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Abstract. Flajolet and Françon [European. J. Combin. 10 (1989) 235-241]

gave a combinatorial interpretation for the Taylor coefficients of the Jacobian

elliptic functions in terms of doubled permutations. We show that a multi-
variable counting of the doubled permutations has also an explicit continued

fraction expansion generalizing the continued fraction expansions of Rogers

and Stieltjes. The second goal of this paper is to study the expansion of the
Taylor coefficients of the generalized Jacobian elliptic functions, which implies

the symmetric and unimodal property of the Taylor coefficients of the general-

ized Jacobian elliptic functions. The main tools are the combinatorial theory
of continued fractions due to Flajolet and bijections due to Françon-Viennot,

Foata-Zeilberger and Clarke-Steingŕımsson-Zeng.

1. Introduction. For a fixed modulus x ∈ (0, 1), the Jacobi elliptic function
sn (z, x) is the inverse of an elliptic integral, i.e.,

sn (z, x) = y iff z =

∫ y

0

dt√
(1− t2)(1− x2t2)

.

The other two Jacobi elliptic functions are respectively defined by

cn (z, x) :=
√

1− sn 2(z, x),

dn (z, x) :=
√

1− x2sn 2(z, x).

These functions appear in a variety of problems in physics and have been extensively
studied in mathematical physics, algebraic geometry, combinatorics and number
theory (see [5, 6, 8, 9, 11, 12, 19, 20, 21, 27, 28] for instance). When x = 0 or x = 1,
the Jacobi elliptic functions degenerate into trigonometric or hyperbolic functions:

sn (z, 0) = sin z, cn (z, 0) = cos z, dn (z, 0) = 1,

sn (z, 1) = tanh z, cn (z, 1) = dn (z, 1) = sech z.

The three Jacobi elliptic functions are connected by the differential system (see [2]):
d
dz

sn (z, x) = cn (z, x)dn (z, x),
d
dz

cn (z, x) = −sn (z, x)dn (z, x),
d
dz

dn (z, x) = −x2sn (z, x)cn (z, x).

(1)
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Note that

(−i) · sn (iz, 1) + cn (iz, 1) = tan z + sec z =

∞∑
n=0

En
zn

n!
, (2)

where i =
√
−1 and En is the number of alternating permutations (also known

as up-down permutations) in Sn (see [26]). The Taylor series expansions of these
Jacobian elliptic functions are given as follows:

sn (z, x) = z − (1 + x2)
z3

3!
+ (1 + 14x2 + x4)

z5

5!
− (1 + 135x2 + 135x4 + x6) + · · · ,

(3)

cn (z, x) = 1− z2

2!
+ (1 + 4x2)

z4

4!
− (1 + 44x2 + 16x4)

z6

6!
+ · · · , (4)

dn (z, x) = 1− x2 z
2

2!
+ x2(4 + x2)

z4

4!
− x2(16 + 44x2 + x4)

z6

6!
+ · · · . (5)

Defining the Laplace-Borel transforms of sn and cn by:

S1(z, x) =

∫ ∞
0

e−tsn (zt, x)dt and C0(z, x) =

∫ ∞
0

e−tcn (zt, x)dt,

i.e., the series obtained from (3) and (4) by replacing zn/n! by zn, Rogers and
Stieltjes [21, 27] found the following continued fractions expansions.

S1(z, x) =
z

1 + (1 + x2)z2 − 1 · 22 · 3 · x2z4

1 + (1 + x2) · 32z2 − 3 · 42 · 5 · x2z4

1 + (1 + x2) · 52z2 − · · ·

, (6)

C0(z, x) =
1

1 + z2 − 12 · 22 · x2z4

1 + (32 + 22x2)z2 − 32 · 42 · x2z4

1 + (52 + 42x2)z2 − · · ·

. (7)

According to [12], the question of the possible combinatorial significance of the
coefficients of Jn(x) in

1 +

∞∑
n=1

(−1)nJ2n(x)
z2n

(2n)!
+

∞∑
n=0

(−1)nJ2n+1(x)
z2n+1

(2n+ 1)!
= cn (z, x) + sn (z, x)

was first raised by Schützenberger. The first combinatorial interpretation was given
by Viennot [28], and is expressed in terms of so-called Jacobi permutations. Using
his combinatorial theory of continued fractions Flajolet [11] proved that the coeffi-
cients of cn (z, x) count classes of alternating (up-and-down) permutations based on
the parity of peaks. Dumont [8] finally discovered some further relations between
these functions and the cycle structure of permutations. Flajolet-Françon [12] gave
an interpretation of the elliptic functions as generating functions of doubled permu-
tations.

A polynomial f(x) =
∑
i aix

i ∈ R[x] is called γ-positive if f(x) =
∑bn/2c
i=0 γix

i(1+
x)n−2i for n ∈ N and nonnegative reals γ0, γ1, . . . , γbn/2c, the notion of γ-positivity
appeared first in the work of Foata and Schützenberger [13]. A recent survey on
γ-positivity in combinatorics and geometry was given by Athanasiadis [1]. In a
series of papers Shin and Zeng [22, 23, 24] exploited the combinatorial theory of
continued fractions to derive various γ-positivity results.
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In this paper, by generalizing the continued fraction expansions of Rogers and
Stieltjes, we generalize Flajolet and Françon’s the combinatorial interpretation of
the Taylor coefficients of the Jacobian elliptic functions. Furthermore, we show that
the Taylor coefficients of the generalized Jacobian elliptic functions are γ-positive.
The main tools are the combinatorial theory of continued fractions due to Flajolet
and bijections due to Françon-Viennot, Foata-Zeilberger and Clarke-Steingŕımsson-
Zeng.

2. Main results. We follow [4, 17, 16, 22, 23] for notations and the nomenclature
of various permutation statistics. First we recall three classical involutions defined
on Sn, namely, the reverse, complement and the composition of the two. For
π ∈ Sn,

πr := π(n) · · ·π(2)π(1),

πc := (n+ 1− π(1))(n+ 1− π(2)) · · · (n+ 1− π(n)),

πrc := (n+ 1− π(n)) · · · (n+ 1− π(2))(n+ 1− π(1)).

Denote by π−1 the inverse permutation of π. If we use the standard two-line notation
to write π, then π−1 is obtained by switching the two lines and rearranging the

columns to make the first line increasing. For instance, if π =

(
1 2 3
2 3 1

)
, then

π−1 =

(
1 2 3
3 1 2

)
.

Let Sn be the set of permutations of [n] = {1, 2, . . . , n}. Given a permutation
π = π(1)π(2) · · ·π(n) ∈ Sn we say that i ∈ [n− 1] is a descent (resp. excedance) of
π if π(i) > π(i + 1) (resp. π(i) > i). Let desπ (resp. excπ) denote the number of
descents (resp. excedances) of π.

Definition 2.1. For π ∈ Sn, let π(0) = π(n+1) = 0. Then any entry π(i) (i ∈ [n])
can be classified according to their ordinal type into four categories:

• a peak if π(i− 1) < π(i) and π(i) > π(i+ 1);
• a valley if π(i− 1) > π(i) and π(i) < π(i+ 1);
• a double ascent if π(i− 1) < π(i) and π(i) < π(i+ 1);
• a double descent if π(i− 1) > π(i) and π(i) > π(i+ 1).

Let pk π (resp. val π, da π, dd π) be the number of peaks (resp. valleys, double
ascents, double descents) in π. Note that for π ∈ Sn, pkπ + ddπ = desπ + 1.

For σ ∈ Sn with convention 0–∞, i.e., σ(0) = 0 and σ(n+1) =∞, any entry π(i)
(i ∈ [n]) can be classified according to their left ordinal type into four categories:
let Lpk (resp. Lval, Lda, Ldd) be the set of peaks (resp. valleys, double ascents and
double decents) and denote the corresponding cardinality by lpk (resp. lval, lda and
ldd).

Definition 2.2. For σ = σ(1) · · ·σ(n) ∈ Sn, we define its star compagnon σ∗ as a
permutation of {0, . . . , n} by

σ∗ =

(
0 1 2 . . . n
n σ(1)− 1 σ(2)− 1 . . . σ(n)− 1

)
. (8)

Any entry π(i) (i ∈ [n]) can be classified according to their star cyclic type into four
categories:

Cpk∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i > σ∗(i)}, (9)
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Cval∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i < σ∗(i)}, (10)

Cda∗ σ ∪ Fix∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) < i < σ∗(i)} ∪ {i ∈ [n− 1] : i = σ∗(i)},
(11)

Cdd∗ σ = {i ∈ [n− 1] : (σ∗)−1(i) > i > σ∗(i)}. (12)

The corresponding cardinalties are denoted by cpk∗, cval∗, cda∗ ∪ fix∗ and cdd∗

respectively.

Definition 2.3. A permutation is a doubled permutation iff for all 0 ≤ i ≤ b(n −
2)/2c, elements (i.e. values) 2i + 1 and 2i + 2 are of the same ordinal type. The
set of doubled permutations is denoted by DPn. A permutation is a star doubled
permutation iff for all 0 ≤ i ≤ b(n− 2)/2c, elements (i.e. values) 2i+ 1 and 2i+ 2
are of the same star cyclic type. The set of star doubled permutations is denoted
by DP∗n.

For example, π1 = 6315427 ∈ DP7 since 1 and 2 (resp. 3 and 4, 5 and 6)
are valleys (resp. double descents, peaks) of π1. π2 = 6732451 ∈ DP∗7 since
{1, 2} ∈ Cval∗ π2, {3, 4} ∈ Cdd∗ π2 and {5, 6} ∈ Cpk∗ π2.

The first goal of this paper is to explore the coefficients in the Taylor series
expansion of Jacobi elliptic functions sn (z, x) by generalizing the continued fractions
of (6).

For σ ∈ Sn, the statistic (31-2)σ (resp. (13-2)σ ) is the number of pairs (i, j)
such that 2 ≤ i < j ≤ n and σ(i− 1) > σ(j) > σ(i) (resp. σ(i− 1) < σ(j) < σ(i)).
Similarly, the statistic (2-13)σ (resp. (2-31)σ) is the number of pairs (i, j) such
that 1 ≤ i < j ≤ n− 1 and σ(j + 1) > σ(i) > σ(j) (resp. σ(j + 1) < σ(i) < σ(j)).
Moreover, define

crosi σ = #{j : j < i < σ(j) < σ(i) or σ(i) < σ(j) ≤ i < j}, (13)

nesti σ = #{j : j < i < σ(i) < σ(j) or σ(j) < σ(i) ≤ i < j}. (14)

Let cros =
∑n
i=1 crosi and nest =

∑n
i=1 nesti.

Let J2n+1(p, q, x, u, v, w) be the polynomials defined by the continued fraction
expansion∑

n≥0

(−1)nJ2n+1(p, q, x, u, v, w)z2n+1 (15)

=
z

1 + (u2 + x2v2)[1]2p,qz
2 −

[1]p,q[2]2p,q[3]p,qx
2w2z4

1 + (u2 + x2v2)[3]2p,qz
2 −

[3]p,q[4]2p,q[5]p,qx
2w2z4

· · ·

,

where [n]p,q = (pn − qn)/(p− q).

Theorem 2.4. We have

J2n+1(p, q, x, u, v, w) :=
∑

π∈DP2n+1

p(2-13)πq(31-2)πxdesπudaπvddπwvalπ (16)

=
∑

π∈DP∗2n+1

pnestπqcrosπxexcπucdd∗ πv(cda∗+fix∗)πwcval∗ π. (17)
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As J2n+1(x) := J2n+1(1, 1, x, 1, 1, 1), we derive

J2n+1(x) =
∑

π∈DP2n+1

xdesπ (18)

=
∑

σ∈DP∗2n+1

xexcπ. (19)

Eq. (18) is due to Flajolet-Françon[12].

Theorem 2.5. We have

J2n+1(p, q, x, u, v, w) =

bn/2c∑
k=0

a2n+1,2k(p, q)(xw)2k(u2 + v2x2)n−2k, (20)

where
a2n+1,2k(p, q) :=

∑
π∈DP2n+1,2k

p(2-13)πq(31-2)π, (21)

and

DP2n+1,2k := {π ∈ DP2n+1, dd(π) = 0, valπ = desπ = 2k}.

Moreover, for all 0 ≤ k ≤ bn/2c, the following divisibility holds

(p+ q)2k | a2n+1,2k(p, q). (22)

In particular, we obtain the following expansion of J2n+1(x) from (20).

Corollary 1. For all n ≥ 1, we have

J2n+1(x) =

bn2 c∑
k=0

|DP2n+1,2k|x2k(1 + x2)n−2k. (23)

Remark 1. Using context-free grammar Ma-Ma-Yeh-Zhou gave another interpre-
tation of γ-coefficients in increasing trees, see [20, Eq. (14)] and [20, Corollary 20],
it would be interesting to find a direct bijection between DP2n+1,2k and the γ-
coefficients in [20].

The second goal of this paper is to explore the coefficients in the Taylor series
expansion of Jacobi elliptic functions cn (z, x) by generalizing the continued fractions
of (7).

Definition 2.6. For σ ∈ Sn, any entry σ(i) (i ∈ [n]) can be classified according to
their cyclic ordinal type into four cases:

• a cyclic peak if i = σ−1(x) < x and x > σ(x);
• a cyclic valley if i = σ−1(x) > x and x < σ(x);
• a double excedance(resp. fixed point) if i = σ−1(x) < x and x < σ(x)(resp.
x = σ(x));

• a double drop if i = σ−1(x) > x and x > σ(x).

Let cpkσ (resp. cvalσ, cdaσ, cddσ, fixσ) be the number of cyclic peaks (resp.
valleys, double excedances, double drops, fixed points) in σ.

Definition 2.7. For σ ∈ Sn with convention 0–∞, a double ascent σ(i) of σ
(i ∈ [n]) is said to be a foremaximum if σ(i) is a left-to-right maximum of σ, i.e.,
σ(j) < σ(i) for all 1 ≤ j < i. Denote the number of foremaxima of σ by fmaxσ.

For instance, lda(42157368) = 3, but da(42157368) = 2 and fmax(42157368) = 2.
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Definition 2.8. A permutation π is said to be a left doubled permutation iff for
all 0 ≤ i ≤ b(n − 2)/2c, elements (i.e. values) 2i + 1 and 2i + 2 in π are of
the same left ordinal type. The set of left doubled permutation is denoted by
LDPn. A permutation π is said to be a cyclic doubled Permutation iff for all
0 ≤ i ≤ b(n − 2)/2c, elements (i.e. values) 2i + 1 and 2i + 2 in π are of the same
cyclic ordinal type. The set of cyclic doubled permutation is denoted by CDPn.

Let J2n(p, q, x, u, v, , w, y) be the polynomials defined by the continued fraction
expansion∑

n≥0

(−1)nJ2n(p, q, x, u, v, w, y)z2n (24)

=
1

1 + y2z2 −
[1]2p,q[2]2p,qx

2w2z4

1 + ((qu[2]p,q + p2y)2 + x2v2[2]2p,q)z
2 −

[3]2p,q[4]2p,qx
2w2z4

· · ·

.

Theorem 2.9. We have

J2n(p, q, x, u, v, w, y) =
∑

π∈LDP2n

p(2-31)πq(31-2)πxdesπuldaπ−fmaxπvlddπwlvalπyfmaxπ

(25)

=
∑

σ∈CDP2n

pnestπqcrosπxexcπucddπvcdaπwcvalπyfixπ. (26)

Since J2n(x) = J2n(1, 1, x, 1, 1, 1), we derive

J2n(x) =
∑

π∈LDP2n

xdesπ (27)

=
∑

σ∈CDP2n

xexcπ. (28)

Eq. (27) is due to Flajolet-Françon [12].
When u = 0 and t = v = 1 we can write

J2n(p, q, 1, 0, 1, w, y) :=
∑
k,j≥0

b2n,2k,2j(p, q)w
2ky2j , (29)

where b2n,2k,2j(p, q) is a polynomial in p and q with non negative integral coefficients.
Let CDP2n,2k,2j denote the subset of all the permutations σ ∈ CDP2n with exactly
2k cyclic valleys, 2j fixed points, and without double drops, and let LDP2n,2k,2j

denote the subset of all permutations σ ∈ LDP2n with exactly 2k valleys and 2j
double ascents, which are all foremaxima.We derive the following combinatorial
interpretation of b2n,2k,2j(p, q) from Theorem 2.9.

Corollary 2. We have

b2n,2k,2j(p, q) =
∑

σ∈CDP2n,2k,2j

pnestσqcrosσ =
∑

σ∈LDP2n,2k,2j

p(2-31)σq(31-2)σ. (30)

In particular, when j = 0, we obtain

b2n,2k,0(p, q) =
∑

σ∈DD2n,2k,0

pnestσqcrosσ =
∑

σ∈DD∗2n,2k,0

p(2-31)σq(31-2)σ, (31)

where DD2n := {π ∈ CDP2n, fixπ = 0}.
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Recall (see [22]) that a coderangement is a permutation without foremaximum.
Let DD∗2n be the subset of LDP2n consisting of coderangements, that is, DD∗n =
{σ ∈ LDP2n : fmaxσ = 0}. Thus, DD2n,2k,0 is the subset of derangements σ ∈
DD2n with exactly 2k cyclic valleys, and without double drops, and DD∗2n,2k,0 is
the subset of coderangements σ ∈ DD∗n with exactly 2k valleys and without double
ascents. The following is our main result about the polynomial

DD2n(p, q, x, u, v, w) := J2n(p, q, x, u, v, w, 0).

Theorem 2.10. We have

DD2n(p, q, x, u, v, w) =

b(n)/2c∑
k=0

b2n,2k,0(p, q)(xw)2k(q2u2 + x2v2)n−2k. (32)

A pair of integers (i, j) is an inversion of σ ∈ Sn if i < j and σ(i) > σ(j). Let
inv σ be the inverion number of σ.

As inv = exc + 2nest + cros (cf. [16, Eq. (2.41)]), taking (p, q, x, u, v, w) =
(q, 1, x, 1, 1, 1) (resp. (p, q, x, u, v, w) = (q2, q, xq, 1, 1, 1)) in Eq. (32), we obtain the
following corollary.

Corollary 3. For all positive integers n and for each statistic stat ∈ {nest, inv},

∑
π∈DD2n

qstatπxexcπ =

bn/2c∑
k=0

 ∑
π∈DD2n,2k,0

qstatπ

x2k(1 + x2)n−2k. (33)

For any permutation σ ∈ Sn, we denote by cycσ the number of its cycles. We
give the following expansion.

Theorem 2.11. We have

∑
σ∈DD2n

qcycπxexcπ =

bn/2c∑
k=0

 ∑
π∈DD2n,2k,0

qcycπ

x2k(1 + x2)n−2k. (34)

The rest of this paper is organized as follows. In Section 3, we recall some
definitions and preliminaries of combinatorial theory of continued fractions. In
Sections 4–7 we shall prove Theorem 2.4, Theorem 2.5, Theorem 2.9, Theorem 2.10
and Theorem 2.11, respectively. In Section 8, we refine the enumeration results on
alternating permutations, which are related to the combinatorial interpretations of
Jacobi elliptic functions.

3. Definitions and preliminaries. A Motzkin path of length n in the plan N×N
is a sequence of points (s0, . . . , sn), where s0 = (0, 0), si− si−1 = (1, 0), (1,±1) and
sn = (n, 0). Each step (si−1, si) is called East (resp. North-East, South-East) if
si − si−1 = (1, 0) (resp. si − si−1 = (1, 1), si − si−1 = (1,−1)). The height of the
step (si−1, si) denoted by hi is the ordinate of si−1.

A 2-Motzkin path is a Motzkin path consists of two types of horizontal steps,
either blue or red. The set of 2-Motzkin path of length n ≥ 1 is denoted by CMn.
Denoting the North-East step (resp. East blue step, East red step, South-East step)
by a (resp. b, b′, c), see Figure 1 for a 2-Motzkin path. If we weight each East blue
(resp. East red, North-East, South-East) step of height i by bi (resp. b′i, ai and
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ci), and define the weight of γ by the product of its step weights denoted by w(γ).
Then,

∞∑
n=0

∑
γ∈CMn

w(γ) zn =
1

1− (b0 + b′0) z −
a0c1 z

2

1− (b1 + b′1) z −
a1c2 z

2

. . .

. (35)

A 2-Motzkin path is a doubled path if the step at odd position is always followed
by a step of the same type. See Figure 1 for a doubled path γ, whose wieght is
w(γ) = a0a1b2b2c2c1a0a1c2c1b

′
0b
′
0.

a0

a1

b2 b2
c2

c1a0

a1 c2

c1 b′0 b′0

Figure 1. The doubled path γ

Grouping steps 2 by 2 in a doubled path of length 2n yields a 2-Motzkin path of
length n, by (35) we obtain the following lemma.

Lemma 3.1. If DM2n is the set of doubled paths of length 2n, then
∞∑
n=0

∑
γ∈DM2n

w(γ) zn =
1

1− (b0
2 + b′0

2) z −
a0a1c2c1 z

2

1− (b2
2 + b′2

2)z −
a2a3c4c3 z

2

. . .

. (36)

Definition 3.2. A Laguerre history (restricted Laguerre history) of length n is a
couple (γ, (p1, . . . , pn)), where γ is a Motzkin path of length n and (p1, . . . , pn) is
a sequence satisfying 0 ≤ pi ≤ hi (resp. 0 ≤ pi ≤ hi − 1 if (si−1, si) is East red
and South east). Denote by LHn (resp. LH∗n) the set of Laguerre histories (resp.
restricted Laguerre histories) of length n. Similarly, a doubled Laguerre history
(restricted doubled Laguerre history) of length n is a couple (γ, (p1, . . . , pn)), where
γ is a doubled path of length n and (p1, . . . , pn) is a sequence satisfying 0 ≤ pi ≤ hi
(resp. 0 ≤ pi ≤ hi − 1 if (si−1, si) is East red and South east). Denote by DHn
(resp. DH∗n) the set of doubled Laguerre histories (resp. doubled restricted Laguerre
histories) of length n.

4. Proof of Theorem 2.4. Clarke-Steingŕımsson-Zeng [4] gave a direct bijection
Φ on permutations converting statistic des into exc on permutations, and linking
the restricted Françon-Viennot’s bijection to Foata-Zeilberger bijection. As a vari-
ation of Φ, Shin and Zeng [23] constructed a bijection Ψ on permutations to derive
a cycle version of linear statistics on permutations. Recently, Yan-Zhou-Lin [29]
constructed a bijection ψY ZL from Sn+1 to LHn. Han-Mao-Zeng [16] showed that
Yan-Zhou-Lin’s bijection ψY ZL is a composition of Françon-Viennot’s bijection and
Shin-Zeng’s bijection Ψ, see [16, Theorem 2.5]. Further, Han-Mao-Zeng also give
another bijection Ψ∗ on permutations converting statistic des into exc on permuta-
tions, see [16, Corollary 2.2].
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Lemma 4.1 (Han-Mao-Zeng). For σ ∈ Sn, we have

(Val,Pk \ {n},Dd,Da)σ = (Cval∗,Cpk∗,Cda∗ ∪Fix∗,Cdd∗)Ψ∗(σ) (37)

and

((2-13)i, (31-2)i)σ = (nesti, crosi)Ψ
∗(σ) for i ∈ [n]. (38)

Let

wex∗σ = #{i ∈ [n− 1] : i ≤ σ∗(i) = σ(i)− 1}(= excσ).

As exc = wex∗ = cval∗+cda∗+fix∗, des = val+dd, by Lemma 4.1 and Definition 2.3,
we obtain the following result.

Theorem 4.2. Let Ψ̃∗ be the restriction of Ψ∗ on DP2n+1. Then Ψ̃∗ is a bijection
from DP2n+1 to DP∗2n+1. Moreover, for σ ∈ DP2n+1, we have

(2-13, 31-2, des, da, dd, val)σ

=(nest, cros, exc, cdd∗, cda∗ + fix∗, cval∗)Ψ̃∗(σ). (39)

Proof of Theorem 2.4. For i ∈ [2n + 1], define (31-2)kσ, (2-31)kσ and (2-13)kσ for
σ ∈ DP2n+1 by

(31-2)kσ = #{i : i+ 1 < j and σ(i+ 1) < σ(j) = k < σ(i)},
(2-31)kσ = #{i : j < i− 1 and σ(i) < σ(j) = k < σ(i− 1)},
(2-13)kσ = #{i : j < i− 1 and σ(i− 1) < σ(j) = k < σ(i)}.

We use Françon-Viennot’s bijection ΨFV : DP2n+1 → DH2n. For any σ ∈ DP2n+1,
the doubled Laguerre history (s0, . . . , s2n, p1, . . . , p2n) is constructed as follows. Let
s0 = (0, 0) and for i = 1, . . . , 2n,

• the step (si−1, si) is North-East if i is a valley,
• the step (si−1, si) is South-East if i is a peak,
• the step (si−1, si) is East blue if i is a double ascent,
• the step (si−1, si) is East red if i is a double descent.

While pi = (2-13)iσ for i = 1, . . . , 2n.
According to definition of hi, (31-2)1σ + (2-13)1σ = 0 = h1. For i > 1, if i is a

valley, we have

(31-2)iσ + (2-13)iσ =


(31-2)i−1σ + (2-13)i−1σ − 1 if i− 1 is a peak,

(31-2)i−1σ + (2-13)i−1σ + 1 if i− 1 is a valley,

(31-2)i−1σ + (2-13)i−1σ if i− 1 is a double ascent,

(31-2)i−1σ + (2-13)i−1σ if i− 1 is a double descent.

By inductions we have

(31-2)iσ + (2-13)iσ = hi if i is a valley.

Similarly, it is not difficult to prove by induction that (31-2)iσ + (2-13)iσ = hi if i
is a peak, double ascent or double descent.

Since σ(0) = σ(2n+ 2) = 0, so 2n+ 1 must be a peak and valσ = pkσ− 1. Thus
(s0, . . . , s2n, p1, . . . , p2n) is a doubled Laguerre history of length 2n and

w(σ) = xER γ+NE γuEB γvER γwNE γ
2n∏
i=1

ppiqhi−pi ,
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where NE γ, EB γ, and ER γ are the number of North-East steps, East blue steps,
and East red steps of γ. Therefore,

J2n+1(p, q, x, u, v, w) =
∑

γ∈DM2n

xER γ+NE γuEB γvER γwNE γ
2n∏
i=1

[hi + 1]p,q, (40)

where [n]p,q = (pn − qn)/(p− q). Given a doubled path γ, the weight of each step
at height k is created by using the following rules:

ak := xw[k + 1]p,q, bk := u[k + 1]p,q, b′k := xv[k + 1]p,q, ck := [k + 1]p,q,
(41)

if the step is North-East, East blue, East red and South-East, respectively, and the
weight of γ is defined to be the product of the step weights. Summing over all the
doubled paths of length 2n with the rules (41), we have

J2n+1(p, q, x, u, v, w) =
∑

γ∈DM2n

w(γ). (42)

By Lemma 3.1, J2n+1(p, q, x, u, v, w) are the coefficients in the following continued
fraction expansion, ∑

n≥0

J2n+1(p, q, x, u, v, w)zn

=
1

1− (u2 + x2v2)[1]2p,qz −
[1]p,q[2]2p,q[3]p,qx

2w2z2

1− (u2 + x2v2)[3]2p,qz −
[3]p,q[4]2p,q[5]p,qx

2w2z2

· · ·

, (43)

by transforming z to −z2 and multiplying both sides by z, we obtain (16) imme-
diately. This completes the proof of (16). This lead to (17) combining (39) and
(16).

5. Proof of Theorem 2.5.

Proof of Theorem 2.5. In view of (43), for 0 ≤ k ≤ bn/2c, let a2n+1,2k(p, q, x, u, v)
be the coefficient of w2k in A2n+1(p, q, x, u, v, w), i.e.,

J2n+1(p, q, x, u, v, w) =

bn/2c∑
k=0

a2n+1,2k(p, q, x, u, v)w2k. (44)

Transforming z and w to z
(u2+x2v2) and w(u2+x2v2)

x in (43), respectively, we obtain

∑
n≥0

bn/2c∑
k=0

a2n+1,2k(p, q, x, u, v)

x2k(u2 + x2v2)n−2k
w2kzn

=
1

1− [1]2p,qz −
[1]p,q[2]2p,q[3]p,qw

2z2

1− [3]2p,qz −
[3]p,q[4]2p,q[5]2p,qw

2z2

1− [5]2p,qz −
[5]p,q[6]2p,q[7]p,qw

2z2

· · ·

. (45)
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Since the right-hand side of the above identity is free of variables x, u, and v, the
coefficient of w2kzn in the left-hand side is a polynomial in p and q with nonnegative
integral coefficients. Denote the coefficient of (45) by

P2n+1,2k(p, q) :=
a2n+1,2k(p, q, x, u, v)

x2k(u2 + x2v2)n−2k
.

On the other hand, Take (p, q, x, u, v, w) = (p, q, 1, 1, 0, w) in (44), then the con-
tinued fraction (43) becomes the right-hand side of (45) immediately. With the
definition of a2n+1,2k in (21), we see that

P2n+1,2k(p, q) = a2n+1,2k(p, q, 1, 1, 0) = a2n+1,2k(p, q).

With Eq. (44), this proves (20). Finally, since (p+ q)2 | [2n− 1]p,q[2n]2p,q[2n+ 1]p,q
for all n ≥ 1, each w2 appears with a factor (p + q)2 in the right-hand side of
(45), and the polynomial P2n+1,2k(p, q) is divisible by (p+ q)2k. This completes the
proof.

In the rest of this section, we will provide a combinatorial proof of Corollary 1
via the modified Foata-Strehl actions on permutations.

Definition 5.1 (MFS-action). Let π ∈ Sn with boundary condition π(0) = π(n+
1) = 0, for any a ∈ [n], the a-factorization of π reads π = w1w2aw3w4, where w2

(resp. w3) is the maximal contiguous subword immediately to the left (resp. right)
of a whose letters are all larger than a. Following Foata and Strehl [14] we define
the action ϕa by

ϕa(π) = w1w3aw2w4.

Note that if a is a double ascent (resp. double descent), then w2 = ∅ (resp. w3 = ∅),
and if a is a peak then w2 = w3 = ∅. For instance, if a = 3 and π = 28531746 ∈ S7,
then w1 = 2, w2 = 85, w3 = ∅ and w4 = 1746. Thus ϕa(π) = 23851746. Clearly,
ϕa is an involution acting on Sn and it is not hard to see that ϕa and ϕb commute
for all a, b ∈ [n]. Brändén [3] modified the map ϕa to be

ϕ′a(π) :=

{
ϕa(π), if a is not a valley of π;

π, if a is a valley of π.
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Figure 2. MFS-actions on 569174328 (recall π(0) = π(10) = 0)

See Figure 2 for illustration, where exchanging w2 and w3 in the a-factorisation
is equivalent to move a from a double ascent to a double descent or vice versa.
Note that the boundary condition does matter. Take the permutation 569173428
in Figure 2 as an example. If π(0) = 10 instead, then 5 becomes a valley and will
be fixed by ϕ′5.
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It is clear that ϕ′a’s are involutions and commute. For any subset S ⊆ [n] we can
then define the map ϕ′S : DP2n+1 → DP2n+1 by

ϕ′S(π) =
∏
a∈S

ϕ′2a−1(π)ϕ′2a(π).

Note that ϕ′2n+1(π) = π and the concatenation of ϕ′2a−1(π)ϕ′2a(π) is closed for
π ∈ DP2n+1. Hence the group Zn2 acts on DP2n+1 via the functions ϕ′S , S ⊆ [n].
This action will be called the Modified Foata–Strehl action (MFS-action for short).

Proof of Theorem 1. For any permutation π ∈ DP2n+1, let Orb(π) = {g(π) : g ∈
Zn2} be the orbit of π under the MFS-action. The MFS-action divides the set
DP2n+1 into disjoint orbits. Moreover, for π ∈ DP2n+1, 2a − 1 and 2a are double
descents (resp. double ascents) of π if and only if 2a− 1 and 2a are double ascents
(resp. double descents) of ϕ′2a−1(π)ϕ′2a(π). Double descents (resp. double ascents)
2a−1 and 2a of π remains a double descent (resp. double ascent) of ϕ′2b−1(π)ϕ′2b(π)
for any b 6= a. Hence, there is a unique permutation in each orbit which has no
double descent. Let π̄ be this unique element in Orb(π), then da π̄ = 2n+1−pk π̄−
val π̄ and des π̄ = pk π̄−1 = val π̄. And for any other π′ ∈ Orb(π), it can be obtained
from π̄ by repeatedly applying ϕ′2a−1 and ϕ′2a for some double ascents 2a − 1 and

2a of π̄. Once ϕ′2a−1ϕ
′
2a is used, des

2 increases by 1 and da
2 decreases by 1. Thus∑

σ∈Orb π

x
des σ

2 = x
des π̄

2 (1 + x)
da π̄
2 = x

des π̄
2 (1 + x)n−des π̄.

By summing over all the orbits that compose together to form DP2n+1, we obtain

∑
π∈DP2n+1

x
des
2 π =

bn2 c∑
k=0

|DP2n+1,2k|xk(1 + x)n−2k,

by transforming x to x2, (23) is derived immediately.

6. Proof of Theorem 2.9 and Theorem 2.10. We need the following result[16,
Lemma 2.1].

Lemma 6.1 (Shin-Zeng). For σ ∈ Sn, we have

(Lval, Lpk, Lda \ Fmax,Fmax, Ldd)σ (46)

=(Cval,Cpk,Cda,Fix,Cdd)(Φ(σ)) (47)

=(Cval,Cpk,Cdd,Fix,Cda)(Φ(σ))−1, (48)

and

((2-31)i, (31-2)i)σ = (nesti, crosi)(Φ(σ))−1 for i ∈ [n]. (49)

As exc = cval+cda, des = lpk+ ldd = lval+ ldd, by Lemma 6.1 and Definition 2.8,
we obtain the following result.

Theorem 6.2. Let Φ̃ be the restriction of Φ on LDP2n. Then Φ̃ is a bijection from
LDP2n to CDP2n. Moreover, for σ ∈ LDP2n, we have

(2-31, 31-2, des, lda− fmax, ldd, lval, fmax)σ

=(nest, cros, exc, cdd, cda, cval, fix)(Φ̃(σ))−1. (50)
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Proof of Theorem 2.9. Using Foata-Zeilberger’s bijection ΨFZ : CDP2n → DH∗2n,
the restricted doubled Laguerre history (s0, . . . , s2n, p1, . . . , p2n) is constructed as
follows. Define s0 = (0, 0) and

• the step (si−1, si) is North-East if i is a cyclic valley,
• the step (si−1, si) is South-East if i is a cyclic peak,
• the step (si−1, si) is East blue if i is a double drop (or fixed point),
• the step (si−1, si) is East red if i is a double excedance,

while pi = nesti σ for i = 1, . . . , 2n. Then, we have

nesti σ + crosi σ =


hi, if (si−1, si) is North-East;
hi − 1, if (si−1, si) is South-East;
hi, if (si−1, si) is East blue;
hi − 1, if (si−1, si) is East red.

Thus (s0, . . . , s2n, p1, . . . , p2n) is a restricted doubled Laguerre history of length 2n
and

w(σ) = xER γ+NE γuEB γvER γwNE γyEB∗ γqNE γ+EB γ
2n∏
i=1

ppiqhi−1−pi ,

where NE γ, EB γ, and ER γ are the number of North-East steps, East blue steps,
and East red steps of γ and EB∗ γ is the number of East blue steps whose height is
equal to pi. Given a doubled path γ, the weight of each step at height k is created
by using the following rules:

ak := xw[k + 1]p,q, bk := ypk + qu[k]p,q, b′k := xv[k]p,q, ck := [k]p,q, (51)

if the step is North-East, East blue, East red and South-East, respectively, and the
weight of γ is defined to be the product of the step weights. Summing over all the
doubled paths of length 2n with the rules (51), we have

J2n(p, q, x, u, v, w, y) =
∑

γ∈DM2n

w(γ). (52)

By Lemma 3.1, J2n(p, q, x, u, v, w, y) are the coefficients in the following continued
fraction expansion, ∑

n≥0

J2n(p, q, x, u, v, w, y)zn

=
1

1− y2z −
[1]2p,q[2]2p,qx

2w2z2

1− ((qu[2]p,q + p2y)2 + x2v2[2]2p,q)z −
[3]2p,q[4]2p,qx

2w2z2

· · ·

. (53)

By transforming z to −z2 in (53), we obtain (24) immediately. This completes the
proof of (26). This lead to (25) combining (50) and (26).

Proof of Theorem 2.10. The generating function of the right side of Eq. (32) is

∑
n≥0

bn/2c∑
k=0

 ∑
π∈DD2n,2k,0

pnestπqcrosπ

 (xw)2k(q2u2 + x2v2)n−2kzn (54)

=
∑
n≥0

∑
π∈D̃D2n

pnestπqcrosπ

(
xw

q2u2 + x2v2

)cvalπ (
(q2u2 + x2v2)z

)n
, (55)
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where D̃D2n := ∪nk=0DD2n,2k,0. Using Theorem 2.9, we have

J2n(p, q, 1, 0, 1, w, 0) :=
∑

π∈D̃D2n

pnestπqcrosπwcvalπ.

Eq. (53) implies that

1 +
∑
n≥1

∑
π∈D̃D2n

pnestπqcrosπwcvalπzn

=
1

1−
[1]2p,q[2]2p,qw

2z2

1− [2]2p,qz −
[3]2p,q[4]2p,qw

2z2

1− [4]2p,qz · · ·

.

Making the substitution z 7→ (q2u2 + x2v2)z and w 7→ xw/(q2u2 + x2v2) in the
above equation, we obtain the continued fraction of (55) is

1

1−
[1]2p,q[2]2p,qx

2w2z2

1− (q2u2[2]2p,q + x2v2[2]2p,q)z −
[3]2p,q[4]2p,qx

2w2z2

1− (q2u2[4]2p,q + x2v2[4]2p,q)z · · ·

, (56)

which is generating function of
∑
n≥0 J2n(p, q, x, u, v, w, 0)zn by (53). This com-

pletes the proof.

7. Proof of Theorem 2.11. We need the following lemma. Let

Dn(q, t, u, v, w) :=
∑
σ∈Dn

qcycσxexcσucdaσvcddσwcvalσ. (57)

Lemma 7.1. [23, Eq. (41)] We have

1 +

∞∑
n=1

Dn(q, x, u, v, w)zn

=
1

1− 0(xu+ v)z −
1(q + 0)xwz2

1− 1(xu+ v)z −
2(q + 1)xwz2

1− 2(xu+ v)z −
3(q + 2)xwz2

. . .

.
(58)

Define Dcyc
2n (β, x, u, v, w) to be the coefficients in the following continued fraction

expansion

1 +
∑
n≥1

(−1)nDcyc
2n (β, x, u, v, w)z2n =

1

1 + b0z2 − λ1x
2w2z4

1 + b1z2 − λ2x
2w2z4

· · ·

, (59)

where, for k ≥ 0,

bk = (2k)2(x2u2 + v2), and λk+1 = (2k + 1)(2k + 2)(β + 2k)(β + 2k + 1).

Lemma 7.2. We have

Dcyc
2n (β, x, u, v, w) :=

∑
π∈DD2n

βcycπxexcπucdaπvcddπwcvalπ. (60)
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Proof of Lemma 7.2. Comparing the definition of (57) and (60), observing the
Eq. (58), we constuct a doubled path γ, the weight is created by using the fol-
lowing rules:

bk + b′k := k(xu+ v) and akck+1 := (k + 1)(β + k)xw, (61)

where ak (resp. bk, b′k and ck) is the weight of North-East (resp. East blue, East
red and South-East) step at height k. The weight of γ is defined to be the product
of the step weights. Summing over all the doubled paths of length 2n with the rules
(61), we have

Dcyc
2n (β, x, u, v, w) =

∑
γ∈DM2n

w(γ).

By Lemma 3.1, Dcyc
2n (β, x, u, v, w) are the coefficients in the following continued

fraction expansion,

1 +
∑
n≥1

Dcyc
2n (β, x, u, v, w)zn

=
1

1− 0(x2u2 + v2)z − 2β(β + 1)x2w2z2

1− 22(x2u2 + v2)z − 3(β + 2)4(β + 3)x2w2z2

· · ·

, (62)

which is equivalent to (59) by transforming z to (−z)2.

Proof of Thereom 2.11. Then the generating function of the right side of Eq. (34)
is

1 +
∑
n≥1

bn/2c∑
k=0

 ∑
π∈DD2n,2k,0

qcycπ

x2k(1 + x2)n−2kzn (63)

=1 +
∑
n≥1

∑
π∈D̃D2n

qcycπ

(
x

1 + x2

)cvalπ (
(1 + x2)z

)n
. (64)

Using Lemma 7.2, we have

Dcyc
2n (β, 1, 1, 0, w) :=

∑
π∈D̃D2n

βcycπwcvalπ.

Eq. (62) implies that

1 +
∑
n≥1

∑
π∈D̃D2n

βcycπwcvalπzn

=
1

1− 0 · z − 2β(β + 1)w2z2

1− 22 · 1z − 3(β + 2)4(β + 3)w2z2

· · ·

. (65)

Making the substitution z 7→ (1 + x2)z and w 7→ x/(1 + x2) in the above equation,
we obtain the continued fraction of (64) is

1

1− 0 · (1 + x2)z − 2β(β + 1)x2z2

1− 22 · (1 + x2)z − 3(β + 2)4(β + 3)x2z2

· · ·

, (66)
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which is generating function of 1+
∑
n≥1D

cyc
2n (β, x, 1, 1, 1)zn by (62). This completes

the proof.

8. The alternating permutations and Jacobi elliptic functions. A permu-
tation σ = σ1σ2 · · ·σn ∈ Sn is alternating (resp. falling alternating) permutation
if σ1 < σ2, σ2 > σ3, σ3 < σ4, etc. (resp. σ1 > σ2, σ2 < σ3, σ3 > σ4, etc.). Let
A∗n (resp. An) be the set of alternating (resp. falling alternating) permutations on
[n]. Let evalπ (resp. oval) and opkπ (resp. epk) denote the number of even valleys
(resp. odd valleys) and odd peaks of π (resp. even peaks).

A Dyck path is a Motzkin path without horizontal step. So the length of a Dyck
path must be even. Let Dyck2n denote the set of Dyck paths of length 2n. Then,
it is well known (see [12]) that

1 +
∑
n≥1

∑
γ∈Dyck2n

w(γ)z2n =
1

1−
a0c1z

2

1−
a1c2z

2

1−
a2c3z

2

. . .

. (67)

Recall Definition 3.2, let Dyck path diagram (resp. restricted Dyck path diagram)
of length 2n be the Lagurre history (restriced Laguerre history) of length 2n without
east steps. Denote by P2n (resp. P∗2n) the set of Dyck path diagram (restricted
Dyck path diagram) of length 2n. There are several well-known bijections between
A2n and P2n−1 and P∗2n, see [22] and references therein.

We also need a standard contraction formula for continued fractions, see [22, Eq.
(44)].

Lemma 8.1 (Contraction formula). There holds

1

1−
c1z

1−
c2z

1−
c3z

1−
c4z

1− · · ·

=
1

1− c1z −
c1c2z

2

1− (c2 + c3)z −
c3c4z

2

1− · · ·

.

Define the polynomials En(p, q, x, y) by the continued fraction expansions

∞∑
n=0

(−1)nE2n(p, q, x, y)z2n =
1

1 +
[1]2p,qy

2z2

1 +
[2]2p,qx

2z2

1 +
[3]2p,qy

2z2

1 +
[4]2p,qx

2z2

. . .

(68)

= 1− y2z2 + y2((p+ q)2x2 + y2)z4 + · · · ,
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and
∞∑
n=0

(−1)nE2n+1(p, q, x, y)z2n+1 =
xz

1 +
[1]p,q[2]p,qy

2z2

1 +
[2]p,q[3]p,qx

2z2

1 +
[3]p,q[4]p,qy

2z2

1 +
[4]p,q[5]p,qx

2z2

. . .

(69)

=xz − (p+ q)xy2z3

+((p+ q)2(p2 + pq + q2)x3y2 + (p+ q)2xy4)z5 + · · · .

We have the following combinatorial interpretations for En(p, q, x, y).

Theorem 8.2. For n ≥ 0, we have

E2n(p, q, x, y) =
∑
π∈A2n

p(2-31)πq(31-2)πxevalπ+opkπyovalπ+epkπ, (70)

E2n+1(p, q, x, y) =
∑

π∈A2n+1

p(2-13)πq(31-2)πxevalπ+opkπyovalπ+epkπ. (71)

Proof. We prove the Eq. (70) and Eq. (71) by using Françon-Viennot’s bijection
ΨFV : A2n+1 → P2n and Ψ∗FV : A2n → P∗2n. For σ ∈ A2n+1, the corresponding
Dyck path diagram (s0, . . . , s2n, ξ1, . . . , ξ2n) is constructed as follows: Let s0 = (0, 0)
and for i = 1, . . . , 2n,

• the step (si−1, si) is North-East if i is a valley,
• the step (si−1, si) is South-East if i is a peak.

While ξi = (31-2)iσ for i = 1, . . . , 2n. We only prove Equation (70) and leave (71)
to the interested reader.

For any σ = σ1σ2 . . . σ2n ∈ A2n, let σ∗ = σ1σ2 . . . σ2nσ2n+1 with σ2n+1 = 2n+ 1.
Let Ψ∗FV (σ) := ΨFV (σ∗). Since 1 is the valley then (31-2)1σ + (2-31)1σ = 0 = h1,
and for i > 1,

(31-2)iσ+(2-31)iσ=



(31-2)i−1σ + (2-31)i−1σ + 1 if i− 1 is a valley and i is a valley,

(31-2)i−1σ + (2-31)i−1σ − 1 if i− 1 is a peak and i is a peak,

(31-2)i−1σ + (2-31)i−1σ if i− 1 is a valley and i is a peak,

(31-2)i−1σ + (2-31)i−1σ if i− 1 is a peak and i is a valley,

by induction we have

(31-2)iσ + (2-31)iσ =

hi if i is a valley,

hi − 1 if i is a peak.

Therefore,

w(σ) = xENE γ+OSE γyONE γ+ESE γqNE γ
2n∏
i=1

phi−1−ξiqξi ,
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where NE γ, SE γ, ENE γ, ONE γ, ESE γ and OSE γ are the number of North-
East steps, South-East steps, North-East steps at even positions, North-East steps
at odd positions, South-East steps at even positions, and South-East steps at odd
positions. By inductions it is easy to see that the the height h2i (resp. h2i′+1)
of even step (s2i−1, s2i)(1 ≤ i ≤ n) (resp. odd step (s2i′ , s2i′+1)(0 ≤ i′ ≤ n −
1)) of Dyck path is odd (resp. even). For example, σ = 645231 gives the path
(ONE,ENE,OSE,ENE,OSE,ESE) and the weight (y, xp, xq, xp, xq, y). Let [n]p,q =
(pn − qn)/(p− q), given a Dyck path γ, the weight of each step is created by using
the following rules:

a2k := [2k + 1]p,qy, a2k+1 := [2k + 2]p,qx, c2k := [2k]p,qx, c2k+1 := [2k + 1]p,qy,
(72)

if the step is North-East at height 2k, North-East at height 2k + 1, South-East at
height 2k, and South-East at height 2k + 1, respectively, and the weight of γ is
defined to be the product of the step weights. Summing over all the doubled paths
of length 2n with the rules (72), we have

E2n(p, q, x, y) =
∑

γ∈Dyck2n

w(γ). (73)

By (67), J2n(p, q, x, y) are the coefficients in the following continued fraction expan-
sion,

∞∑
n=0

E2n(p, q, x, y)z2n =
1

1−
[1]2p,qy

2z2

1−
[2]2p,qx

2z2

1−
[3]2p,qy

2z2

1−
[4]2p,qx

2z2

. . .

. (74)

By transforming z2 to −z2 for the above equation, we obtain (68) immediately, This
completes the proof of Eq. (70).

Remark 2. 1. By Lemma 8.1 it is easy to check that

E2n(p, q, x, 1) = J2n(p, q, x, 1, 1, 1, 1), (75)

E2n+1(1, 1, 1, 1) = J2n+1(1, 1, 1, 1, 1, 1). (76)

Given a Dyck path Dyck2n, a North-East step at positions (s2i−1, s2i)(1 ≤
i ≤ n) is matched by some South-East step at (s2i′ , s2i′+1)(0 ≤ i ≤ n−1), i.e.,
the number of North-East even steps is equal to the number of South-East
odd steps. From the Françon-Viennot’s bijection, the number of even valleys
is equal to the number of odd peaks for π ∈ A2n. Therefore, when p = q = 1,
(70) reduces to Flajolet’s result [12, Theorem 4].

2. When x = y = 1, (70) and (71) reduce to Shin-Zeng’s result [22, Theorem 4].
3. Dumont [10, Propostion 7] obtained E2n(1, 1, x, y) by enumerating cycle-

alternating permutations with distinct weights for even and odd cycle peaks.
Further refinements of E2n(p, q, x, y) were given in [25, Section 2.15] with
combinatorial interpretations in terms of cycle-alternating permutations.
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