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Abstract. The mathematical model of a semiconductor device is described by

a coupled system of three quasilinear partial differential equations. The mixed
finite element method is presented for the approximation of the electrostatic

potential equation, and the characteristics finite element method is used for

the concentration equations. First, we estimate the mixed finite element and
the characteristics finite element method solution in the sense of the Lq norm.

To linearize the full discrete scheme of the problem, we present an efficient two-

grid method based on the idea of Newton iteration. The two-grid algorithm is
to solve the nonlinear coupled equations on the coarse grid and then solve the

linear equations on the fine grid. Moreover, we obtain the Lq error estimates
for this algorithm. It is shown that a mesh size satisfies H = O(h1/2) and the

two-grid method still achieves asymptotically optimal approximations. Finally,
the numerical experiment is given to illustrate the theoretical results.

1. Introduction. In this study, we consider the following mathematical model
of a semiconductor device, which consists of three quasilinear partial differential
equations [1, 15]:

−∆ψ = α(p− e+N(x)), (x, t) ∈ Ω× J, J = (0, T ], (1)

∂e

∂t
= ∇ · [De(x)∇e− µe(x)e∇ψ]−R(e, p), (x, t) ∈ Ω× J, (2)
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∂p

∂t
= ∇ · [Dp(x)∇p+ µp(x)p∇ψ]−R(e, p), (x, t) ∈ Ω× J, (3)

where (1) is an elliptic-type partial differential equation for the electric potential,
and (2) and (3) are parabolic-type partial differential equations for the electron
and hole concentrations. The unknown functions are the electrostatic potential
ψ, the electron concentration e, and the hole concentration p. Ω is a polygonal
domain in Rd(d = 2, 3). The value of α is q/ε, q is the electron charge, and ε
is the dielectric permittivity. These are all positive constants. N(x) = ND(x) −
NA(x) is a given function of ND(x) and NA(x) that represents the donor and
acceptor impurity concentrations. The diffusion coefficients Ds(x)(s = e, p) and
the mobilities µs(x)(s = e, p) obey the Einstein relation Ds(x) = UTµs(x), where
UT is the thermal voltage. R(e, p) is a recombination term.

It is assumed that the boundary and initial conditions are as follows:

ψ(x, t) = e(x, t) = p(x, t) = 0, (x, t) ∈ ∂Ω× J, (4)

e(x, 0) = e0(x), p(x, 0) = p0(x), x ∈ Ω. (5)

In addition, we need the compatibility condition∫
Ω

(p0 − e0 +N)dx = 0. (6)

The study of the transient behaviors of semiconductor devices plays an important
role in modern computational mathematics. Since Gummel [14] first presented
sequence iterative computation methods for this kind of problem in 1964, a variety
of numerical approaches have been introduced to obtain better approximations for
(1)–(3). The main techniques include the difference method [13], finite element
method [27], mixed finite element method [25], characteristics finite element method
[26], characteristics finite difference method [24], upwind finite volume method [21],
and characteristics mixed finite element method [22].

The semiconductor device problem becomes a large system of non-linear equa-
tions when using the finite element method to solve (1)–(5). Thus, we will consider
a highly efficient and accurate algorithm for this large system. It is well known that
the two-grid algorithm is a simple but effective algorithm. This method was first
proposed by Xu for non-linear elliptic equations [18, 19] and has been widely used in
many kinds of problems. Dawson [10] applied a two-grid finite difference scheme for
non-linear parabolic equations. Chen [6, 5] presented an efficient two-grid scheme
for semi-linear reaction–diffusion equations and miscible displacement problems.
Dai [9] used a two-grid method based on Newton iteration for the Navier–Stokes
equations. Chen and Yang [4] introduced this method for finite volume element
approximations of nonlinear parabolic equations. Yu [23] presented a two-grid al-
gorithm for mixed Stokes–Darcy problem. Wang investigated this method for semi-
linear elliptic interface problem [16]. Xu and Hou recently used this method for
semilinear parabolic integro–differential equations [20]. Thus, it would be natural
to use the two-grid method for the equations of a semiconductor device.

The electric field intensity u = −∇ψ is very important in production, and the
numerical behavior of (2) and (3) strongly depends on the accuracy of the approxi-
mation of u. To improve the accuracy of e and p, we apply the mixed finite element
method, which gives direct approximations of ψ and u simultaneously for the elec-
tric potential equation (1). The direct approximation of the electric field intensity,
rather than one that requires differentiation of ψ, can provide improved accuracy
for the same computational effort.
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We use the characteristics finite element method for the electron and hole con-
centration equations, (2) and (3), respectively. In reality, the values of Ds(s = e, p)
are quite small in the concentration equations, and thus, (2) and (3) are strongly
convection dominated. The standard finite element method produces unacceptable
numerical diffusion or nonphysical oscillations in the concentration approximation.
The characteristics finite element method was introduced and analyzed by Douglas
and Russell [12] in 1982. Using this method to treat the hyperbolic parts of the con-
centration equation, the procedure is simple, the time-truncation errors are smaller,
and lastly and most importantly, nonphysical oscillations are avoided.

We determine the Lq error estimates for the mixed finite element solutions and
the characteristics finite element solutions. We then present an efficient two-grid
method based on the idea of Newton iteration. To the best of our knowledge, few
results about the application of the two-grid algorithm to semiconductor device
problems have been reported. The main idea of this algorithm is to solve the
nonlinear coupled equations on a coarse grid, and then to solve the linear equations
on a fine grid rather than solving the coupled nonlinear equations on the fine grid.
Finally, we obtain the Lq error estimates for this algorithm and give the numerical
experiment to illustrate the theoretical results. The two-grid algorithm achieves
asymptotically optimal approximations but requires less time.

An outline of this paper is as follows. In Section 2, we present the weak formu-
lation and full discrete scheme of this model. In Section 3, we present the Lq error
estimates of the finite element solutions. In Section 4, we introduce a two-grid algo-
rithm and analyze its convergence. Finally, the numerical experiment is presented
in Section 5.

2. Weak formulation and full discrete scheme.

2.1. Notation and assumptions. In this paper, we denote Lq(Ω) = {f : ‖f‖Lq(Ω)

<∞}, where

‖f‖Lq(Ω) =

(
∫

Ω
|f(x)|qdx)1/q, 1 ≤ q <∞,

ess sup
x∈Ω
|f(x)|, q =∞.

(L2(Ω))2 is the space of vectors that contains each component in L2(Ω). We define
the Sobolev spaces as Wm,q(Ω) = {f ∈ L1

loc(Ω) : ‖f‖Wm,q(Ω) < ∞}, whose norms
are

‖f‖Wm,q(Ω) = ‖f‖m,q =


(
∑
|α|≤m

‖∂αf‖qLq(Ω))
1/q, 1 ≤ q <∞,

max
|α|≤m

‖∂αf‖L∞(Ω), q =∞.

To simplify the notation, we write Hm(Ω) = Wm,2(Ω), ‖ · ‖m = ‖ · ‖m,2 and
‖ · ‖ = ‖ · ‖0,2. Let X be any of the spaces just defined. If f(x, t) represents
functions on Ω× J , we set

Hm(J ;X) =
{
f :

∫
J

∥∥∥∂αf
∂tα

(·, t)
∥∥∥2

X
dt <∞, α ≤ m

}
,

‖f‖Hm(J;X) =
[ m∑
α=0

∫
J

∥∥∥∂αf
∂tα

(·, t)
∥∥∥2

X
dt
] 1

2

, m ≥ 0,
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Wm,∞(J ;X) =
{
f : ess sup

t∈J

∥∥∥∂αf
∂tα

(·, t)
∥∥∥
X
<∞, α ≤ m

}
,

‖f‖Wm,∞(J;X) = max
0≤α≤m

ess sup
t∈J

∥∥∥∂αf
∂tα

(·, t)
∥∥∥
X
, m ≥ 0,

L2(J ;X) = H0(J ;X), L∞(J ;X) = W 0,∞(J ;X).

For convenience, we drop Ω from the notations. Thus, we write L∞(J ;Hk+3) for
L∞(J ;Hk+3(Ω)).

We let (·, ·) be the L2(Ω) inner product. Furthermore, H1
0 (Ω) = {f ∈ H1(Ω) :

f |∂Ω = 0}, and H(div; Ω) is the set of vector functions in (L2(Ω))2 that have
∇ · v ∈ L2(Ω). We also define

W = {w ∈ L2(Ω), (w, 1) = 0},
V = H(div; Ω),

‖v‖V = ‖v‖H(div;Ω) = (‖v‖2 + ‖∇ · v‖2)1/2.

We provide some rational assumptions about the coefficients and the solutions
of (1)–(3). These assumptions are reasonable in physics [15, 14].

(1) For integers l, k ≥ 0, the solution functions have the following regularity (A)

ψ ∈ L∞(J ;Hk+3); u ∈ (L∞(J ;Hk+2))2; e, p ∈W 1,∞(J ;H l+1) ∩H2(J ;W 1,∞).

(2) The problem is positive definite, such that

0 < D∗ ≤ Ds(x) ≤ D∗, 0 < µ∗ ≤ µs(x) ≤ µ∗, s = e, p,

where D∗, D
∗, µ∗, and µ∗ are positive constants.

(3) |∇µs(x)| ≤ C, s = e, p.
(4) R(e, p) is Lipschitz continuous in an ε-neighborhood of the solutions.

2.2. Characteristics method for the concentration equations. For the elec-
tron and hole concentration equations, (2) and (3), respectively, convection is dom-
inant over diffusion, so we use the characteristics finite element method to solve
them.

We rewrite (2) and (3) in the form

∂e

∂t
= ∇ · (De∇e) + eu · ∇µe + µe∇e · u + αµee(p− e+N)−R(e, p), (7)

∂p

∂t
= ∇ · (Dp∇p)− pu · ∇µp − µp∇p · u − αµpp(p− e+N)−R(e, p), (8)

where u = −∇ψ.
We let u = (u1, u2)T , τe be the unit vector in the direction (−µeu1,−µeu2, 1),

τp be the unit vector in the direction (µpu1, µpu2, 1), and φs =
√

1 + µ2
s(u

2
1 + u2

2)
(s = e, p). The characteristic derivatives in the t direction are given by

φe
∂e

∂τe
=
∂e

∂t
− µe∇e · u , φp

∂p

∂τp
=
∂p

∂t
+ µp∇p · u .

Associated with the equations above, (7) and (8) can be rewritten as follows:

φe
∂e

∂τe
−∇ · (De∇e)− eu · ∇µe − αµee(p− e+N) = −R(e, p), (9)

φp
∂p

∂τp
−∇ · (Dp∇p) + pu · ∇µp + αµpp(p− e+N) = −R(e, p). (10)
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We partition J into 4t = T/N and tn = n4t. Furthermore, we denote fn(x) as
f(x, tn) and (∂en/∂τe)(x) as (∂e/∂τe)(x, t

n). The backward difference quotient in
the τe-direction is as follows:

∂en

∂τe
(x) ≈ en(x)− en−1(x+ µeu

n(x)4t)
4t
√

1 + µ2
e|un(x)|2

.

Defining x̂n−1
e = x+ µeu

n(x)4t and ên−1(x) = en−1(x̂n−1
e ), then

φne
∂en

∂τe
≈ en − ên−1

4t
. (11)

Similarly,

∂pn

∂τp
(x) ≈ pn(x)− pn−1(x− µpun(x)4t)

4t
√

1 + µ2
p|un(x)|2

.

Defining x̂n−1
p = x− µpun(x)4t and p̂n−1(x) = pn−1(x̂n−1

p ), then

φnp
∂pn

∂τp
≈ pn − p̂n−1

4t
. (12)

2.3. Weak form and full discrete procedure. The weak forms of (1), (9) and
(10) are equivalent to the following problem: for t ∈ J , find a map {ψ,u , e, p} :
J →W ×V ×H1

0 (Ω)×H1
0 (Ω) such that e(x, 0) = e0(x), p(x, 0) = p0(x):

(u , v)− (∇ · v , ψ) = 0, ∀v ∈ V , (13)

(∇ · u , w) = α(p− e+N,w), ∀w ∈W, (14)

(φe
∂e

∂τe
, z) + (De∇e,∇z)−(eu · ∇µe, z)− α(µee(p− e+N), z)

= −(R(e, p), z), ∀z ∈ H1
0 (Ω), (15)

(φp
∂p

∂τp
, z) + (Dp∇p,∇z)+(pu · ∇µp, z) + α(µpp(p− e+N), z)

= −(R(e, p), z), ∀z ∈ H1
0 (Ω). (16)

We let Thψ and Thc be a quasi-uniform mesh of Ω comprising triangles or rect-
angles such that the elements have diameters bounded by hψ and hc. We denote
Wh×V h ⊂W ×V as the Raviart–Thomas mixed finite element spaces with order
k. The approximation properties are given as follows:

inf
vh∈V h

‖v − vh‖L2(Ω)2 ≤ C‖v‖k+1h
k+1
ψ ,

inf
vh∈V h

‖v − vh‖V ≤ C{‖v‖k+1 + ‖∇ · v‖k+1}hk+1
ψ ,

inf
wh∈Wh

‖w − wh‖W ≤ C‖w‖k+1h
k+1
ψ .

We denote Mh ⊂ H1
0 (Ω) as a piecewise polynomial space of degree l , and

inf
zh∈Mh

‖z − zh‖1,q ≤ C‖z‖l+1,qh
l
c, ∀z ∈ H l+1

0 (Ω).



1864 YING LIU, YANPING CHEN, YUNQING HUANG AND YANG WANG

Using (11) and (12), the full discrete scheme of the weak form, (13)–(16), consists
of {ψnh ,unh, enh, pnh} ∈Wh ×V h ×Mh ×Mh, given by

(unh, v)− (∇ · v , ψnh) = 0, ∀v ∈ V h, (17)

(∇ · unh, w) = α(pnh − enh +N,w), ∀w ∈Wh, (18)

(∂τee
n
h, z) + (De∇enh,∇z)− (enhu

n
h · ∇µe, z)− α(µee

n
h(pnh − enh +N), z)

= −(R(enh, p
n
h), z), ∀z ∈Mh, (19)

(∂τpp
n
h, z) + (Dp∇pnh,∇z) + (pnhu

n
h · ∇µp, z) + α(µpp

n
h(pnh − enh +N), z)

= −(R(enh, p
n
h), z), ∀z ∈Mh, (20)

where ∂τee
n
h =

enh−ê
n−1
h

4t and ∂τpp
n
h =

pnh−p̂
n−1
h

4t . In addition, the initial approxima-

tions e0
h and p0

h must be determined by the elliptic projections of e0 and p0.

3. Lq error estimate of finite element solution. In this section, we present the
Lq error estimate of the mixed finite element method for the electrostatic potential
and electric field intensity and the characteristics finite element method for the
concentrations.

3.1. Convergence analysis of mixed finite element solution. First, it is useful
to introduce an elliptic mixed method projection (Rhψ,Rhu) : J →Wh×V h, which
satisfies

(Rhu , v)− (∇ · v , Rhψ) = 0, ∀v ∈ V h, (21)

(∇ ·Rhu , w) = α(p− e+N,w), ∀w ∈Wh. (22)

Following Brezzi [3], we have

‖u −Rhu‖V + ‖ψ −Rhψ‖W ≤ C‖ψ‖L∞(J;Hk+3)h
k+1
ψ . (23)

The estimations of ψnh − Rhψn and unh − Rhun are derived as follows. By sub-
tracting (21) and (22) from (17) and (18), respectively, at time t = tn, we determine
that

(unh −Rhun, v)− (∇ · v , ψnh −Rhψn) = 0, ∀v ∈ V h, (24)

(∇ · (unh −Rhun), w) = α(pnh − pn − enh + en, w), ∀w ∈Wh.
(25)

Following Brezzi [3], we have

‖unh −Rhun‖V + ‖ψnh −Rhψn‖W ≤ C(‖en − enh‖+ ‖pn − pnh‖). (26)

3.2. Lq error estimate of characteristics finite element method. We intro-
duce an elliptic method projection (Rhe,Rhp) : J →Mh ×Mh such that

(De∇(Rhe− e),∇z) + λe(Rhe− e, z) = 0, ∀z ∈Mh, (27)

(Dp∇(Rhp− p),∇z) + λp(Rhp− p, z) = 0, ∀z ∈Mh, (28)

where the positive constants λs(s = e, p) will be chosen to ensure the coercivity of
the forms. Based on the theory of the Galerkin method for elliptic problems [8, 17],
we have

‖s−Rhs‖0,2 + hc‖s−Rhs‖1,2 ≤ C‖s‖l+1,2h
l+1
c , s = e, p. (29)
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To obtain the convergence estimations of ‖sn − snh‖0,q(s = e, p), we divide them
as follows:

‖sn − snh‖0,q ≤ ‖sn −Rhsn‖0,q + ‖Rhsn − snh‖0,q, s = e, p. (30)

For the concentration, we only discuss the electron concentration equation, as the
results were similar for the hole concentration equation. First, we obtain the con-
vergence results of ‖sn −Rhsn‖0,q(s = e, p) with help of an elliptic problem.

Lemma 3.1. If (en, pn) is the solution of (15)–(16) at t = tn, and (Rhe
n, Rhp

n)
is the elliptic projection solution of (27)–(28) at t = tn, then for 1 ≤ n ≤ N ,
2 ≤ q <∞ and l ≥ 1, we have the following:

‖en −Rhen‖0,q ≤ C‖en‖l+1,qh
l+1
c , (31)

‖pn −Rhpn‖0,q ≤ C‖pn‖l+1,qh
l+1
c . (32)

Proof. We let L denote an elliptic operator such that

Len = −∇ · (De∇en) + λen,

and it has a bilinear form

a(en, z) = (De∇en,∇z) + (λen, z),

where λ will be chosen to ensure the coercivity of a(en, z). From (27), it is clear
that Rhe

n is the finite element solution of this elliptic problem. We consider the
auxiliary problem

Lω = sgn(en −Rhen)|en −Rhen|q−1, in Ω,

ω = 0, on ∂Ω.

This problem is uniquely solvable for ω ∈ Lp(Ω), and

‖ω‖2,p ≤ C‖Lω‖0,p = C‖en −Rhen‖q−1
0,q , (33)

where 1
p + 1

q = 1. We use a duality argument. Based on (27), Hölder’s inequality,

and (33), we denote Ih as an interpolation operator and obtain

‖en −Rhen‖q0,q =a(en −Rhen, ω) = a(en −Rhen, ω − Ihω)

≤C‖en −Rhen‖1,q‖ω − Ihω‖1,p ≤ Chc‖en −Rhen‖1,q‖ω‖2,p
≤Chc‖en −Rhen‖1,q‖en −Rhen‖q−1

0,q . (34)

From [2, Theorem 8.5.3] and the approximation property, we have

‖en −Rhen‖1,q ≤ C inf
eh∈Mh

‖en − eh‖1,q ≤ Chlc‖en‖l+1,q. (35)

Using (34) and (35), we have

‖en −Rhen‖0,q ≤ Chc‖en −Rhen‖1,q ≤ Chl+1
c ‖en‖l+1,q.

Lastly, we obtain similar results for the hole concentration equation.

Next, we obtain the convergence property for ‖Rhsn − snh‖0,q(s = e, p) .

Lemma 3.2. Let (Rhe
n, Rhp

n) be the elliptic projection solution of (27)–(28) at
t = tn, and (enh, p

n
h) be the finite element solution of (19)–(20). If the regularity

assumptions (A) hold, and the initial functions e0
h = Rhe

0 and p0
h = Rhp

0, then for
1 ≤ n ≤ N , 2 ≤ q <∞ and l, k ≥ 1, we have

‖enh −Rhen‖0,q ≤ C(hl+1
c + hk+1

ψ +4t), (36)

‖pnh −Rhpn‖0,q ≤ C(hl+1
c + hk+1

ψ +4t). (37)
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Proof. The proof process is similar to the analysis presented by [25] and [26], but
with some changes. First, we subtract (15) and (27) from (19) at t = tn to have

(∂τee
n
h, z)−

(
φne
∂en

∂τe
, z
)

+ (De∇(enh −Rhen),∇z)

=((enhu
n
h − enun) · ∇µe, z) + α(µe[e

n
h(pnh − enh +N)− en(pn − en +N)], z)

+ (R(en, pn)−R(enh, p
n
h), z) + λe(Rhe

n − en, z), ∀z ∈Mh. (38)

We let ξne = en − Rhen, ζne = enh − Rhen, ξnp = pn − Rhpn, ζnp = pnh − Rhpn, and

select z = ζne − ζn−1
e = ∂tζ

n
e ∆t. Summing over 1 ≤ n ≤ m, from (38), we have the

following:

m∑
n=1

(∂tζ
n
e , ∂tζ

n
e )∆t+

1

2
(De∇ζme ,∇ζme )− 1

2
(De∇ζ0

e ,∇ζ0
e ) ≤

8∑
i=1

Fi, (39)

where

F1 =

m∑
n=1

(
R(en, pn)−R(enh, p

n
h), ∂tζ

n
e

)
∆t, F2 =

m∑
n=1

(ξne − ξn−1
e

∆t
, ∂tζ

n
e

)
∆t,

F3 =

m∑
n=1

(ξn−1
e − ξ̂n−1

e

∆t
, ∂tζ

n
e

)
∆t, F4 =

m∑
n=1

( ζ̂n−1
e − ζn−1

e

∆t
, ∂tζ

n
e

)
∆t,

F5 =

m∑
n=1

(
φne
∂en

∂τe
− en − ên−1

∆t
, ∂tζ

n
e

)
∆t, F6 = −

m∑
n=1

λe(ξ
n
e , ∂tζ

n
e )∆t,

F7 =

m∑
n=1

(
(enhu

n
h − enun) · ∇µe, ∂tζne

)
∆t,

F8 =

m∑
n=1

α
(
µe[e

n
h(pnh − enh +N)− en(pn − en +N)], ∂tζ

n
e

)
∆t.

Now we estimate each term on the right hand of (39). First, using a second-order
Taylor expansion at point (enh, p

n
h) for R(en, pn), Young’s inequality, and (29), we

have

|F1| ≤
m∑
n=1

(‖Re‖0,∞‖en − enh‖+ ‖Rp‖0,∞‖pn − pnh‖)‖∂tζne ‖∆t

≤C
m∑
n=1

(‖ξne ‖+ ‖ζne ‖)‖∂tζne ‖∆t+ C

m∑
n=1

(‖ξnp ‖+ ‖ζnp ‖)‖∂tζne ‖∆t

≤C(ε)
( m∑
n=1

(‖ζne ‖2 + ‖ζnp ‖2)∆t+ h2l+2
c

)
+ ε

m∑
n=1

‖∂tζne ‖2∆t, (40)

where Re and Rp are the partial derivatives for each variable.
For F2, we have

|F2| ≤
m∑
n=1

C

∆t

∫ tn

tn−1

∣∣∣∣∣∣∣∣∂ξe∂t
∣∣∣∣∣∣∣∣dt · ‖∂tζne ‖∆t

≤C(ε)

m∑
n=1

∥∥∥∂ξe
∂t

∥∥∥2

L2(tn−1,tn;L2)
+ ε

m∑
n=1

‖∂tζne ‖2∆t
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≤C(ε)h2l+2
c ‖e‖2H1(tn−1,tn;Hl+1) + ε

m∑
n=1

‖∂tζne ‖2∆t. (41)

For the estimation of F3, using (29), we get

|F3| ≤C(ε)

m∑
n=1

‖∇ξn−1
e ‖2∆t+ ε

m∑
n=1

‖∂tζne ‖2∆t

≤C(ε)h2l
c + ε

m∑
n=1

‖∂tζne ‖2∆t. (42)

As to F4, we obtain similar estimate:

|F4| ≤ C(ε)

m∑
n=1

‖∇ζn−1
e ‖2∆t+ ε

m∑
n=1

‖∂tζne ‖2∆t. (43)

For F5, we obtain

|F5| ≤C(ε)

m∑
n=1

∥∥∥φne ∂en∂τe
− en − ên−1

∆t

∥∥∥2

∆t+ ε

m∑
n=1

‖∂tζne ‖2∆t

≤C(ε)(4t)2
∥∥∥ ∂2e

∂τ2
e

∥∥∥2

L2(J;L2(Ω))

+ ε

m∑
n=1

‖∂tζne ‖2∆t, (44)

where the calculations of (41), (42), and (44) are presented in detail elsewhere
[25, 26].

For F6, from (29) we have

|F6| ≤ C(ε)

m∑
n=1

‖en −Rhen‖‖∂tζne ‖∆t ≤ C(ε)h2l+2
c + ε

m∑
n=1

‖∂tζne ‖2∆t. (45)

Next, we obtain an error estimate for F7. Using (26), (29), and (23), we have

‖enhunh − enun‖ ≤‖(enh −Rhen)unh‖+ ‖Rhen(unh −Rhun)‖
+ ‖Rhun(Rhe

n − en)‖+ ‖en(Rhu
n − un)‖

≤‖unh‖0,∞‖enh −Rhen‖+ ‖Rhen‖0,∞‖unh −Rhun‖
+ ‖Rhun‖0,∞‖Rhen − en‖+ ‖en‖0,∞‖Rhun − un‖

≤C(‖ζne ‖+ ‖ζnp ‖+ hl+1
c + hk+1

ψ ).

Hence, we conclude that

|F7| ≤C
m∑
n=1

‖enhunh − enun‖‖∂tζne ‖∆t

≤C(ε)
( m∑
n=1

(‖ζne ‖2 + ‖ζnp ‖2)∆t+ h2l+2
c + h2k+2

ψ

)
+ ε

m∑
n=1

‖∂tζne ‖2∆t. (46)

Finally, for F8, we have

‖enh(pnh − enh +N)− en(pn − en +N)‖ ≤‖enhpnh − enpn‖+ ‖enen − enhenh‖
+ ‖enhN − enN‖

=W1 +W2 +W3.
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From (29), we can determine the following:

W1 ≤‖enh(pnh −Rhpn)‖+ ‖(enh −Rhen)Rhp
n‖+ ‖Rhen(Rhp

n − pn)‖
+ ‖(Rhen − en)pn‖

≤‖enh‖0,∞‖pnh −Rhpn‖+ ‖Rhpn‖0,∞‖enh −Rhen‖
+ ‖Rhen‖0,∞‖Rhpn − pn‖+ ‖pn‖0,∞‖Rhen − en‖

≤C(‖ζnp ‖+ ‖ζne ‖+ hl+1
c ),

W2 ≤‖(en −Rhen)en‖+ ‖Rhen(en − enh)‖+ ‖(Rhen − enh)enh‖

≤C(‖ζne ‖+ hl+1
c ),

W3 ≤C(‖enh −Rhen‖+ ‖Rhen − en‖) ≤ C(‖ζne ‖+ hl+1
c ).

Thus, we have

|F8| ≤C
m∑
n=1

‖enh(pnh − enh +N)− en(pn − en +N)‖‖∂tζne ‖∆t

≤C(ε)
( m∑
n=1

(‖ζne ‖2 + ‖ζnp ‖2)∆t+ h2l+2
c

)
+ ε

m∑
n=1

‖∂tζne ‖2∆t. (47)

Combining (39) with (40)–(47) and noting that e0
h = Rhe

0 and p0
h = Rhp

0, we
have
m∑
n=1

‖∂tζne ‖2∆t+ ‖∇ζme ‖2 ≤C(ε)
(
h2l
c + h2k+2

ψ + (∆t)2 +

m∑
n=1

(‖ζne ‖
2
1 + ‖ζnp ‖2)∆t

)
+ ε

m∑
n=1

‖∂tζne ‖2∆t. (48)

To obtain the H1 norm of ∇ζme , we add ‖ζme ‖2 to the above equation. Note that

‖ζne ‖2 − ‖ζn−1
e ‖2 =(ζne + ζn−1

e , ζne − ζn−1
e )

=(ζne − ζn−1
e , ζne − ζn−1

e ) + 2(ζn−1
e , ζne − ζn−1

e )

=
∥∥∥ζne − ζn−1

e

∆t

∥∥∥2

(∆t)2 + 2
(
ζn−1
e ,

ζne − ζn−1
e

∆t

)
∆t

≤C(ε)‖ζn−1
e ‖2∆t+ (∆t+ ε)

∥∥∥ζne − ζn−1
e

∆t

∥∥∥2

∆t.

The both sides of the above inequality are sum from n = 1 to m, then we have

‖ζme ‖2 ≤ C(ε)

m∑
n=1

‖ζne ‖2∆t+ (∆t+ ε)

m∑
n=1

‖∂tζne ‖2∆t. (49)

Similarly, for the L2 estimates of ∇ζp and ζp, we find that

m∑
n=1

‖∂tζnp ‖2∆t+ ‖∇ζmp ‖2 ≤C(ε)
(
h2l
c + h2k+2

ψ + (∆t)2 +

m∑
n=1

(‖ζnp ‖
2

1
+ ‖ζne ‖2)∆t

)
+ ε

m∑
n=1

‖∂tζnp ‖2∆t, (50)

‖ζmp ‖2 ≤C(ε)

m∑
n=1

‖ζnp ‖2∆t+ (∆t+ ε)

m∑
n=1

‖∂tζnp ‖2∆t. (51)
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Combining (48)–(51) and selecting sufficiently small values of ∆t and ε, we obtain

m∑
n=1

(‖∂tζne ‖2 + ‖∂tζnp ‖2)∆t+ ‖ζme ‖21 + ‖ζmp ‖21 ≤C
(
h2l
c + h2k+2

ψ + (∆t)2

+

m∑
n=1

(‖ζne ‖
2
1 + ‖ζnp ‖21)∆t

)
,

where C = C(ε) is a constant that depends on ε. An application of the discrete
Gronwall Lemma yields the following:

‖ζme ‖21 + ‖ζmp ‖21 ≤ C(h2l
c + h2k+2

ψ + (∆t)2).

Then, for 1 ≤ m ≤ N , we determine that

‖ζme ‖1 ≤ C(hlc + hk+1
ψ + ∆t).

Similar to the proof process of Theorem 3.4 in [19], we determine that

‖ζne ‖1,q ≤ C(hlc + hk+1
ψ + ∆t), 2 < q ≤ ∞. (52)

We apply a duality argument to estimate ‖enh −Rhen‖0,q by considering an aux-
iliary problem: find ω ∈ H1

0 (Ω) such that

a(v, ω) = (ϕ, v), v ∈ H1
0 (Ω).

This problem is uniquely solvable for ω ∈ Lq(Ω), and

‖ω‖2,p ≤ C‖ϕ‖0,p, ϕ ∈ Lp(Ω),

where p = q/(q − 1) ∈ [1, 2] for 2 ≤ q ≤ ∞. If s = 2q/(q + 2), applying the Sobolev
embedding theorem, we have

‖Rhω‖1,s/(s−1) ≤ C‖ω‖1,s/(s−1) ≤ C‖ω‖2,p ≤ C‖ϕ‖0,p. (53)

By Lemma 3.1 of [19] and (53), we have

(enh −Rhen, ϕ) =a(enh −Rhen, ω) = a(enh −Rhen, ω −Rhω) + a(enh − en, Rhω)

≤C(‖enh −Rhen‖1,q‖ω −Rhω‖1,p + ‖enh − en‖21,2s‖Rhω‖1,s/(s−1))

≤C(hc‖enh −Rhen‖1,q + ‖enh − en‖21,2s)‖ϕ‖0,p.

For q = 2, since s = 1, from (52), we have the following:

‖enh −Rhen‖0,q ≤C(hc‖enh −Rhen‖1,q + ‖enh − en‖21,2s)
≤C(hc‖enh −Rhen‖1,q + ‖enh −Rhen‖21,2+ε + ‖Rhen − en‖21,2+ε)

≤C(hl+1
c + hk+1

ψ + ∆t).

For 2 < q <∞, since 2s < q, we have

‖enh −Rhen‖0,q ≤C(hc‖enh −Rhen‖1,q + ‖enh −Rhen‖21,q + ‖Rhen − en‖21,q)

≤C(hl+1
c + hk+1

ψ + ∆t),

which yields (36). Similarly, we can obtain (37).

From Lemmas 3.1 and 3.2, we obtain the following important theorem:
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Theorem 3.3. Let (en, pn) be the solution of (15)–(16) at tn, and (enh, p
n
h) be the

finite element solution of (19)–(20). If the regularity assumptions (A) hold, and the
initial functions e0

h = Rhe
0 and p0

h = Rhp
0, then for 1 ≤ n ≤ N , 2 ≤ q < ∞ and

l, k ≥ 1, we have

‖enh − en‖0,q ≤ C(hl+1
c + hk+1

ψ + ∆t), (54)

‖pnh − pn‖0,q ≤ C(hl+1
c + hk+1

ψ + ∆t). (55)

3.3. Lq error estimate of mixed finite method. First, it is useful to denote
the L2 projection Qh as follows. For ρ ∈ (L2(Ω))2,

(ρ, vh) = (Qhρ, vh), ∀vh ∈ V h. (56)

For ρ ∈ (W k+1,q(Ω))2, the L2 projection operator has approximation property [11]:

‖ρ−Qhρ‖0,q ≤ C‖ρ‖r,qhr, 0 ≤ r ≤ k + 1. (57)

Next, the Lq error estimate of the electrostatic potential will be obtained. We
obtain the following error equations by subtracting (13) and (14) from (21) and
(22), respectively:

(Rhu − u , v)− (∇ · v , Rhψ − ψ) = 0, ∀v ∈ V h, (58)

(∇ · (Rhu − u), w) = 0, ∀w ∈Wh. (59)

Let Dh be the L2-projection onto the space

V̄ h = {v ∈ V h|∇ · v = 0}. (60)

Dh has the following stability property [7]:

‖Dhv‖0,q ≤ C‖v‖0,q, 2 ≤ q <∞. (61)

Lemma 3.4. If un and Rhu
n are the solutions of (13)–(14) and (21)–(22), respec-

tively, at t = tn. For 1 ≤ n ≤ N , 2 ≤ q <∞ and k ≥ 1, we have

‖un −Rhun‖0,q ≤ C‖un‖k+1,qh
k+1
ψ . (62)

Proof. This Lemma can be easily derived from (58) and (60). More details of the
proof can be found in [6, Lemma 3.2] and [5, Lemma 4.1].

For (25), if 1/p+ 1/q = 1, we have

‖∇ · (unh −Rhun)‖0,q = sup
w∈Wh

|(∇ · (unh −Rhun), w)|
‖w‖0,p

= sup
w∈Wh

|α(pnh − pn − enh + en, w)|
‖w‖0,p

≤C(‖en − enh‖0,q + ‖pn − pnh‖0,q)

≤C(hl+1
c + hk+1

ψ + ∆t). (63)

Lastly, we obtain the Lq error estimate of the electric field intensity:

‖un − unh‖0,q ≤ ‖un −Rhun‖0,q + ‖Rhun − unh‖0,q ≤ C(hl+1
c + hk+1

ψ + ∆t). (64)
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4. Two-grid algorithm and error estimate. The two-grid algorithm and its
convergence analysis are presented in this section. The fundamental ingredient of
the scheme is a new finite element space VH×WH×MH×MH ⊂ V h×Wh×Mh×
Mh(h < H < 1) defined on a coarser quasi-uniform triangulation or rectangulation
of Ω. The non-linear equations can be solved by applying the Newton iteration
procedure on the fine grid to linearize the non-linear system. The solutions of the
original non-linear system will be reduced to the solutions of a small-scale non-linear
system on the coarse space and a linear system on the fine space. First, we provide
the two-grid algorithm.

Step 1. Solve the non-linear coupled system for (unH , ψ
n
H , e

n
H , p

n
H) ∈ VH ×WH ×

MH ×MH on the coarse grid TH :

(unH , v)− (∇ · v , ψnH) = 0, ∀v ∈ VH , (65)

(∇ · unH , w) = α(pnH − enH +N,w), ∀w ∈WH , (66)

(∂τee
n
H , z) + (De∇enH ,∇z)− (enHunH · ∇µe, z)− α(µee

n
H(pnH − enH +N), z)

= −(R(enH , p
n
H), z), ∀z ∈MH , (67)

(∂τpp
n
H , z) + (Dp∇pnH ,∇z) + (pnHunH · ∇µp, z) + α(µpp

n
H(pnH − enH +N), z)

= −(R(enH , p
n
H), z), ∀z ∈MH . (68)

Step 2. Solve the linear coupled system for (U n
h,Ψ

n
h, E

n
h , P

n
h ) ∈ V h×Wh×Mh×Mh

on the fine grid Th:

(U n
h, v)− (∇ · v ,Ψn

h) = 0, ∀v ∈ V h, (69)

(∇ ·U n
h, w) = α(Pnh − Enh +N,w), ∀w ∈Wh, (70)

(∂τeE
n
h , z) + (De∇Enh ,∇z)− ([enHU n

h + (Enh − enH)unH ] · ∇µe, z)
−α(µe[e

n
H(Pnh − Enh +N)+(Enh − enH)(pnH − enH +N)], z)

= −(R(Enh , P
n
h ), z), ∀z ∈Mh, (71)

(∂τpP
n
h , z) + (Dp∇Pnh ,∇z) + ([pnHU n

h + (Pnh − pnH)unH ] · ∇µp, z)
+α(µp[p

n
H(Pnh − Enh +N)+(Pnh − pnH)(pnH − enH +N)], z)

= −(R(Enh , P
n
h ), z), ∀z ∈Mh, (72)

where R(Enh , P
n
h ) = R(enH , p

n
H) +Re(e

n
H , p

n
H)(Enh − enH) +Rp(e

n
H , p

n
H)(Pnh − pnH).

Next, we present an error estimation analysis of the exact solutions (un, ψn, en,
pn) and two-grid solutions (U n

h,Ψ
n
h, E

n
h , P

n
h ). We note that (U n

h,Ψ
n
h) are the two-

grid solutions defined in (69) and (70). Using (23), (26), and triangle inequality, we
can analyze the electrostatic potential and electric field intensity:

‖un −U n
h‖V + ‖ψn −Ψn

h‖W ≤ C(hk+1
ψ + ‖en − Enh‖+ ‖pn − Pnh ‖). (73)

Next, we prove ‖en − Enh‖0,q and ‖pn − Pnh ‖0,q. The elliptic projection will be
used as an intermediate variable to assist this proof, and the main results are as
follows:

Lemma 4.1. Let (Rhe
n, Rhp

n) be the elliptic projection solution of (27)–(28) at
t = tn, (Enh , P

n
h ) be the two-grid solution of (71)–(72). If we choose E0

h = Rhe
0 and

P 0
h = Rhp

0, the regularity assumptions (A) hold, then for 1 ≤ n ≤ N , 2 ≤ q < ∞
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and l, k ≥ 1, we have

‖Rhen − Enh‖0,q ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t), (74)

‖Rhpn − Pnh ‖0,q ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t). (75)

Proof. We subtract (15) and (27) from (71) at t = tn to obtain the following error
equation:

(∂τeE
n
h , z)− (φne

∂en

∂τe
, z) + (De∇(Enh −Rhen),∇z)

= ([enHU n
h + (Enh − enH)unH − enun] · ∇µe, z) + α(µe[e

n
H(Pnh − Enh +N)

+ (Enh − enH)(pnH − enH +N)− en(pn − en +N)], z)

+ (R(en, pn)−R(Enh , P
n
h ), z) + λe(Rhe

n − en, z), ∀z ∈Mh. (76)

We let ηne = Enh −Rhen and ηnp = Pnh −Rhpn and select z = ηne − ηn−1
e = ∂tη

n
e∆t.

Summing over 1 ≤ n ≤ m, from (76), we have

m∑
n=1

(∂tη
n
e , ∂tη

n
e )∆t+

1

2
(De∇ηme ,∇ηme )− 1

2
(De∇η0

e ,∇η0
e) ≤

8∑
i=1

Ki, (77)

where

K1 =

m∑
n=1

(
R(en, pn)−R(Enh , P

n
h ), ∂tη

n
e

)
∆t, K2 =

m∑
n=1

(ξne − ξn−1
e

∆t
, ∂tη

n
e

)
∆t,

K3 =

m∑
n=1

(ξn−1
e − ξ̂n−1

e

∆t
, ∂tη

n
e

)
∆t, K4 =

m∑
n=1

( η̂n−1
e − ηn−1

e

∆t
, ∂tη

n
e

)
∆t,

K5 =

m∑
n=1

(
φne
∂en

∂τe
− en − ên−1

∆t
, ∂tη

n
e

)
∆t, K6 = −

m∑
n=1

λe(ξ
n
e , ∂tη

n
e )∆t,

K7 =

m∑
n=1

(
[enHU n

h + (Enh − enH)unH − enun] · ∇µe, ∂tηne
)

∆t,

K8 =

m∑
n=1

α
(
µe[e

n
H(Pnh − Enh +N) + (Enh − enH)(pnH − enH +N)

− en(pn − en +N)], ∂tη
n
e

)
∆t.

Now we estimate each term on the right hand of (77) as follows. First, using a
second-order Taylor expansion at point (enH , p

n
H) for R(en, pn), (29), (54) and (55),

we have

|K1| ≤
m∑
n=1

‖(Re(enH , pnH)(en − Enh ) +Rp(e
n
H , p

n
H)(pn − Pnh )

+
1

2
Ree(e

∗, p∗)(en − enH)2 +Rep(e
∗, p∗)(en − enH)(pn − pnH)

+
1

2
Rpp(e

∗, p∗)(pn − pnH)2‖‖∂tηne ‖∆t

≤C
m∑
n=1

(‖en − Enh‖+ ‖pn − Pnh ‖+ ‖en − enH‖20,4 + ‖en − enH‖0,4‖pn − pnH‖0,4
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+ ‖pn − pnH‖20,4)‖∂tηne ‖∆t

≤C
(
h2l+2
c +H4l+4

c +H4k+4
ψ + (∆t)4 +

m∑
n=1

(‖ηne ‖2 + ‖ηnp ‖2)∆t
)

+ ε

m∑
n=1

‖∂tηne ‖2∆t, (78)

where e∗ is a point between en and enH , p∗ is a point between pn and pnH .
Similar to the proof process of Lemma 3.2, we give the following error estimations

directly,

|K2| ≤ Ch2l+2
c + ε

m∑
n=1

‖∂tηne ‖2∆t, (79)

|K3| ≤ Ch2l
c + ε

m∑
n=1

‖∂tηne ‖2∆t, (80)

|K4| ≤ C
m∑
n=1

‖∇ηn−1
e ‖2∆t+ ε

m∑
n=1

‖∂tηne ‖2∆t, (81)

|K5| ≤ C(4t)2
∥∥∥ ∂2e

∂τ2
e

∥∥∥2

L2(J;L2(Ω))
+ ε

m∑
n=1

‖∂tηne ‖2∆t, (82)

|K6| ≤ Ch2l+2
c + ε

m∑
n=1

‖∂tηne ‖2∆t. (83)

For K7, we have

enHU n
h + (Enh − enH)unH − enun =enH(U n

h − un) + (enH − Enh )(un − unH)

+ (Enh − en)un

=I1 + I2 + I3.

Using (73) and (29), we have∣∣∣ m∑
n=1

(I1, ∂tη
n
e )∆t

∣∣∣ ≤C m∑
n=1

‖un −U n
h‖‖∂tηne ‖∆t

≤C
( m∑
n=1

(‖ηne ‖2 + ‖ηnp ‖2)∆t+ h2l+2
c + h2k+2

ψ

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t.

(84)

Using (64), (54), and (31), we have∣∣∣ m∑
n=1

(I2, ∂tη
n
e )∆t

∣∣∣ =
∣∣∣ m∑
n=1

((enH − en)(un − unH) + (en −Rhen)(un − unH)

+ (Rhe
n − Enh )(un − unH), ∂tη

n
e )∆t

∣∣∣
≤

m∑
n=1

(‖enH − en‖0,4‖un − unH‖0,4 + ‖en −Rhen‖0,4‖un − unH‖0,4

+ ‖un − unH‖0,∞‖Rhen − Enh‖)‖∂tηne ‖∆t
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≤C
(
H4l+4
c +H4k+4

ψ + h4l+4
c + (∆t)4 +

m∑
n=1

‖ηne ‖2∆t
)

+ ε

m∑
n=1

‖∂tηne ‖2∆t, (85)

∣∣∣ m∑
n=1

(I3, ∂tη
n
e )∆t

∣∣∣ ≤C m∑
n=1

(‖Enh −Rhen‖+ ‖Rhen − en‖)‖∂tηne ‖∆t

≤C
( m∑
n=1

‖ηne ‖2∆t+ h2l+2
c

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t. (86)

From (84)–(86), we obtain

|K7| ≤C
( m∑
n=1

(‖ηne ‖2 + ‖ηnp ‖2)∆t+ h2l+2
c + h2k+2

ψ +H4l+4
c +H4k+4

ψ + (∆t)4
)

+ ε

m∑
n=1

‖∂tηne ‖2∆t. (87)

For K8, we have

enH(Pnh − Enh +N) + (Enh − enH)(pnH − enH +N)− en(pn − en +N)

=(Enh − en)(pn − en +N) + (enH − Enh )(pn − pnH + enH − en)

− enH(pn − Pnh + Enh − en)

=J1 + J2 + J3.

Related to J1, we have∣∣∣ m∑
n=1

(J1, ∂tη
n
e )∆t

∣∣∣ ≤C m∑
n=1

‖Enh − en‖‖∂tηne ‖∆t

≤C
( m∑
n=1

‖ηne ‖2∆t+ h2l+2
c

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t. (88)

Related to J2, we have∣∣∣ m∑
n=1

(J2, ∂tη
n
e )∆t

∣∣∣ =
∣∣∣ m∑
n=1

((enH − Enh )(pn − pnH) + (enH − Enh )(enH − en), ∂tη
n
e )∆t

∣∣∣
=
∣∣∣ m∑
n=1

(J21 + J22, ∂tη
n
e )∆t

∣∣∣.
Using (54), (55), and (31), we have∣∣∣ m∑
n=1

(J21, ∂tη
n
e )∆t

∣∣∣ =
∣∣∣ m∑
n=1

((enH − en)(pn − pnH) + (en −Rhen)(pn − pnH)

+ (Rhe
n − Enh )(pn − pnH), ∂tη

n
e )∆t

∣∣∣
≤

m∑
n=1

(‖enH − en‖0,4‖pn − pnH‖0,4 + ‖en −Rhen‖0,4‖pn − pnH‖0,4

+ ‖pn − pnH‖0,∞‖Rhen − Enh‖)‖∂tηne ‖∆t
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≤C
(
H4l+4
c +H4k+4

ψ + h4l+4
c + (∆t)4 +

m∑
n=1

‖ηne ‖2∆t
)

+ ε

m∑
n=1

‖∂tηne ‖2∆t. (89)

Similar to J21, we have the same estimation of J22. Finally, for J3 we have∣∣∣ m∑
n=1

(J3, ∂tη
n
e )∆t

∣∣∣ ≤C m∑
n=1

(‖pn − Pnh ‖+ ‖Enh − en‖)‖∂tηne ‖∆t

≤C
( m∑
n=1

(‖ηne ‖2 + ‖ηnp ‖2)∆t+ h2l+2
c

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t. (90)

From (88)–(90), we obtain

|K8| ≤C
( m∑
n=1

(‖ηne ‖2 + ‖ηnp ‖2)∆t+ h2l+2
c +H4l+4

c +H4k+4
ψ + (∆t)4

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t. (91)

Combining (77) with estimates (78)–(83), (87) and (91), and noting that E0
h =

Rhe
0 and P 0

h = Rhp
0, we have

m∑
n=1

‖∂tηne ‖2∆t+ ‖∇ηme ‖2 ≤C
(
h2l
c + h2k+2

ψ +H4l+4
c +H4k+4

ψ + (∆t)2

+

m∑
n=1

(‖ηne ‖
2
1 + ‖ηnp ‖2)∆t

)
+ ε

m∑
n=1

‖∂tηne ‖2∆t. (92)

Similar to the proof process of Lemma 3.2, we determine that

‖ηme ‖0,q ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t), (93)

which yields (74). Similarly, we can obtain (75).

Using the triangle inequality, (31), (32), and Lemma 4.1, we have the following
results:

Theorem 4.2. Let (en, pn) be the solution of (15)–(16) at t = tn, and (Enh , P
n
h ) be

the two-grid solution of (71)–(72). If the regularity assumptions (A) hold, and the
initial functions E0

h = Rhe
0 and P 0

h = Rhp
0, then for 1 ≤ n ≤ N , 2 ≤ q < ∞ and

l, k ≥ 1, we have

‖en − Enh‖0,q ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t), (94)

‖pn − Pnh ‖0,q ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t). (95)

Lastly, from Theorem 4.2 and (73), we obtain

Theorem 4.3. Let (ψn,un) be the solution of (13)–(14) at t = tn, and (Ψn
h,U

n
h)

be the two-grid solution of (69)–(70). If the regularity assumptions (A) hold, and
the initial functions E0

h = Rhe
0 and P 0

h = Rhp
0, then for 1 ≤ n ≤ N and l, k ≥ 1,

we have

‖un −Un
h‖V + ‖ψn −Ψn

h‖W ≤ C(hl+1
c + hk+1

ψ +H2l+2
c +H2k+2

ψ + ∆t). (96)
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5. Numerical experiment. In this section, the numerical experiment is presented
to illustrate the efficiency of the two-grid method for solving the semiconductor
device problem in Section 4.

We consider the following equations with Dirichlet boundary condition:

−∆ψ = p− e, (97)

∂e

∂t
−∆e+∇ · (e∇ψ) = f1, (98)

∂p

∂t
−∆p−∇ · (p∇ψ) = f2, (99)

where Ω = (0, 1)2, t ∈ [0, T ]. We take the exact solutions of (97)–(99) are

ψ = exp(t)sin(πx1)sin(πx2)− t3sin(2πx1)sin(2πx2),

e = 8π2t3sin(2πx1)sin(2πx2),

p = 2π2exp(t)sin(πx1)sin(πx2).

The right hand sides f1 and f2 are determined by the above exact solutions.
We use piecewise constant for ψ, the lowest Raviart–Thomas element for u and

piecewise linear continuous function for e, p. We select the time step τ = 1.0e − 2
and T = 1. For the sake of simplicity, we assume hψ = hc = h, Hψ = Hc = H.
The exact solutions en, pn, ψn, the characteristics finite element and the mixed
finite element method solutions enh, pnh, ψnh and the two-grid method solutions Enh ,
Pnh , Ψn

h are shown in Figs.1–9. To compare these pictures, we can see that the
solutions of finite element method and two-grid method are identical with the exact
solutions. From Figs.10–13, we can observe that the convergence rate of the error
for ‖en − enh‖, ‖pn − pnh‖, ‖ψn − ψnh‖, and ‖un − unh‖, respectively. In Tables 1–3,
we present the numerical results for error estimates and CPU time cost of the finite
element method and the two-grid method. As shown in Tables 1–3, we can know
that when the coarse grid and the fine grid satisfy H = h

1
2 , the two-grid method

achieves the same accuracy as the finite element method but requires less time.
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Figure 1. The exact so-
lution en, h = 1/64, n =
100
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Figure 2. The exact so-
lution pn, h = 1/64, n =
100

6. Conclusion. This paper has presented a two-grid algorithm for coupled semi-
conductor device equations discretized by the mixed finite element method and
the characteristics finite element method. The fundamental idea of the two-grid
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Figure 3. The exact so-
lution ψn, h = 1/64, n =
100
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Figure 4. Finite ele-
ment solution enh, h =
1/64, n = 100
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Figure 5. Finite ele-
ment solution pnh, h =
1/64, n = 100
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Figure 6. Finite ele-
ment solution ψnh , h =
1/64, n = 100
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Figure 7. Two-grid so-
lution Enh , H = 1/8, h =
1/64, n = 100
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Figure 8. Two-grid so-
lution Pnh , H = 1/8, h =
1/64, n = 100

method is that we can solve non-linear equations by applying the Newton iteration
procedure on the fine grid to linearize the non-linear system. It was shown that
the two-grid method still achieves asymptotically optimal approximations as long
as a mesh size between those of coarse and fine grids satisfies H = O(h1/2). From
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Figure 9. Two-grid so-
lution Ψn

h, H = 1/8, h =
1/64, n = 100
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Figure 10. Order of fi-
nite element solution enh,
n = 100
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Figure 11. Order of fi-
nite element solution pnh,
n = 100
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Figure 12. Order of fi-
nite element solution unh,
n = 100
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Figure 13. Order of finite element solution ψnh , n = 100

Table 1. Error and CPU time of the finite element method for n = 100

h ‖en − enh‖ ‖pn − pnh‖ ‖ψn − ψnh‖ ‖un − unh‖ CPU time
1
4 2.0125e-2 4.1448e-3 4.6324e-4 2.4411e-3 0.4850s
1
8 6.3665e-3 1.1304e-3 2.3741e-4 1.2207e-3 1.0107s
1
16 1.6748e-3 3.1703e-4 1.1935e-4 6.0937e-4 3.4394s
1
32 4.0476e-4 1.1037e-4 5.9754e-5 3.0453e-4 15.1790s
1
64 9.3634e-5 5.9437e-5 2.9886e-5 1.5224e-4 74.9759s
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Table 2. Error and CPU time of the two-grid method for n = 100,
H = 1

8 with different h = 1
16 ,

1
32 ,

1
64

H h ‖en − Enh‖ ‖pn − Pnh ‖ ‖ψn −Ψn
h‖ ‖un −U n

h‖ CPU time
1
8

1
16 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0793s

1
8

1
32 4.0302e-4 1.1523e-4 5.9754e-5 3.0453e-4 4.1308s

1
8

1
64 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s

Table 3. Error and CPU time of the two-grid method for n = 100,
and h = H2 = 1

4 ,
1
16 ,

1
64

H h ‖en − Enh‖ ‖pn − Pnh ‖ ‖ψn −Ψn
h‖ ‖un −U n

h‖ CPU time
1
2

1
4 2.0132e-2 4.1526e-3 4.6324e-4 2.4411e-3 0.1774s

1
4

1
16 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0310s

1
8

1
64 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s

the numerical experiment, we can find that less time will be required for the two-
grid algorithm since only a small-scale non-linear problem must be solved. Hence,
the two-grid method is an effective method for solving the semiconductor device
problem. In our future work, we will consider more complicated two-grid algo-
rithms for the semiconductor device problem by the mixed finite element method
of characteristics.

Acknowledgments. We would like to express our gratitude to the anonymous
referees for their helpful suggestions.
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