1a 2, I

For the last term on the right-hand side of (78), we have
_ 1 _ 2
(QRT 1 (01) G (t,y) , Acvs) < o [[Av3|* + 20O/ |TH (0) |G (1)~ (5
(81)

Noting that ||A-v5)? > X5 11a-(v5,v5), we obtain from all above estimates that

d € £ € £ £ 15
aae(vz, v5) + A5 ae(v5,v5) < 467 (Byw) HUzH2
+ 80 | T (Br) |~ lve 15275
_ 2
+e[[T7H )] (2, )15 ) + 1G] (5)- (82)

Taking ¢ € (7 — 1, 7), multiplying (82) by e*+1¢ | first integrating with respect to
on (&, 7), integrating with respect to £ on (7 — 1,7), and then replacing w by 0_,w,
we get

ag(’l}g (Tv T—t0_,w, wa) 71); (7—7 T—1t,0_rw, wa))

</ T 05 (17— 1,010, %) 05 (7 — 1,000, 4)

+ 487 / T T8 (6, rw)as (v (T = 10w, 9%), 05 (1,7 — 10w, y))dr
+ 8 / ’ 1 Xt U T (0p—rw) [P 0 (r, 7 — £, 0_pw, %) |52 5dr

e / Tl X0 |71 (6, ) | (o, e 5l

+e / Hers DT Oy g) | 1G (7)o - (83)
T—1

Since ¢2,G € L} (R,L>*(0)), || T(6w)]|| is continuous on [~1,0] and A5 ; ap-

loc

proaches A | as e — 0, we find that there exists ¢ = ¢(w) > 0 and 0 < €* < g
such that for 0 < e < &*,

ac (V5 (1,7 — t,0_rw, %) ,v5 (1,7 — t,0_rw, %))

0
< c/ eMt” [0 (r 4+ 7, T — 0w, ws)H;g:;dr
-1

0
+ c/ ernt1Ta (v (r 47,7 — 0w, %) 0 (r+ 7,7 — £, 0_rw, %) )dr
1
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0
€
—I-c/ ern1”dr

-1

0
<e / NI o (1 4 7,7 — £, 0w, °) |22 2dr
-1
0 0
+ c/ e(An+r1)TaE(UE (r+7,7—t0_;w,¢%) v (r+7+s7—1t0_,w,¢%))dr
1
0 0
+ C/ 6()\"'*'171)7” va (T’ + 7= PO(T + 7+ S)v T —1, 0_7—(4), qug)”er
1

0
te / 1 OGRS (84)

Given n > 0, let T = T(r,w,D1) > 2,7 = v(w) > 0, M = M(r,w,n) > 1 and
0 < &1 < &* be the constants in Lemma 3.4. Choose N; = Ny(1,w,n) > 1 large
enough such that /\9,,_%1 —1 > yMP~2 for all n > N;. Then, by Lemma 3.4, we
obtain, forallt > T, n > Ny and 0 < e < ¢,

0
o [ R (o = 0
-1
0 8]
< C/ e(X,LJrl—l)r/ |1)8 (’l" T -t 977w71/)e)|2p_2dyd7"
-1 {yeO:[ve|>2M}
0
+ C/ ePnsa=Dr / [0 (r 47,7 — t,0_,w, %) |*P2dydr
-1 {yeO:|ve|<2M}

0
< c/ YMP / |0 (r 4+ 7,7 — t,0_rw, %) |*P2dydr
-1 {yeO:|ve|>2M}

0
_|_c/ e()\?LJrl—l)r/ |,U8 (7”+T7T—t79,7—w,¢5)|2p_2dyd7‘
-1 {yeO:|ve|<2M}

0
<4 2P 2 MO / ePntr =Dy <4 022”_2M2p_2|(’)|0;.
-1 Anpr — 1
For the last three terms on the right-hand side of (84), by Lemma 3.1, we find that

there exist ¢; = ¢1(7,w) > 0 and Ty = Ty (7,w, D1) > T such that for all ¢t > T,

(85)

0
C/ e()‘?L+1_1)TaE (UE (r +7,7—1t, 0,7-0.), 'L/JE) ,7}8 (7" +7,7—1, 977W7 T/)E))dr
-1

0 0
+ c/ e(’\?LH_l)"dr < cl/ e(’\gﬂ_l)"dr <e¢ (86)
—1 -1

A1 — 1
Since XY, — 0o as n — oo, we obtain from (84)-(86) that there exists Ny =
Ny(1,w,n) > Ny such that for all n > Ny, ¢ > T} and 0 < € < &1,

ac(vy (T+ 8,7 —1,0_7w,¥), 05 (T + 5,7 — £,0_rw,9%)) < 2n,
which together v¢(¢t) = 7! (6,w) u®(t) and (77) completes the proof. O
4. Existence of pullback attractor. In this subsection, we establish the exis-
tence of Dj-pullback attractor for the cocycle ®. associated with the stochastic

problem (19)-(20). We first show that problem (19)-(20) has a tempered pullback
absorbing set as stated below.
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Lemma 4.1. Suppose (8)-(11), (39) and (43) hold. Then the cocycle ®. associated
with problem (19)-(20) has a closed measurable Di-pullback absorbing set K =
{K(r,w): 7T e Rwe N} eD.

Proof. We first notice that, by Lemma 3.2, ®. has a closed D;-pullback absorbing
set K in H'(O). More precisely, given 7 € R and w € €, let

K (r,w) = {ue H'(O) : Jullfp o) < L(r.w)}, (87)

where L (7,w) is the constant given by the right-hand side of (55). It is evident
that, for each 7 € R, L(7,-) : @ — R is (F, B(R))-measurable. In addition, for
every T € R, w € Q, and D € Dy, there exists T = T(7,w, D) > 2 such that for all
t>T,

S, (t, 7 —t,0_4w,D (1 —t,0_w)) C K (1,w).

Thus we find that K = {K (1,w) : 7 € R,w € Q} is a closed measurable set and
pullback-attracts all elements in D;. By the similar argument as in [15] we can ob-
tain easily from (43) that K = {K(7,w) : 7 € R,w € Q} is tempered. Consequently,
K is a closed measurable D;-pullback absorbing set for ®. in D;. O

Lemma 4.2. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle @, is
D; -pullback asymptotically compact in H'(O); that is, for all T € R and w € Q,
{®c (tn, T — tn,0_t,w,xn)}or, has a convergent subsequence in H'(O) whenever
tn, = 00 and xy, € D1 (T — ty, 0y, w) with {D1 (1,w) : 7 € R, w € N} € Dy.

Proof. We will show that for every n > 0, the sequence {u® (7,7 — t,,,0_rw, %) }°2;
has a finite open cover of balls with radii less than 7. By Lemma 3.5, we infer that
there exists Ny = Ny(r,w,D1,nm) > 1, mg = mo(r,w,D1,n) € Nand 0 < g =
g1(mg) < €g such that for all n > N; and 0 < € < &1,

n
1
On the other hand, by Lemma 3.2 we find that the sequence
{Ppmou (1,7 — tn,0_,w,¢°)}>2; is bounded in the finite-dimensional space P,
H'(O) and hence is precompact, which together with (88) shows that the sequence

u® (17,7 — tp,0_,w,d°) has a finite open cover of balls with radii less than 7 in
HY(0), as desired. O

[ug (7,7 = tn, 00, 0| g1 (0) = (1@mot” (737 = tn, 0700, 6%) [ 10y < 7+ (88)

Theorem 4.3. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle ®.
has a unique Dy -pullback (N, H'(O))-attractor A. = {A.(1,w) : 7 € R,w € Q}.

Proof. First, we know from Lemma 4.1 that ®. has a a closed measurable D;-
pullback absorbing set K (7,w). Second, it follows from Lemma 4.2 that ®. is
D;-pullback asymptotically compact from A to H'(O). Hence, the existence of a
unique Di-pullback (N, H!(O))-attractor for the cocycle ®. follows from Proposi-
tion 2.5 in [7]. O

Analogous results also hold for the solution of (4)-(5). In particular, we have:

Theorem 4.4. Assume that (8)-(11), (39) and (43) hold. Then, the cocycle ®q
has a unique Do-pullback (M, H'(Q) )-attractor Ag = {Ao(T,w) : 7 € R,w € N}.
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5. Upper semicontinuity of attractors. The following estimates are needed
when we derive the convergence of pullback attractors. By the similar proof of that
of Theorem 5.1 in [14], we get the following lemma.

Lemma 5.1. Assume that (8)-(11) and (39) hold. Then for every 0 < € < &,
TER, weQ, T >0, and Ay > Ao, the solution v¢ of (36) satisfies, for all
ter,m+T],

t
2 2
107 (om0 o < 71
T+T 9 9
v [ (1660 191 () dr
where ¢ is a positive constant depending on T, w, Ao and T, but independent of €.

Similarly, one can prove

Lemma 5.2. Assume that (8)-(11) and (39) hold. Then for every T € R, w € ,
T >0, and \; > Xg, the solution v° of (37) satisfies, for all t € [r,7 + T,

t
2
/T [ (T’T’wva)HHl(g)dr

9 T+T
< ot f
i

where ¢ is a positive constant depending on T, w, Ag and T, but independent of €.

(16 w3+ 191 0 )

In the sequel, we further assume the functions G and H satisfy that for all
t,s € R,
1Ge(t,) = Golts Ml 2oy < Fr(b)e (89)
and
[He(t,-,8) = Ho(t, -, 5)| 20y < Ra2(t)e, (90)
where k1 (t), ka(t) € L2 (R).

loc

By (12) and (90) we have, for all z € O and t, s € R,
[lhe(t, -, 8) — ho(t, -, S)HL?(O) < kKa(t)e. (91)

Since M can be embedded naturally into N as the subspace of functions inde-
pendent of y,.1, we can consider the cocycle ®; as a mapping from M into N.
Therefore we can compare ®¢ with ®..

Theorem 5.3. Suppose (8)-(11), (39), and (89)-(90) hold. Given T € R, w € Q,
en — 0 and a positive number L(t,w), if ¢° € H} (O)) such that [|6°" || g1 oy, <

L(1,w), then there exists ¢° € M such that, up to a subsequence, for t > 0,
lim ||®., (t,7,w,¢°") = P (t,7,w,¢°) ||, = 0.

n— oo

Proof. Since ¢~ € Hgn (0), there exists ¢° € M such that ¢°» — ¢° in A'. By the
similar proof of that of Theorem 5.4 in [14], for any T > 0, we have for t € [r,7+T)

t
o 0 = @ < elle = o[+ e max € 0uw) [ Jo7 (5) =00 ()]s
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t
_ . 2
+ cen max, |7 (Guw)H/T (HU (S)Hir;nw) + HUO(S)HHl(Q)>dS
t
+ cgp max, |7 (ow)]| / (k1(s) + K3(s))ds

t
wezn [ (0@ o) + 0G50 0 )

where £(0yw) = 8+]6(0sw)|. By Lemma 5.1 and Lemma 5.2 we find that there exists
a positive constant ¢ = o(7,w, T), independent of e, such that for all ¢ € [r, 7+ T,
(I1+ max £(0,w))T
oo () = @)y, < € el o7 = 6°5
03 + o=

c(l1+ max 0, )T
+ oene ( VE[T,T+T]€( v)

T+T
+ / (/{%(s) + ﬁg(s))ds

2
N

T+T
[ UGy + (5. B s (93)
Notice that, for all t € [r, 7 + T1,

[ (¢, 7w, ¢%) — u(t, 7,0, 6°) I3/

< fnaxT] | T (0,12 |05 (t, Ty w0, T~ H(0,w) %) — 0O (t, 7,0, T~ H(0,w)0°| 3,
ve|T, T+

which together with (93) implies the desired results. O

The next result is concerned with uniform compactness of attractors with respect
to €.

Lemma 5.4. Assume that (8)-(11), (39) and (43) hold. If ¢, — 0 and u" €
A, (T,w), then there exist a subsequence of (u™)nen, again denoted by (u™)nen,
and u € H*(Q) such that

1 En __ —
nh_{{.lo [ ull 10y = 0-

Proof. Take a sequence ¢, — oco. By the invariance of A, there exists ¢°» €
A, (T —tn,0_4 w) such that

u = O, (tna T —1n, o—tnwa ¢En) . (94)

By Lemma 4.1, we have ¢*» € K (1 — t,,0_;,w) € D;. Since €, — 0 and ¢, — oo,
By Lemma 3.5, for any n > 0, there exists a large enough N; € N such that for all
n Z N17

HQ‘?\?l uan (TV T = t’na 077'0‘)7 QSEn)HHl(O) S T’ (95)
By Lemma 3.2, we have
HP;;;UE” (1,7 = tn, 07w, ") 51 (0) < M. (96)

It follows from (95) and (96) that (u®" (7,7 — t5, 0_rw, $°"))nen is precompact in
H'Y(0O). Since the estimate (55) holds, there exists v in H!(Q) and a subsequence
of (u°")nen, again denoted by (u"),en, such that

lim [[u®" — ul| 1 o) = 0. (97)

n— oo

This completes the proof. O

Now we are in a position to prove the main result of this paper.
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Theorem 5.5. Assume that (8)-(11), (39), (43), and (89)-(90) hold. The attrac-
tors A. are upper-semicontinuous at € = 0, that is, for every T € R and w € Q,

gl_rf(l) distHl(o) (Ae (7'7W) Ao (Ta W)) =0.

Proof. Given 7 € R and w € Q, by the invariance of A, and (55) we find that there
exists g > 0 such that

Hu||%1€1(o) < L(r,w) forall 0<e<eg and u € A (7,w), (98)

where L(7,w) is the positive constant given by the right-hand side of (55) which is
independent of e. If the theorem is not true, there exist 6 > 0, a sequence (€, )nen of
positives constants, £, — 0, and a sequence (2, )nen, 2n € Ae, (T,w) for all n € N|
such that
distg1(0) (2n, Ao (T,w)) > forall neN. (99)
By Lemma 5.4 there exists 2z, in H!(Q) and a subsequence of (2,,)nen, again denoted
by (2n)nen, such that
nhﬁrréo 20 = 2|l g1 0y = 0 (100)
By the invariance property of the attractor A, (7,w), for every t > 0 there exists
yl € A, (T —t,0_4w) such that
zn = 0o, (6,7 — 1,0 4w, L) . (101)

By Lemma 5.4 again there exists y% in H'(Q) and a subsequence of (y!,)nen, again
denoted by (! ),en, such that

Jim [y, = yZ|[ ;2 ) = 0. (102)

It follows from Theorem 5.3 that for every ¢t > 0,
nli}rgo D, (6,7 —t,0_4w,yh) =Po (t, 7 —t,0_w,yl) in N (103)
By (100), (101), (103) and uniqueness of limits we obtain
2o =@ (t, 7 —t,0_4w,y!) in H'Y(O). (104)

Notice that A, (7 —t,0_w) C K(7 —t,0_4w) and ¢!, € A., (1 —t,0_,w) for all
n € N. Thus by (98) we have

lim sup HnyHHl(O) SIE (T =t 0-w)l oy S L (T —t,04w). (105)
n—oo
By (102) and (105) we get, for every ¢ > 0,
[0y < L7 = 1,610, (106

By Ky € Dy and the attraction property of Ay in Dy, we obtain from (104) and
(106) that

dist g1(g) (24, Ao (T,w))
= distgi(g) (<I>0 (t,T —t, G_tw,yi) , Ao (7, w))
< distyigy (Po (¢, 7 —t,0_w, Ko (T — t,0_4w)) , Ag (T,w))
—0, ast— oo. (107)
This implies that z. € Ag(7,w) since Ag(7,w) is compact. Therefore, we have
dist 1 (o) (zn, Ao (T,w)) < dist 1 (o) (2, 24) = 0,

a contradiction with (99). This completes the proof. O
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