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ABSTRACT. A weak Galerkin (WG) finite element method is presented for non-
linear conservation laws. There are two built-in parameters in this WG frame-
work. Different choices of the parameters will lead to different approaches for
solving hyperbolic conservation laws. The convergence analysis is obtained
for the forward Euler time discrete and the third order explicit TVDRK time
discrete WG schemes respectively. The theoretical results are verified by nu-
merical experiments.

1. Introduction. The nonlinear hyperbolic equation of conservation laws is con-
sidered: seeking an unknown function u satisfying

ur+ f(u), = 0, (z,¢)elx(0,T], (1.1)
u(z,0) = o¢x), xel, (1.2)

with I = (0,1) and a periodic boundary condition. For simplicity, the nonlinear
flux function f(u) is assumed to be smooth enough.

The Runge-Kutta discontinuous Galerkin (RKDG) method has been developed
for solving time-dependent nonlinear conservation laws [1, 2]. The RKDG method,
by name, uses DG method for spacial discretization and explicit high order Runge-
Kutta method for time discretizations. The stability and error analysis of the RKDG
method has been studied in [22, 23] for the second and the third order explicit total
variation diminishing Runge-Kutta method. A discontinuous Galerkin method with
Lagrange multiplier (DGLM) has been developed in [6, 7] for nonlinear conservation
laws with backward Euler method for time discretization. Lagrange multipliers are
introduced on each element so that they are the only globally coupled variables in
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the resulting system. The final global system of the DGLM has fewer numbers of
coupled unknowns than the usual DG methods.

The most finite element methods for conservation law employ purely upwind
or general monotone fluxes. In [11], discontinuous Galerkin methods using more
general upwind-biased numerical fluxes have been investigated for time-dependent
linear conservation laws. Optimal order of convergence rate has been obtained. As
pointed out in [11], purely upwind fluxes may be difficult to construct for complex
systems.

Weak Galerkin methods refer to general finite element techniques for partial
differential equations and were first introduced in [18, 19] for second order elliptic
equations. Weak Galerkin methods make use of discontinuous piecewise polynomials
on finite element partitions with arbitrary shape of polygons and polyhedrons. The
weak Galerkin methods have been applied to solve various PDEs such as second or-
der elliptic equations, biharmonic equations, Stokes equations, parabolic equations,
second order hyperbolic equations, Maxwell’s equations and singularly perturbed
convection-diffusion-reaction problems [8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20]. A
least-squares based weak Galerkin method is presented for stationary linear hyper-
bolic equations [21].

The objective of this work is to develop a weak Galerkin finite element method
for the time-dependent nonlinear conservation laws (1.1)-(1.2), with the explicit
first order Euler method and the third order explicit TVD Runge-Kutta method
for time discretization. Similar to [11], this new WG formulation provides a class
of finite element methods featuring two built-in parameters A; and A,. By tuning
these parameters, different schemes can be obtained for solving the problem (1.1)-
(1.2) including purely upwinding scheme. However, unlike the method in [11], our
new WG method can be used for the time-dependent nonlinear conservation laws.
The stability is derived for the semi-discretized WG method. For the forward FEuler
time discrete WG method, the L? error estimate of O(h*2 +7) is derived in general
and convergence rate of O(h*+1 4 7) is obtained for some special combination of
the parameters. The temporal-spatial CFL condition 7 < Ch? is necessary in the
error analysis for the first order forward Euler method. If the third order explicit
TVDRK time discrete scheme [3] is used, the L? error estimate of O(h**2 + 73) is
proved under the CFL condition 7 < Ch.

The rest of the paper is organized as follows. In Section 2, a WG finite element is
proposed for spatial discretization. The stability is derived for semi-discretized WG
method. The forward Euler time discretized WG scheme and its error analysis are
presented in Section 3. Error analysis of the WG method with third order explicit
TVDRK time discretization can be found in Section 4. Numerical experiments are
presented in Section 5 to support the theoretical results. We end the paper with a
conclusion.

The usual notation of norms in Sobolev spaces will be used. For any integer
s >0, let H*(D) represent the well-known Sobolev space equipped with the norm
I-Ils,p, which consists of functions with (distributional) derivatives of order no more
than s in L?(2). Next, denote by (-,-)p the scalar inner product on L?(D) and
| - |lp denotes the associated L? norm. Furthermore, let || - ||oo,p be the norm on
L>(D). If D = I, we omit this subscript.
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2. Semi-discrete weak Galerkin scheme and its stability. In this section,
we introduce a weak Galerkin finite element method for solving the model problem

(1.1)-(1.2).

2.1. Semi-discrete WG scheme. Let 7, = UN,I; with I; = (@1, ;1] for
1 <i < N where
O:J)% <xg < <ITypl =1.

hi=w41—2_1, 1<i<N; h= 121%}5\[]%’ ol ={z;_1}U{z; 1}
The weak Galerkin methods introduce a new way to define a function v, called
weak function, which allows v taking different forms in the interior and on the

boundary of the element:
Vo, in Iioa
v =
vy, on 0l;,

where I;° is the interior of I;, where I, is an element in 7. Since a weak function
v is formed by two parts vy and v, we write v as v = {vg, vy} in short without
confusion.

Denote by Py (I;) the set of polynomials on I; with degree no more than k. Let
V1, be a weak Galerkin finite element space consisting of weak function v = {wvg, vp}
defined as follows for k£ > 1,

Vh:{’l):{v(],’l)b} : EPk( ), ’Ub|a[ GH)(@I)
vp(0) = Ub(l),l =1,---,N} (2.1)

Denote by v(z, ,) and v( 1) the values of v at z; 1 from the left element I;
2 2
and the right element I; 4, respectlvely. Further, the jump of v at z; 1 is denoted

— o(pt -
as [[U]]H% = v(xH%) - U(a:iJr%).
For v, w € V}, we introduce some notations,

(v, w>81i = v(x;r%)w(:c;_%)+v(xj_%)w(x:r_%)7

N
(v, whor = Z v, W)y,

N
(v,w)y, = Zv w)r, —Z/ vwdz.
For any v = {vg,vp} € Vp, a weak derivative D,, f(v) € Py(I;) fori =1,--- |N
satisfies
(Dwf(”U),’UJ)Ii = _(.f(UO)a Dw)Iz + <f(vb)7 ’UJTL>6[1_, Yw € P/ﬁ(I’i)’ (22)
where n = —1 at T 1 andn =1at Tig1 Here Dw means the first order derivative

of w, i.e. Dw=w'.
Then we introduce a stabilizer in V), as follows:
N

sn(v,w) = Y ((M(vo —ve),wo — wa)a, 1, + (A2(vo — vy), wo — we)o_1,), (2.3)

i=1
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where 04 [; = x; 1, 0_I; = x;_1, and Ay and A are two parameters. Here vo (24

)
)

Nj= =

and wo (1) are the left limit of vo(z) and wo(x) at ;41 respectively, and vo(x

and wo(z;_1) are the right limit of vo(x) and wo(x) at x;_1 respectively.
The following is the semi-discretized weak Galerkin method.

Algorithm 1 (SD-WG method). A numerical approximation for (1.1)-(1.2) can
be obtained by seeking up (t) = {uo(t), up(t)} € Vj, satistying u,(0) = Qo¢ and the
following equation,

(Oruo, v9) + (Do f(un),v0) 7 + sn(up,v) =0, Vv =1{vg,v} € Vp, (2.4)
where Qg is the L? projection onto P (I;) on each element I;.

Let I; and I;y1 be the two intervals sharing x,, 1 Define the average {v} on
miJr% by

__ M A2 +
{v}, = N +)\2’U($i+%)+ N +)\Zv(xi+%),

and
fodo = v(0), {ohy =v(D).
Please note that the definition of average { - } above is different from the standard
definition of average which is when A; = Ao.
Testing (2.4) by v = {vo,vp} such that vp = 0 and v, =1 at ;1 and v, =0
otherwise, we can easily obtain that at z;, 1

up(t) = {uo(t) }- (2.5)

Remark 1 (Relation to the upwinding-type DG method). If f/(u) > 0 and taking
A2 = 0, then up, = uy and sp(up, v,) = 0. Thus, the WG scheme (2.4) reduces to

(Oruo,vo)1, — (f(uo),vo)1, + (f(ug ), von)ar, =0, 1<i<N,

which is the classical upwinding type discontinuous Galerkin method for nonlinear
conservation law.
Remark 2 (Relation to the upwinding-biased DG method). Considering a special
case f(u) =wu. Taking Ay = Ay = X in (2.3), and denote by

~ T 1. _
then the WG scheme (2.4) reduces to

1 1

2 -V

(Oruo, v0)1, — (0, v0)1; + (Wo)it1/2(v0); s )0 — (@0)1'71/2(00)?_1/2 =0, 1<i<N,
which is the upwinding-biased DG method discussed in [11].

2.2. Stability of the semi-discrete WG scheme. In this subsection, we will
study the stability of the semi-discrete WG scheme (2.4).

Lemma 2.1. Let as < f/'(s) < a1. If My > a1/2 and A2 > —az/2, then for
v = {vg,vp} €V}, there holds

(D f(0),v0)7, + sn(v,v) > 0. (2.6)
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Proof. As [5], we introduce ¢'(s) = f(s), then
N N
D = Duvgdx = D d
(f(v0), Dvo), ;/j f(vo) Dvoda 1—21/1 9(vo)dz

N
= Z(g(vo( i+ ))—g(vo(ﬂﬁj 1)))
N

_ Z/Ub(w z+2 £(s dS—Z/vUD(EZ Y he

z+1) b(x; ,)

Since f(vp) and vy, take single value on dI;, the periodic boundary condition implies
N

Z (f(vp),vpm) 57, = 0. (2.7)

i=1
Using the definition of the weak derivative (2.2), the mean value theory and the
periodic boundary condition that

(Dwf(’U),'Uo)Th = 7(f(’00)a DUO)Th + <f(vb)7v0n>67‘h
N ol ) N ruolat )
=3 [ e - fends Y [ () - s

i—1 b(éEH%) i=1 b(xi,%)

N ool ) Nt )
=3 [ e was+ 3 [T P - was

e RUTACHRY) o1 S y)
which implies
N
(Dwf(v),vo), > *%Z vo(z fvb( 1+%))2
(65) N:
+ g Lol —nlao )t (2.8)
and
N
D)) < G (ol ) = v(@iy)?
Nz*l
Ll p) —wleiy))), (2.9)

where oo = max{|ay|, |az|}. The equation (2.8) gives

(Dw f(v),v0)7 + sn(v,v) > Z()\l - %)(’Uo(x;_%) - 'Ub(CEi+%))2
i= N )
£ 00+ B wolay) — ol y)?
Z 0 1=1

We complete the proof. O
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Define |[v]|* = [; v®dz. Then we have the following stability result.

Lemma 2.2 (Stability of the SD-WG method). Let up = {ug,up} € Vi be the
solution of the semi-discrete WG scheme (2.4), then

[[uo(T)| < [luo(0)]]- (2.10)
Proof. Let v = uy, in the semi-discrete WG scheme (2.4). From (2.6), we have

1d

§£||uo||2 < ((uo)¢,uo) + (Du f(un),uo) 7, + sn(un,up) = 0.
Integrating the above inequality with respect to time between 0 and T completes
the proof. O

3. Forward Euler WG method and its error analysis. We use forward Euler
method for time discretization to obtain a full discrete WG finite element method.

3.1. Forward Euler time discrete WG scheme. Let 7 be a time step and
t, = nrT.
Algorithm 2 (FE-WG method). Find u}™' = {ug !, uy ™} € Vj, satistying v =
{Qo¢, {Qog}} and
(ug™ —ud,vo) + (Do f(ull),v0) 7, + 7 sn(uff,v) = 0, YweV,. (3.1)
Testing (3.1) by v = {vo, vs} such that vo = 0 and v, = 1 at @;, 1 and v, =0
otherwise, we can easily obtain that at x;, 1
uy = fug }- (3.2)
We define a projection operator Qnu = {Qou, Qyu} € Vi, where Qq is the L?

projection onto Py (I;) on each element I; and Qyu = {Qou} on OI;.
Define

en = {eg ep} = Quultn) —upy = {Qoultn) — ug, Qrults) — uy}, (3-3)
ph = Ap6spy} = ultn) = Quu(ty) = {u(tn) — Qoultn), u(ts) — Qou(tn)}34)

and

t(v) = (ut(tn)—ww@,

la(v) = (Duwf(u(tn)),vo)7, — (Dwf(ui),vo)7,-
Lemma 3.1. The error function e} defined in (3.3) satisfies the following equation,

n+l

1
S+ Sl b7 nleh o

1
Sl I?

~ I~ 5l )+ 7 sn(ef ef)
+ 1l (et = =71 (e} + Tsp(Qrulty), ef ). (3.5)
Proof. Testing (1.1) by vy of v = {wvg,vp} € V}, we arrive at
(ug,v0) + (D f(u),v0)7;, = 0.
The definition of D,, implies,

(Df(u(tn))a UO)Th = (Dwf(u(tn))a UO)Th'

It follows from the definition of )y and the above equation,

(Qou(tnt1) — Qoultn),vo) + 7(Duw f(u(tn)), vo) 7 = —7l1(v).
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Adding 7s,(Qpu(ty),v) to the both sides of the above equation implies

(Qou(tni1) — Qoultn),v0) + T(Duw f(ultn)), vo) 7, + T8n(Qrulty),v)
= TSh(Qhu(tn), U) - 7'61 (’U)

The difference of (3.1) and the equation above yields

(ngrl — eg,’uo) + 7 sh(eﬁ,v) + T(Dwf(u(tn))avO)Th, - T(Dwf(u2)7vo)77l (36)
= 7sn(Qnu(ty), v) — Tl1(v).

Using the fact 2p(p — q) = p* + (p — ¢)* — ¢* and letting v = €™, (3.6) becomes

1 1 1
5H66‘+1II2 + §||68+1 —egl? - §II~‘36L||2 +sn(en en ™t —ep) + 7 su(el ep)
+ 7l (et = =71 (e} ) + Tsn(Qrulty), ef ).
We have proved the lemma. O

3.2. Error analysis of forward Euler WG method. In this subsection we carry
out an a priori error estimate for the fully discrete WG scheme with forward Euler
time marching for smooth solutions. We will assume the nonlinear flux function
f(w) is smooth enough for simplicity.

For any function ¢ € H(I;), the following trace inequality holds true,

lellzs, < € (h7HlellZ, + hill Vell7,) - (3.7)
Lemma 3.2. Let pi and e} be defined in (3.4) and (3.3) respectively. Then we
have
logln < O Mulesrns  logllon, < CP¥F 2 fuliy, i, (3.8)
lesllor, < Ch™2[leg ]z,

Proof. The first estimate in (3.8) is a direct result of the approximation property of
the L? projection Q. The second estimate in (3.8) follows from the trace inequality
(3.7) and the definitions of p} and Qp,

ok lloz, = llu(tn) = Quultn)lor, = | §ultn) — Qoultn) Hlor, < Ch* #|ulisr,.

Similarly, we can prove (3.9). O

Lemma 3.3. Let 7 < ch®. Then we have

781 (Qru(ty), eﬁ“) < CTh2k+l\u|i+1 + elHegH — .eg||2 + ea7sp(en,en), (3.10)
Tl (ep ™) < O3 |u|® + erlleg™ — elI® + Tlleg |, (3.11)

Tsn(en e —eh) < OTlleg | +enlleg™ — e, (3.12)
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Proof. Tt follows from (3.7), the Cauchy-Schwarz inequality and the definition of
Qb that

sn(Qnu(tn),ep ™) = sp(Quultn), ept' — ef) + sn(Qnrultn), eft)
N
= ) ((M(Qoultn) — ultn)), (eg™ —ef) — (ef ™ — ep))o, 1,
=1

+ (A2(Qoultn) — ultn)), (g™ —ef) = (g™ —ep))o_1,)
((M(Qoultn) — ultn)), e5 — ey)o, 1,

+  (Ma(Qoultyn) — ultn)),eq — ey)o_1,)

< O W Ml llep™ = e + A2 Julkrrs,*(ef ).

_|_
iM4-

Using the assumption 7 < ch?, we have

1 1/2
Ton(Quulta), i ™) < CT(W RN ulega g™ = efll + B2 fuliiasy 2 (ef )

k k
sc<m#“wﬂﬁ4ﬁﬂwﬂa
el — ef | + carsi(eh cf)
< ORIl el - e + carsnle f),

which proves (3.10).
It follows from the Cauchy-Schwarz inequality that

Th(ep™) < O lugellleg ]
< O |usell(lleg™ = et ll + lleg 1)
< Ounl® +elleg™ — e l® + Tlleg .

Using (3.7), Cauchy-Schwarz inequality, Lemma 3.2 and the assumption 7 < ch?,
we have

Tsn(en, ep Tt —ep) < O e Heg™ — egll
< CTlleo I +elleg ™ — el
We have proved the lemma. O
Lemma 3.4. For 7 < ch? and A1, A2 > a. Then we have
mlo(ep ™) SOTh*  uff g + O7leg|?
Ferllegtt = I + 7+ e)snlelef). (313)
Proof. Tt follows from definition of the weak derivative D,, and the Taylor theory,

la(epy™) =(Duf(utn)), eg )7, = (Duf(up), e )7,
=~ (f(ultn)) = f(uf), Deg ™), + <f(u(tn)) = flup), 5" n)or,

=— (f'(u(ta))(pf + €§), Deg ™) 7 + (f "€ (o + )%, Del )

1
(S (wltn) (b + €f), €6 ) o7, — 51" (&) (b + €)% e ),
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== (f'(u(tn))pg, Deg ™7, + (f'(u(ta))py eg ) o,
H(=(f (ultn))eg, Deg )7, + (f (ultn))ey, €5 n) a7, )

1 1
F3 ()] + )%, De ™), — (P (&) + i), e g,

Next, we will bound all the terms above. Define f =T I I I, f I, u)dz. Using the
definitions of p§ and Qq, (3.8) and the inverse mequahty, we arrive

My = (f'(u(tn))py, Dey ™),
= ((f"(u(tn)) = f'(u(tn)))pt, Dey ™),
< Ch**Muljes [leg |
< CR** ulys (g — e + leB).
It follows from the fact (f'(u(t,))py,epn) sz, =0, (3.7) and the inverse inequality,
My = (f'(u(t ))PbaegH >67’h
= (f'(u(tn))py, (ef™ — o)) o, + (' (u(tn))py, (eg — €5 )n) o7,
< O W+ a1 e+ — el + A5 fulsas] (€7, ).
Using the inverse inequality, the trace inequality (3.7), (3.9) and (2.9), we obtain
Mz = —(f'(u(tn))eg, Dey ™) 7, + (f'(u(tn))ep, €5 n)or,

—((f"(u(tn)) = f'(u(tn)))eg, Def )7, 4+ ((f (ultn)) — F/(ultn)))er, eg ' n)or
(f( (tn))eg, D(eg™ — €))7 + (f'(ultn))er, (ef ™ — eg)n) o7
I/ (u(tn))el, Deg), + (f'(u(tn))ey, egm) o7,

1
<Clegl* + 7 ieglllles™ = ebll + 5 sn(eh, eh))-

As [22, 23], we adopt the following a priori assumption to deal with the nonlinearity
of the flux f(u)
gl < CR*/2. (3.14)

And the justification of such assumption will be given in Remark 3. Then the above
estimate with (3.2) gives

leglloe < Chy - lep oo < Ch. (3.15)
Using (3.8), (3.15) and the inverse inequality, we have
1 n n n n n
My = S (F"(€)pg + e5)*, Deg ™), < COF fulir + lleg D (leg™ = egll + les ),

1 n n n n n n
Ms = S(f"(©)pp + ep)* 5" n)or;, < C" Hulksr + eI leg™ = eg | + lleg 1)-

Combining all the estimates above gives

1
Tl(epth) < CTh2k+1|u|k+1 + Crlleg|)? + exlleg ™ — ef|I” + 7(5

which proves the lemma. O

+ EQ)Sh(eZ7 62),



1906 XIU YE, SHANGYOU ZHANG AND PENG ZHU

Theorem 3.5. Let uZ"'l € Vj, be the WG finite element solution of the problem
(1.1)-(1.2) arising from (3.1). Then there exists a constant C such that

1
leg™HI < COR 2 [ulsr + Tllueel)-

Proof. Tt follows from (3.5) that

1 1 1
LI + Llegt = 2 - LB + 7 su(ef e )+ 7 snlefef)
+ ng(€2+1) = —7'61(62“) + 781 (Qru(ty), eﬁ“).

Then using Lemma 3.3 and Lemma 3.4, we have

1, 1
§||€o+1||2 + (5

< CTR* uli g + OTlleg||* + O ue|*.

- 461)”60“ — € ||2 - 5”60 ||2 +(1— 5 2¢2)sn ey, en)

Letting €; and es small enough gives
1 1
Sllea ™ I* = Slesll* < Crh*  Huliy, + Crllegl| + 7 uw .

Summing the above equation over n + 1, we have

n
leg 112 < Nlegll? + Ch*** ulf 1y + C72uee | + Y Olleg .
i=0

The discrete Gronwall’s inequality implies
leg ™1 < C* Hulg g + 72 uwl®),

which proves the theorem. O

Remark 3. The assumption (3.14) is obviously satisfied for n = 0 since uJ = Qo¢.
If (3.14) holds for a certain n, then it follows from the conclusion of Theorem 3.5
and 7 < ch? that

leg Il < C(EH2 4 m) < O,
for k > 1. Thus the given a priori (3.14) is verified.

The result in the following theorem is a special case of Theorem 3.5. We omit
the proof of the theorem since it is similar to the proof of Theorem 3.5.

Theorem 3.6. Let UZH € Vi, be the WG finite element solution of the problem
(1.1)-(1.2) arising from (3.1). Assume f'(u) >0 (or f'(u) <0) and let Ao =0 (or
A1 =0). Then there exists a constant C such that

lleg™HI < CO s + 7 ueel])-

4. TVDRK3 WG method and its error analysis. This section discusses the
fully discrete WG method coupled with the explicit TVDRKS3 time-marching.

First, we set the initial value u) = {Qo®, {Qo¢}}. Then for each n > 0, the
approximate solution from the time n7 to the next time (n + 1)7 is defined as
follows:
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Algorithm 3 (RK3-WG method). Find u)"" = {ugy, up'},up? = {uf? u)"?}

and uzﬂ = {ugH, u{f“} in the finite element space V3 such that, for any v € V},
(ug™ = uf, v0) + 7(Duw f (uf), vo) 73 + 7 sn(ujy,v) =0, (4.1)
(u® — Jt = S, v0) + 7 (Duf ), vy + 47 sl 0) =0, (42)
(uptt — gugﬁ - %ug,vo) + gf(pw Fu?),v0) 7, + gT sp(up?v) =0, (4.3)

Similar as (3.2), we obtain the time update for u; as
T U VY (s SRS (e | (1.4

Following [22], two reference functions are defined in parallel to the TVDRK3
time discretization stages for the exact solution of the conservation law (1.1). Let
u©(z,t) = u(x,t) and

u (z,t) — ul® (2, t) + 7[f (W’ (2, 1)) = 0, (4.5)
u® (e, 1)~ 00 (a,0) ~ O, 0) + ) @ 0l =0, (46)

Lemma 4.1 ([23]). If ||uw| is bounded uniformly for any t € [0,T], we have
u(a,t47) = 2 @, 0) — 2O 0) 4 WOl = £ ), (@)
where E(z,t) is the local truncation error in time and ||E(z,t)|| = O(1) uniformly

for any time t € [0,T].

Denote v = u(® (x,t™) for any time level n and ¢ = 0,1,2. The error at each
stage is denote by

n,g __ n,i n,i n,d __onyi n,i
ey = Qnut —w,, pt =uMt = Qpu

for any n and inner state ¢ = 0, 1,2, where uZ’O = uj.
Lemma 4.2 (Error equation). For any v € Vj,, the error functions eZ’l,eZ’2 and
6Z+1 satisfy the following equations

(ept, vo) = (el vo) + TH(u™, ul; v), (4.8)

(e5 % v0) = i(eoavo) + 1(60’1»1)0) + ZTH(U tuptiv), (4.9)

1 2 . 2 .

(67" v0) = 5(65,v0) + 3(65 wo) + 37H" 2w %) + (Evo), - (410)

where
H(u,up;v) := (Dy f(un) — D f(u),v0)7, + Sn(un, V). (4.11)

Proof. Let t = ¢™ and test (4.5) by vg of v = {vg,vp} in Vj,, we arrive at
(u™' —u™, vo) + T(Df(u™),v0)7, = 0.
The definition of D,, implies
(Df(u"),v0)7, = (Dwf(u"), v0)7, -
It follows from the definition of Qg and the above equation that
(Qou™" = Qou™,vo) + T(Dy f (u™), v0)7;, = 0.
The difference of (4.1) and the equation above yields (4.8).
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The error equations (4.9) and (4.10) can be obtained similarly. The details are
therefore omitted. O

4.1. Some basic estimates. For any u;, = {uo,us} and v, = {vg,vp} in Vj, it
follows from the definition of weak derivative D,, that

(D f(un) — Du f(u),v0)7;,

(f(u) = f(uo), Dvo), — (f(u) — flus), von) o,
(Ri(u, un), Dvo)7;, — (Re(u, un), von) o,

+ (f'(u)(u = wo), Dvo)7;, — (f'(u)(u — up),von) 57, ,

where
Ri(u,un) = f(u) = f(uo) — f'(u)(u — uo),
Ry(u,up) = fu) — flup) — f'(u)(u —up).

Since Ry (u,up) and f’'(u)(u — up) take single value on 9I;, the periodic boundary
condition implies

Mz

—<Rb(U,Uh),U0n>a7-h u uh)g+1/2[[”0]]+1/2a

Jj=1

2

—(f'(w)(u = up),von) g7, = D _(f'(w)(u—up))jr1/2[vol 41 /0

<.
Il
—_

Therefore, the operator H(u,up;vy) defined in (4.11) can be rewritten as
H(u,up; o) = H(F (w);u — uo, vo) + H™ (u, up; vn) + sp(un, vp), (4.12)

for up, vy € Vi, where

N
’HH"(Z;U,?U) = (Zv, Dw)7; + Z(Z{’U}}[[wﬂ)jJrl/Q’
j=1
N
H™ (w, up; o) = (Ri(u, un), Dvg) 7, + ZRb(u, un)j+1/2[vol ;41 o
j=1

Lemma 4.3. For any continuous and differentiable function Z, there exists a pos-
itive constant C, independent of n, h, T, and uyp, such that

1™ (Z;0,w)] < ChTH|Z|lso|lvlllw]l, Vv, w € Vi, (4.13)
|’H,”"(Z;v,v)| < CHUH2, Yo € Vp, (4.14)
1™ (250 — Qou,v)| < e Z|[v]” +el|v||? + Ch¥* Y, Vo e Vi, (4.15)

where ¢ is any positive constant, and | Z|[v]* = Z;\f:l |Zj+1/2|[[v]]§+1/2,

Proof. For the proof of (4.13), it follows from Cauchy-Schwartz inequality and the
inverse inequality that

N
[H™(Z50,w) Z [(Zv, Dw) ;| + [Zj401 720} 12/ [w]]j41/2)
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N
Z [Zlloo ([0l [[Dwl1; + lvllor, llwllor;)

< Ch 2o lvlllw]l-

A simple manipulation indicates that

N
H'"(Z50,0) = (Zv, D)7, + Z(Z{”M”ﬂ)wﬂ/z
N "
Z Z{v}[v Z[v] )]+1/2—/T Z'v?dx

= —/ Z'v2dzx,
Th

which implies the second conclusion (4.14).
Let Z; = m I i / I Zdz. It follows from Cauchy-Schwartz inequality and Young’s

inequality that

N
H™ (230 — Qou,v) = (2(u — Qou), Dv)7, + > (Z{u — Qoul[v])js1/2

j=1

2

I
M=

(2 = Z;)(u = Qou), Dv); Z Z{u— Qoul[v])jt1/2

<.
Il
—

KMZ

Il
_

12 — 2 L1,y llu — Qoull1, || Dvl|1,
J

+ Z 12541720 llu — Qoull oo (1)1 [0] 112
j=1

N
2
<ellvl®> +eY 125 110l[0]] 1o + CRPFHY
j=1

The proof is completed. O

Lemma 4.4. Let u € H*(I) be the exact solution of (1.1). For any u, =
{uo, {uwo}}, v = {vo, {vo}} € Vi, there holds

17 (w, unson)| < Clllvoll® + 2 [lu = w03 (1Qou — uo | + K**+D)].

Proof. By Taylor expansion up to the second order derivative term, we obtain

Rofon,un) = 3 (€ — o), Rofu,un) = — (&) fu — o},

where f”(£&1) and f”(&2) are the second order derivative of f in the two expansion,
which are both bounded.
Thus, by the triangle inequality and the inverse inequality, we have

|7—["ls(u Up;vp)| <

/ f// fl u —Uo) Duvydx
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N
1
52 f (&) fu —uo} ‘ i /2 vollj+1/2
N
<Cllu—uolloe ¥ _ (Il = wollz, 1 Dvolls, + llw — uollor, lvollaz,)
j=1
N
<Cllu = uolloe Y _[(lu = Qoullr, + |Qou — uollz,) - k™ lvoll,
j=1

+ (lu = Qoull L1,y + b~ 2(|Qou — uoll1,) - B3| Jvoll1,]
<Ch™M|u — uol|oo (||Qou — uo || + H*F1)|Jvol,

which together with Young’s inequality completes the proof. O

Lemma 4.5. Let u € H*(I) be the exact solution of (1.1). For any u, =
{uo, {uo}}, v = {vo, {vo}} € Vi, there hold

|sn(un, va)| < Ch™ (R +1|Qou — uoll)[|voll, (4.16)
sh(un, en) < CRZFHT — (1 — &)9[eo]?, (4.17)

. . 2 N 2
where € is any positive constant, [eo]” := =1 [[eoﬂj+;, and ¥ = /\);1_:\;2-
- 2

Proof. Since u is continuous function, there holds [u] = 0. It follows from (2.3) and
(4.4) that

N N
sh(tn, vn) = Zﬁ[[uo]]j+1/2[[vo]]j+l/2 = Zﬂ[[uo - u]]j+1/2[[1’0]]j+1/2~ (4.18)

j=1 j=1
Hence, by the triangle inequality and the inverse inequality, we have

N
|sn (un, vn)| SCZ [uo — ul|j+1/2([vo]lj+1/2

j=1

N
<C Y (Ilw = Qoullpoeqry) + A2 Qou = wollr,) - A2 wolls,
Jj=1
<Ch™H (B +[|Qou — uol|)[Jvoll,

which completed the proof of (4.16).
From (4.18) and Young’s inequality, we have

sn(un, en) ZﬁﬂQou ulj1yaleol e )n 219 el 412

Jj=1

1
SE Zﬁ[[QOu - u]]§+1/2 -(1-¢) Z'ﬁﬂeo]]?+l/2
j=1 j=1

N
<ORHE = (1=2) y dleoljyn o
j=1

The proof is completed. O
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Lemma 4.6. If the time step satisfies 7 = O(h), then we have
leg™II* < C(lleg |1 + h**+2), (4.19)
leg [ < Clllegl® + lleg™ 1> + p*+2), (4.20)
where C' is a positive constant independent of n, h, T and up,.
Proof. Taking v = ¢}"! in the error equation (4.8), we get
2= (e eqt) + THU ulen ). (4.21)

Firstly, we consider the first term of H(u", u}; e} ). Tt follows from the definition

of the weak derivative D,, that

(Duf(uft) = D f(u"), 57" ) 7,

= (f(u") - f(“o)aDeg’l)Th —(f(") = f({ug}), e’ ”>aTh

1
lleg™ |

From Cauchy-Schwarz inequality, the inverse inequality and the approximation
property of @, we have

T < Zl\f (i)l | Deg|

I;

N
<O (Iu" = Qoulr, + Qo™ = uglr,) - ™ leg Iz,
=1

J_
< O R e D lles I (4.23)

where the assumption f’(u) is bounded has been used in the second inequality
above.

Now we turn to the term T5. Since periodic boundary condition is considered,
Ty can be rewritten as

N

T = Z(f(u") - f({{ug}))j+1/2ﬂeg’1]j+1/2.

j=1
Then, by the triangle inequality and the inverse inequality, we obtain
N
n n n n n,1
IT>| < CZ(W — Qou"| + |Qou" — fug })j+1/2(leq Il j+1/2
=1
N
<O (lu" = Qou™pee (1) + b2 1Qou™ — ugllsy) - 2 leg I,
j=1
< O R eI lleg N (4.24)
Collecting (4.22), (4.23) and (4.24), we can conclude
(Do f(u) = D f(u™), )7, | < CRTHR 4 [leg)lleg I,
which together with the inequality (4.16) of Lemma 4.5 and (4.21) yields

1 1 _ 1
leg 11> < lleglllleg™ | + CTh~ (R + [leg D lleg™ |-
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Cancelling [|ef’!|| on both sides of the above equation, and noting that 7 = O(h),
we have

leg’ | < Clleg ]| +n*),

which implies (4.19).
In a similar way, we can obtain the conclusion (4.20). The proof is completed. [J

By taking the test function v = e}, 4e}"", and 6¢}"* in the error equations (4.8),
(4.9) and (4.10), respectively, we obtain the energy equation for e} in the form

3llegtH? - 3|lef]? = Z1 + =2, (4.25)
where
2y i=rH(u" uh,eh) + TH(u" uh ey )+4T7~L( uh ey )+6(5 632),
Hp i=2eg” — g —ep|® +3(eg T — e, ep T — 2¢577 + €p).

4.2. The estimate for Z;. It follows from (4.14) and (4.15) of Lemma 4.3 that
M () — ) = HO () = Qou™ ) + M (f ()i )
< elf (w)lleg]” + (e + O)lleg|* + Ch#*+.

Denote by B = maxser |f'(s)|- In the above inequality, taking & small enough such
that eB < 0.19, then we have

HO(F (u);u™ — ul el < 0.19]el]* + Clley||? + Ch?F L. (4.26)
From Lemma 4.4, we have
H (u, ujis o) < Ollleg | + A2 u" = ug |2 (leg|* + R*ETD)]. (4.27)
Using (4.17) of Lemma 4.5 with € = 0.1, we have
sp(uf, ep) < Ch¥ 1 —0.99[ep]”. (4.28)
Denote by
(C(u"’i,ug’i) =C(1+h2|u™" - ug’i“io), i=0,1,2,
where C is a general positive constant independent of h,7,u and uj. Collecting
(4.26), (4.27) and (4.28), we obtain
H(u" uflsep) < Cu”,ug)(lleg | + ¥+ - 0.89[eg]*.

Similarly, we have

Hu™ s en) < Clu™ug™) (e |1* + B2 1) — 0.89[eg ],

fori=1,2.
Since £ = O(7%), by Cauchy-Schwartz inequality, we have

,2 ,2 ,2 ,2
(&, e57) < lIENleg Il < Cr¥leg Il < C(77 + Tlleg ).

Collecting the three above estimates, we obtain the estimate of Z; as follows

= STZ{C )(ler ]2 + B2y — 0.89[ep " ]*} + C77. (4.29)

=0
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4.3. The estimate for Z;. Following [23], we introduce the following notations

Ep =ept —en, FP=2e)? —ept —el, m=eptl - 2e1? 4 el
Obviously,
3 1 1 1
2 1
0" = 7% — ;%" = 7B T 5k,
1 2 2 2
+1 2 _
e — 566’ - geg = gEg + gFél + Gy

From the above equalities and the error equations (4.8)-(4.10), we easily obtain the
following results.

Lemma 4.7. For the fully discrete WG method (4.1)-(4.3) with the explicit TV-
DRKS time marching, we have the following equations

(E6L7 UO) = TH(un7 u27 Uh)7 (430)
T n n n
(F(;LJJO) = §[H(un’1auh’l; Uh) - H(U ,Uh;’Uh)L (431)
T n n n n n
(G, v0) = 5[2H(u”’2,uh’2;vh) —H(u ’1,uh’1;vh) — H™, up;vn)] + (€, v0),
(4.32)

for any v, = {vg, v} € Vj,.
Note that e ™! — e = Ef' + F§' + G, there holds
Zp =(Fy', Fg') + 3(Eq, Go) + 3(Fy', Gg) + 3(Gg, Gp)
=J1 + Jy + J3 + Jy4. (4.33)
Let vy = F}? in (4.31) and v, = E}}! in (4.32), and by (4.12), we have
i+ Jo = — (Fg', Fg') + 2(F¢, Fg') + 3(Eq, Gg)
= = [1FGI + rlH (™ s ) = (e g B
+T[2H (", ) = ™ gt B = M ER) 3(E B)
3
=— IF1? + ) M +3(€, Ep), (4.34)
i=1
where
My = [ () F) = O (f ) — g, )
() g, ) — M — g )
— s — i )
Mo =7 [H (" uy s B = S (0 s FyY))
+ M (W B — M (s B — H (" g B,
M =rlsn (ot — iy, FY) + sn (2 = u' — i, B
Lemma 4.8 (Estimate of My). If the time step satisfies 7 = O(h), then we have
(M| < Cr(lleg I + lleg™ II° + lleg |I* + 2D,

Proof. Since u™" —u}"" = pi" 4 €/""(i = 0,1,2), then M, can be rewritten as

My = 7[L(pn) + L(en)], (4.35)
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where
L(w) =H(f () w, By = HI (), )
4 2Hlin(f/(un72); wn,27 Eg)z) _ Hlin(f/(un’l); ,wn,l’ Eg)
- Hlm(fl(un); wnv Eg)7

for w = py, or ey.
Denote by

2= ) = ("), = 12

and collecting the terms with the same speed f’(u™), the operator £(w) can be
expressed as

E(w) :Hlin(f/<un);wn,1 _ wn’FgL) T Hlin(f/(un);zwn,Z _ wn,l _ wn’Eg)
+ rHlin(Zn,l; wn,l7 Fon) + QrHZin(Zn,Q; wn,27 ESL) _ Hlin(zn,l; wn,l7 ESL)

=3 Li(w).
i=1

Now we estimate L;(ep),i = 1,---,5 firstly. Due to periodic boundary condition,
and using integration by parts, we have

Li(en) + Lalen) = H'™ (f'(u™)ep', Fg) + H (f' (u); e, Ey)

N
= Z[ f () ( By Fg')zdz + f’(un)jﬂ/z[[EgFgL]]jH/z]

N
=Y [ L EpFyde.
I;
Consequently, by Cauchy-Schwartz inequality, we can conclude that

(L1 (en) + La(en)] < CIELINNEL

Since [z™!| = O(7) = O(h), it follows from the equation (4.13) of Lemma 4.3 that

|La(en)| = H™" (2" ept, B
< Ch7H 12" oolleg ™|

,1
< Clleg [HFe -

I

In a similar way, we obtain

|Lalen)l + 15 (en)l < Cleg ™+ lleg™ DI EG .

Collecting the estimate of L;(e),i = 1,---,5 and using Cauchy-Schwarz inequality
yields

n,l n,2
< CUIE I + 1FG N1 + Nleg™ 1 + lleg

|L(en) 2. (4.36)
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Next, we turn to the term L;(pp),s = 1,---,5. Note that f’(u) is bounded, it
follows from the Cauchy-Schwartz inequality and inverse equality that

IL1(pn)| = [H™(f'(u™); 57" — oy, F)
N
n n,l n n n,1 n n
<O N @loo(lpy = Pl IDES Nz, + leg = ptllor, I1F3 lor,)
j=1

<Ch Mpg = pgl +h2llog™ = P lloo) |- (4.37)

Since
ut = ()]s,
it follows from the approximation property of L? projector Qo that
gt = poll =l (™" = u™) = Qo(u™" —u™)|| < Ch*r,

15" = PBlloe =l (™" = u™) = Qo(u™" — u™)|loe < CR*H1/27,

which together with (4.37) yields
1L1(pn)| < OB 7| 3| < CIEGI* + h**72).

Similarly we can estimate the second term as |La(pn)| < O(|| EF||? + h2k72).
Using 2™ = O(7) = O(h) and similar as the proof of Li(pp), it is easy to
obtain

[L3(pn)| + |La(pn)| + 15 (on)] < CUEG|® + | F |17 + h2EHD).
Since 7 = O(h), finally we have
1L(pn)| < CUIEGIP + 1F5'|> + 2D, (4.38)
By the triangle inequality, we have
1B 12 + 1 ENP < Cllleg > + lleg I + lleg 1),
which together with (4.36) and (4.38) completes the proof. O

Lemma 4.9 (Estimate of My). There exists a positive constant C, independent of
n, h, T, and uyp, such that

2
(Ma| < CT Yy llleg P + b2 [u™ —ug |3 (leg I + H*ET)].
=0

Proof. Tt follows from Lemma 4.4 that
R (™ s wp)| < Cllfwol|® + 72 [u™" — ug™ 1% (lleg”

for wp, € Vj and i =0, 1, 2.
Let wp, = Ej and F}' in the above inequality, respectively. By the triangle
inequality and the definition of Ms, we have

(M| <T[|H™ (umt upts B+ |- (u”, u; F) ]
+ T[2|HHZS(U7L’2,UZ72;E;?)| + |Hnls(un,1,uz7l;E}vlL)| + ‘Hnls(un,uZ;E}vLL)H

2, h2(k+1))]’

2
<Cr|EZIP + IESI + 3 A2 lumt — w2 (lepe |2 + B2,
1=0

which completes the proof. O
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Lemma 4.10 (Estimate of M3). There exists a positive constant C, independent
of n,h, T, and uyp, such that
IMs| < Ch?* e — 0.99([EF) + [FP]P) T
Proof. Using (4.17) of Lemma 4.5 with € = 0.1, we have
sp(upt —ul, FP) < Ch?+ — 0.99[Fp],
sn(2up? —ut —ul, B < Ch2H — 0.99[ER]°.
Combining the above two estimates completes the proof. O

Since £ = O(74), by Cauchy-Schwartz inequality, we have
(&, E5) < Cr" + 7| Bg|1%) < O + 7lleg|® + Tlleg 1),
which together with (4.34) and Lemma 4.8, 4.9 and 4.10 yields

2
Ji+Jp < —[[FIP 7Y Clu™ ug™)(lleg || + p*FH)
=0

+C77 — 0.99([EZ]? + [F*)T (4.39)

Now we consider the upper bound of J; and Jy. Since J3 = 3(Gy, F§) and
Jys = 3(Gy, Gf), we estimate 3(Gg, vg) in general. From (4.12) and (4.32), we have

3(Gy,vo) ZT[QH(un’Z,UZ’Q;Uh) — H(u™?, uZ’l; vp) — H(u", up;vn)] + 3(E, vo)
=7[Z1(vo) + Z2(vo) + Zs(vo)] + 3(E, vo), (4.40)

where

Ty (vo) :=2H ™ (F (u™2); u™? — uf?, vo) — HE(F (u™Y); u™t — ult o)

= H(f (") 0" = g, o),

To(vo) :=2H™ (u™2, up % vp) — H™MS (u™ up s on) — HMS (u™, ult o),

Ts(vo) =251 (u}?, vn) — su(u' vn) — s (ull, vn).
Denote by

Fg =200 = it = pf,

and collecting the terms with the same speed f'(u™), we rewrite the operator Z; (vg)
as

Il(UO) ::Hlin(f/(un); F(;L»UO) + 27—[””(2“’2; 661’271)0) o Hlin(zn,l; 661,1’ UO)

o HI (P ) B wo) + 2 ) — HE (7 i w)
(4.41)

It follows from (4.13) of Lemma 4.3, Cauchy-Schwartz inequality and |z™¢| =

O(7) = O(h) that
R (f (") B o)l < ChTHF () oo 1FG [lwoll < CRTHIEG I + ||vo|(2), |
4.42

solleg lllwoll < C(lleg™|I* + [lvoll?), = 1,2.
(4.43)

|Hlin(zn,i;eg,i7v0)| < Ch—len,i
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Note that f’(u) is bounded, it follows from the Cauchy-Schwartz inequality and
inverse equality that

N

O @) B o)l < D01 @) o (1 1, [ Dvollz, + 15 o, vollox, )
]:N
< CY_(NES s, + h P NE o) vollr,- (4.44)
j=1
Since
1551 (2u™? —u™t —u™) — Qo(2u™? — u™! —u™)
and
20" — ™ — " = 2 (") = [ )]),

by the approximation property of L? projector Qo, we have
IFglr, < CRF L, ||Fgllar, < CRMY 27, (4.45)
Plugging (4.45) into (4.44), and using 2ab < a? + b2, we get
[HE(F () B vo)| < C(R*72 oo ). (4.46)
Similar to the proof of (4.44), and note that |2™%| = O(r), we have
[HI (2™ gt vo)| < C(RPRT2 + |Jwol|?), i = 1,2, (4.47)
Combining (4.41), (4.42), (4.43), (4.46) and (4.47), and assume 7 = O(h), we have
Ti(vo) < ChTH(IFGIP + llvol®) + Cllleg™ 17 + leg (1 + Ilwoll* + A*+2).  (4.48)
Thanks to Lemma 4.4, we have

2
To(vo) < Cllwoll* +C Y b2 [u™ — ug |3 (lleg " [I* + h**FD). (4.49)
=0

It follows from (4.18) and Young’s inequality that

Ts(vo) = s (2(upy® — u™?) = (up — U"’l) = (up, —u™), vn)

N
= Zﬂ[[Fo]]j+1/2[[UO]]g+1/2 ZﬁFo ]+1/2[[U0]]g+1/2

Jj=1 j=1
1 N =012 a 2 1 ny2
< Z Zﬁ[[FO ]]j+1/2 + 2279[[“0]]j+1/2 + ZﬁﬂFO]] )
j=1 j=1

which together with (4.45) and inverse inequality yields
1
Tofun) < C(0217 407 fool]?) + SOIFS T (4.50)

Using the fact & = O(7%) and Cauchy-Schwartz inequality, we get
3(&,v0) < C(r7 + 7lvo?),
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which combining with (4.48), (4.49), (4.50) and (4.40) yields
3(Gsv0) < OTh (B> + [w0ll”) + Crllwoll” + Z9IFFT” + O
+7 > Cw™ ug ) ([leg|1* + h2FED). - (4.51)
Taking vg = FJJ' in (4.51) and using the assumption 7 < vh, we have
Js < 207||F7 | + %9[[1?5@]2 +COrT 47 22: C™,ug?)([leg 1> + h**FD). (4.52)

=0

Taking vg = G§ in (4.51), we have

n n mn T n
BIGEI* <CAlIFG1* + 209G 1 + J91Fg J*+or

2
7 Y0 C g (e |+ h20HD),

then
(8 = 207)G5 I* <Cy|IF|1* + J9IFST* + O
+TZC )(lleg | + H20).
Therefore,
I < o (O FDI? + TOLE? + O
1S 3750, 2C Vo 4o

+TZ<C (leg |12 + B2V,

which combining with (4.52) yields

3C~

S Ee 4 5
3—20~""0 4

~(1+ I[F]?

< - -
Js+Jy < (207 + 3_207)7 [

2
+OTT 730 C up ) (e 2 + h2HD),
=0

In the above inequality, taking 7 small enough such that Cy = 1/4, then we get
J3+ Ja <0.8HF5L|\2 +0.55m9[FP]° + Cr7

+¢Z(C )(llef* |17 + h2+D)y,

which together with (4.39) and (4.33) yields
25 < — 0.2 F7|12 = 79(0.9]EF]* + 0.35[F]?)

2
+ O3l up ) (e P + D), (4:53)

=0
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4.4. Main results. In this subsection, we will give the L? norm error estimate
between the exact solution «(t") and the WG solution ug.

Theorem 4.11. Let up, be the numerical solution of the fully discrete WG scheme
(4.1)-(4.4) with the explicit TVDRKS time marching. Let u be the exact solution of
problem (1.1)-(1.2), where f(u) is smooth enough. If u and its spatial derivatives up
to the second order are all continuous in I = (0,1), and ||u|lg+1, [|wellet+1, |weellrr1
and ||ug||k+1 are bounded uniformly for any time t € (0,T], then the following
error estimate holds

lu(t™) = ug || < C(R**1/2 + 7% (4.54)

under the condition T < ~h with a fixred constant v > 0. Here C is a positive
constant independent of h, T and uy,.

Proof. Denote by
2
A = 02| Fp|* + m0(0.9[E§] + 0.35[F5']° + 0.8 [ef 1%,
i=0
then from (4.25), (4.29) and (4.53), we obtain

2
Bleg ™ ? = 3llegl® + A < CTT 7Y Clu™ ug ) ([leg
=0

2+ n2%F). (4.55)

As [22, 23], we adopt the following a priori assumption for m (mr < T') to deal
with the nonlinearity of the flux f(u)

lef'|| < Ch3/%,  forn <m,i=0,1,2. (4.56)

The justification of such assumption will be given later.
It follows from the assumption (4.56) and the approximation property of L2
operator Qg

195 oo = llu™" — Quu™ || < CR*F/2, i =0,1,2
implies that

1" =g lloo < 1195 lloo + CRTH 2 g

< Ch.
Therefore, we have
Cu™,uy™)y < C, forn <m,i=0,1,2,
which together with (4.55), (4.19) and (4.20) yields
Blleg ™ I* = 3lleg|I* < C77 + Cllleg|I* + h* 1),

where C' is a positive constant independent of m,n,h and 7. Then an application of
the discrete Gronwall inequality yields

len 2 < C(5 + h%+Y), n<m, (4.57)
which together with
I3 = ™ = Qo1 < Cni+!

yields that
= < O 4 ),
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Now we turn to verify the reasonableness of the a priori assumption (4.56). Since
ed =0, by (4.19) and (4.20), we easily obtain

Heg,l” S Ohk+1 S Ch3/2

for i = 0,1,2 and &k > 1. Supposing (4.56) holds for m, we can show that this
assumption is also true for m + 1. Inequality (4.57) as well as (4.19) and (4.20)
imply that

e < Ol 4+ R < O + B HY2) < onl2

for k > 1 and ¢ = 1,2. Thus the assumption (4.56) is reasonable, and hence the
above error estimate holds for any m (m7 < T'). The proof is completed. O

5. Numerical examples. In this section, we present the numerical examples to
verify our theoretical findings. In our numerical experiments, we shall use piecewise
uniform meshes which are constructed by equally dividing spatial domain into N
subintervals. The main purpose of this paper is to investigate how to use WG
method to discretize spacial variables in conservation law. In order to reduce the
time errors, we use the third order explicit TVDRK time discrete scheme in time,
and take time step 7 = CFL - h, where CFL is a constant independent of the mesh
size h. WG scheme with Py(k = 1,2, 3) element is used for spatial discretization.

Example 1 (A smooth solution of a linear equation). We solve the following
linear problem (1.1) with periodic boundary condition,

Ut +uy =0, (z,t) € (0,2m) x (0,7,

u(z,0) = sinz, x € (0,2m).
The exact solution to this problem is

u(z,t) = sin(z — t).
Let time step size 7 = 0.05h in this example. WG scheme with Py (k = 1,2,3) el-

ement is used for spatial discretization. The L? errors and the order of convergence,

at T = 2w, are reported in Table 1. It is observed that the order of convergence of
the L? error achieves (k + 1)-th order of accuracy.

TABLE 1. L? errors and corresponding convergence rates of Exam-
plel. T=27, A\ =Xy =1.

P; element P> element P5 element
N | |lu —wuo|| Rate | ||u —upl| Rate | ||u—wuo|| Rate
8 | 1.29E-01 3.36E-03 2.66E-04

16 | 3.02E-02 2.10 | 3.99E-04 3.08 | 1.94E-05 3.78
32 | 7.22E-03 2.06 | 4.93E-05 3.02 | 1.2TE-06 3.93
64 | 1.78E-03 2.02 | 6.14E-06 3.00 | 8.06E-08 3.98
128 | 4.42E-04 2.01 | 7.67E-07 3.00 | 5.06E-09 4.00

Example 2 (A blow-up solution of a nonlinear equation). We solve the
following nonlinear problem (1.1) with periodic boundary condition,

u + (u?/2), = 0, (z,t) € (0,1) x (0,7,
u(z,0) = o(x), x € (0,1),
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FIGURE 1. WG solution for Example 2, T = 1/7, )\ =

1,N =128.

with initial value

function

p(x) =

The exact solution u(x,t) is obtained by solving characteristic relation v = ¢(x —
w - t), which is smooth up to t = 1/7. Please find more details in [4].

1+1 .
— 4 —sin
2

0.4 0.6

0.8

(r(2z — 1)).
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Let time step size 7 = 0.1h in this example. In Table 2 we present the results at
T = 0.2 when the solution is still smooth. Observe that there is at least (k+1/2)-th
order of convergence rate in L? norm. wu; of WG solution uy, = {ug,up} at T = 1/7
is plotted in Figure 1, where P» element is used.

TABLE 2. L? errors and corresponding convergence rates of Exam-

ple 2. T = 027 )\1 == )\2 = 2.5.

P, element P5 element P3 element
N | |lu —uo|| Rate | ||u —upl| Rate | ||u—wuo|| Rate
8 | 1.68E-02 6.60E-03 1.89E-03
16 | 6.11E-03 1.46 | 7.86E-04 3.07 | 2.22E-04 3.09
32 | 1.42E-03 2.10 | 1.63E-04 2.27 | 9.96E-06 4.48
64 | 3.49E-04 2.03 | 2.85E-05 2.51 | 8.19E-07 3.60
128 | 8.67E-05 2.01 | 4.98E-06 2.51 | 5.81E-08 3.82

Example 3 (A discontinuous solution of a linear equation). We solve the
following linear equation (1.1) with periodic boundary condition,

ug +u, =0,

u(z,0) = ¢(z),

(2, 1) € (0,27)
x € (0,2m),

x (0,7,
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FIGURE 2. The P; WG solution and DG solution for Example 3,
T =27, N =512.

with initial value function

o) = {1, 72 < <31/2,

0, elsewhere.
The exact solution is u(z,t) = ¢(z —t).

In this problem the exact solution is non-smooth. It aims to show our WG
method is also stable and efficient to the problems with non-smooth solutions. Let
time step size 7 = 0.1h in this example. The errors and the order of convergence are
reported in Table 3. Observe that the method is stable. The WG solution using P;
element with (A1, A2) = (1.2,0.1) and the DG solution with P; element are plotted
in Figure 2 (a) and (b) respectively.

TABLE 3. L? errors and corresponding convergence rates of Exam-
ple 3. T = 27T, Al = 2,)\2 =1.

P element P5 element
N |lu—wuo|| Rate| |lu—uo|| Rate
8  5.93E-01 4.23E-01

16 5.01E-01 0.24 | 3.25E-01 0.38
32 3.93E-01 0.35 | 2.52E-01 0.37
64 3.26E-01 0.27 | 1.98E-01 0.35
128 2.72E-01 0.26 | 1.58E-01 0.33
256 2.26E-01 0.27 | 1.27E-01 0.32
512 1.89E-01 0.26 | 1.03E-01 0.30

6. Conclusion. A weak Galerkin finite element method is proposed for nonlinear
conservation laws. This method provides a class of finite element schemes by tun-
ing the built-in parameters including purely upwind scheme. This makes the WG
method highly flexible. Compared with the DG method [11], the present method
can be applied for solving nonlinear conservation laws. Error estimations are given.
The convenience of the proposed method is validated by the numerical examples.
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