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ABSTRACT. The mathematical model of a semiconductor device is described by
a coupled system of three quasilinear partial differential equations. The mixed
finite element method is presented for the approximation of the electrostatic
potential equation, and the characteristics finite element method is used for
the concentration equations. First, we estimate the mixed finite element and
the characteristics finite element method solution in the sense of the L? norm.
To linearize the full discrete scheme of the problem, we present an efficient two-
grid method based on the idea of Newton iteration. The two-grid algorithm is
to solve the nonlinear coupled equations on the coarse grid and then solve the
linear equations on the fine grid. Moreover, we obtain the L? error estimates
for this algorithm. It is shown that a mesh size satisfies H = O(h'/?) and the
two-grid method still achieves asymptotically optimal approximations. Finally,
the numerical experiment is given to illustrate the theoretical results.

1. Introduction. In this study, we consider the following mathematical model
of a semiconductor device, which consists of three quasilinear partial differential
equations [1, 15]:

_A1/)=Oé(p—€—|-N(a:))7 (l‘7t)EQXJ,J:(O7T]7 (1)
% =V - [De(x)Ve — pe(z)eVy)] — R(e,p), (x,t) € Q x J, )
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W G [Dy(a)Vp + (0 V] — Rle,p). (2.1) € 2 x T Q
where (1) is an elliptic-type partial differential equation for the electric potential,
and (2) and (3) are parabolic-type partial differential equations for the electron
and hole concentrations. The unknown functions are the electrostatic potential
1, the electron concentration e, and the hole concentration p. €2 is a polygonal
domain in R(d = 2,3). The value of a is g/e, ¢ is the electron charge, and e
is the dielectric permittivity. These are all positive constants. N(z) = Np(x) —
Ny(x) is a given function of Np(z) and N4(z) that represents the donor and
acceptor impurity concentrations. The diffusion coefficients Ds(z)(s = e,p) and
the mobilities ps(x)(s = e,p) obey the Einstein relation Dy(x) = Urps(x), where
Ur is the thermal voltage. R(e,p) is a recombination term.
It is assumed that the boundary and initial conditions are as follows:

bl,t) = elw,t) = p(e,t) =0, (,1) € OQ x (4)
e(z,0) =eo(z), p(z,0)=po(x), z¢€. (5)
In addition, we need the compatibility condition
/(po—eo—i—N)dx:O. (6)
Q

The study of the transient behaviors of semiconductor devices plays an important
role in modern computational mathematics. Since Gummel [14] first presented
sequence iterative computation methods for this kind of problem in 1964, a variety
of numerical approaches have been introduced to obtain better approximations for
(1)=(3). The main techniques include the difference method [13], finite element
method [27], mixed finite element method [25], characteristics finite element method
[26], characteristics finite difference method [24], upwind finite volume method [21],
and characteristics mixed finite element method [22].

The semiconductor device problem becomes a large system of non-linear equa-
tions when using the finite element method to solve (1)—(5). Thus, we will consider
a highly efficient and accurate algorithm for this large system. It is well known that
the two-grid algorithm is a simple but effective algorithm. This method was first
proposed by Xu for non-linear elliptic equations [18, 19] and has been widely used in
many kinds of problems. Dawson [10] applied a two-grid finite difference scheme for
non-linear parabolic equations. Chen [6, 5] presented an efficient two-grid scheme
for semi-linear reaction—diffusion equations and miscible displacement problems.
Dai [9] used a two-grid method based on Newton iteration for the Navier-Stokes
equations. Chen and Yang [4] introduced this method for finite volume element
approximations of nonlinear parabolic equations. Yu [23] presented a two-grid al-
gorithm for mixed Stokes—Darcy problem. Wang investigated this method for semi-
linear elliptic interface problem [16]. Xu and Hou recently used this method for
semilinear parabolic integro—differential equations [20]. Thus, it would be natural
to use the two-grid method for the equations of a semiconductor device.

The electric field intensity u = —V4 is very important in production, and the
numerical behavior of (2) and (3) strongly depends on the accuracy of the approxi-
mation of u. To improve the accuracy of e and p, we apply the mixed finite element
method, which gives direct approximations of ¢ and u simultaneously for the elec-
tric potential equation (1). The direct approximation of the electric field intensity,
rather than one that requires differentiation of 1, can provide improved accuracy
for the same computational effort.
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We use the characteristics finite element method for the electron and hole con-
centration equations, (2) and (3), respectively. In reality, the values of Dy(s = e, p)
are quite small in the concentration equations, and thus, (2) and (3) are strongly
convection dominated. The standard finite element method produces unacceptable
numerical diffusion or nonphysical oscillations in the concentration approximation.
The characteristics finite element method was introduced and analyzed by Douglas
and Russell [12] in 1982. Using this method to treat the hyperbolic parts of the con-
centration equation, the procedure is simple, the time-truncation errors are smaller,
and lastly and most importantly, nonphysical oscillations are avoided.

We determine the L9 error estimates for the mixed finite element solutions and
the characteristics finite element solutions. We then present an efficient two-grid
method based on the idea of Newton iteration. To the best of our knowledge, few
results about the application of the two-grid algorithm to semiconductor device
problems have been reported. The main idea of this algorithm is to solve the
nonlinear coupled equations on a coarse grid, and then to solve the linear equations
on a fine grid rather than solving the coupled nonlinear equations on the fine grid.
Finally, we obtain the L? error estimates for this algorithm and give the numerical
experiment to illustrate the theoretical results. The two-grid algorithm achieves
asymptotically optimal approximations but requires less time.

An outline of this paper is as follows. In Section 2, we present the weak formu-
lation and full discrete scheme of this model. In Section 3, we present the L9 error
estimates of the finite element solutions. In Section 4, we introduce a two-grid algo-
rithm and analyze its convergence. Finally, the numerical experiment is presented
in Section 5.

2. Weak formulation and full discrete scheme.

2.1. Notation and assumptions. In this paper, we denote LI(2) = {f : || f[| (o)
< oo}, where
(Jo |f(@)|7dz)!/1, 1 < ¢ < o0,

esssup [f(@)], ¢ =o.
e

1fllzece) =

(L?(€))? is the space of vectors that contains each component in L?(Q). We define
the Sobolev spaces as W™?(Q) = {f € L}, .(Q) : ||f[lwm.a(a) < oo}, whose norms
are

( E ||8afH%f1(Q))l/qa 1 S q < 0,

[ Fllwma@) = 1 fllmg =4 lel<m
max 0% fl| oo () » q = oo.
To simplify the notation, we write H™(Q) = W™2(Q), || - |lm = | - |lmz2 and

-1l = || - llo2- Let X be any of the spaces just defined. If f(z,t) represents
functions on € x .J, we set

Hm(J;X){f:/]Hg;{(~,t)Hidt<oo, agm},

e =[S [ Z2coa]’s m=o
a=0
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W™ (J; X) = {f : esssup

J\\ata D<o asm),
te

I fllwm.oo(1:x) = max  esssup H H m > 0,
0< teJ

LA(J;X) = HO(J X), L®(J;X)=W%°(J; X).

For convenience, we drop € from the notations. Thus, we write L°°(.J; H**+3) for
L>(J; HM3(Q).

We let (-,-) be the L?(Q) inner product. Furthermore, H}(Q) = {f € HY(Q) :
floa = 0}, and H(div;€) is the set of vector functions in (L2(£2))? that have
V- v € L?(Q). We also define

W = {w e L*(Q), (w,1) = 0},
V = H(div; Q),
[ollv = o]l saivsey = (lol* + 1V - 0]*)1/2.

We provide some rational assumptions about the coefficients and the solutions
of (1)—(3). These assumptions are reasonable in physics [15, 14].
(1) For integers [, k > 0, the solution functions have the following regularity (A)

e LT HM), we (LT HY?)% e,p e WHe(J, HIYY) 0 H(J; WH).
(2) The problem is positive definite, such that
0 < Dy < Ds(x) < D*,0 < s < ps(w) <™, s=e,p,

where D, D*, u,, and p* are positive constants.
(3) [Vus(z)| < C, s=e,p.
(4) R(e,p) is Lipschitz continuous in an e-neighborhood of the solutions.

2.2. Characteristics method for the concentration equations. For the elec-
tron and hole concentration equations, (2) and (3), respectively, convection is dom-
inant over diffusion, so we use the characteristics finite element method to solve
them.

We rewrite (2) and (3) in the form

0

a—j =V-(D.Ve)+eu-Vyue+ p.Ve-u+ auce(p—e+ N) — Rle,p), (7)

dp

53¢ =V (DpVD) —pu -V — ppVp - u —appp(p — e+ N) = Rle, p), (8)
where u = —V1).

We let u = (uy,u2)”, 7. be the unit vector in the direction (—peur, —peus, 1),
7, be the unit vector in the direction (upui, ppus, 1), and ¢y = /1 + p2(u? + u3)
(s = e,p). The characteristic derivatives in the ¢ direction are given by

Oe Oe dp 3p
¢eai7_e:a_ﬂeve'uy ¢pa ot + 1pVp - u.

Associated with the equations above, (7) and (8) can be rewritten as follows:

¢67 (D V@) —eu- v:ue — Qe ( —e+ N) - 7R(€>p)v (9)

6

¢p =V - (DpVp) +pu -V, + appp(p — e+ N) = —R(e, p). (10)

87;7
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We partition J into At = T/N and "™ = nAt. Furthermore, we denote f™(z) as
f(z,t™) and (0e™/07.)(x) as (0e/OTe)(x,t™). The backward difference quotient in
the 7.-direction is as follows:

de™ (2) ~ e"(x) —e" Nz + peu(z)At)
7, Aty/1+ p2|u™(x)|? '

Defining 277! = 2 + pu™(x)At and e~ 1(x) = e~ 1(27 1), then

Oe™ en _én—l
“or S A0 (1D
e

Similarly,
ap" o pMa) = p (@ — pput(x)At)

= (z) ~ .
Oy Aty [1+ 2 un (2)2

Defining 277! = & — ppu"(x)At and p" ' (z) = p"~!(2~1), then

8pn pn _ ﬁnfl
e 12
P or, At (12)

2.3. Weak form and full discrete procedure. The weak forms of (1), (9) and
(10) are equivalent to the following problem: for ¢ € J, find a map {¢, u,e,p} :
J— W x V x H}(Q) x H}(Q) such that e(x,0) = eg(x), p(x,0) = po():

(u,v) = (V-v,9)=0, YveV, (13)
(V-u,w)=a(p—e+ N,w), YweW, (14)

(G0 g+ (D.Ve,V2)~(e - Vhor) — aleelp — e+ N), )
— —(Rle,p),2), ¥z e HYQ), (15)
(O g 2) + (D,TR, V) Vi) + bl e+ ).
= —(R(e,p),2), Vz€ Hy(Q). (16)

We let Ty, and Tj,, be a quasi-uniform mesh of () comprising triangles or rect-
angles such that the elements have diameters bounded by h, and h.. We denote
Wpx Vi, C W x V as the Raviart—Thomas mixed finite element spaces with order
k. The approximation properties are given as follows:

. k1
oof v —vnlra@2 < Cllvfeahy™,

inf o —vnllv < C{lvflkr1 + IV - vl by,
vp€Vh

inf - <C REFL.
Jinf o — il < Cllulasah
We denote M), C H}(Q) as a piecewise polynomial space of degree [ , and

inf ||z —2zpll1,q < CHzHlH,th Vz € H(Z)H(Q).

c)
zn€Mp
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Using (11) and (12), the full discrete scheme of the weak form, (13)—(16), consists
of {Y}, uy,ep,pp}t € Wi, x Vi x My, x My, given by

(up,v)— (V- -v,¢p)=0, Yve Vy, (17)
(V- uy,w) =alpy —ep + Nyw), Yw e Wy, (18)
(Or.€h, 2) + (DeVep, Vz) = (epuy - Ve, 2) — a(peey (py, — € + N), 2)
= —(R(ey,Ph), %), Vz EMp, (19)
(0r,ph> 2) + (D VDR, V2) + (Prug, - Vi, 2) + alupp (ph, — €, + N), 2)
= —(R(ex,pn), 2), Vz €My, (20)
where 0, e} = e;fg‘l and 0, pj = %. In addition, the initial approxima-

tions e% and p?L must be determined by the elliptic projections of ey and pyg.

3. L7 error estimate of finite element solution. In this section, we present the
L7 error estimate of the mixed finite element method for the electrostatic potential
and electric field intensity and the characteristics finite element method for the
concentrations.

3.1. Convergence analysis of mixed finite element solution. First, it is useful
to introduce an elliptic mixed method projection (Rp), Rpu) : J — Wy x Vi, which
satisfies

(Rru,v) — (V- -v,Rpp) =0, Yv € Vy, (21)
(V-Rpu,w) =a(p—e+ N,w), Ywe W. (22)
Following Brezzi [3], we have

lu = Rpullv + [[¢ — Ratpllw < Cllbl|poe (g;mm+3)hl (23)

The estimations of 1}’ — R,¥" and uj — Rpu™ are derived as follows. By sub-
tracting (21) and (22) from (17) and (18), respectively, at time ¢t = ", we determine
that

(up — Rpu™,v) — (V- v, ¢ — Rpp™) =0, Yv e Vy, (24)
(V- (up — Rpu™),w) = a(py, —p" —ej, +e",w), Ywe W,
(25)
Following Brezzi [3], we have
luf, = Bru”|lv + Y — Bug"lw < C(lle” — el + [Ip" —ppl)).  (26)

3.2. L9 error estimate of characteristics finite element method. We intro-

duce an elliptic method projection (Rpe, Rpp) : J — M}, x M), such that
(D.V(Rpe —€),Vz)+ A(Rpe—e,2) =0, Vze M, (27)
(DpV(Rip —p),V2z) + Ap(Rpp —p,2) =0, Vz e My, (28)

where the positive constants A;(s = e, p) will be chosen to ensure the coercivity of

the forms. Based on the theory of the Galerkin method for elliptic problems [8, 17],
we have

Is = Ruslloz + hells = Ruslli2 < Clislipa2hc™, s =e.p. (29)
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To obtain the convergence estimations of ||s™ — s}]|o,4(s = e, p), we divide them
as follows:
15" = s¢llo.g < 15" — Rus"llog + |Rns™ — s3loqr s=ep. (30
For the concentration, we only discuss the electron concentration equation, as the
results were similar for the hole concentration equation. First, we obtain the con-
vergence results of ||s™ — Rps™||0,q(s = e, p) with help of an elliptic problem.
Lemma 3.1. If (e™,p") is the solution of (15)-(16) at t = t", and (Rpe™, Rpp™)
is the elliptic projection solution of (27)-(28) at t = t™, then for 1 < n < N,
2<g<ooandl >1, we have the following:
le” = Rne™[log < Clle™ lir1,ahe™ (31)
1" = Rup"™llo.g < ClIp" li1,4he™ (32)
Proof. We let L denote an elliptic operator such that
Le"™ = -V - (D.Ve™) 4+ Ae™,
and it has a bilinear form
a(e", z) = (D.Ve™,Vz) + (A", 2),

where A will be chosen to ensure the coercivity of a(e™,z). From (27), it is clear
that Rpe™ is the finite element solution of this elliptic problem. We consider the
auxiliary problem

Lw = sgn(e” — Rpe™)|e™ — Rpe™|771,  in Q,

w=0, on .
This problem is uniquely solvable for w € LP(2), and
lwllz;p < CllLwllo,p = Clle™ — Rue™[Ig ", (33)

where % + % = 1. We use a duality argument. Based on (27), Holder’s inequality,
and (33), we denote I;, as an interpolation operator and obtain

[e" — Rue™[I§ , =ale™ — Rpe™,w) = a(e” — Rpe™,w — Ihw)

<Clle" = Rpe"|1,qllw — Tnwllip < Chelle” — Rpe®|1 qllwll2,p
<Chelle" — Rne"[[1qlle" — Bue" 3, (34)
From [2, Theorem 8.5.3] and the approximation property, we have
le" = Rue"lliq < C_inf " = enllig < CRLe 141 (35)
Using (34) and (35), we have
le" = Rueloq < Chelle” = Ruc™ll1g < CRE "l
Lastly, we obtain similar results for the hole concentration equation. O

Next, we obtain the convergence property for ||Rps™ — si|lo,q(s =€, p) .
Lemma 3.2. Let (Rpe™, Ryp™) be the elliptic projection solution of (27)-(28) at
t =1t", and (e}, py) be the finite element solution of (19)-(20). If the regularity
assumptions (A) hold, and the initial functions e = Rpe® and p) = Ryp°, then for
1<n<N,2<qg<o0andl,k>1, we have

llef; = Rue™llo.q < C(he™ + iyt + A, (36)

lph — Rup"lloq < C(hH + Ry + At). (37)
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Proof. The proof process is similar to the analysis presented by [25] and [26], but
with some changes. First, we subtract (15) and (27) from (19) at ¢t = ¢™ to have

Oe™
a'r n, _< v )
( -€h Z) ¢e 8 L
=((epup —e"u") Ve, 2) + alpeley, (py — e + N) —e"(p" —e" + N)J, 2)
+ (R(e",p") — R(ey,pp), 2) + Ae(Rpe™ —€", z), Vz &€ Mp. (38)
We let & = e" — Rpe”, (' = e, — Rpe™, ) = p™ — Rpp", ¢ = p, — Rpp™, and

select z = (* — ("1 = 9;¢"At. Summing over 1 < n < m, from (38), we have the
following:

z) + (D.V(ep — Rpe™), Vz)

8

D (0T, DAL+ <D VLG - ,(D VLV <D R, (39)
n=1

where

- m n _ ¢n—1

F= 3 (R ) - Riiog)an =30 (Soge o) a
n=1 oyt
S R S

FS :;< At 7at<e>At, F4—T;(At,atce)At,
™ n n _ sn—1 m

= ; <¢Zgie - a0 )AL Ry ;Ae@e,aﬁc Al

= Z ((BZUZ —e"u")  Vite, 0, )

Fy= Y a(ueleh (v} — ef + N) = e"(o" — " + N)], 2 ) At

Now we estimate each term on the right hand of (39). First, using a second-order
Taylor expansion at point (e}, pj) for R(e™, p™), Young’s inequality, and (29), we
have

IFi] < " = el + 1Ry loellp™ = phIDIOCE 1A
n=1
<C S (1€ + I IAL+C S (gl + g DlorC A
n=1 n=1
O (DoUCH + I IHAL + 122) 4237 o PAt, (40)
n=1 n=1

where R, and R, are the partial derivatives for each variable.
For F5, we have

12| Z At/ Ha&
oS 1%

dt - [|9,C | At

m
+e 9, ¢ 12 At
L2(tn—1,t7;L2) nz::l ” tCe ”
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2 n
<O elzps gn-s mprreny + D 0P AL (41)
n=1

For the estimation of F3, using (29), we get

m m

|F5| <C(e) D IVEr PAt +2 ) [l At
n=1 n=1

<C(e)h2! +e ) IO |*At. (42)

n=1

As to Fy, we obtain similar estimate:

Fa < C) ST IVt P At +2 3 10,2 At. (43)

n=1 n=1

For F5, we obtain

n 8671 en

—en—1,2 m )
-——F— A IFA
Yom = A tred lgar

Bl<C@Y|

A3e 2
<0 5
Te 'L2(J;02(9)

+e Y llacP A, (44)
n=1

where the calculations of (41), (42), and (44) are presented in detail elsewhere
25, 26].
For Fg, from (29) we have

Fol < Ce) Y lle™ — Re™[[[10:C11AL < C(e)hZH2 + 2 [|0:CI P AL (45)
n=1 n=1

Next, we obtain an error estimate for F7. Using (26), (29), and (23), we have
lepur, —e"u"|| <[/}, — Rne")up| + |[Rne™ (uj, — Rpu®)]|
+ [Rru” (Rpe™ — ") + " (Rau" — u")|
<llupllo,colleh — Rne™|| + [ Rne”|
+ 1 Bru"locol[Bre™ — e[| + [[€"lo,co[[ Rnu"™ — u™|]

SO+ NG|+ Rt + R,

0,00 ||’U,Z - RhunH

Hence, we conclude that

|| <O lleuy — a0, | At

n=1
<CE)( YU + G IR AL+ RET2 4+ 12+2) 1 3™ ||acr2AL.  (46)
n=1 n=1
Finally, for Fg, we have
ek (b = b+ N) = " (0" = e + N)| <[l ehpi — e"p" || + [le"e" = ehe|
+ llegN = e"N|
=Wy + Wy + Ws.
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From (29), we can determine the following:
Wi <llef (pr, — Rup™)|| + [I(ef, — Rne”)Rup" || + | Rne™ (Rnp™ — p™)|
+ [|(Rre™ —e™)p"||
<llexllo,c0llPh — — Rpe”||
+ [[Bre™ lo,oc [ Bup™ — ™[ + [[P"[l0,00 [| Bre™ — €”
OIS+ NIC2 1+ et
Wa <||(e" — Rne™)e" || + [[Rne”(e" — ep)l| + [|(Rre™ — ef)ey ||
<C(I¢2 N + het™),
Ws <C([lef — Rue"[| + || Rne™ — e"[) < C(I¢ ]| + hit).

Thus, we have

| F| <CZ”eh h—en+N)—e"(p" —e” + N)[[[[0:C2]| At

s>(2 (G2 + G IR A + h242) 46 S gz 2Ae (47)
=1 n=1

Combining (39) with (40)—(47) and noting that € = Rpe® and p) = Rpp°, we
have

Sl At + V2 <C(e) (B2 + h22 + (a0 + 3 (I + 11 1) AY)
n=1

n=1

+ed oAt (48)

n=1

To obtain the H* norm of V{7, we add ||(™]|? to the above equation. Note that
G = e =P =(¢e + ¢~ ¢ = ¢
:(Cn _ Cnfl’cn _ Cnfl) 2(Cn717 Cn _ Cnfl)

| o e S

Ce)|cr1PAat + (At + g)‘ [ C" 1 ‘

The both sides of the above inequality are sum from n = 1 to m, then we have

‘At

m

1€]1% < Cle) ZHC IPAt + (At +¢) Znatc I2At. (49)

Similarly, for the L? estimates of V(, and (,, we find that

Sl IPAt + VG2 <O (B2 + R 4 (A0 + Y (IG + eI Ae)
n=1

n=1

+e ) [agpPAt, (50)

n=1
m

IG5 1I* <C(e ZIIC”H At + (At +e) Y oGP AL, (51)

n=1 n=1
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Combining (48)—(51) and selecting sufficiently small values of At and e, we obtain

(1021 + 10 IP) At + 111 + 16" M1 SC(W +hT 4 (AL

n=1
n 2 n
+ DI + Iy 1A,
n=1
where C' = C(e) is a constant that depends on €. An application of the discrete
Gronwall Lemma yields the following:
G+ G 1T < C(R2 4+ h2FH2 + (A1)?).
Then, for 1 < m < N, we determine that
1€ 1 < Clhe + Byt + At).
Similar to the proof process of Theorem 3.4 in [19], we determine that
€2 11.q < C(RL+ BT+ At), 2<q< oo (52)

We apply a duality argument to estimate ||e} — Rpe™|o,q by considering an aux-
iliary problem: find w € H}(2) such that

a(v,w) = (p,v), v e Hy(Q).
This problem is uniquely solvable for w € L(2), and
[wllzp < Cliellop, @€ LP(Q),

where p = ¢q/(¢—1) € [1,2] for 2 < ¢ < c0. If s = 2¢/(q + 2), applying the Sobolev
embedding theorem, we have

l1,5/(s=1) < Cllwlly,s/s-1) < Cllwllzp < Cliellop- (53)
By Lemma 3.1 of [19] and (53), we have

| Rnw

(ep — Rpe™, o) =alel — Rpe",w) = ale), — Rpe™,w — Rpw) + alef — €”, Rpw)
<C(ller, — Bne"|l1qllw — Rrnwll1p + lle — "

<Cl(hclley — Rue"[l1.q + llei — e"lIF 20)ll]

|%,2$”Rhw”1,s/(s—1))

0,p-
For ¢ = 2, since s = 1, from (52), we have the following:
e — Rne™loq <C(helle, — Rue®[liq + llef, — €I 2,)

<C(hcller = Rue™ll1,q + llei, — Rue" |17 ase + [ Rne™ — €| 212)
<C(hF + BT + At).

For 2 < ¢ < 00, since 2s < ¢, we have

leh — Rue"llo,g <C(hellel, — Rue"[l1,q + llef — Rue™[7 4 + [ Rre™ —e™[7 )
<SC(RLM + BT + At),
which yields (36). Similarly, we can obtain (37). O

From Lemmas 3.1 and 3.2, we obtain the following important theorem:
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Theorem 3.3. Let (e",p™) be the solution of (15)-(16) at t", and (e}, p}) be the
finite element solution of (19)-(20). If the regularity assumptions (A) hold, and the
initial functions €) = Rpe® and p) = Rpp®, then for 1 <n < N, 2 < ¢ < o0 and
I,k >1, we have

lep — € llo.g < C(hS + R + Av), (54)
it = P llo.q < C(REF! + W5 + At). (55)

3.3. L7 error estimate of mixed finite method. First, it is useful to denote
the L? projection Qy, as follows. For p € (L%(2))2,

(pa ’Uh) = (tha vh)a V'Uh S Vh~ (56)
For p € (W*+1:4(Q))2, the L? projection operator has approximation property [11]:
lp = Qnrpllog < Clipllrgh", 0<r<k+1 (57)

Next, the L? error estimate of the electrostatic potential will be obtained. We
obtain the following error equations by subtracting (13) and (14) from (21) and
(22), respectively:

(Rhu —w,v) = (V-v,Rpp =) =0, VYve Vy, (58)
(V- (Rpu —u),w) =0, YweW,. (59)

Let Dy, be the L?-projection onto the space
Vi={ve V, V- -v=0} (60)

Dy, has the following stability property [7]:
[1Drollo,g < Cllvflog, 2 < g < oo (61)

Lemma 3.4. If u" and Rpu™ are the solutions of (13)—(14) and (21)-(22), respec-
tively, at t =1t". For 1 <n < N, 2<g<oo and k> 1, we have

lu" = Rpulo.q < Cllullisa,qhy ™ (62)

Proof. This Lemma can be easily derived from (58) and (60). More details of the
proof can be found in [6, Lemma 3.2] and [5, Lemma 4.1]. O

For (25),if 1/p+1/qg =1, we have

V. (u? — Rpu™),w
IV - (B o = sup V0= ), )
weWy, ”w”O@
no__ o no_ N n
— sup la(py —p" —ep + € w)|
weWp, Hw”OJ’
<C(lle” = exllo.q + 1" = phllo.q)
<C(hF 4+ bt + At). (63)

Lastly, we obtain the L error estimate of the electric field intensity:

lu" = uhlloq < 1w = Rou"lloq + [|Rhu" — ujlloq < Clhett + hy™ + At). (64)
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4. Two-grid algorithm and error estimate. The two-grid algorithm and its
convergence analysis are presented in this section. The fundamental ingredient of
the scheme is a new finite element space Vg x Wy x Mg X Mg C Vi x Wy, x My, X
My (h < H < 1) defined on a coarser quasi-uniform triangulation or rectangulation
of Q2. The non-linear equations can be solved by applying the Newton iteration
procedure on the fine grid to linearize the non-linear system. The solutions of the
original non-linear system will be reduced to the solutions of a small-scale non-linear
system on the coarse space and a linear system on the fine space. First, we provide
the two-grid algorithm.

Step 1. Solve the non-linear coupled system for (w7, %, e, p) € Vg x Wi x
Mg x My on the coarse grid Tg:

(ufy,v) —(V ) = Yv € Vg, (65)
(V )—oz(pH—e’;I—I—N,w), Yw € Wy, (66)
(Or.€fr2) + (DeVGH, VZ) — (e uly - Ve, 2) — a(peely (py — €fr + N), 2)
= —(R(efrpg),2), Vz €My, (67)
(0P, 2) + (DpVPh, V) + (DEusr - Vi, 2) + alupph (Pfr — € + N), 2)
= —(R(e%,pH),2), Yz €eMpy. (68)

Step 2. Solve the linear coupled system for (U}, O}, E}, P') € V p, x Wy, x My, x M,
on the fine grid Tj:

(Up,v)— (V- v \Il”) Yv e Vy, (69)
(V w) = a(Ph E} + N,w), Ywe Wy, (70)
(0. B, 2) + (DEVEh’VZ) — (e Up + (B} — ef)uf] - Ve, 2)
—o(peler (P — B + N)+(Ey — efy)(ph — ey + N)|, 2)
7(R(EPTLL>P;LL)’Z)7 vz EMha (71)
(Or, Bp, 2) + (D VP, V2) + ([pg Uy + (P — pr)wg] - Vi, 2)
+alpp[ph (Py — Ef + N)+(Py — p) (0l — € + N)J, 2)
—(R(ELL7P}7), Z)a Vz Eth (72)

where R(E}, PR) = R(ely, ) + Relely, o) (EF — e3) + Ry(ely, i) (P — ply).

Next, we present an error estimation analysis of the exact solutions (u™, 9™, ",
p") and two-grid solutions (U}, ¥}, Ef, Pi'). We note that (U}, ¥}) are the two-
grid solutions defined in (69) and (70). Using (23), (26), and triangle inequality, we
can analyze the electrostatic potential and electric field intensity:

lu™ = Uhlly + 4" = Oillw < C(hy™ + lle™ — ERll + llp" — Byl (73)

Next, we prove |e” — E}'|lo,q and |p" — P7*|lo,q- The elliptic projection will be
used as an intermediate variable to assist this proof, and the main results are as
follows:

Lemma 4.1. Let (Rpe™, Rpp™) be the elliptic projection solution of (27)-(28) at
t=1t", (B}, PP) be the two-grid solution of (71)-(72). If we choose Ef) = Rye® and
P,? = Ryp°, the regularity assumptions (A) hold, then for 1 <n < N, 2 < ¢ < o0
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and l,k > 1, we have
|Rne" — Epllog < C(RET + Ry + HZT? + HIM? 4+ Aw), (74)
|Rnp™ = Pitllo.g < C(REF + B+ H22 4 HIMF? 4+ Ar). (75)

Proof. We subtract (15) and (27) from (71) at ¢t = ¢™ to obtain the following error
equation:

n n0e”
(aTeEhVZ) - ( e 87_6 72)

= ([ex Uy, + (Bl — ef)ufy — e"u"] - Ve, 2) + a(peler (P — By + N)
+ (Bl —ef) (i — €l + N) —e"(p" —e" + N)|, 2)
+ (R(e™,p") = R(E}, PY),z) + Ae(Rpe"™ — €", 2), Vz € M. (76)

+ (D.V(E} — Rpe™),Vz)

We let ;' = Ej} — Rpe™ and n,; = Py’ — Rpp™ and select z = n;' — = oAt
Summing over 1 < n < m, from (76), we have

i(f?m?ﬁm?)m + %(Devné’% Vi) - %(Devn& Vi) < 28: K, (77)
Wheren:1 -
:i(R R(E}, Pit), Ol ) At, K2:§:1(5n Ain : amg)m,
i (6 g‘i *‘;n : D) AL K= ixe( n 9 At
zfxe UT + (BF — eT)uly — e"u” - vu&amg)At,
=
m:f}@&mw—m+m (Ef )Wy — i+ N)

—e"(p" — " + N)J, 0! ) At.

Now we estimate each term on the right hand of (77) as follows. First, using a
second-order Taylor expansion at point (e, p%y) for R(e™,p™), (29), (54) and (55),
we have

K1 <Z|| o(ehr, pi) (€ — EBR) + Ry(ely, i) (p" — PR
1 * * n n \2 * * n n n n
+ g Ree(e”, p)(€" — efy)” + Rep(e”, p7) (" — ejy) (0" — 1)
1 * * n ' n
+ 5 Bpp(e”, p7)(p — P12 |ll| 9wz | At

m
<O (" = Bpl+ " = Pl + lle™ = egrllg.a+ le™ = erlloallp™ — v llo.a
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+p" = phlIE )10 1At

m
<O (B2 4+ HET 4+ HIE 4 (A0 + 3 (212 + g 12) At

n=1
+e > llomp|At, (78)
n=1

where e* is a point between e" and e, p* is a point between p™ and p%.
Similar to the proof process of Lemma 3.2, we give the following error estimations
directly,

Ko < Ch2T? 2> |lom?|IPAt, (79)
n=1

|Ks| < Ch2 42 om? At (80)

n=1
Ky < CY Vi PAE+2 ) (lomy | At, (81)
n=1 n=1
K| <C(At)2Ha—26 ’ +si||a " |2A¢t (82)
5= o2 lL2(J;02() — t1le ’

m

|Ke| < Ch2T? 2> ||om?|*At. (83)
n=1

For K7, we have
e Uy + (Bl —efuyy —e"u" =ef (Uj, —u") + (efy — Ep)(u" — ufy)
+ (Efy —e™)u”
=0 + I+ Is.

Using (73) and (29), we have

NE

(11, 0m2) At <C Y Ju" = U |92 At
n=1

i
L

m

<O( SOOI + 112y At + B2+2 4 h242) e 3 oy [Pt
n=1 n=1

(84)

Using (64), (54), and (31), we have

NE

(L2, O )AL =| 3 (e = ") (u" = uly) + (" — Rue™)(u" — ujy)

n=1

+ (Rpe™ — Ef)(u" — u'y), 0 ) At

m
<> (leg —e

n=1
= wy ool Rue™ — BRI [0z l| AL

oallu” —uflloa+ [le" — Rue™loallu™ — willoa
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gC(Hg“+4 +HF LRI (A 4> ||n;}\|2At)

n=1

+e Y lam?]*At, (85)

n=1

| > o)At <C Y (I1B;: = Rue®l|+ | Rne™ = e Dl|omz | At
n=1

<C(X InzIPae+ h2+2) e 3 oz 2At. (86)

From (84)—(86), we obtain

Kl <o (Y Do+ I ) At 2 4 S HUH 4 B (an?)
+2Y omz]PAt. (87)
n=1

For Kg, we have
ep(Py — By + N) + (B —efy)(phy — e + N) —e"(p" — " + N)
=(By —e")(p" —e" + N) + (e — E})(p" —phy + ey —€")
(" — P+ B — )
=Ji+J2+ Js.
Related to Ji, we have

| Yo (oAt <C Y 1B - oAt
n=1 n=1

<C(D InzlPat+n242) +e 3 omPat.  (88)
n=1 n=1

Related to Ja, we have

> (ot DA =| 3 (el = ER)G" =) + (el = ER)(eh = "), Qi)
n=1 n=1

‘ Z Ja1 + Jaz, Ol ) At ).

Using (54), (55), and (31), we have

S

]Z oo D] =| S (el = €M) 8" =)+ (€7 = R0 = i)

+ (Rpe”™ — ER) (" — i), 0y ) At

m
Z e — €™ llo.allp™ = PElloa + lle™ — Rune™[loallp™ — pHllo.a

|Ip = pirllocoll Bre™ — ER[)|0me | At
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SC(HQ“*‘* +HP LRI (AT Hn;’||2At>

n=1
+ey amr]*At. (89)
n=1

Similar to J5;, we have the same estimation of Joy. Finally, for J3 we have

|0 <C 3~ P+ LER — el oo A
n=1 n=1

<O (S (m2lP + W12 At + 52+2) + & > oy |*At. (90)

n=1 n=1
From (88)—(90), we obtain
(K| <C( Iz 2 + I )AL+ b2 + B 4 4 (an?)

n=1
+ey [omr]PAt. (91)
n=1

Combining (77) with estimates (78)—(83), (87) and (91), and noting that EY =
Ry,e® and Pg = tho, we have

S lomz At + [ n 2 <O (B2 + B2+ HI  HE 4 (A2

n=1

U2 IE + g IH)AL) + e 3 oz PAL (92)
n=1 n=1

Similar to the proof process of Lemma 3.2, we determine that
10 llo.q < C(REH + Ayt + HEH2 4+ HEFF2 + Av), (93)
which yields (74). Similarly, we can obtain (75). O

Using the triangle inequality, (31), (32), and Lemma 4.1, we have the following
results:

Theorem 4.2. Let (e™,p") be the solution of (15)-(16) att =t", and (E}', P*) be
the two-grid solution of (71)-(72). If the regularity assumptions (A) hold, and the
initial functions EY) = Rpe® and P = Rpp®, then for 1 <n < N, 2 < ¢ < oo and
I,k >1, we have

le” = Bitllo < C(h™ + hytt + HZH2 4+ HIF2 4+ A), (94)
" = Pilllog < Clhc™ + byt + HEF? 4 HIF2 + At). (95)

Lastly, from Theorem 4.2 and (73), we obtain

Theorem 4.3. Let (¢, u") be the solution of (13)-(14) att =t™, and (¥}, Uy)
be the two-grid solution of (69)-(70). If the reqularity assumptions (A) hold, and
the initial functions EY) = Rpe® and PP = Ryp°, then for 1 <n < N and I,k > 1,
we have

lu* — Upllv+ 9" — Wpllw < C(AS + BT + HZH? + HIFP? + At). (96)
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5. Numerical experiment. In this section, the numerical experiment is presented
to illustrate the efficiency of the two-grid method for solving the semiconductor
device problem in Section 4.

We consider the following equations with Dirichlet boundary condition:

% —Ae+ V- (eV)) = f1, (98)
%—Ap—v-(pvw):fm (99)

where Q = (0,1)2, t € [0,T]. We take the exact solutions of (97)—(99) are
Y = exp(t)sin(mxy)sin(rry) — t3sin(2may)sin(2mx,),
e = 8m2t3sin(2mxy ) sin(2ny),
p = 2m2exp(t)sin(mxy ) sin(rrsy).

The right hand sides f; and f; are determined by the above exact solutions.

We use piecewise constant for ¢, the lowest Raviart—Thomas element for u and
piecewise linear continuous function for e, p. We select the time step 7 = 1.0e — 2
and T' = 1. For the sake of simplicity, we assume hy = h. = h, Hy = H. = H.
The exact solutions €™, p™, ™, the characteristics finite element and the mixed
finite element method solutions e, p}, 1, and the two-grid method solutions Ej,
P, Wy are shown in Figs.1-9. To compare these pictures, we can see that the
solutions of finite element method and two-grid method are identical with the exact
solutions. From Figs.10-13, we can observe that the convergence rate of the error
for |le™ —ep|l, Ilp"™ — prll, [|¥™ — ¥}, and ||u™ — u}||, respectively. In Tables 1-3,
we present the numerical results for error estimates and CPU time cost of the finite
element method and the two-grid method. As shown in Tables 1-3, we can know
that when the coarse grid and the fine grid satisfy H = h%7 the two-grid method
achieves the same accuracy as the finite element method but requires less time.

o, S
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g
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o

TR
SRR
By

sl AR
TS % W
N AR
4 TSRS
4 RIS
S

AT, g 0 SN
s RSN
o
i TS, “\

4 AP OES
TR
D

FIGURE 1. The exact so- FIGURE 2. The exact so-
lution e™, h = 1/64, n = lution p", h = 1/64, n =
100 100

6. Conclusion. This paper has presented a two-grid algorithm for coupled semi-
conductor device equations discretized by the mixed finite element method and
the characteristics finite element method. The fundamental idea of the two-grid
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Fi1GURE 3. The exact so- FIGURE 4. Finite ele-
lution ¥™, h =1/64, n = ment solution ej, h =
100 1/64, n =100

FIGURE 5. Finite ele- FIGURE 6. Finite ele-
ment solution pj, h = ment solution ¥}, h =
1/64, n =100 1/64, n =100

FicURE 7. Two-grid so- FicUrE 8. Two-grid so-
lution E', H =1/8, h = lution P', H=1/8, h=
1/64, n = 100 1/64, n = 100

method is that we can solve non-linear equations by applying the Newton iteration
procedure on the fine grid to linearize the non-linear system. It was shown that
the two-grid method still achieves asymptotically optimal approximations as long
as a mesh size between those of coarse and fine grids satisfies H = O(h'/2). From
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Rate of convergence is CN -L.0074

Error

10 10 10°
Number of unknowns

FIGURE 9. Two-grid so- FiGure 10. Order of fi-
lution ¥}, H =1/8, h = nite element solution ej,
1/64, n = 100 n = 100

Rate of convergence is CN -0.89817 Rate of convergence is CN 047312

10?2
10t 10% 10° 10% 10° 10;
Number of unknowns Number of unknowns

FiGure 11. Order of fi- FiGUurE 12. Order of fi-
nite element solution pj, nite element solution uj,
n =100 n =100

Rate of convergence is CN 047182

Error

10 102 10°
Number of unknowns

FIGURE 13. Order of finite element solution )}, n = 100

TABLE 1. Error and CPU time of the finite element method for n = 100

le” —epll " —ppll (9" — ¢yl Jlu"” —ujl| CPU time
2.0125¢-2  4.1448¢-3  4.632de-4  2.4411e-3  0.4850s
6.3665¢-3 1.1304e-3  2.374le-4  1.2207e-3  1.0107s
1.6748¢-3  3.1703e-4  1.1935e-4  6.0937e-4  3.4394s
4.0476e-4  1.1037e-4  5.9754e-5  3.0453e-4  15.1790s
9.3634e-5 5.9437e-5  2.9886e-5  1.5224e-4  74.9759s

Rl -]~ |—oolni—y =
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TABLE 2. Error and CPU time of the two-grid method for n = 100,

_ 1 : : 1 1 1
H = 3 with different h = 167 32’ 64

lle” — BRIl llp" — Pl [lv" — Wh|| [lu” — Uyl CPU time
1.6698¢-3  3.3035e-4  1.1935¢-4  6.0937c-4  1.0793s
4.0302e-4  1.1523c-4  5.9754e-5  3.0453¢-4  4.1308s
9.7872¢-5  6.4727e-5  2.9886e-5  1.5224e-4  20.4816s

fool—ool—0ol— 1T
RI-3-5H =

TABLE 3. Error and CPU time of the two-grid method for n = 100,

—g2_-_1 1 1
and h = H” = 7,15, 51

lle™ = ERll o™ — Pl [lv" — Wi] [lu™ = Uyl CPU time
2.0132e-2  4.1526e-3  4.632de-4  2.4411e-3  0.1774s
1.6698¢-3  3.3035e-4  1.1935e-4  6.0937e-4  1.0310s
9.7872e-5  6.4727e-5  2.9886e-5  1.5224e-4  20.4816s

ol —rol— T
Rl =

the numerical experiment, we can find that less time will be required for the two-
grid algorithm since only a small-scale non-linear problem must be solved. Hence,
the two-grid method is an effective method for solving the semiconductor device
problem. In our future work, we will consider more complicated two-grid algo-
rithms for the semiconductor device problem by the mixed finite element method
of characteristics.
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