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Abstract. We investigate the sharp time decay rates of the solution U for

the compressible Navier-Stokes system (1.1) in R3 to the constant equilibrium

(ρ̄ > 0, 0) when the initial data is a small smooth perturbation of (ρ̄, 0). Let Ũ

be the solution to the corresponding linearized equations with the same initial

data. Under a mild non-degenerate condition on initial perturbations, we show

that ‖U − Ũ‖L2 decays at least at the rate of (1 + t)−
5
4 , which is faster than

the rate (1+ t)−
3
4 for the Ũ to its equilibrium (ρ̄, 0). Our method is based on a

combination of the linear sharp decay rate obtained from the spectral analysis
and the energy estimates.

1. Introduction. In this paper, we are concerned with the sharp decay rates of
solutions to the Cauchy problem for the isentropic Navier-Stokes equations:

∂tρ+ div(ρu) = 0, (t, x) ∈ R+×R3,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = div T, (t, x) ∈ R+×R3,
lim
|x|→∞

ρ = ρ̄, lim
|x|→∞

u = 0, t ∈ R+,

(ρ, u)
∣∣
t=0

= (ρ0, u0), x ∈ R3,

(1.1)

which governs the motion of a isentropic compressible viscous fluid. The unknown
functions ρ and u represent the density and velocity of the fluid respectively. The
pressure p = p(ρ) is a smooth function in a neighborhood of a positive constant ρ̄ s.t.
p′(ρ̄) > 0. T is the viscosity stress tensor given by T = µ(∇u+ (∇u)t) + ν(div u)I
with I the identity matrix. We assume that the constant viscosity coefficients µ > 0
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and ν satisfy ν + 2
3µ > 0. Throughout this article, by optimal time decay rate, we

refer to the best possible decay rate in upper bound as many literatures, and the
sharp time decay rate includes the best possible upper and lower bounds.

Using the classical spectral method, the optimal time decay rate (upper bound)
of the linearized equations of the isentropic Navier-Stokes equations are well known.
One may then expect that the small solution of the nonlinear equations (1.1) have
the same decay rate as the linear one. Our work is devoted to proving the sharp
time decay rate (for both upper and lower bound) for the nonlinear system.

In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed
analysis of the solution to a class of hyperbolic-parabolic system through point-
wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional
Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the Hs global ex-
istence and time-decay rate of strong solutions with the initial perturbation small
in Hs ∩L1 are obtained in whole space first by A. Matsumura and T. Nishida [17],
[18]. When the small initial perturbation belongs to H3 only, using a weighted

energy method, A. Matsumura [16] showed the time-decay rate (1 + t)−
3
4 of up-

per bound in L∞-norm. Since then, there are concrete development on the upper
bound time-decay estimates: the optimal Lp (with 2 ≤ p ≤ ∞) upper bound decay
rate was proved by G. Ponce [19], combining the spectral analysis on linearized sys-
tem and the energy method for small initial perturbation in L1. For the isentropic
Navier-Stokes equations with artificial viscosity, D. Hoff and K. Zumbrun [6], [7]
studied the Green’s function and derived the Lp (1 ≤ p ≤ ∞) upper bound time
decay rate of diffusive waves for the small initial perturbation belongs to Hm ∩ L1

with m ≥ 4. Liu and Wang [14] studied the point-wise estimates of the Green func-
tion of the linearized isentropic Navier-Stokes system in 3D and then analyzed the
coupling of nonlinear diffusion waves, obtained the optimal (upper bound) decay
rate. These results were further extended to the exterior problem [12], [11], or the
half space problem [9], [10], [8]. Recently, Guo and Wang in [5] developed a new
general energy method for proving the optimal (upper bound) time decay rates of
the solutions to the dissipative equations in the whole space, using a family of scaled
energy estimates with minimum derivative counts and interpolations among them
without linear decay analysis.

When additional external force is taken into account, the external force does
affect the long time behavior of solutions. The upper bound of time decay rates
were studied intensively, see for instance [1] and [2] on unbounded domain, [22],
[23] on the convergence of the non-stationary flow to the corresponding steady flow

when the initial date are small in H3 ∩ L 6
5 , and [4], [3], on the optimal Lp − Lq

upper bound decay rates for potential forces.
The main goal of current paper is to establish the sharp decay rate, on both

upper and lower bounds, to the solutions of (1.1) using relatively simple energy
method. We remark that similar results had been pursued by M. Schonbek [20],
[21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13]
for isentropic Navier-Stokes-Poisson system. Although they share the same spirit
in obtaining the lower bound decay rates, the feature of the spectrum near zero
exhibits quite different behaviors, leading to different analysis. For instance, we
explored the elegant structure of the higher order nonlinear terms of Navier-Stokes,
when choosing conservative variables: density and momentum. The conservative
form of the sharp equations provided a natural derivative structure in these terms,
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leading to the possibility of a faster decay rate estimate. We will make a more
detailed comparison later in this paper.

Define n = ρ − ρ̄, and let m = ρu = (n + ρ̄)u be the momentum. We rewrite
(1.1) as

∂tn+ divm = 0, (t, x) ∈ R+×R3,

∂tm+ c2∇n− µ̄4m− (µ̄+ ν̄)∇divm = F, (t, x) ∈ R+×R3,
lim
|x|→∞

n = 0, lim
|x|→∞

m = 0, t ∈ R+,

(n,m)
∣∣
t=0

= (ρ0 − ρ̄, ρ0u0), x ∈ R3,

(1.2)

where µ̄ = µ
ρ̄ , ν̄ = ν

ρ̄ , c =
√
p′(ρ̄) > 0 is the sound speed, and

F =− div
{m⊗m
n+ ρ̄

+ µ̄∇(
nm

n+ ρ̄
)
}

−∇
{

(µ̄+ ν̄) div(
nm

n+ ρ̄
) + (p(n+ ρ̄)− p(ρ̄)− c2n)

}
.

It is this structure of F that plays an important role in our analysis.
Our aim is to obtain a clear picture of the large time behavior of U = (n,m) in

L2(R3) when U0 = (ρ0− ρ̄, ρ0u0) is sufficiently smooth and small. We introduce the
following initial value problem of the linearized Navier-Stokes system corresponding
to (1.2):

∂tñ+ div m̃ = 0, (t, x) ∈ R+×R3,

∂tm̃+ c2∇ñ− µ̄4m̃− (µ̄+ ν̄)∇div m̃ = 0, (t, x) ∈ R+×R3,
lim
|x|→∞

ñ = 0, lim
|x|→∞

m̃ = 0, t ∈ R+,

(ñ, m̃)
∣∣
t=0

= (ρ0 − ρ̄, ρ0u0), x ∈ R3,

(1.3)

where µ̄ = µ
ρ̄ , ν̄ = ν

ρ̄ , c =
√
p′(ρ̄). It is known that the L2-norm of Ũ = (ñ, m̃)

decays at the optimal upper bound rate (1 + t)−
3
4 for generic small initial data, see

for instance [18]. A detailed proof on the optimal lower and upper bound rate will

be given in the section 3 of this paper. In section 4, we prove that ‖(U − Ũ)(·, t)‖L2

decays at a faster rate than ‖Ũ(·, t)‖L2 , under some reasonable conditions on the

initial data. Therefore, ‖U(·, t)‖L2 shares the sharp decay rate of (1 + t)−
3
4 .

Notation. For a . b, we mean that there is a uniform constant C, which may be
different on different lines, such that a ≤ Cb. And a ≈ b stands for a . b and b . a.

We now state our main result.

Theorem 1.1. Assume that (n0,m0) ∈ L1(R3) ∩ H3(R3), δ0 =:
‖(n0,m0)‖L1(R3)∩H3(R3) is sufficiently small, and∫

R3

(n0,m0)dx 6= 0, (1.4)

then there is a unique global classical solution Ũ = (ñ, m̃) ∈ C([0,∞);H3(R3)) of
the linearized system (1.3) satisfying for some positive constant C

C−1(1 + t)−
3
4−

k
2 ≤ ‖∇kñ(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2 , k = 0, 1, 2, 3,

C−1(1 + t)−
3
4−

k
2 ≤ ‖∇km̃(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2 , k = 0, 1, 2, 3,
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and the initial value problem (1.2) has a unique solution U = (n,m) ∈ C([0,∞);
H3(R3)). Moreover, let nh = n− ñ and mh = m− m̃, then it holds that

‖∇k(nh,mh)(t)‖L2(R3) . δ2
0(1 + t)−

5
4−

k
2 , k = 0, 1, 2,

‖∇3mh(t)‖L2(R3) . δ2
0(1 + t)−

11
4 , ‖∇3nh(t)‖L2(R3) . δ0(1 + t)−

7
4 .

As a consequence, there exists a positive constant C1 such that

C−1
1 (1 + t)−

3
4−

k
2 ≤‖∇kn(t)‖L2(R3) ≤ C1(1 + t)−

3
4−

k
2 , k = 0, 1, 2,

C−1
1 (1 + t)−

3
4−

k
2 ≤‖∇km(t)‖L2(R3) ≤ C1(1 + t)−

3
4−

k
2 , k = 0, 1, 2, 3.

Remark 1.1. We remark that this theorem is valid under the condition (1.4) which
is important in the lower bound estimate to the linearized problem. When (1.4)
fails, the decay rate of the linearized system (1.3) depends on the order of the degen-
eracy of moments. Assume (n0,m0) ∈ L1 ∩H3 and belong to certain appropriate
weighted Lp spaces, similar situation happened also in the incompressible Navier-
Stokes equations, c.f. [20], [21]. We also note that our condition (1.4) is weaker than
those in most of previous results where the differentiability of Fourier transform of
initial disturbance is required in general.

Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of
the linearized isentropic Navier-Stokes-Poisson system, they only require |n̂0(ξ)| >
c0 > 0 for |ξ| � 1 with c0 a constant due to the special structure of the spectrum
from the help of the Poisson term. This condition is proposed in Fourier space,
similar to (1.4) in some sense. In our case, the spectrum is different and the different
structure leads to different sharp decay rates.

2. Basic energy estimates. In what follows, we will set n = ρ − ρ̄, u = u − 0.
We rewrite (1.1) in the perturbation form as

∂tn+ ρ̄div u = −ndiv u− u · ∇n,
∂tu+ γρ̄∇n− µ̄4u− (µ̄+ ν̄)∇div u

= −u · ∇u− µ̄f(n)4u− (µ̄+ ν̄)f(n)∇ div u− g(n)∇n,
lim
|x|→∞

n = 0, lim
|x|→∞

u = 0,

(n, u)
∣∣
t=0

= (ρ0 − ρ̄, u0),

(2.1)

where µ̄ = µ
ρ̄ , ν̄ = ν

ρ̄ , γ = p′(ρ̄)
ρ̄2 , and the nonlinear functions f and g are defined by

f(n) :=
n

n+ ρ̄
, g(n) :=

p′(n+ ρ̄)

n+ ρ̄
− p′(ρ̄)

ρ̄
. (2.2)

We assume that there exist a time of existence T > 0 and sufficiently small δ > 0,
such that a priori estimate

‖n(t)‖H3 + ‖u(t)‖H3 ≤ δ, (2.3)

holds for any t ∈ [0, T ]. First of all, by (2.3) and Sobolev’s inequality, we obtain
that

ρ̄

2
≤ n+ ρ̄ ≤ 2ρ̄.

Hence, we immediately have

|f(n)| , |g(n)| ≤ C|n|,
∣∣∇kf(n)

∣∣, ∣∣∇kg(n)
∣∣ ≤ C ∀k ∈ N+, (2.4)

where f(n) and g(n) are nonlinear functions of n defined by (2.2).
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Next, we begin with the energy estimates including n and u themselves. The
following results is essentially due to A. Matsumura and T. Nishida [17], [18].

Theorem 2.1. Assume that (n0, u0) ∈ H3(R3), then there exists a constant δ0 > 0
such that if

‖n0‖H3 + ‖u0‖H3 ≤ δ0,

then the problem (2.1) admits a unique global solution (n(t), u(t)) satisfying that for
all t ≥ 0,

‖n(t)‖2H3 + ‖u(t)‖2H3 +

∫ t

0

(
‖∇n(τ)‖2H2 + ‖∇u(τ)‖2H3

)
dτ ≤ C

(
‖n0‖2H3 + ‖u0‖2H3

)
,

where C is a positive constant independent of time.

The proof of this theorem is divided into several subsections.

2.1. Energy estimate for 0 ≤ k ≤ 3. For k = 0, multiplying the first equation in
(2.1) by γn and the second equation in (2.1) by u, summing up and then integrating
the result over R3 by parts. By virtue of Hölder’s inequality, Sobolev’s inequality
and the fact (2.4), we obtain that

1

2

d

dt

∫
R3

(
γ|n|2 + |u|2

)
dx+

∫
R3

(
µ̄|∇u|2 + (µ̄+ ν̄)|div u|2

)
dx

=

∫
R3

γ (−ndiv u− u · ∇n)n−
(
u · ∇u+ µ̄f(n)4u

+ (µ̄+ ν̄)f(n)∇div u+ g(n)∇n
)
· udx

.‖n‖L3‖∇u‖L2‖n‖L6 + (‖u‖L3‖∇u‖L2 + ‖n‖L3‖∇n‖L2) ‖u‖L6

+ (‖u‖L∞‖∇n‖L2 + ‖n‖L∞‖∇u‖L2) ‖∇u‖L2

. (‖n‖L3 + ‖u‖L3 + ‖n‖L∞ + ‖u‖L∞)
(
‖∇n‖2L2 + ‖∇u‖2L2

)
.

(2.5)

Now for 1 ≤ k ≤ 3, applying ∇k to (2.1) and then multiplying the first equation by
γ∇kn and the second equation by ∇ku, summing up and integrating over R3. For
k = 1 we have

1

2

d

dt

∫
R3

(
γ|∇n|2 + |∇u|2

)
dx+

∫
R3

(
µ̄|∇2u|2 + (µ̄+ ν̄)|∇ div u|2

)
dx

. (‖n‖L∞ + ‖u‖L∞ + ‖∇n‖L∞ + ‖∇u‖L∞)
(
‖∇n‖2L2 + ‖∇u‖2L2 + ‖∇2u‖2L2

)
.

(2.6)

For k = 2 we have

1

2

d

dt

∫
R3

(
γ|∇2n|2 + |∇2u|2

)
dx+

∫
R3

(
µ̄|∇3u|2 + (µ̄+ ν̄)|∇2 div u|2

)
dx

. (‖n‖L∞ + ‖u‖L∞ + ‖∇n‖L∞ + ‖∇u‖L∞)
(
‖∇2n‖2L2 + ‖∇2u‖2L2 + ‖∇3u‖2L2

)
.

(2.7)
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For k = 3 we have

1

2

d

dt

∫
R3

(
γ|∇3n|2 + |∇3u|2

)
dx+

∫
R3

(
µ̄|∇4u|2 + (µ̄+ ν̄)|∇3 div u|2

)
dx

. (‖n‖L∞ + ‖u‖L∞ + ‖∇n‖L∞ + ‖∇u‖L∞)
(
‖∇3n‖2L2 + ‖∇3u‖2L2 + ‖∇4u‖2L2

)
+ ‖∇n‖L3‖∇4u‖L2‖∇2n‖L6 + ‖∇u‖L3‖∇4u‖L2‖∇2u‖L6

+ ‖∇2n‖L3

(
‖∇3n‖L2 + ‖∇4u‖L2

)
‖∇2u‖L6 .

(2.8)

Summing up the above estimates, noting that δ > 0 is small, we obtain that

d

dt

∑
0≤k≤3

(
γ‖∇kn‖2L2 + ‖∇ku‖2L2

)
+ C1

∑
1≤k≤4

‖∇ku‖2L2 ≤ C2δ
∑

1≤k≤3

‖∇kn‖2L2 .

(2.9)

2.2. Recover the dissipation estimates for n. For 0 ≤ k ≤ 2, applying ∇k
to the second equation in (2.1) and then multiplying by ∇k+1n. The key idea is
to integrate by parts in the t-variable and to use the continuity equation. Thus
integrating the results by parts for both the t- and x-variables, we obtain for k = 0
that

d

dt

∫
R3

u · ∇ndx+ γρ̄

∫
R3

|∇n|2dx

.‖∇u‖2L2 + ‖∇n‖L2‖∇2u‖L2 + (‖n‖L∞ + ‖u‖L∞)
(
‖∇n‖2L2 + ‖∇u‖2L2

)
,

(2.10)

for k = 1, we get

d

dt

∫
R3

∇u · ∇2ndx+ γρ̄

∫
R3

|∇2n|2dx

.‖∇2u‖2L2 + ‖∇2n‖L2‖∇3u‖L2 + (‖(n, u)‖L∞ + ‖(∇n,∇u)‖L∞)

×
(
‖∇n‖2L2 + ‖∇2n‖2L2 + ‖∇2u‖2L2

)
,

(2.11)

and for k = 2 we have

d

dt

∫
R3

∇2u · ∇3ndx+ γρ̄

∫
R3

|∇3n|2dx

.‖∇3u‖2L2 + ‖∇3n‖L2‖∇4u‖L2 + (‖(n, u)‖L∞ + ‖(∇n,∇u)‖L∞)

×
(
‖∇2n‖2L2 + ‖∇2u‖2L2 + ‖∇3n‖2L2 + ‖∇3u‖2L2

)
.

(2.12)

Plugging the above estimates, using the smallness of δ > 0, we obtain that

d

dt

∑
0≤k≤2

∫
R3

∇ku · ∇k+1ndx+ C3

∑
1≤k≤3

‖∇kn‖2L2 ≤ C4

∑
1≤k≤4

‖∇ku‖2L2 . (2.13)

Proof of Theorem 2.1. Multiplying (2.13) by 2C2δ
C3

, adding it with (2.9), with the
help of smallness of δ > 0, we deduce that there exists a constant C5 > 0 such that

d

dt

{ ∑
0≤k≤3

(
γ‖∇kn‖2L2 + ‖∇ku‖2L2

)
+

2C2δ

C3

∑
0≤k≤2

∫
R3

∇ku · ∇k+1ndx

}

+ C5

{ ∑
1≤k≤3

‖∇kn‖2L2 +
∑

1≤k≤4

‖∇ku‖2L2

}
≤ 0.

(2.14)
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Next, we define E(t) to be C−1
5 times the expression under the time derivative in

(2.14). Then we may write (2.14) as

d

dt
E(t) + ‖∇n(t)‖2H2 + ‖∇u(t)‖2H3 ≤ 0. (2.15)

Observe that since δ is small, then there exists a constant C6 > 0 such that

C−1
6

(
‖n(t)‖2H3 + ‖u(t)‖2H3

)
≤ E(t) ≤ C6

(
‖n(t)‖2H3 + ‖u(t)‖2H3

)
.

Then integrating (2.15) directly in time, we get

sup
0≤t≤T

(
‖n(t)‖2H3 + ‖u(t)‖2H3

)
+ C6

∫ T

0

(
‖∇n(τ)‖2H2 + ‖∇u(τ)‖2H3

)
dτ

≤C2
6

(
‖n0‖2H3 + ‖u0‖2H3

)
.

Using a standard continuity argument along with classical local wellposedness the-
ory, this closes the a priori assumption (2.3) if we assume ‖n0‖H3 + ‖u0‖H3 ≤ δ0 is
sufficiently small. We can then extend the solution globally in time and complete
the proof of Theorem 2.1.

3. Spectral analysis of the semigroup. In this section, we consider the initial
value problem for the linearized Navier-Stokes system

∂tñ+ div m̃ = 0, (t, x) ∈ R+×R3,

∂tm̃+ c2∇ñ− µ̄4m̃− (µ̄+ ν̄)∇ div m̃ = 0, (t, x) ∈ R+×R3,
lim
|x|→∞

ñ = 0, lim
|x|→∞

m̃ = 0, t ∈ R+,

(ñ, m̃)
∣∣
t=0

= (ρ0 − ρ̄, ρ0u0), x ∈ R3,

(3.1)

where µ̄ = µ
ρ̄ , ν̄ = ν

ρ̄ , c =
√
p′(ρ̄).

In terms of the semigroup theory for evolutionary equations, the solution (ñ, m̃)

of the linearized Navier-Stokes problem (3.1) can be expressed for Ũ = (ñ, m̃)t as

Ũt = BŨ, t ≥ 0, Ũ(0) = Ũ0,

which gives rise to

Ũ(t) = S(t)Ũ0 = etBŨ0, t ≥ 0,

where B is defined as

B =

(
0 −div
−c2∇ µ̄4+ (µ̄+ ν̄)∇div

)
.

What left is to analyze the differential operator B in terms of its Fourier expres-
sion A(ξ) and show the long time properties of the semigroup S(t). Applying the
Fourier transform to system (3.1), we have

∂t
̂̃
U(t, ξ) = A(ξ)

̂̃
U(t, ξ), t ≥ 0,

̂̃
U(0, ξ) =

̂̃
U0(ξ),

where ξ = (ξ1, ξ2, ξ3)t, and A(ξ) is defined as

A(ξ) =

(
0 −iξt
−c2iξ −µ̄|ξ|2I3×3 − (µ̄+ ν̄)ξ ⊗ ξ

)
.

The eigenvalues of the matrix A can be computed by

det(A(ξ)− λI) = −(λ+ µ̄|ξ|2)2(λ2 + (2µ̄+ ν̄)|ξ|2λ+ c2|ξ|2) = 0,

which implies

λ0 = −µ̄|ξ|2(double), λ1 = λ1(|ξ|), λ2 = λ2(|ξ|).
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The semigroup etA is expressed as

etA = eλ0tP0 + eλ1tP1 + eλ2tP2,

where the project operators Pi can be computed as

Pi =
∏
i 6=j

A(ξ)− λjI
λi − λj

.

By a direct computation, we can verify the exact expression for the Fourier trans-

form Ĝ(t, ξ) of Green’s function G(t, x) = etB as

Ĝ(t, ξ) = etA =

(
λ1e

λ2t−λ2e
λ1t

λ1−λ2
− iξ

t(eλ1t−eλ2t)
λ1−λ2

− c
2iξ(eλ1t−eλ2t)

λ1−λ2
e−λ0t(I − ξ⊗ξ

|ξ|2 ) + ξ⊗ξ
|ξ|2

λ1e
λ1t−λ2e

λ2t

λ1−λ2

)
=

(
N̂

M̂

)
.

Indeed, we can make the following decomposition for (ñ, m̃) = G ∗ Ũ0 aŝ̃n = N̂ · ̂̃U0 = (N̂ + N̂) · ̂̃U0, ̂̃m = M̂ · ̂̃U0 = (M̂+ M̂) · ̂̃U0,

where

N̂ =

(
λ1e

λ2t − λ2e
λ1t

λ1 − λ2
0

)
, N̂ =

(
0 − iξt(eλ1t − eλ2t)

λ1 − λ2

)
,

M̂ =

(
−c

2iξ(eλ1t − eλ2t)

λ1 − λ2
0

)
, M̂ =

(
0 e−λ0t(I − ξ ⊗ ξ

|ξ|2 ) +
ξ ⊗ ξ
|ξ|2

λ1e
λ1t − λ2e

λ2t

λ1 − λ2

)
.

We further decompose the Fourier transform N̂ , M̂ into low frequency term and
high frequency term below.

Define

N̂ = N̂1 + N̂2, N̂ = N̂1 + N̂2, M̂ = M̂1 + M̂2, M̂ = M̂1 + M̂2,

where (·)1 = χ(ξ)(·), (·)2 = (1−χ(ξ))(·), and χ(ξ) is a smooth cut off function such
that

χ(ξ) =

{
1, |ξ| ≤ R,
0, |ξ| ≥ R+ 1.

Then we have the following decomposition for (ñ, m̃) = G ∗ Ũ0 aŝ̃n = N̂ · ̂̃U0 = N̂1 ·
̂̃
U0 + N̂2 ·

̂̃
U0 = (N̂1 + N̂1) · ̂̃U0 + (N̂2 + N̂2) · ̂̃U0,̂̃m = M̂ · ̂̃U0 = M̂1 · Û0 + M̂2 ·
̂̃
U0 = (M̂1 + M̂1) · ̂̃U0 + (M̂2 + M̂2) · ̂̃U0.

(3.2)

To derive the long time decay rate of solution, we need to use accurate approxi-

mation to the Fourier transform Ĝ(t, x) of Green’s function for both lower frequency
and high frequency. In terms of the definition of the eigenvalues, we are able to
obtain that it holds for |ξ| ≤ η for some small positive constant η that

λ1 = −2µ̄+ ν̄

2
|ξ|2 +

i

2

√
4c2|ξ|2 − (2µ̄+ ν̄)2|ξ|4 = a+ bi,

λ2 = −2µ̄+ ν̄

2
|ξ|2 − i

2

√
4c2|ξ|2 − (2µ̄+ ν̄)2|ξ|4 = a− bi,

(3.3)

and we have

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
= e−

1
2 (2µ̄+ν̄)|ξ|2t

[
cos(bt) +

1

2
(2µ̄+ ν̄)|ξ|2 sin(bt)

b

]
∼ O(1)e−

1
2 (2µ̄+ν̄)|ξ|2t, |ξ| ≤ η,
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λ1e
λ1t − λ2e

λ2t

λ1 − λ2
= e−

1
2 (2µ̄+ν̄)|ξ|2t

[
cos(bt)− 1

2
(2µ̄+ ν̄)|ξ|2 sin(bt)

b

]
∼ O(1)e−

1
2 (2µ̄+ν̄)|ξ|2t, |ξ| ≤ η,

eλ1t − eλ2t

λ1 − λ2
= e−

1
2 (2µ̄+ν̄)|ξ|2t sin(bt)

b
∼ O(1)

1

|ξ|
e−

1
2 (2µ̄+ν̄)|ξ|2t, |ξ| ≤ η,

where

b =
1

2

√
4c2|ξ|2 − (2µ̄+ ν̄)2|ξ|4 ∼ c|ξ|+O(|ξ|3), |ξ| ≤ η.

For the high frequency |ξ| ≥ η, we are also able to obtain that it holds for |ξ| ≥ η
that

λ1 = −2µ̄+ ν̄

2
|ξ|2 − 1

2

√
(2µ̄+ ν̄)2|ξ|4 − 4c2|ξ|2 = a− b,

λ2 = −2µ̄+ ν̄

2
|ξ|2 +

1

2

√
(2µ̄+ ν̄)2|ξ|4 − 4c2|ξ|2 = a+ b,

(3.4)

and we have

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
=

1

2
e(a+b)t[1 + e−2bt]− a

2b
e(a+b)t[1− e−2bt] ∼ O(1)e−R0t, |ξ| ≥ η,

λ1e
λ1t − λ2e

λ2t

λ1 − λ2
=
a+ b

2b
e(a+b)t[1− e−2bt] + e(a−b)t ∼ O(1)e−R0t, |ξ| ≥ η,

eλ1t − eλ2t

λ1 − λ2
=

1

2b
e(a+b)t[1− e−2bt] ∼ O(1)

1

|ξ|2
e−R0t, |ξ| ≥ η,

where

b =
1

2

√
(2µ̄+ ν̄)2|ξ|4 − 4c2|ξ|2 ∼ 1

2
(2µ̄+ ν̄)|ξ|2 − 2c2

2µ̄+ ν̄
+O(|ξ|−2), |ξ| ≥ η.

Here R0, η are some fixed positive constants.

4. Time decay rate for linear semigroup. In this section, we apply the spectral
analysis to the semigroup for the linearized Navier-Stokes system. We will establish
the L2 and Lp (2 ≤ p ≤ ∞) time decay rate of the global solutions for the linearized
Navier-Stokes system.

4.1. L2-time decay rate. With the help of the formula for Green’s function in
Fourier space and the asymptotic analysis on its elements, we are able to establish
the L2 time decay rate. Indeed, we have the L2-time decay rate of the global strong
solution to the problem for the linearized Navier-Stokes system as follows.

Proposition 4.1. Let U0 = (n0,m0) ∈ L1(R3) ∩ H l(R3) with l ≥ 3, then (ñ, m̃)
solves the linearized Navier-Stokes system (3.1) and satisfies for 0 ≤ k ≤ l that

‖∇k(ñ, m̃)(t)‖L2(R3) ≤ C(1 + t)−
3
4−

k
2

(
‖U0‖L1(R3) + ‖∇kU0‖L2(R3)

)
,

where C is a positive constant independent of time.
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Proof. A straightforward computation together with the formula of the Green’s

function Ĝ(t, ξ) gives

̂̃n(t, ξ) =
λ1e

λ2t − λ2e
λ1t

λ1 − λ2
n̂0 −

iξ · m̂0(eλ1t − eλ2t)

λ1 − λ2

∼
{
O(1)e−

1
2 (2µ̄+ν̄)|ξ|2t(|n̂0|+ |m̂0|), |ξ| ≤ η,

O(1)e−R0t(|n̂0|+ |m̂0|), |ξ| ≥ η,

̂̃m(t, ξ) = −c
2iξ(eλ1t − eλ2t)

λ1 − λ2
n̂0 + e−λ0tm̂0 +

(
λ1e

λ1t − λ2e
λ2t

λ1 − λ2
− e−λ0t

)
ξ(ξ · m̂0)

|ξ|2

∼
{
O(1)e−µ̄|ξ|

2t(|n̂0|+ |m̂0|), |ξ| ≤ η,
O(1)e−R0t(|n̂0|+ |m̂0|), |ξ| ≥ η,

here and below, R0, η are some fixed positive constants. Therefore, we have the
L2-decay rate for (ñ, m̃) as

‖(̂̃n, ̂̃m)(t)‖2L2(R3)

=

∫
|ξ|≤η

|(̂̃n, ̂̃m)(t, ξ)|2dξ +

∫
|ξ|≥η

|(̂̃n, ̂̃m)(t, ξ)|2dξ

.
∫
|ξ|≤η

e−2µ̄|ξ|2t(|n̂0|2 + |m̂0|2)dξ +

∫
|ξ|≥η

e−2R0t(|n̂0|2 + |m̂0|2)dξ

. (1 + t)−
3
2 ‖(n0,m0)‖2L1(R3)∩L2(R3).

And the L2-decay rate on the derivatives of (ñ, m̃) as

‖(∇̂kñ, ∇̂km̃)(t)‖2L2(R3)

=

∫
|ξ|≤η

|ξ|2k|(̂̃n, ̂̃m)(t, ξ)|2dξ +

∫
|ξ|≥η

|ξ|2k|(̂̃n, ̂̃m)(t, ξ)|2dξ

.
∫
|ξ|≤η

e−2µ̄|ξ|2t|ξ|2k(|n̂0|2 + |m̂0|2)dξ +

∫
|ξ|≥η

e−2R0t|ξ|2k(|n̂0|2 + |m̂0|2)dξ

. (1 + t)−
3
2−k
(
‖(n0,m0)‖2L1(R3) + ‖(∇kn0,∇km0)‖2L2(R3)

)
.

The proof of the Proposition 4.1 is completed.

It should be noted that the L2-time decay rates derived above are optimal.

Proposition 4.2. Let U0 = (n0,m0) ∈ L1(R3) ∩H l(R3) with l ≥ 3, assume that
Mn =

∫
R3 n0(x)dx and Mm =

∫
R3 m0(x)dx satisfies that Mn, Mm are at least not

all zeros, then the solution (ñ, m̃) of the linearized Navier-Stokes system (3.1) given
by Proposition 4.1 satisfies for 0 ≤ k ≤ l

C−1(1 + t)−
3
4−

k
2 ≤ ‖∇kñ(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2 ,

C−1(1 + t)−
3
4−

k
2 ≤ ‖∇km̃(t)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2 ,

where C is a positive constant independent of time.

Proof. We only show the case of k = 0 for simplicity, the argument applies to the

other orders of derivatives. From the formula of the Green’s function Ĝ(t, ξ), we
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deduce that̂̃n(t, ξ)

=
λ1e

λ2t − λ2e
λ1t

λ1 − λ2
n̂0 −

iξ · m̂0(eλ1t − eλ2t)

λ1 − λ2

= e−
1
2

(2µ̄+ν̄)|ξ|2t
[
cos(bt)n̂0 − iξ · m̂0

sin(bt)

b

]
+ e−

1
2

(2µ̄+ν̄)|ξ|2t
[

1

2
(2µ̄+ ν̄)|ξ|2 sin(bt)

b
n̂0

]
= T1 + T2, for |ξ| ≤ η,

̂̃m(t, ξ)

= −c
2iξ(eλ1t − eλ2t)

λ1 − λ2
n̂0 + e−λ0tm̂0 +

(
λ1e

λ1t − λ2e
λ2t

λ1 − λ2
− e−λ0t

)
ξ(ξ · m̂0)

|ξ|2

=

[
e−

1
2 (2µ̄+ν̄)|ξ|2t

[
cos(bt)

ξ(ξ · m̂0)

|ξ|2
− c2iξ sin(bt)

b
n̂0

]
+ e−µ̄|ξ|

2t

[
m̂0 −

ξ(ξ · m̂0)

|ξ|2

] ]
− e− 1

2 (2µ̄+ν̄)|ξ|2t
[

1

2
(2µ̄+ ν̄)|ξ|2 sin(bt)

b

ξ(ξ · m̂0)

|ξ|2

]
= S1 + S2, for |ξ| ≤ η,

here and below, η is a sufficiently small but fixed constant.
It is easy to check that

‖̂̃n(t, ξ)‖2L2 =

∫
|ξ|≤η

|̂̃n(t, ξ)|2dξ +

∫
|ξ|≥η

|̂̃n(t, ξ)|2dξ

≥
∫
|ξ|≤η

|T1 + T2|2dξ ≥
∫
|ξ|≤η

1

2
|T1|2 − |T2|2dξ.

(4.1)

We then calculate that∫
|ξ|≤η

|T2|2dξ . ‖n̂0‖2L∞

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t|ξ|4
(

sin(bt)

b

)2

dξ

. ‖n̂0‖2L∞

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t|ξ|2dξ . (1 + t)−
5
2 ‖n0‖2L1 .

(4.2)

Since n0(x) ∈ L1 implies n̂0(ξ) ∈ C(R3). If n̂0(0) =

∫
R3

n0(x)dx 6= 0, we deduce

that n̂0(ξ) 6= 0 for |ξ| ≤ η when η is sufficiently small. One finds that, when Mn 6= 0,

|n̂0(ξ)|2 ≥ 1

C

∣∣∣∣∫
R3

n0(x)dx

∣∣∣∣2 ≥ M2
n

C
, for |ξ| ≤ η.

For m̂0, a similar argument yields that, when Mm 6= 0, we have

|ξ · m̂0(ξ)|2

|ξ|2
≥ |ξ ·Mm|2

C|ξ|2
, for |ξ| ≤ η.

When Mn 6= 0, Mm 6= 0, with the help of the above analysis, using b ∼ c|ξ|+O(|ξ|3)
for |ξ| ≤ η, we obtain that∫

|ξ|≤η
|T1|2dξ

≥ M2
n

C

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t cos2(bt)dξ +
1

C

∫
|ξ|≤η

|ξ ·Mm|2

b2
e−(2µ̄+ν̄)|ξ|2t sin2(bt)dξ
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≥
min{M2

n,
M2
m

3c2 }
C

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t( cos2(bt) + sin2(bt)
)
dξ

≥ C1

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2tdξ

≥ C−1(1 + t)−
3
2 .

(4.3)

If Mn 6= 0, Mm = 0, and by the conituinity of m̂0 near ξ = 0, there exists a small
enough constant ε such that ε→ 0 as ξ → 0, and

|m̂0(ξ)|2 < ε, for |ξ| ≤ η.

We thus use the help of spherical coordinates and the change of variables r = |ξ|
√
t

to obtain that∫
|ξ|≤η

|T1|2dξ

≥ M2
n

C

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t cos2(bt)dξ − ε

Cc2

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t sin2(bt)dξ

≥ M2
n

C
t−

3
2

∫ η
√
t

0

e−(2µ̄+ν̄)r2 cos2(cr
√
t)r2dr − ε

Cc2
t−

3
2

∫ η
√
t

0

e−(2µ̄+ν̄)r2 sin2(cr
√
t)r2dr

≥ M2
n

C
t−

3
2

[ cηt
π

]−1∑
k=0

∫ kπ+π
4

c
√
t

kπ
c
√
t

e−(2µ̄+ν̄)r2 cos2(cr
√
t)r2dr − ε

Cc2
(1 + t)−

3
2

≥ M2
n

2C
t−

3
2

[ cηt
π

]−1∑
k=0

∫ kπ+π
4

c
√
t

kπ
c
√
t

e−(2µ̄+ν̄)r2r2dr − ε

Cc2
(1 + t)−

3
2

≥ C−1
1 (1 + t)−

3
2 − C−1

2 ε(1 + t)−
3
2

. ≥ C−1(1 + t)−
3
2

(4.4)

In the case of Mn = 0, Mm 6= 0, we can use a similar argument to obtain that∫
|ξ|≤η

|T1|2dξ

≥ − ε

C

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t cos2(bt)dξ +
M2
m

3Cc2

∫
|ξ|≤η

e−(2µ̄+ν̄)|ξ|2t sin2(bt)dξ

≥ C−1(1 + t)−
3
2 .

(4.5)

Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the
lower bound of the time decay rate for ñ(t, x) as

‖ñ(t, x)‖2L2 = ‖̂̃n(t, ξ)‖2L2 ≥ C−1(1 + t)−
3
2 .

The lower bound of the time decay rate for m̃(t, x) can be shown in a similar
fashion. It is not difficult to derive that

‖ ̂̃m(t, ξ)‖2L2 ≥
∫
|ξ|≤η

1

2
|S1|2 − |S2|2dξ, (4.6)

then we find that ∫
|ξ|≤η

|S2|2dξ . (1 + t)−
5
2 ‖m0‖2L1 . (4.7)
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We then calculate that∫
|ξ|≤η

|S1|2dξ

≥
{
c4M2

n

C

∫
|ξ|≤η

|ξ|2

b2
e−(2µ̄+ν̄)|ξ|2t sin2(bt)dξ

+
1

C

∫
|ξ|≤η

|ξ ·Mm|2

|ξ|2
e−(2µ̄+ν̄)|ξ|2t cos2(bt)dξ

}
+

{∫
|ξ|≤η

e−
1
2 (4µ̄+ν̄)|ξ|2t cos(bt)

ξ(ξ · m̂0)

|ξ|2

(
m̂0 −

ξ(ξ · m̂0)

|ξ|2

)
dξ

}
= J1 + J2.

A direct computation gives rise to

J1 ≥ C−1(1 + t)−
3
2 , J2 = 0. (4.8)

Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of
the time decay rate for m̃(t, x) as

‖m̃(t, x)‖2L2 = ‖ ̂̃m(t, ξ)‖2L2 ≥ C−1(1 + t)−
3
2 .

Then the proof of Proposition 4.2 is completed.

4.2. Lp-time decay rate. In this subsection, we establish the following Lp-time
decay rate of the global strong solution to the linearized Navier-Stokes system with
p ∈ [2,+∞].

Proposition 4.3. Let U0 = (n0,m0) ∈ L1(R3) ∩W l,p(R3) with l ≥ 3, then (ñ, m̃)
solves the linearized Navier-Stokes system (3.1) and satisfies for 0 ≤ k ≤ l and
p ∈ [2,+∞] that

‖∇k(ñ, m̃)(t)‖Lp(R3) ≤ C(1 + t)−
3
2 (1− 1

p )− k2
(
‖U0‖L1(R3) + ‖∇kU0‖Lp(R3)

)
,

where C is a positive constant independent of time.

To prove Proposition 4.3, the following two lemmas in [6] are helpful.

Lemma 4.1. Let n ≥ 1 and assume that f̂(ξ) ∈ L∞ ∩ Cn+1(Rn /{0}), with

|∇αξ f̂(ξ)| ≤ C ′
{
|ξ|−|α|+σ1 , |ξ| ≤ R, |α| = n,
|ξ|−|α|−σ2 , |ξ| ≥ R, |α| = n− 1, n, n+ 1,

where σ1, σ2 > 0 and n > 2− 2σ2. Then f̂(ξ) is continuous at 0 and ∞, and

f = m1 +m2δ,

where m1 ∈ L1(Rn) satisfies ‖m1‖L1(Rn) ≤ C(C ′), m2 is the constant

m2 = (2π)−
n
2 lim
|ξ|→∞

f̂(ξ),

and δ is the Dirac distribution. In particular, f̂(ξ) is a strong Lp multiplier, 1 ≤
p ≤ ∞, in the sense that, for any g ∈ Lp,

‖f ∗ g‖Lp ≤ C‖g‖Lp , 1 ≤ p ≤ ∞,

where C depends only on |m2| ≤ ‖f̂‖L∞ and the constant C ′ above.
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Lemma 4.2. Let ĝ(t, ξ) = K̂(t, ξ)f̂(ξ), where K̂(t, ξ) = e−ϑ|ξ|
2t, f̂(ξ) ∈ L∞ ∩

Cn+1(Rn), and

|∇βξ f̂(ξ)| ≤ C ′|ξ|−|β|, |β| ≤ n+ 1.

Then ∇αxg(t, ·) ∈ Lp for t > 0, and for all α, 1 ≤ p ≤ ∞, we have

‖∇αxg(t, ·)‖Lp ≤ C(|α|)t−
n
2 (1− 1

p )− |α|
2 .

In particular, ̂∇αxg(t, x) = (iξ)αĝ(t, ξ) is a strong Lp multiplier, with norm bounded

by C(|α|, ϑ)C ′t−
|α|
2 , where the constant C(|α|, ϑ) depends only on |α| and ϑ.

Now let us turn to the proof of Proposition 4.3.

Proof of Proposition 4.3. We first analyze above higher frequency terms denoted

by (̂·)2. Recall that

λ1 = −(2µ̄+ ν̄)|ξ|2 +
2c2

2µ̄+ ν̄
+O(|ξ|−2), λ2 = − 2c2

2µ̄+ ν̄
+O(|ξ|−2), |ξ| ≥ η.

We shall prove that the higher frequency terms are Lp Fourier multipliers with an
exponential time decay coefficient Ce−c1t for some constants c1 > 0. For simplicity,

we only show that N̂2 is an Lp Fourier multiplier at higher frequency as follows. It
holds

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
= eλ2t +

λ2e
λ2t

λ1 − λ2
− λ2e

λ1t

λ1 − λ2
.

By a direct computation, it is easy to verify

|∇kξλ2| . |ξ|−2−k, |ξ| ≥ η,

which gives rise to∣∣∣∣∇kξ[(1− χ(·))eλ2t
]∣∣∣∣, ∣∣∣∣∇kξ[(1− χ(·)) λ2e

λ2t

λ1 − λ2

]∣∣∣∣ . { 0, |ξ| ≤ R,
e−c1t|ξ|−2−k, |ξ| ≥ R,

here and below, R > 0 is a given constant. Thus, from Lemma 4.1 it follows that the

inverse Fourier transform of the term (1− χ(·))
(
eλ2t + λ2e

λ2t

λ1−λ2

)
is an Lp multiplier

with the coefficient Ce−c1t. The other part of N̂2 at higher frequency can be written
as

(1− χ(·)) λ2e
λ1t

λ1 − λ2
∼ e− 1

2 (2µ̄+ν̄)|ξ|2t
[
(1− χ(·))e

(−λ2− 1
2 (2µ̄+ν̄)|ξ|2)t

λ1 − λ2

]
.

We can regard e−
1
2 (2µ̄+ν̄)|ξ|2t as the function K(t, ξ) of Lemma 4.2, and the rest

term satisfies the condition. Thus, the inverse Fourier transform of (1−χ(·))λ2e
λ1t

λ1−λ2

is also an Lp multiplier with the coefficient Ce−c1t. These facts imply that N̂2

at higher frequency is an Lp multiplier with the coefficient Ce−c1t. Applying the

similar analysis to the terms N̂2, M̂2, and M̂2, we can show that their inverse
Fourier transform are all Lp multiplier with the constant coefficient Ce−c1t. Then

‖(∇kx(N2∗f),∇kx(N2∗f),∇kx(M2∗f),∇kx(M2∗f))(t)‖Lp ≤ Ce−c1t‖∇kxf‖Lp , (4.9)

for all integer k ≥ 0, and p ∈ [2,∞].
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We also need to deal with the corresponding lower frequency terms denoted by

(̂·)1. Recall that

λ1e
λ2t − λ2e

λ1t

λ1 − λ2
,
λ1e

λ1t − λ2e
λ2t

λ1 − λ2
,
|ξ|(eλ1t − eλ2t)

λ1 − λ2
∼ O(1)e−

1
2 (2µ̄+ν̄)|ξ|2t, |ξ| ≤ η,

which imply that for |ξ| ≤ η that

|N̂1| ∼ O(1)e−c2|ξ|
2t, |N̂1| ∼ O(1)e−c2|ξ|

2t,

|M̂1| ∼ O(1)e−c2|ξ|
2t, |M̂1| ∼ O(1)e−c2|ξ|

2t,

for some constants c2 > 0. Thus, by Hausdroff-Young’s inequality with p ∈ [2,+∞],
we can obtain

‖(∇kN1,∇kN1,∇kM1,∇kM1)(t)‖Lp ≤C

(∫
|ξ|≤η

∣∣|ξ|ke−c2|ξ|2t∣∣qdξ) 1
q

≤C(1 + t)−
3
2 (1− 1

p )− k2 .

(4.10)

Combining (4.9) and (4.10), we finally have for t > 0 that

‖(∇k(N ∗ f),∇k(M ∗ f))(t)‖Lp = ‖(∇k((N1 +N2) ∗ f),∇k((M1 +M2) ∗ f))(t)‖Lp

≤ C(1 + t)−
3
2 (1− 1

p )− k2 ‖f‖L1 + Ce−c1t‖∇kf‖Lp

≤ C(1 + t)−
3
2 (1− 1

p )− k2 (‖f‖L1 + ‖∇kf‖Lp).

The proof of Proposition 4.3 is completed.

5. L2-time decay rate for nonlinear system. We are ready to prove Theorem
1.1 on the sharp time decay rate of the global solution to the initial value problem
for the nonlinear Navier-Stokes system.

In what follows, we will set nh = n− ñ and mh = m− m̃, then we have
∂tnh + divmh = 0, (t, x) ∈ R+×R3,

∂tmh + c2∇nh − µ̄4mh − (µ̄+ ν̄)∇divmh = F, (t, x) ∈ R+×R3,
lim
|x|→∞

nh = 0, lim
|x|→∞

mh = 0, t ∈ R+,

(nh,mh)
∣∣
t=0

= (0, 0), x ∈ R3,

(5.1)

where µ̄ = µ
ρ̄ , ν̄ = ν

ρ̄ , c =
√
p′(ρ̄), and

F =− div
{ (mh + m̃)⊗ (mh + m̃)

nh + ñ+ ρ̄
+ µ̄∇

( (nh + ñ)(mh + m̃)

nh + ñ+ ρ̄

)}
−∇

{
(µ̄+ ν̄) div(

(nh + ñ)(mh + m̃)

nh + ñ+ ρ̄
) +

(
p(nh + ñ+ ρ̄)− p(ρ̄)− c2(nh + ñ)

)}
.

Denote Uh = (nh,mh)t, we have the equivalent form of system (5.1) in vector form

∂tUh = BUh +H, t ≥ 0, Uh(0) = 0,

where the nonlinear term H(Ũ , Uh) = (0, F (Ũ , Uh))t. Thus, we can represent the
solution in term of the semigroup

Uh(t) = S(t) ∗ Uh(0) +

∫ t

0

S(t− τ) ∗H(Ũ , Uh)(τ)dτ,
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which (nh,mh) can be decomposed as

nh = N ∗ Uh(0) +

∫ t

0

N(t− τ) ∗H(τ)dτ, (5.2)

mh = M ∗ Uh(0) +

∫ t

0

M(t− τ) ∗H(τ)dτ. (5.3)

Furthermore, in view of the above definition for N̂(ξ) and M̂(ξ), it is easy to verify
for some constants c3 > 0, c4 > 0, R0 > 0, we discover that

|N̂(ξ)| ∼ O(1)e−c3|ξ|
2t, |M̂(ξ)| ∼ O(1)e−c3|ξ|

2t, |ξ| ≤ η,

|N̂(ξ)| ∼ O(1)
1

|ξ|
e−R0t, |M̂(ξ)| ∼ O(1)

1

|ξ|2
e−R0t +O(1)e−c4|ξ|

2t, |ξ| ≥ η.

Thus, applying a similar argument as in the proof of Proposition 4.1, we have

‖(∇kN ∗H,∇kM ∗H)(t)‖L2 ≤ C(1 + t)
− 3

2
( 1
q
− 1

2
)− 1

2
− k

2
(
‖Q‖Lq + ‖∇k+1Q‖L2

)
, q = 1, 2,

(5.4)

‖(∇kN∗H,∇kM∗H)(t)‖L2 ≤ C(1+t)−
3
2 ( 1
q−

1
2 )− 1

2−
k
2
(
‖Q‖Lq+‖∇kQ‖L2

)
, q = 1, 2,

(5.5)

‖∇kM ∗H(t)‖L2 ≤ C(1 + t)−
3
2 ( 1
q−

1
2 )− 1

2−
k
2
(
‖Q‖Lq + ‖∇k−1Q‖L2

)
, q = 1, 2, (5.6)

for any non-negative integer k and

Q =
∣∣∣ (mh + m̃)⊗ (mh + m̃)

nh + ñ+ ρ̄
+ µ̄∇

( (nh + ñ)(mh + m̃)

nh + ñ+ ρ̄

)∣∣∣
+
∣∣∣(µ̄+ ν̄) div(

(nh + ñ)(mh + m̃)

nh + ñ+ ρ̄
) +

(
p(nh + ñ+ ρ̄)− p(ρ̄)− c2(nh + ñ)

)∣∣∣.
(5.7)

For readers’ convenience, we show how to estimate ‖∇kM∗H(t)‖L2 as an example.
The other two estimates can be obtained by the similar argument. Indeed,

‖∇kM ∗H(t)‖2L2

.
∫
|ξ|≤η

e−2c3|ξ|2t|ξ|2k|Ĥ|2dξ +

∫
|ξ|≥η

e−2R0t|ξ|2k−4|Ĥ|2dξ

+

∫
|ξ|≥η

e−2c4|ξ|2t|ξ|2k|Ĥ|2dξ

.
∫
|ξ|≤η

e−2c3|ξ|2t|ξ|2k+2|Q̂|2dξ +

∫
|ξ|≥η

e−2R0t|ξ|2k−2|Q̂|2dξ

+

∫
|ξ|≥η

e−2c4|ξ|2t|ξ|2k+2|Q̂|2dξ

. (1 + t)−3( 1
q−

1
2 )−1−k(‖Q‖2Lq(R3) + ‖∇k̃Q‖2L2(R3)

)
, q = 1, 2, k − 1 ≤ k̃ ∈ N+ .

5.1. L2-time decay rate. In this subsection, we establish the faster decay rate for
(nh,mh). We will start with an a priori assumption on a carefully chosen quantity
Λ(t) defined in (5.8), and then later prove a better estimate with the help of the
smallness of initial data.

We begin with following Lemma.
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Lemma 5.1. Let r1, r2 > 0 be real, one has∫ t
2

0

(1 + t− τ)−r1(1 + τ)−r2dτ =

∫ t
2

0

(1 +
t

2
+ τ)−r1(1 +

t

2
− τ)−r2dτ

.


(1 + t)−r1 , for r2 > 1,
(1 + t)−(r1−ε), for r2 = 1,
(1 + t)−(r1+r2−1), for r2 < 1,

and ∫ t

t
2

(1 + t− τ)−r1(1 + τ)−r2dτ =

∫ t
2

0

(1 + t− τ)−r2(1 + τ)−r1dτ

.


(1 + t)−r2 , for r1 > 1,
(1 + t)−(r2−ε), for r1 = 1,
(1 + t)−(r1+r2−1), for r1 < 1,

where ε > 0 is a small but fixed constant.

Proposition 5.1. Under the assumptions of Theorem 1.1, the solution (nh,mh) of
the nonlinear system (5.1) satisfies for k = 0, 1, 2 that

‖(∇knh,∇kmh)‖L2 ≤ Cδ2
0(1 + t)−

5
4−

k
2 ,

‖∇3mh‖L2 ≤ Cδ2
0(1 + t)−

11
4 , ‖∇3nh‖L2 ≤ Cδ0(1 + t)−

7
4 ,

where C is a positive constant independent of time.

From (5.7), we deduce

Q(Ũ , Uh) = Q1 +Q2 +Q3 +Q4,

which implies for a smooth solution (n,m) satisfying ‖(n,m)‖H3 <∞ that

Q1 = Q1(Ũ , Uh) ∼ O(1)
(
n2
h +mh ⊗mh + ñ2 + m̃⊗ m̃

)
,

Q2 = Q2(Ũ , Uh) ∼ O(1) (ñnh + m̃⊗mh) ,

Q3 = Q3(Ũ , Uh) ∼ O(1) (∇(nh ·mh) +∇(ñ · m̃)) ,

Q4 = Q4(Ũ , Uh) ∼ O(1) (∇(ñ ·mh) +∇(nh · m̃)) .

Define

Λ(t) =: sup
0≤s≤t

{ 2∑
k=0

(1 + s)
5
4 + k

2 δ0
− 3

4 ‖(∇knh,∇kmh)(s)‖L2

+ (1 + s)
7
4 ‖(∇3nh,∇3mh)(s)‖L2

}
.

(5.8)

Proposition 5.2. Under the assumptions of Theorem 1.1, if for some T > 0,

Λ(t) ≤ δ
1
2
0 for any t ∈ [0, T ], then it holds that

Λ(t) ≤ Cδ
3
4
0 , t ∈ [0, T ],

where C is a positive constant independent of time.

The proof of this Proposition 5.2 consists of following three steps.
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5.2. Step 1: The basic energy estimates. Starting with (5.4), (5.5), (5.6) and
(5.8), we have after a complicate but straightforward computation that

‖(nh,mh)‖L2 .
∫ t

0

‖(N(t− τ) ∗H(τ),M(t− τ) ∗H(τ))‖L2dτ

.
∫ t

0

(1 + t− τ)−
5
4

(
‖Q(τ)‖L1 + ‖Q(τ)‖L2

)
dτ

.
(
δ2
0 + δ

3
2
0 Λ2(t)

)∫ t

0

(1 + t− τ)−
5
4 (1 + τ)−

3
2 dτ

. (1 + t)−
5
4

(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

(5.9)

It is easy to verify that

‖Q(t)‖L1 .‖Q1‖L1 + ‖Q2‖L1 + ‖Q3‖L1 + ‖Q4‖L1

.‖(ñ, m̃)‖2L2 + ‖(nh,mh)‖2L2 + ‖(nh,mh)‖L2

(
‖(∇ñ,∇m̃)‖L2

+ ‖(∇nh,∇mh)‖L2

)
+ ‖(ñ, m̃)‖L2 (‖(∇ñ,∇m̃)‖L2 + ‖(∇nh,∇mh)‖L2)

.(1 + t)−
3
2

(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

Indeed, by virtue of Hölder’s inequality and Gagliardo-Nirenberg’s inequality, we
obtain that

‖u‖L∞ . ‖∇u‖
1
2

L2‖∇2u‖
1
2

L2 ,

which implies that

‖Q(t)‖L2

.‖(ñ, m̃)‖L∞
(
‖(ñ, m̃)‖L2 + ‖(∇ñ,∇m̃)‖L2 + ‖(nh,mh)‖L2

+ ‖(∇nh,∇mh)‖L2

)
+ ‖(nh,mh)‖L∞ (‖(nh,mh)‖L2 + ‖(∇nh,∇mh)‖L2)

+ ‖(∇ñ,∇m̃)‖L∞‖(nh,mh)‖L2

.(1 + t)−
9
4

(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

Furthermore, exactly as in the estimate of the high order derivatives, we have

‖(∇nh,∇mh)‖L2

.
∫ t

2

0

‖(∇N,∇M)(t− τ) ∗H(τ)‖L2dτ +

∫ t

t
2

‖(N,M)(t− τ) ∗ ∇H(τ)‖L2dτ

.
∫ t

2

0

(1 + t− τ)−
7
4
(
‖Q(τ)‖L1 + ‖∇Q(τ)‖L2

)
dτ +

∫ t

t
2

(1 + t− τ)−
1
2 ‖∇Q(τ)‖L2dτ

.

(
δ2
0 + δ

9
8
0 Λ2(t)

)(∫ t
2

0

(1 + t− τ)−
7
4 (1 + τ)−

3
2 dτ +

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

11
4 dτ

)
.(1 + t)−

7
4

(
δ2
0 + δ

9
8
0 Λ2(t)

)
,

(5.10)

Similarly, it holds that

‖∇Q(t)‖L2

.‖(ñ, m̃)‖L∞
(
‖(∇ñ,∇m̃)‖L2 + ‖(∇2ñ,∇2m̃)‖L2 + ‖(∇nh,∇mh)‖L2
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+ ‖(∇2nh,∇2mh)‖L2

)
+ ‖(∇ñ,∇m̃)‖L∞

(
‖(∇ñ,∇m̃)‖L2 + ‖(nh,mh)‖L2

+ ‖(∇nh,∇mh)‖L2

)
+ ‖(nh,mh)‖L∞

(
‖(∇2ñ,∇2m̃)‖L2 + ‖(∇nh,∇mh)‖L2

+ ‖(∇2nh,∇2mh)‖L2

)
+ ‖(∇nh,∇mh)‖L∞‖(∇nh,∇mh)‖L2

.(1 + t)−
11
4

(
δ2
0 + δ

9
8
0 Λ2(t)

)
.

Thus, we also get that

‖(∇2nh,∇2mh)(t)‖L2

.
∫ t

2

0

‖(∇2N,∇2M)(t− τ) ∗H(τ)‖L2dτ

+

∫ t

t
2

‖(N,M)(t− τ) ∗ ∇2H(τ)‖L2dτ

.
∫ t

2

0

(1 + t− τ)−
9
4

(
‖Q(τ)‖L1 + ‖∇2Q(τ)‖L2

)
dτ

+

∫ t

t
2

(1 + t− τ)−
1
2 ‖∇2Q(τ)‖L2dτ

.
(
δ2
0 + δ0Λ(t) + δ

3
4
0 Λ2(t)

)(∫ t
2

0

(1 + t− τ)−
9
4 (1 + τ)−

3
2 dτ

+

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

13
4 dτ

)
.(1 + t)−

9
4

(
δ2
0 + δ0Λ(t) + δ

3
4
0 Λ2(t)

)
.

(5.11)

Finally, we have

‖∇2Q(t)‖L2

.(‖(ñ, m̃)‖L∞ + ‖(nh,mh)‖L∞)(‖(∇3ñ,∇3m̃)‖L2 + ‖(∇3nh,∇3mh)‖L2)

+ (‖(∇ñ,∇m̃)‖L∞ + ‖(∇nh,∇mh)‖L∞)(‖(∇ñ,∇m̃)‖L2 + ‖(∇nh,∇mh)‖L2)

+ (‖(ñ, m̃)‖L∞ + ‖(nh,mh)‖L∞ + ‖(∇ñ,∇m̃)‖L∞ + ‖(∇nh,∇mh)‖L∞)

× (‖(∇2ñ,∇2m̃)‖L2 + ‖(∇2nh,∇2mh)‖L2)

.(1 + t)−
13
4

(
δ2
0 + δ0Λ(t) + δ

3
4
0 Λ2(t)

)
.

5.3. Step 2: The higher order energy estimates. In this subsection, we will
close the a priori estimates and complete the proof of Proposition 5.2. For this pur-
pose, we need to derive the time decay rate of higher order derivatives of (nh,mh).
We will establish the following lemma.

Lemma 5.2. Under the assumption of Theorem 1.1, one has

‖∇2n(t)‖H1 + ‖∇2u(t)‖H1 . (1 + t)−
7
4

(
δ0 + δ

3
4
0 Λ(t)

)
.

In particular, it holds that

‖∇3(nh,mh)(t)‖L2 . (1 + t)−
7
4

(
δ0 + δ

3
4
0 Λ(t)

)
.
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Proof. First of all, in view of (2.12), recovering the dissipation estimate for n, we
see that

d

dt

∫
R3

∇2u · ∇3ndx+ C1‖∇3n‖2L2dx

≤C2

(
‖∇3u‖2L2 + ‖∇4u‖2L2

)
+ C(1 + t)−

3
2

(
δ0 + δ

3
8
0 Λ(t)

)
×
(
‖∇2n‖2L2 + ‖∇2u‖2L2 + ‖∇3u‖2L2

)
.

(5.12)

Summing up (2.7) and (2.8) in the energy estimate for (n, u), we can directly derive

d

dt

∫
R3

(
γ|∇2n|2 + |∇2u|2 + γ|∇3n|2 + |∇3u|2

)
dx+ C3

(
‖∇3u|2L2 + ‖∇4u‖2L2

)
≤C(1 + t)−

3
2

(
δ0 + δ

3
8
0 Λ(t)

) (
‖∇2n‖2L2 + ‖∇2u‖2L2 + ‖∇3n‖2L2

)
.

(5.13)

Multiplying (5.12) by ε1
C3

C2
with ε1 > 0 a small but fixed constant, adding it with

(5.13), we deduce that there exists a constant C4 > 0 such that

d

dt

{ ∑
2≤k≤3

(
γ‖∇kn‖2L2 + ‖∇ku‖2L2

)
+ ε1

C3

C2

∫
R3

∇2u · ∇3ndx

}
+ C4

(
‖∇3n‖2L2 +

∑
3≤k≤4

‖∇ku‖2L2

)
≤C(1 + t)−

3
2

(
δ0 + δ

3
8
0 Λ(t)

) (
‖∇2n‖2L2 + ‖∇2u‖2L2

)
.

Next, we define

E1(t) =

{ ∑
2≤k≤3

(
γ‖∇kn‖2L2 + ‖∇ku‖2L2

)
+ ε1

C3

C2

∫
R3

∇2u · ∇3ndx

}
.

Observe that since ε1
C3

C2
is small, then there exists a constant C5 > 0 such that

C−1
5

(
‖∇2n(t)‖2H1 + ‖∇2u(t)‖2H1

)
≤ E1(t) ≤ C5

(
‖∇2n(t)‖2H1 + ‖∇2u(t)‖2H1

)
.

Then we arrive at

d

dt
E1(t) + C4

(
‖∇3n(t)‖2L2 + ‖∇3u(t)‖2H1

)
≤ C(1 + t)−5

(
δ0 + δ

3
8
0 Λ(t)

)(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

Denote S(t) =
{
ξ
∣∣|ξ| ≤ √

3(1+γ)
C4

(1 + t)−
1
2

}
the time-dependent n-dimensional

sphere. This decomposition allows us to estimate L2 time decay depend on (n̂, û)
for frequency values ξ ∈ S(t), then we obtain that

C4

3
‖∇3(n, u)(x)‖2L2 ≥

C4

3

∫
S(t)c

|ξ|6|(n̂, û)(ξ)|2dξ

≥(1 + γ)(1 + t)−1

∫
R3

|ξ|4|(n̂, û)(ξ)|2dξ − (1 + γ)(1 + t)−1

∫
S(t)

|ξ|4|(n̂, û)(ξ)|2dξ.
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Hence we have

d

dt
E1(t) + (1 + t)−1E1(t) + ‖∇3n‖2L2 + ‖∇3u‖2H1

.(1 + t)−5
(
δ0 + δ

3
8
0 Λ(t)

)(
δ2
0 + δ

3
2
0 Λ2(t)

)
+ (1 + t)−1

∫
S(t)

|ξ|4|(n̂, û)(ξ)|2dξ

+ (1 + t)−1

∫
R3

∇2u · ∇3ndx.

Multiplying the above equation by (1 + t)5, we obtain that

d

dt

{
(1 + t)5E1(t)

}
+ (1 + t)5

(
‖∇3n‖2L2 + ‖∇3u‖2H1

)
. (1 + t)

1
2

(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

Integrating it with respect to time from 0 to T , then we have

(1 + t)5E1(t) +

∫ T

0

(1 + t)5
(
‖∇3n‖2L2 + ‖∇3u‖2H1

)
dt

.E1(0) + (1 + t)
3
2

(
δ2
0 + δ

3
2
0 Λ2(t)

)
,

which implies that

‖∇3n‖2L2 + ‖∇3u‖2L2 . E1(t) . (1 + t)−5δ2
0 + (1 + t)−

7
2

(
δ2
0 + δ

3
2
0 Λ2(t)

)
.

Finally, we have

‖∇3nh‖L2 + ‖∇3mh‖L2 . (1 + t)−
7
4

(
δ0 + δ

3
4
0 Λ(t)

)
.

This completes the proof of this Lemma.

5.4. Step 3: Close the estimates. In this subsection, we first combine the above
a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the
proof of the Proposition 5.2. In deed, for any t ∈ [0, T ], we have shown that

Λ(t) ≤ C
(
δ0 + δ

1
4
0 Λ(t) + Λ2(t)

)
≤ Cδ

3
4
0 . (5.14)

With the help of standard continuity argument, Proposition 5.2 and the smallness

of δ0 > 0, implies that Λ(t) ≤ Cδ
3
4
0 for any t > 0. Moreover, we deduce the time

decay estimate for (nh,mh) from (5.9), (5.10), (5.11), Lemma 5.2 and (5.14) that

‖(∇knh,∇kmh)‖L2 . δ2
0(1 + t)−

5
4−

k
2 , k = 0, 1,

‖∇2(nh,mh)‖L2 . δ
7
4
0 (1 + t)−

9
4 , ‖∇3(nh,mh)‖L2 . δ0(1 + t)−

7
4 .

Consequently, for any t ∈ [0, T ] we have

Λ(t) ≤ Cδ0. (5.15)

From (5.11) and (5.15), thus we also get that

‖∇2(nh,mh)‖L2 . δ2
0(1 + t)−

9
4 .
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For ∇3mh, in view of the (5.6), we see that

‖∇3mh(t)‖L2

.
∫ t

2

0

(1 + t− τ)−
11
4

(
‖Q(τ)‖L1 + ‖∇2Q(τ)‖L2

)
dτ

+

∫ t

t
2

(1 + t− τ)−
1
2 ‖∇2Q(τ)‖L2dτ

.δ2
0

(∫ t
2

0

(1 + t− τ)−
11
4 (1 + τ)−

3
2 dτ +

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

13
4 dτ

)
.δ2

0(1 + t)−
11
4 .

Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.
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