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ABSTRACT. We investigate the sharp time decay rates of the solution U for
the compressible Navier-Stokes system (1.1) in R3 to the constant equilibrium
( > 0,0) when the initial data is a small smooth perturbation of (3,0). Let U
be the solution to the corresponding linearized equations with the same initial
data. Under a mild non-degenerate condition on initial Eerturbations, we show
that |[U — U||2 decays at least at the rate of (1 + t)~ 1, which is faster than
the rate (1 +t)7% for the U to its equilibrium (5,0). Our method is based on a
combination of the linear sharp decay rate obtained from the spectral analysis
and the energy estimates.

1. Introduction. In this paper, we are concerned with the sharp decay rates of
solutions to the Cauchy problem for the isentropic Navier-Stokes equations:

Oip+div(pu) =0, (t,z) € RT xR,
di(pu) +div(pu @ u) + Vp(p) = divT, (t,xz) € RT xR,
lim p=p, lim u=0, teRT, (1.1)

(p7 u)’tzo = (p07u0)7 T e RS;
which governs the motion of a isentropic compressible viscous fluid. The unknown
functions p and wu represent the density and velocity of the fluid respectively. The
pressure p = p(p) is a smooth function in a neighborhood of a positive constant p s.t.
p'(p) > 0. T is the viscosity stress tensor given by T' = u(Vu + (Vu)') + v(divu)T
with I the identity matrix. We assume that the constant viscosity coefficients u > 0
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and v satisfy v + %,u > 0. Throughout this article, by optimal time decay rate, we
refer to the best possible decay rate in upper bound as many literatures, and the
sharp time decay rate includes the best possible upper and lower bounds.

Using the classical spectral method, the optimal time decay rate (upper bound)
of the linearized equations of the isentropic Navier-Stokes equations are well known.
One may then expect that the small solution of the nonlinear equations (1.1) have
the same decay rate as the linear one. Our work is devoted to proving the sharp
time decay rate (for both upper and lower bound) for the nonlinear system.

In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed
analysis of the solution to a class of hyperbolic-parabolic system through point-
wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional
Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the H® global ex-
istence and time-decay rate of strong solutions with the initial perturbation small
in H*N L' are obtained in whole space first by A. Matsumura and T. Nishida [17],
[18]. When the small initial perturbation belongs to H® only, using a weighted
energy method, A. Matsumura [16] showed the time-decay rate (1 + ¢)~3 of up-
per bound in L*°-norm. Since then, there are concrete development on the upper
bound time-decay estimates: the optimal LP (with 2 < p < 0o) upper bound decay
rate was proved by G. Ponce [19], combining the spectral analysis on linearized sys-
tem and the energy method for small initial perturbation in L'. For the isentropic
Navier-Stokes equations with artificial viscosity, D. Hoff and K. Zumbrun [6], [7]
studied the Green’s function and derived the LP (1 < p < oco) upper bound time
decay rate of diffusive waves for the small initial perturbation belongs to H™ N L*
with m > 4. Liu and Wang [14] studied the point-wise estimates of the Green func-
tion of the linearized isentropic Navier-Stokes system in 3D and then analyzed the
coupling of nonlinear diffusion waves, obtained the optimal (upper bound) decay
rate. These results were further extended to the exterior problem [12], [11], or the
half space problem [9], [10], [8]. Recently, Guo and Wang in [5] developed a new
general energy method for proving the optimal (upper bound) time decay rates of
the solutions to the dissipative equations in the whole space, using a family of scaled
energy estimates with minimum derivative counts and interpolations among them
without linear decay analysis.

When additional external force is taken into account, the external force does
affect the long time behavior of solutions. The upper bound of time decay rates
were studied intensively, see for instance [1] and [2] on unbounded domain, [22],
[23] on the convergence of the non-stationary flow to the corresponding steady flow
when the initial date are small in H3 N L%, and [4], [3], on the optimal L? — L9
upper bound decay rates for potential forces.

The main goal of current paper is to establish the sharp decay rate, on both
upper and lower bounds, to the solutions of (1.1) using relatively simple energy
method. We remark that similar results had been pursued by M. Schonbek [20],
[21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13]
for isentropic Navier-Stokes-Poisson system. Although they share the same spirit
in obtaining the lower bound decay rates, the feature of the spectrum near zero
exhibits quite different behaviors, leading to different analysis. For instance, we
explored the elegant structure of the higher order nonlinear terms of Navier-Stokes,
when choosing conservative variables: density and momentum. The conservative
form of the sharp equations provided a natural derivative structure in these terms,
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leading to the possibility of a faster decay rate estimate. We will make a more
detailed comparison later in this paper.

Define n = p — p, and let m = pu = (n + p)u be the momentum. We rewrite
(1.1) as

on+divm =0, (t,z) e RT xR,
om + AVn — pAm — (i +7)Vdivm = F,  (t,z) € Rt xR?,
lim n=0, lim m=0, teR", (1.2)

(n,m)],_g = (po = p.powo), @ € R,

whereu:%,D:%,c:\/p’(ﬁ)>0is the sound speed, and
me®m nm
F=—di [l
1v{ n+p +Mv(n+ﬁ)}
B ..., nm s
V{2 () + it p) = p(p) — )

It is this structure of F' that plays an important role in our analysis.

Our aim is to obtain a clear picture of the large time behavior of U = (n,m) in
L?*(R?) when Uy = (po — p, pouo) is sufficiently smooth and small. We introduce the
following initial value problem of the linearized Navier-Stokes system corresponding
to (1.2):

o +divin =0, (t,z) € RT xR,
o+ AVn — pAin — (i +0)Vdivin =0, (t,2) € RT xR?,
lim =0, lim m=0, teRT, (1.3)

(ﬁ’ﬁl)hzo = (pO -, pOUO)a T e RS?

where i = %, v=2% c= V/P'(p). Tt is known that the L2-norm of U = (7, m)
decays at the optimal upper bound rate (1 + t)*% for generic small initial data, see
for instance [18]. A detailed proof on the optimal lower and upper bound rate will
be given in the section 3 of this paper. In section 4, we prove that [|(U —U) (-, t)]| 12
decays at a faster rate than ||U(-,t)||z2, under some reasonable conditions on the
initial data. Therefore, ||U(-,#)| .2 shares the sharp decay rate of (1+1¢)~1.

Notation. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that ¢ < Cb. And a = b stands for a < band b < a.

We now state our main result.

Theorem 1.1. Assume that (ng,mo) € LY R*) n H3R?), & =

[(no, mo) || 1 (r3yn 13 (r3) s sufficiently small, and

/ (no, mo)dz # 0, (1.4)
R3

then, there is a unique global classical solution U = (7, m) € C([0,00); H3(R?®)) of
the linearized system (1.3) satisfying for some positive constant C
CT A+ 5 < VR peey S CA+H 775, k=0,1,2,3,
k
3

<|
CHA+8)717% < | VE(t)||p2@s < CL+ 6572, k=0,1,2,3,
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and the initial value problem (1.2) has a unique solution U = (n,m) € C([0,00);
H3(R®)). Moreover, let ny, =n — 7 and my, =m — i, then it holds that

5

V¥ () () 2y S 031 +D)7475, k=0,1.2,
_u _z
IVPmn ()| 2y S 051481, (V)] L2@s) S do(1+1)7 7.
As a consequence, there exists a positive constant Cy such that

Cr (1 +1)7 178 <|VFn() | fosy < CL(1+18)"175, k=0,1,2,

Cr A +8)717% <|VFEm(t)|| po@ey < CL(L+1) 7173, k=0,1,2,3.
Remark 1.1. We remark that this theorem is valid under the condition (1.4) which
is important in the lower bound estimate to the linearized problem. When (1.4)
fails, the decay rate of the linearized system (1.3) depends on the order of the degen-
eracy of moments. Assume (ng,mg) € L' N H3 and belong to certain appropriate
weighted LP spaces, similar situation happened also in the incompressible Navier-
Stokes equations, c.f. [20], [21]. We also note that our condition (1.4) is weaker than
those in most of previous results where the differentiability of Fourier transform of
initial disturbance is required in general.

Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of
the linearized isentropic Navier-Stokes-Poisson system, they only require |7y(§)| >
cop > 0 for |¢] < 1 with ¢p a constant due to the special structure of the spectrum
from the help of the Poisson term. This condition is proposed in Fourier space,
similar to (1.4) in some sense. In our case, the spectrum is different and the different
structure leads to different sharp decay rates.

2. Basic energy estimates. In what follows, we will set n = p — p, u = u — 0.
We rewrite (1.1) in the perturbation form as

on+ pdivu = —ndivu —u - Vn,
Ou+vpVn — plAu— (p+ 7)Vdivu

=—u-Vu—jif(n)Au—(g+7)f(n)Vdivu — g(n)Vn, (2.1)
lim n =0, lim » =0,

(n7u)‘t:0 = (pO - ﬁ7 u0)7

p'(p)

where 1 = %, U= %, Y= and the nonlinear functions f and g are defined by
n p(n+p) pp

fy=-""  gmy.=PtA 70 (2.2)
n+p n+p p

We assume that there exist a time of existence T' > 0 and sufficiently small § > 0,
such that a priori estimate

In(®)llgs + )]s <6, (2.3)

holds for any t € [0,7]. First of all, by (2.3) and Sobolev’s inequality, we obtain
that

NN

<n+p<2p.
Hence, we immediately have
[f()],|g(n)] < Clal,  [V*f(n)],[VFg(n)| <O Vk e NT, (2.4)

where f(n) and g(n) are nonlinear functions of n defined by (2.2).
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Next, we begin with the energy estimates including n and w themselves. The
following results is essentially due to A. Matsumura and T. Nishida [17], [18].

Theorem 2.1. Assume that (ng,ug) € H3(R®), then there exists a constant 8y > 0
such that if

Inoll s + lluoll s < do,

then the problem (2.1) admits a unique global solution (n(t),u(t)) satisfying that for
allt >0,

t
In(&)l5s + ()]s +/0 (VD)2 + Vu(7)lIZs) dr < C (lInolls + luollZs)

where C' is a positive constant independent of time.

The proof of this theorem is divided into several subsections.

2.1. Energy estimate for 0 < k£ < 3. For k = 0, multiplying the first equation in
(2.1) by yn and the second equation in (2.1) by u, summing up and then integrating
the result over R® by parts. By virtue of Holder’s inequality, Sobolev’s inequality
and the fact (2.4), we obtain that

1d
2dt R3
z/ y(—ndivu —u-Vn)n— (u-Vu+ if(n)Au
R3

(nf? + ) da+ [ EVal? + Gt )] diva) da

+ (o +v)f(n)Vdivu + g(n)Vn) - udz (2.5)
Slinllea [ Vull zlnl e + ([ull s [[VullLz + [Inll sVl L2) [ull o
+ (lullz=[[Vrllz> + lInllLel[Vul 2) [[Vull 2
SInllzs + llullzs + lInllze + [lullz=) (IValZ: + [ VulZ2) -
Now for 1 < k < 3, applying V¥ to (2.1) and then multiplying the first equation by

yV¥*n and the second equation by V*u, summing up and integrating over R*. For
k =1 we have

1d
77/ (v|Vn|? + |Vu|?) dz +/ (a|V2ul* + (a+ )|V divul?) dz
2dt RB Rg
SInllpee + lulle= + [Vallpe + [ Vullp=) ([V2ll72 + [Vulle + [[V?ull72) -

(2.6)

For k = 2 we have

1d
2dt Ju
Snllzes + ull o + [ Vallze + [ 9ulz=) (1920022 + [Vl + [Voul3s)
(2.7)

(7IV2n]? + [V2ul?) do + / (V> + (7 + 9)|V dival) do
3 ]R3
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For k = 3 we have
1d
2 dt Jas
SInllze + llullze + [Vallze + [ Vullze) (V3072 + [|V3ull72 + [IV*ull72)
+ V0l s [V ul 2] Vn o + [Vl s | VAl 2Vl Lo
+V2nllzs (IVnllz2 + 11V 0l 22) IVl s

(v|V3n|? + |V2ul?) dz + / (BlV*ul? + (5 + )| V? divul?) do
RS

(2.8)

Summing up the above estimates, noting that § > 0 is small, we obtain that

d
g 2 OIVMalE + [98ullfa) + €0 D7 IVFulfe < Cob 37 [IV¥nle.

0<k<3 1<k<4 1<k<3
(2.9)

2.2. Recover the dissipation estimates for n. For 0 < k < 2, applying V*
to the second equation in (2.1) and then multiplying by V**!n. The key idea is
to integrate by parts in the t-variable and to use the continuity equation. Thus
integrating the results by parts for both the ¢- and z-variables, we obtain for k = 0

that
a ) )
— | w-Vndx+vp | |Vn|®dz
dt R3 R3

SIVullZ: + Va2 [V2ullze + (ol + lullz<) (IVRllZ: + [VulZ2)

(2.10)

for k =1, we get
4 Vu - V2ndx—|—7ﬁ/ |V2n|dx
dt R3 R3

SIVZullie + 1V2nllL2 [ VPul L2 + ((n, w)llze + [1(Vn, Va)|ze)

< (IVallZ: + 1V2nll7e + [IV2ul72)

(2.11)

and for k£ = 2 we have

d

— V2u - Vindr + 'yﬁ/ |V3n|2da
dt R3 R3

SIVPulie + V90l 2 [ V4l e + (I(n, w)llze + [1(Vn, Va)|ze)

< (IV2nlgz + V2l + V20l 2 + [ VPulZ2) -

(2.12)

Plugging the above estimates, using the smallness of 4 > 0, we obtain that

d
% Z /]Rs VkU'Vk+1nd$+C3 Z \|an||2L2§C4 Z ||VkUH%2 (2.13)

0<k<2 1<k<3 1<k<4
Proof of Theorem 2.1. Multiplying (2.13) by %, adding it with (2.9), with the
help of smallness of § > 0, we deduce that there exists a constant Cs > 0 such that
d 2C50 ,
dt{ > (VVERllZe + [IVFul3) + CQ > /R VFy - vk+1nda;}

0<k<3 3 o<k<2

+O5{ Z IV*n2: + Z ||v’fu||i2}<0.

1<k<3 1<k<4

(2.14)



THE SHARP TIME DECAY RATE OF THE NAVIER-STOKES SYSTEM 1951

Next, we define £(t) to be C5 ! times the expression under the time derivative in
(2.14). Then we may write (2.14) as

d
ZEO+ IVR)|3: + [Vu®)|F: <O0. (2.15)
Observe that since § is small, then there exists a constant Cg > 0 such that
Co (InM s + llu@®)Fe) < W) < Co (In)lFs + lu®) ) -
Then integrating (2.15) directly in time, we get

T
sup ([In(t)[1Fs + [lu(t)]13s) +C6/ (Va2 + IVu(r) I3s) dr
0<t<T 0

<G5 (lInollzrs + luoll7s) -

Using a standard continuity argument along with classical local wellposedness the-
ory, this closes the a priori assumption (2.3) if we assume ||ng||gs + ||uo||gs < do is
sufficiently small. We can then extend the solution globally in time and complete
the proof of Theorem 2.1. O

3. Spectral analysis of the semigroup. In this section, we consider the initial
value problem for the linearized Navier-Stokes system
oy + divm = 0, (t,z) € RT x R,
om + AVn — pAm — (i + )V divim = 0, (t,z) € RT x R,
lim 7=0, lm m=0, teR", (3.1)

(ﬁ7m)‘t:0 = (PO - P, pOuO)a T e RS?

where i = %, U= %, c= /P (p).

In terms of the semigroup theory for evolutionary equations, the solution (7, m)

of the linearized Navier-Stokes problem (3.1) can be expressed for U = (7, m)" as

U =BU, t>0, U(0)="0Uo,
which gives rise to
Ut) = S(t)Uy = e'BUy, >0,

where B is defined as

B_ 0 —div
T \—AV pA+ (p+p)Vdiv) s
What left is to analyze the differential operator B in terms of its Fourier expres-

sion A(§) and show the long time properties of the semigroup S(t). Applying the
Fourier transform to system (3.1), we have

(1.6 = AQULE), t20,  U(0,6)=0o(e).
where £ = (£1,&2,&3)!, and A(€) is defined as

A= (2 - )
—c%if ¢ Isxs — (A+D)E®E)
The eigenvalues of the matrix A can be computed by
det(A(€) = M) = —(A+ alé*)2 (W + (2 + )€ + 2[¢?) = 0,
which implies
No = —ql¢*(double),  Ar = Xi([E]), A2 = A2([€))
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The semigroup e* is expressed as
etA — e)\()tPO 4 e}\ltpl + e)\gtp27

where the project operators P; can be computed as

A(6) = NI

By a direct computation, we can verify the exact expression for the Fourier trans-
form G(t,€) of Green’s function G(t,z) = e'? as

R )\13*2t7)\23A1t 7i£t(6)\1t76)\2t) Z/\\[
G(t §):et‘4= 2-A1>\_>t\2 Aot A1=—Az N = —~ .
’ cTif(et"—e™2") —Xot £®E ERE Nert Ny er2t
BT e =) T IR T M

Indeed, we can make the following decomposition for (n,m) = G * Uy as

n=N-Uy=N+MN)-Uy, m=M-Uy=(M+M) - Uy,

where

o )\16)\2t _ )\2€>\1t S igt(e)\lt _ 6)\2t)

N7<—A1_A2 0), R=(0 -=5——)

G (e = e > = < T L I -1 o Ageht)

M= (- 0), MmM=(o0 NI — + :
( AL — Az e 1€ ) €12 A1 — A2

We further decompose the Fourier transform N , M into low frequency term and
high frequency term below.
Define

J\7=/\71+/\72, 6\’126\114-&2, M\:M\1+M\2, ﬁ=ﬁ1+ﬁ2,
where ()1 = x(€)(+), ()2 = (1—x(£))(+), and x (&) is a smooth cut off function such
that

_J L <R,
X(g)_{o, €|> R+ 1.

Then we have the following decomposition for (72,7m) = G % Uy as

%:]/\\[.[7():]/\71-ﬁo—l—ﬁg-ijoZ(/i\/’l-i-é\/tl)'ﬁo—l—(ﬁz-i-ﬁg)-ﬁm (3.2)

ﬁl:M'ﬁonl'Uo—f'Mmﬁo:(Ml +m1)'ﬁ()+(M2+mt2)'[70~

To derive the long time decay rate of solution, we need to use accurate approxi-
mation to the Fourier transform G(t, x) of Green’s function for both lower frequency
and high frequency. In terms of the definition of the eigenvalues, we are able to
obtain that it holds for || < n for some small positive constant 1 that

20 —|—V .
M= el ¢4c2\s|2 i+ 7)2[E[* = a+ bi,

20 —|—V — .
ho = g2 - \/462\§|2—(2u+l/)2\§|4=a—bz,

(3.3)

and we have
)\16)\2t _ )\26)\1t
AL — A2

- 1
= BRI (cos(hr) + 2 (07 + 7))

~ 0(1)6*%(2ﬂ+9)|§|2t’ €| <,
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Art Aot
MO e cos(he) — L+ e
1— A2
~ O(1)e~2@AtDIERE e < .
ettt — erat 2, sin(bt) 1 1onimyel?
— o—3(20+D)|E%t -5 (2p+0) (€]t
=e 2 ~O0(l)—e 2 , <mn,

where

b= %V A€ — 2+ 0)2[E[ ~ clé] + O(IEP),  I¢] < .

For the high frequency |£| > 7, we are also able to obtain that it holds for || > 7
that

2
M= g2 ¢<2n+ DY2ER — A€ = a b,

2fi Jru (34)
yo = L\ 4 L O+ PP — AR = at b,

and we have

Aot A1t 1
Are - ize _ 56((14»1))15[1 + 672bt} _ %e(a+b)t[1 _ 672“} ~ O(l)eiRot, |£| > n,

AreMt — hpet2t a4 b (atbyt

[1—e 2 4 ela=0t L O(1)e Bt |¢] >,

A1 — Ao 2
€>\1t _ e)\gt 1 1
—_ (a+b)t 1 _ —2bt ~ O 1 —Rot >
)\1 _)\2 2be [ € ] ( )|£|2€ ) |£‘ — "77
where
1 )2 €4 2|2 2 2¢2 —2
b=§\/(2u+l/) €]* — 4c2[€]2 ~ ( +)|¢]° - - +O0E™),  [el=n.

Here Ry, n are some fixed positive constants.

4. Time decay rate for linear semigroup. In this section, we apply the spectral
analysis to the semigroup for the linearized Navier-Stokes system. We will establish
the L? and L? (2 < p < 0o) time decay rate of the global solutions for the linearized
Navier-Stokes system.

4.1. L?-time decay rate. With the help of the formula for Green’s function in
Fourier space and the asymptotic analysis on its elements, we are able to establish
the L? time decay rate. Indeed, we have the L?-time decay rate of the global strong
solution to the problem for the linearized Navier-Stokes system as follows.

Proposition 4.1. Let Uy = (ng,mo) € L'(R*) N HY(R?) with | > 3, then (7, m)
solves the linearized Navier-Stokes system (3.1) and satisfies for 0 < k <1 that

3

IV* (@, m) ()| L2y < C(L+)7372 (|Uollparsy + IV Uoll 2 g),

where C' is a positive constant independent of time.
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Proof. A straightforward computation together with the formula of the Green’s
function G(¢,§) gives

~ Aper2t — NgeMit g mp(eMt — eret)
n(t, &) = ng —
(t.€) SV 0 NN
~ { O(1)e 2RIt (| + |mgl),  |¢] <,
O(L)e o ([fio| + |imol),  1€] =,
. CQiE(e)\lt _ e>\2t) A AleAlt _ )\2€>\2t £(§ . fﬁo)
-~ t7 - _ ~ — ot _ — Aot
m( 5) )\17)\2 Mo +e Mo + < )\1*)\2 ¢ ) |£|2

~ { O(V)e I ([7g| + |7ol), €] < m,
O)e= o ([Ro| + [mol), Il =,

here and below, Ry, n are some fixed positive constants. Therefore, we have the
L2-decay rate for (n,m) as

1, ) ()12 e

- / (LRt ) e + / (G )t €) 2
[E1<n

|€1>n

5/ 6_2ﬂ|£‘2t(|ﬁ0|2+|7’/7\10|2>d§+/ 6_2R0t(|ﬁ0‘2+|7’/ﬁ0|2>d§
[€1<n |€]=n

_3
SA+t)72 ||(n0»m0)||2Ll(R3)mL2(R3)-
And the L2-decay rate on the derivatives of (7, m) as
I(VE7, VRm) ()72 go

- / PR ) (1,6 Pde + / €I (1, 6)2de
[€1<n [€]>n

< / e 22K (17 |2 - |7ig ) de + / e=2F00 |28 (7o | + | |2)de
[€1<n [€1>n

_3_
< 487 ([0, m0) 71 sy + 1V 10, VFm0) [F2ps) ) -

The proof of the Proposition 4.1 is completed. O

It should be noted that the L?-time decay rates derived above are optimal.

Proposition 4.2. Let Uy = (ng,mo) € L' (R*) N HY(R®) with | > 3, assume that
M, = [gsno(z)dx and My, = [ mo(x)dz satisfies that M, M, are at least not
all zeros, then the solution (1, m) of the linearized Navier-Stokes system (3.1) given
by Proposition 4.1 satisfies for 0 < k <1

E E
2 2

< |IVFR() || 2@sy < C(1 I
< | VHA()]| 2y < C(L+ )75

where C' is a positive constant independent of time.

Cl1+t)7 i
Cl 14413

9

Proof. We only show the case of k = 0 for simplicity, the argument applies to the
other orders of derivatives. From the formula of the Green’s function G(t,¢), we
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deduce that

A, €)
_ Aret2t — /\gekltﬁ _ i€ - fﬁo(eht - eht)
Y 0 A — A2
o . Ry 1 . ~
= e_%@ﬂ"!"/”ﬂ% COS(bt)ﬁo _ Zg . 7/7\10 SIHI()bt):| +e é(ZH‘F )|5\2t |:§(2M + V)|§|2slnébt) 710:|

- Tl + T27 for ‘5‘ S m,

m(t,€)
o Czig(e)qt _ €>\2t)/\ Aot A1€>\1t _ )\26)\21& et M
e (A ) S
= [e—i(%“)'ﬁ'zt {cos(bt)f(ﬁé?o) - c%ssmébt) ﬁo] 1Rl [mo - ’5(5'5’;"‘0)} }
_ et [ gz o oy 2sint) €€ - o)
e A+ {2(2/¢+ v)[€| > T

:Sl+825 for |£‘ S’r]a

here and below, n is a sufficiently small but fixed constant.
It is easy to check that

1,62 = / Rt ) 2de + / R(t.0)de
[E1<n [E1>n (4'1)

1
2/ Ty +T2\2d§2/ §|T1|2 — |Ta?de.
l€l<n l€l<n

We then calculate that

. 2
[ ImPdeS ol [ etmeoleieg (Sm(b”) de
l€1<n l€]<n b

(4.2)
P — (204 2 _5
5””0”2“"/ < @RI 2 < (14 £)F o2
&<n

Since ng(z) € L' implies 7ip(£) € C(R?). If 7ip(0) = / no(x)dx # 0, we deduce
R3
that 1o (&) # 0 for €] < n when 7 is sufficiently small. One finds that, when M,, # 0,

2 2
/ no(z)dx
R3

Z ?nv for |£| S UE

For my, a similar argument yields that, when M, # 0, we have
€ Mo _ 1€ Ml

g = ClglP

When M,, # 0, M, # 0, with the help of the above analysis, using b ~ c|¢|+O(|¢€]?)
for |£] <, we obtain that

f(©)F > =

for [¢[ <.

[ mba
1€1<n
2 2
> M e~ CIHDIER cog? () 4+ L 1€ Mnl” o) let g2 ey ae
C B2
[€1<n 1€1<n
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min{ M2, %}
- C l€1<n
> Cl/ o~ Cato)lElt g
[€1<n

> o1+,

If M, # 0, M,, =0, and by the conituinity of mg near & = 0, there exists a small
enough constant € such that e — 0 as £ — 0, and

mo(§)* <¢, for [¢] <.

e_(2ﬂ+17)‘§‘2t(CO82(bt) + SIHQ(bt))dé-

(4.3)

We thus use the help of spherical coordinates and the change of variables r = |£|v/
to obtain that

/ T[> d¢
[€1<n

M? D D
Fn/ e*(2u+'/)|£\2t cos2(bt)d.£ _ %/ e*(2u+v)\§|2t sin2(bt)d£
lgl<n & Jlgl<n

A%

Y

M2 s [Vt s vVt
Dnys / e AT (g2 (erv/t)ridr — %t 3 / e AT )2 (erv/t)ridr
c 0 Ce 0

[ent]_1  kmi+f

M2 3 T (o4 _
Dn =3 kzo L}ﬁ o (2at9)r? cos2(cr\/i)r2dr—é(1+t)
= cV't

[ent)—1 km+ T

(S

v

M2 s % N (2472 € _3
> n a+o)rs 2 _ ¢
_20t 2 o e rodr 002(14-15) 2
k=0 ot
>COr 1+1)72 — O e(14+1)7 2
>CoM1+t) 3
(4.4)
In the case of M,, =0, M,, # 0, we can use a similar argument to obtain that
[ i
[€1<n
€ (om1o 2 M2 (91 2 . (4 5)
> — e~ (2Bt+D)I¢ ¢ cos?(bt)d¢ + - e~ (2+D)I¢| tsin?(bt)de ‘
j€l<n 3Cc? Jig1<n

> (1+1)7E

Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the
lower bound of the time decay rate for n(t, x) as

[7(t, )22 = [|A(t,€)]22 > C7H(1 + )72,

The lower bound of the time decay rate for m(¢,z) can be shown in a similar
fashion. It is not difficult to derive that

1t )l = /

1
SIS =[S, (4.6)
l€l<n 2

then we find that

[ 1saPag £ 140 F ol (47)
[€1<n
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We then calculate that

/ EAR
[€1<n

49772 2
> {0 [ B o
[€1<n

- C b2
1 € Munl® _opiyier
+ = Bl o= CrmIEt cos? (bt)de
Cligr<n 117
+ { / e~ HRHOIER o ) EE - T0) (mo _ £& 7o) ’;’“’)) dg}
j€1<n €l iy
=J1 + Js.
A direct computation gives rise to
J1>C M 14073, Jy=0. (4.8)

Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of
the time decay rate for m(t, z) as

[t @[3 = m(t Ol = ¢ (1 +)7%.
Then the proof of Proposition 4.2 is completed. O

4.2. LP-time decay rate. In this subsection, we establish the following LP-time
decay rate of the global strong solution to the linearized Navier-Stokes system with
p € [2,4+0].

Proposition 4.3. Let Uy = (ng,mg) € LY(R*) N WHP(R?) with | > 3, then (m,m)
solves the linearized Navier-Stokes system (3.1) and satisfies for 0 < k < 1 and
p € [2,+0q] that

o _3(1_1)_k
IV* @, W) ()| o sy < C(L+ )72 07272 (|Usllpr sy + IVFUoll o))
where C' is a positive constant independent of time.
To prove Proposition 4.3, the following two lemmas in [6] are helpful.
Lemma 4.1. Let n > 1 and assume that f(€) € L N C™H(R™ /{0}), with

|£|7|a\+01’ |§| < Ra |a| =n,
|§|*|°‘""2, €] > R, |a|=n—1,n,n+1,

veiel < of
where 01,092 >0 and n > 2 — 20,. Then f({) is continuous at 0 and oo, and
J =m1 + mad,
where my € L'(R") satisfies |m1| p1@ny < C(C'), my is the constant
my = (2m)" % lim f(¢),
|€]—o00
and 0 is the Dirac distribution. In particular, f({) s a strong LP multiplier, 1 <
p < 00, in the sense that, for any g € LP,
If*gller < Cllgllze, 1 <p < oo,

where C depends only on |ma| < ||f|lLe~ and the constant C" above.
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Lemma 4.2. Let §(t,&) = K(t,€)f(€), where K(t,€) = eVt f(&) € L n
C"*1(R™), and

IVEF@©I <l 18l <m+ 1.

Then V&qg(t,-) € L? fort > 0, and for all a, 1 < p < 00, we have
n ol
IV29(t.)lzv < Claly= 307975

In particular, V& g(t z) = (i)*4(t, &) is a strong LP multiplier, with norm bounded
by C(\a|,19)C’t_*|, where the constant C(|a|,9) depends only on || and 9.

Now let us turn to the proof of Proposition 4.3.

Proof of Proposition /.3. We first analyze above higher frequency terms denoted
by (-),. Recall that

2 2
20+
We shall prove that the higher frequency terms are LP Fourier multipliers with an
exponential time decay coefficient C'e™t! for some constants c¢; > 0. For simplicity,

we only show that /VQ is an LP Fourier multiplier at higher frequency as follows. It
holds

2¢?

-2 —
sy T O™, X =

A =—(20+ v + +0(¢17%), 1€l =n.

)\16)\2t — )\26)\1t _ 6)‘2t + )\26>\2t _ )\26)\1t
Y A=A A=A

By a direct computation, it is easy to verify

IVEX| S 1E1727%, 1€l >,

which gives rise to

Ve[ 22

here and below, R > 0 is a given constant. Thus, from Lemma 4.1 it follows that the

o <R
S e, e = R

vE[a = x(e])

Aot + )\26>\2t

inverse Fourier transform of the term (1 — x(+)) (e m) is an LP multiplier

with the coefficient Ce™¢t!. The other part of J\Afg at higher frequency can be written
as

e(—Az—§(2u+u>|£|2)t}

(1 x() 2 e hemole (1 y ()
A1 — A

A1 — A2

We can regard e~ 2AF7)IEt a5 the function K(t,€) of Lemma 4.2, and the rest
e it
A?e—)Q

is also an LP multiplier with the coefficient Ce=“tt. These facts imply that No
at higher frequency is an LP multlpher with the coefficient Ce™“t, Applying the
similar analysis to the terms 9’12, /\/lg7 and 93?2, we can show that their inverse
Fourier transform are all LP? multiplier with the constant coefficient Ce™t. Then

I(VEN2*f), V(Mo f), VE(Max f), VEO2 % ) (1)l < Ce™ [V f e, (4.9)

for all integer k > 0, and p € [2, o0].

term satisfies the condition. Thus, the inverse Fourier transform of (1 — x(+))
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We also need to deal with the corresponding lower frequency terms denoted by
(-);- Recall that

)\16)\2t _ )\2€>\1t AleAlt _ )\26)\2t ‘€|(6)\1t _ 6)\2t)
AL — Ao ’ AL — Ao ’ AL — Ao
which imply that for |£] <7 that
Wi| ~ O(1)e==2IP 19 | ~ O(1)e 2,
M|~ O()e==lFE o[ ~ O(1)el1™,

~ 0(1)6*%(2ﬂ+5)|£|2t’ €| <,

for some constants co > 0. Thus, by Hausdroff-Young’s inequality with p € [2, +o0],
we can obtain

IOV N, VO, VRMy, VR (1) 20 <C ( / y|§|’fe”5"’thd5)q
l€]<n (4.10)
<C(1+1)73079)75,
Combining (4.9) and (4.10), we finally have for ¢ > 0 that
I(VEV % £), V(M = ) (O)lze = [(VF((Ny + N2) * f), VE((My + M) 5 £))(8)] 0
<SCOA+8) 2D f|l 0 + Cem [ VEF o
<O+ 2D 75 fllp + [ VFF o)

The proof of Proposition 4.3 is completed. O

5. L?-time decay rate for nonlinear system. We are ready to prove Theorem
1.1 on the sharp time decay rate of the global solution to the initial value problem
for the nonlinear Navier-Stokes system.

In what follows, we will set n, =n —n and m, = m — m, then we have

Oy, + divmy, = 0, (t,z) € RT xR,
Oymp, + AVny, — iSAmy, — (i +v)Vdivmy, = F, (t,z) € RT x R3,

lim n, =0, lim m,=0, teR*, (5.1)
|z|— 00 |z]| =00 5
(nh,mh)’tzoz(0,0), xz € R?,

o fmpFm)@my+m) (g 4 1) (my, 4 m)
F__dw{ : nh+ﬁ+g +iv( hnh+ﬁip )}
= {2 aiv (I, 41 ) — (o) — P +7)

Denote Uy, = (nn, my)t, we have the equivalent form of system (5.1) in vector form
oU,=BU,+ H, t>0, Uh(O)ZO,

where the nonlinear term H(U,U,) = (0, F(U,U))!. Thus, we can represent the
solution in term of the semigroup

U (t) = S(t) « Up(0) + /Ot S(t—7)x* H(U,Uy)(7)dr,
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which (np, mp) can be decomposed as

nn = N+ Un(0 /m—T*H( dr, (5.2)

mp = M % Uy (0) +/O M(t — 7) « H(r)dr. (5.3)

Furthermore, in view of the above definition for 9(¢ ) and ﬁ(g), it is easy to verify
for some constants c3 > 0, ¢4 > 0, Ry > 0, we discover that

R(E)| ~ O)el% PR(e)| ~ O1)es % Je] <,

IR(E)| ~ O(1) mreRot [ R(E)] ~ O(1) e R0t + O(1)e P[] >,

¢l €17
Thus, applying a similar argument as in the proof of Proposition 4.1, we have
|(V*9t s H, VA0 H)(0) 22 < C 407202735 (JQlLse + [V Qllz2), 0= 1,2,
5.4)
8(1_ 1y 1 _k
(V90 VA0 H) (1) 12 < C(1+0) 3G D35 (|Q| o+ V4 Q). g = 1.2,
(5.5)
_3(1_1y_1_k
IVF0 s H (1) 2 < CA+8) 2677273 (|Ql| o + [VET'Qll2), ¢ =1,2, (5.6)
for any non-negative integer k and
(mp +m) & (mp, +m _ ny +n)(my +m
) |t D7)
np,+n+p np+n+p
— . (np+n)(mpy, +m) o _ 9 ~
+‘ + v)div — + (p(np +n+p) — —c(np+n ‘
(7t 7) div(— == ——) (p(rn p) —p(p) — ¢*(nn )() |
5.7

For readers’ convenience, we show how to estimate || V*90 x H (t)|| ;2> as an example.
The other two estimates can be obtained by the similar argument. Indeed,

IV« H (2)]12

,S/ 6—203|£|2t|§|2k‘ﬁ|2d£+/ 372R0t|§|2k74|ﬁ|2df
l€]<n [€]>n
s [ e g
[€1>n
§ / ¢ 2es € 202 O P 4 / e 2Rt |22 QP
lel<n &1z

+/ e—2C4|f|2t|§|2k+2|©|2d£
[€1=n

1_1y_q_ ; -
SA+0) 2D QI sy + IIVFQI 2@sy), ¢=1,2, k—1<keNT'.

5.1. L?-time decay rate. In this subsection, we establish the faster decay rate for
(np, mp). We will start with an a priori assumption on a carefully chosen quantity
A(t) defined in (5.8), and then later prove a better estimate with the help of the
smallness of initial data.

We begin with following Lemma.



THE SHARP TIME DECAY RATE OF THE NAVIER-STOKES SYSTEM 1961

Lemma 5.1. Let r1,72 > 0 be real, one has

. .
/ (A+t—r) (1 +7)"dr :/ (L4 5 +7) (1 5 =) e
0

0
(1+¢)~™, for ry3>1,

< (1—|—t)_(“_5), for ro =1,
(1+t)7(7’1+r271), for 1o <1,

and

¢ 3
/ (1+t—T)_T1(1+7)_T2dT:/ I4+t—7)""2(14+71)"dr
% 0

(I1+¢)"", for r1>1,
g @+ for =1,
(1 t)~rtr=L o for ry <1,

where € > 0 is a small but fized constant.

Proposition 5.1. Under the assumptions of Theorem 1.1, the solution (np, mp) of
the nonlinear system (5.1) satisfies for k =0,1,2 that

1(V 0, VEmy) 12 < C2(1+ 1)~ %,
IV3mp||re < C2(1+ )" 7,  ||[V3nnu|lrz < Coo(1+ )77,

.;.

where C' is a positive constant independent of time.

From (5.7), we deduce
Q(U,Up) = Q1+ Q2+ Q3 + Qu,

which implies for a smooth solution (n, m) satisfying ||(n,m)||gs < oo that

Q1 = Qi(U,Up) ~ O(1) (nj, +mp @ mp +0° +m@m),
Q2 = Qs(U,Up) ~ O(1) (Anp, + i @ mn)

Qs = Q3(U,Un) ~ O(1) (V(ny, - my) + V(- ),

Qs = Qu(U,Up) ~ OQ1) (V7 - mp) + V(np, - ) .

Define

Proposition 5.2. Under the assumptions of Theorem 1.1, if for some T > 0,
A(t) < 6¢ for any t € [0,T), then it holds that

3
A(t) <Cé63, te][0,T],
where C' is a positive constant independent of time.

The proof of this Proposition 5.2 consists of following three steps.
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5.2. Step 1: The basic energy estimates. Starting with (5.4), (5.5), (5.6) and
(5.8), we have after a complicate but straightforward computation that

t
[ (ron, mn) ||z < /O [(M(t —7)* H(T),M(t — 7) x H(T))||L2dT
t
S [ast=n (1l + 1)) dr
; (5.9)
< (2 5§A2(t)> /t(1+t T)TEH(1+ )" Rdr
5 2 — 4 2
S ( o 1 09 0
S+ (+0i0%1).
It is easy to verify that
QW SIQ1llzr +11Q2llr + @3l + [|Qall 22
<@, @) 72 + s ma) 172 + [ (nws mn) || 22 (I(V7, Vi) 2
+ [[(Vrn, Vi)l 22) + |7, )] 2 (1(V7A, Vi) [l 22 + |(Van, Vima) | 22)
SA+7F (08 +050%()) -

Indeed, by virtue of Holder’s inequality and Gagliardo-Nirenberg’s inequality, we
obtain that

1 1
lull e < NVl 211Vl 7,

which implies that

Q)] 2

SN ) e (1, W)l 22 + (VR Vi) [z + [[(nn, mn) |2
+1(Vrn, Vimn)llzz) + | (e, mn)l| L (s mn)l[z2 + (Yo, Vi) | 22)
+ (Vi Vi) [ pe< || (nn, ma) | 2

3
<A+1)7F (53 + 551\2(7:)) .
Furthermore, exactly as in the estimate of the high order derivatives, we have
[(Vnn, Vma)|| 2

~

/(1+t—7- i
<50+68A2 )

<A+t 7 (50 + 05 A% ))

</ (VR V) (¢ — 7) = H(r )||de7+/ (O, O (¢ — 7) + VH(7)| p2dr

1QEs +IVQW2)dr + [ (14t = 1) 2I9Q() 2
/ (I+t—7) 5(1+7)" 2dr+/t(1—|—t—7) %(1+T)—%df)

2

o~ ~N —~

(5.10)
Similarly, it holds that

IVQ®)| 2
SI@ @) | (1(V7, Vi)l 2 + [1(V27, V2R [ L2 + [[(Vin, Vi) | 2
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(V2 nn, V2mp) || 22) + [(V7, Vi) | e (1(V7, Vi) || 22 + (| (i, ) | 2
+1(Vrn, Vi)l z2) + [ (o, mn)l| 2= (I[(V27, V20) | 22 + [[(Vrn, Vimg )| 2
+ (V2 nn, V2mn) || 22) + (Y, Vi)l 2 | (Vin, Vi) | 2
Sa+07% (8 +5§A2(t)) :
Thus, we also get that
1(V?n0, V2mp) (1) 2

t

</E (V20 V2M) (t — 7) * H(7)|| p2dT
0

~

+L (O, M) (t — 7) % V2H(T)||2dT

B

S/Of(l +t =) H(1Q() Il + IV2Q(7)]| 1) dr
| | (5.11)
+[ L+t —7)"2[|V?Q(7) | r2dr

2

S (5(2) +00A(1) Jr50%/\2(15)> </O;(1 +t— T)*%(l +T)7%d7

+ /t(l +t—7)"3(1 +7)lf’df>

2

SO+1)7F (38 4+ 00A(1) + 55 A%(1))

o+

Finally, we have

IV2Q(t)]| 2
SU @) zoe + (s mi) o) (V37 Vo) || 2 + [[(VP00, V) | £2)
+ ([(V, V)| e + [[(Vrn, V)| e )([(VR, V)| 2 + [[(Vin, Vi) 22)
+ (I m)[| L + [[(nn, mp )| 2o + (VR V)| Lo + [[(Vru, Vi) [ 2)

x (|(V27, V2m)| 2 + [(V2nn, V2m)|| 12)

S+~ (83 + doA(r) + 5§A2(t)) .
5.3. Step 2: The higher order energy estimates. In this subsection, we will
close the a priori estimates and complete the proof of Proposition 5.2. For this pur-

pose, we need to derive the time decay rate of higher order derivatives of (ny, mp).
We will establish the following lemma.

Lemma 5.2. Under the assumption of Theorem 1.1, one has
3
I92n(0) | + I9%u(®)llm S (1+0)7F (60 + 05 A))
In particular, it holds that

192 ) B2 S (1+0)7F (60 + 65 M)
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Proof. First of all, in view of (2.12), recovering the dissipation estimate for n, we
see that

d
— | V?u-Vindx + C1|V3n|2.dx
dt R3

<C (IV%ul3 + [V 4ullfe) + C(+1)7F (60 + 35 AL))
< (IV2nlZz + IV2ulg2 + [ VPulZ2) -

(5.12)

Summing up (2.7) and (2.8) in the energy estimate for (n,u), we can directly derive

a

dt
_3 H

<C(1+6)7# (80 + 55A®) (190132 + [V2ul32 + [9°n]13:)

(V[V2n]? + |V2ul® + 4| VPn* + |V2ul|?) dz + Cs (| VPul2 + [|[Viul32)
R3

(5.13)

Multiplying (5.12) by 61%‘2 with €; > 0 a small but fixed constant, adding it with
(5.13), we deduce that there exists a constant Cy > 0 such that

d k 2 k 2 C?) 2 3
dt{ Z (VIVFllZ + IVFulZ2) +61?2 RSV u - Vondx

2<k<3

+ (I3 + Y IV ul:)

3<k<4

<C(+07F (80 +85A0)) (1920132 + [ V2ull3s)

Next, we define

C
t) = k 22 k 22 73 2. 3 d .
e ={ S OV + VL) +a gt [V e

2<k<3

Observe that since €; g3 is small, then there exists a constant Cs > 0 such that

s (IV2n@) 3 + IV2u®)llF) < &) < Cs (IV2n@) 7 + IV u)lF) -

Then we arrive at

Do)+ IVl + IVu@)) < 00+ (60 o A(t)) (63 o A2<t>) .

Denote S(t {§||§| < 4/ 1J”’)(l + )~ } the time-dependent n-dimensional

sphere. ThlS decomposition allows us to estimate L? time decay depend on (7, )
for frequency values £ € S(t), then we obtain that

C 4 C4

3 e 6 N 2
S 0, ) @) 3 > /W €% (7, @) (€)[2de
S+ y)(1+ 1) / el B) @) Pde — (14 7)(1 4+ 1) / €47, ) (€) Pde.

S(t)
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Hence we have
d
%el(t) + A+ ) + (V32 + (| V3ul2n
<1407 (60 + 65 A0)) (62 + 62 A2(¢t 144)! (7. 3)(6)2d
S(1+1) 0+ 5 At)) (05 +05 A1) ) +(1+1) S()If\ |(m,u)(§)]7dE
t

+1+t)7 [ Vu-Vinde.
R3

Multiplying the above equation by (1 + #)®, we obtain that

%{(1 + 080 )+ (L+0° (IVPnl3a + [ V2ul3n) S (1 +0)F (33 + 05 4%(1)) -

Integrating it with respect to time from 0 to 7', then we have

T
(1+1)°& (1) +/O (1 +t)5(||V3n||2L2 + \|V3u||§{1)dt
3 (2 | 8,0
SE0) + 1+ 0} (6 + 0§ 4%(1))
which implies that
3
IVl + [ V%ul3e S €1(6) S (1467708 + (1+)7F (83 + 65 A%(1))
Finally, we have
3

IV%mnllze + [ 9%mallze S (1+ )7 F (3 + 64 D))

This completes the proof of this Lemma. O

5.4. Step 3: Close the estimates. In this subsection, we first combine the above
a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the
proof of the Proposition 5.2. In deed, for any ¢ € [0,T], we have shown that

Aty < C (5 + SaA(t) + A2(1)) < os3. (5.14)

With the help of standard continuity argument, Proposition 5.2 and the smallness

of 69 > 0, implies that A(t) < 066% for any ¢ > 0. Moreover, we deduce the time
decay estimate for (np, mp) from (5.9), (5.10), (5.11), Lemma 5.2 and (5.14) that

1(V*n0, VEmp) |2 S B +6)"57%, k=01,
192, ma) 2 S 05 (L4078 9%yl S 00(1+1)7E.
Consequently, for any t € [0,7] we have
A(t) < Céo. (5.15)
From (5.11) and (5.15), thus we also get that

V2 (g, ma) ||z S 62(1+ )77,
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For V3my,, in view of the (5.6), we see that

V3 m ()| .2
5/;(1 +t—7) 7T QD)L + [V2Q(7)||2)dr
+/ (14t —7)"2(|V?Q(7)||2dr

(|
0

<GB +1)" 7.

N+

[VES

t
(1+t—7)"%(1+7) 2dr +/ (1+t—7)"2(1+ T)_143d7'>

Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.
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