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Abstract. In this paper, we propose a conservative semi-Lagrangian finite dif-

ference (SLFD) weighted essentially non-oscillatory (WENO) scheme, based on
Runge-Kutta exponential integrator (RKEI) method, to solve one-dimensional

scalar nonlinear hyperbolic equations. Conservative semi-Lagrangian schemes,

under the finite difference framework, usually are designed only for linear or
quasilinear conservative hyperbolic equations. Here we combine a conservative

SLFD scheme developed in [21], with a high order RKEI method [7], to de-

sign conservative SLFD schemes, which can be applied to nonlinear hyperbolic
equations. Our new approach will enjoy several good properties as the scheme

for the linear or quasilinear case, such as, conservation, high order and large

time steps. The new ingredient is that it can be applied to nonlinear hyperbolic
equations, e.g., the Burgers’ equation. Numerical tests will be performed to

illustrate the effectiveness of our proposed schemes.

1. Introduction. In this paper, we are interested in semi-Lagrangian (SL) finite
difference (FD) schemes for solving nonlinear hyperbolic conservation laws (HCL){

ut + f(u)x = 0,
u(x, 0) = u0(x).

(1)

The SL scheme updates the solution by following the characteristics, either for-
wardly [10, 25], or backwardly [19, 14], where for (1) the characteristic equation is
defined as

dx

dt
= f ′(u(x, t)). (2)
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The classical backward SL scheme traces the characteristics back to a previous time
level and then updates the solution with interpolation, or polynomial reconstruction.
Based on its solution space, there are SL FD schemes [26, 29], SL finite volume (FV)
schemes [9, 12], SL spectral element methods [32, 13], SL discontinuous Galerkin
(DG) finite element methods [23, 3], SL particle methods [8], etc.

For SL schemes, mass conservation is an important property for certain appli-
cations, such as in kinetic simulations [9, 2], weather forecasting [27, 15], fluid
dynamics [29, 12], etc. For finite volume schemes and finite element methods, it is
more natural to enforce the discrete mass conservation, by working with the integral
form for finite volume schemes [12], or the weak form for finite element methods
[2]. For finite difference schemes, it is much more challenging [18]. A conservative
SL finite difference scheme based on the flux difference form was proposed in [21].
A maximum principle preserving limiter was applied to ensure the L∞ stability in
[29]. However, the method in [21] only considers the linear or quasilinear advection
equation with f(u) = a(x, t)u in (1), where a(x, t) is a known function. The exten-
sion to high dimensional problems is from Strang splitting. This method has later
been generalized to nonlinear hyperbolic problems with the idea from an Eulerian-
Lagrangian scheme [16]. On the other hand, a multi-dimensional SLFD scheme
without dimensional splitting has been developed based on a predictor-corrector
approach [20], and applied to the kinetic Vlasov-Poisson equation. It was later
been generalized to the incompressible flow and Guiding-center model problems
[30]. Here the predictor-corrector repeatedly utilizes the material derivatives and
replaces time derivatives by spatial derivatives from the equation, in a similar idea
of a Lax-Wendroff approach. A high order approximation of the characteristic equa-
tion is built upon low order predictions of its solution. A conservative correction
of the scheme was proposed in [31], which is still based on the flux difference form,
and the temporal integrals of the numerical fluxes are approximated by numeri-
cal quadrature rules. The scheme has also been used to solve the BGK model of
the Boltzmann equation [1]. However, since it traces numerical quadrature points
along the temporal integration, the fully discrete conservative scheme in [31, 1] will
subject to time step restrictions, which has been analyzed by Fourier analysis in
[31].

For SLFD schemes solving nonlinear hyperbolic problems, the main difficulty lies
on the characteristic speed depending on the unknown solution, such as in (2), es-
pecially for high dimensional problems. Except the predictor-corrector approach in
[20], there are also some other methods proposed to achieve high order in time. One
is the class of multi-step schemes based on backward differential formulas (BDF),
such as the Adams-Moulton and Adams-Bashforth schemes [14]. Another is based
on commutator-free Runge-Kutta exponential integrators (RKEI) [5, 6]. However,
both methods in literature do not have mass conservation. In this paper, we will
adopt the RKEI method and combine it with the SLFD scheme in [21] to develop
conservative SLFD-RKEI schemes for solving the nonlinear hyperbolic problems.
The RKEI method has also recently been coupled with SLDG scheme for solving
the Vlasov equations [2].

The RKEI method was first proposed in [7], which is designed for nonlinear ordi-
nary differential equations (ODEs). The idea is to mimic the exponential solution
for linear ODEs, and write the nonlinear function as a coefficient multiplying the un-
known solution. Then the coefficient is frozen at previous given time levels, so that
the resulting ODE have explicit exponential solutions. Later, the RKEI method
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was realized to be equivalent to the semi-Lagrangian scheme for partial differential
equations (PDEs) [5, 6]. In this paper, we propose to combine it with the conser-
vative SLFD scheme [21] under the flux difference form. However, different from
[31], the temporal integral is transferred to a spatial integral at the previous time
level with know solutions, owing to the divergence theorem. WENO interpolations
and numerical flux reconstructions [21] are used to ensure essentially non-oscillatory
properties. Other methods, such as Hermite WENO schemes (HWENO) [4] may
also be applied. However, we would emphasize that in order to achieve large time
step condition, we have to combine the WENO interpolation and flux reconstruc-
tion, so that the common integration in the left and right fluxes can be canceled
exactly [21, 18]. This cancellation typically due to the fact, for the one-dimensional
problem the spatial integrals in the reconstructions of the left and right fluxes are
along the same line (only one dimension). This is not the case for two and higher
dimensions. The extension to high dimensional problems is not straightforward. Al-
though dimensional splittings can still be used, they suffer from low order splitting
errors and we do not pursue them here.

The rest of the paper is organized as follows. In Section 2, the model equation
will be described. The SLFD scheme in [21] and the RKEI method [7] will first be
recalled in Section 3, after that conservative SLFD schemes for solving (1) will be
presented. In Section 4, numerical experiments will be performed to demonstrate
the effectiveness of our proposed methods. Conclusion remarks will be made in
Section 5.

2. Model equation. We start with the hyperbolic equations in the advective form,

ut + V (u)(x, t)ux = 0, (3)

where u = u(x, t) and V (u)(x, t) is the advection speed which may depend on the
unknown u. The solution of (3) propagates along characteristics, which can be
defined as

d

dt
x(t) = V (u)(x(t), t). (4)

When V does not depend on the unknown u, namely, in the linear or quasilinear
form, the characteristics of (4) are given and can be computed a prior, so that the
solution of (3) can be determined from the characteristics by tracing it back to
its initial or boundary values. However, when V does depend on the unknown u,
(3) becomes a nonlinear hyperbolic equation, e.g., in (1) V (u)(x, t) = f ′(u). Even
initially the solution u is smooth, the characteristics are changing with the solution
u. At some later time, the characteristics would intersect and discontinuities are
formed, such as shock waves. This is well-known for nonlinear hyperbolic equations
[17].

However, numerical schemes designed according to the advective form (3) cannot
provide a correct shock speed for shock waves. It is important instead using the
following conservative form

ut + (a(u)(x, t)u)x = 0. (5)

(5) shares the same characteristic equation as (3) for the same problem. But only in
the linear or quasilinear case, a would be the same as V . For nonlinear hyperbolic
equations, usually it is not. For example, for the nonlinear Burgers’ equation,

ut +

(
u2

2

)
x

= 0, (6)
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V (u)(x, t) = u in (3), while a(u)(x, t) = u
2 in (5). However u is the right character-

istic speed for both of them.
In the following, for our numerical scheme design, we consider (4) as the charac-

teristic equation for (3). For the conservative equation (5), instead of (4), we use a
pseudo characteristic equation

d

dt
x(t) = a(u)(x(t), t). (7)

Taking the Burgers’ equation as an example, we consider

d

dt
x(t) = u(x(t), t), (8)

for (3), while

d

dt
x(t) =

1

2
u(x(t), t), (9)

for (5). Similarly for other nonlinear hyperbolic equations.

3. Numerical scheme. In this section, we will describe how to design conservative
SLFD WENO schemes, based on the RKEI method. We first recall the conservative
SLFD scheme defined for the quasilinear hyperbolic equation in [21], then we will
present the framework of RKEI method proposed in [5]. After that, we will show
how to get conservative schemes by coupling these two methods.

3.1. Conservative SLFD scheme. The conservative SLFD scheme starts from
the conservative equation (5). Assuming we already have the solution at time level
tn, integrating (5) from tn to tn+1, we get

u(x, tn+1) = u(x, tn)−
(∫ tn+1

tn

a(u)(x, t)udt

)
x

. (10)

Denoting

H(x) =

∫ tn+1

tn

a(u)(x, t)udt, (11)

and defining

H(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ)dξ, (12)

we obtain

Hx =
1

∆x

(
h(x+

∆x

2
)− h(x− ∆x

2
)

)
, (13)

where ∆x could be referred as the spatial mesh size.
At a given point x = xi, (10) becomes

u(xi, tn+1) = u(xi, tn)− 1

∆x

(
h(xi +

∆x

2
)− h(xi −

∆x

2
)

)
. (14)

A conservative finite difference scheme can be provided as follows

un+1
i = uni −

1

∆x
(ĥi+ 1

2
− ĥi− 1

2
), (15)
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where ĥi+ 1
2

is a numerical flux approximating h(xi + ∆x
2 ) and uni approximates

u(xi, tn) accordingly. ĥi+ 1
2

can be obtained from {Hi} via a high order finite dif-

ference WENO reconstruction, which will be described afterward. From (11), we
have

Hi = H(xi) =

∫ tn+1

tn

a(u)(xi, t)u(xi, t)dt. (16)

It is important on how to get high order approximations of (16), as we only know
the solution at time level tn. In this paper, a semi-Lagrangian scheme based on
solving the characteristic equations (7) is used.

Let’s introduce a spatio-temporal region Ωi,t, which is associated to the point xi
and time levels from tn to tn+1. The region is displayed in Fig. 3.1. The curves
`1 and `3 are along the time and space directions respectively, while `2 is the curve
defined from the characteristic equation (4). From the definition, we know that the
outward normal direction along `2 is (−1/a, 1).

tn

tn+1

xi−3 xi−2

`2

xi−1

`3

xi

`1

xi+1x?i

Ωi,t

Figure 1. The diagram of the spatio-temporal region Ωi,t.

Now if we integrate the conservative equation (5) over the region Ωi,t, that is∫
Ωi,t

ut + (a(u)(x, t)u)x = 0. (17)

Denoting ∇t,x = (∂t,∇x), and from the divergence theorem, we get

0 =

∫
Ωi,t

ut + (a(u)(x, t)u)x

=

∫
Ωi,t

∇t,x · (u, a(u)(x, t)u)

=

∫
∂Ωi,t

(u, a(u)(x, t)u) · n

= −
∫ xi

x∗
i

u(x, tn)dx+

∫ tn+1

tn

a(u)(xi, t)u(xi, t)dt,

where n is the outward unit normal vector along each curve, and this equation
yields

Hi =

∫ tn+1

tn

a(u)(xi, t)u(xi, t)dt =

∫ xi

x∗
i

u(x, tn)dx. (18)
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So if we can solve the characteristic equation (7) to find the root x∗i , we can do

the integration in (18) to get the value Hi. After that, we reconstruct {ĥi+ 1
2
} from

{Hi}, the solution un+1
i is then updated from (15). We denote this conservative

updating process as “SLFDc”, that is

un+1 = SLFDc(a(u)(x, t),∆t)un. (19)

In [21], only a(x, t) is considered. As a(x, t) is given, classical Runge-Kutta
methods can be used to solve (7). When a(u)(x, t) depends on u, since we do not
have the values u at intermediate stages, Runge-Kutta methods cannot be directly
applied in the SL settings. In [31], a high order predictor-corrector approach is
proposed. However, that approach is problem dependent and algebraically a little
complicated to extend to higher order (e.g., 4th order and up). Here we will adopt
the RKEI method developed in [5], which can be more conveniently extended to
high order, and we will present it in the next subsection.

On the other hand, another type of SLFD scheme can base on the nonconservative
advective form (3). This scheme is to solve the characteristic equation (4) to get x∗i ,
then interpolate the value at x∗i to update the solution un+1

i at the next time level,
e.g., the approach used in [5]. However, due to interpolating errors, this type SLFD
scheme does not have mass conservation. Here we refer this update as “SLFDn”,
that is

un+1 = SLFDn(V (u)(x, t),∆t)un. (20)

The nonconservative approach cannot get a right shock speed for nonlinear hy-
perbolic equations. Moreover, it is not appropriate for long time simulations [19].
In our numerical schemes proposed in the following, we could combine “SLFDc”
and “SLFDn” to achieve a high order conservative SLFD scheme for the nonlinear
hyperbolic equations.

3.2. RKEI time method. In this subsection, we first briefly review the RKEI
method, which was proposed to solve nonlinear ODEs [7]. For more details, we
refer to [7, 5, 2].

We consider a nonlinear initial value ODE problem of size N ,

dY (t)

dt
= C(Y )Y, Y (t = 0) = Y0, (21)

where C(Y ) is a matrix-value function of size N × N , which may depend on the
solution of Y (t). The idea of RKEI method is to freeze the coefficient matrix C(Y )
at a given time step, or linear composition of explicitly known values, to obtain a
linearized problem, and then apply the exponential integrator method to update
the solution from Y n to Y n+1. Y n is the numerical solution at time level tn. For a
first order scheme, it is

dY (t)

dt
= Cn Y, Y n+1 = exp(Cn∆t)Y n, (22)

where Cn = C(Y n) and ∆t = tn+1 − tn is the time step.
To achieve high order accuracy, a class of commutator-free RKEI methods with

multi-stages can be used. For an s-stage RKEI method, the algorithm flow chart is
summarized as follows
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Algorithm 1: The commutator-free (CF) RKEI method [7].

p = Y n

for r = 1 : s do
Yr = exp(∆t

∑
k α

k
rJ(r)C(Yk)) · · · exp(∆t

∑
k α

k
r1C(Yk))p

end
Y n+1 = exp(∆t

∑
k β

k
JC(Yk)) · · · exp(∆t

∑
k β

k
1C(Yk))p

In the subindex of αk
rJ(r)

, J (r) represents the number of exponentials one has to

take per RK stage. The RKEI method can be represented by the Butcher tableau
in Table 1.

c A
b

Table 1. A Butcher tableau for RKEI method, where aik =∑J(i)

l=1 α
k
i,l and bk =

∑J
l=1 β

k
l , which merges J (i) rows into one row

at each stage i.

Example 3.1. A 3rd order RKEI method in [5] can be represented by the following
Butcher tableau,

0
1
2

1
2

1 −1 2
1
12

1
3 - 1

4
1
12

1
3

5
12

Table 2. CF3

with which, the RKEI scheme for the nonlinear ODE system (21) reads

Y (1) =Y n

Y (2) = exp

(
1

2
∆tC(Y (1))

)
Y n

Y (3) = exp
(

∆t(−C(Y (1)) + 2C(Y (2)))
)
Y n

Y n+1 = exp

(
∆t(

1

12
C(Y (1)) +

1

3
C(Y (2)) +

5

12
C(Y (3)))

)
exp

(
∆t(

1

12
C(Y (1)) +

1

3
C(Y (2)) − 1

4
C(Y (3)))

)
Y n,

here J (r) = 1 for r = 1, . . . , 3 and J = 2.

Example 3.2. A 4th order RKEI method in [5] can be represented by the following
Butcher tableau,

0
1
2

1
2

1
2 0 1

2
1 1

2 0 0
− 1

2 0 1
1
4

1
6

1
6 - 1

12
− 1

12
1
6

1
6

1
4

Table 3. CF4
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correspondingly, the RKEI scheme for the nonlinear ODE system (21) reads

Y (1) =Y n

Y (2) = exp

(
1

2
∆tC(Y (1))

)
Y n

Y (3) = exp

(
1

2
∆tC(Y (2))

)
Y n

Y (4) = exp

(
∆t(−1

2
C(Y (1)) + C(Y (3)))

)
exp

(
1

2
∆tC(Y (1))

)
Y n

Y n+1 = exp

(
∆t(− 1

12
C(Y (1)) +

1

6
C(Y (2)) +

1

6
C(Y (3)) +

1

4
C(Y (4)))

)
exp

(
∆t(

1

4
C(Y (1)) +

1

6
C(Y (2)) +

1

6
C(Y (3))− 1

12
C(Y (4)))

)
Y n,

here J (r) = 1 for r = 1, . . . , 3, J (4) = 2 and J = 2.

3.3. Conservative SLFD-RKEI scheme. The RKEI method for linear ODEs
is later recognized to be equivalent to an SL scheme for updating the solution for
linear transport problems. The method is then coupled with spectral Galerkin
method and applied to convection-diffusion problems [7], incompressible Navier-
Stokes equations [6]. Very recently, it has been coupled with SLDG methods, and
applied to the Vlasov-Poisson system and guiding-center model problems [2].

Here we will couple the RKEI method with the SLFD scheme, to get a high order
SLFD-RKEI scheme for solving the nonlinear hyperbolic equations. The difficulty
here is that for SL schemes under the finite difference framework, it is not easy to
achieve the following properties simultaneously, high order, conservative, large time
steps and ability to solve nonlinear hyperbolic equations. Our method proposed
here for the one-dimensional hyperbolic equations, will have these properties.

Two types of conservative schemes can be proposed. One is that we only do a
conservative correction at the last stage as compared to a nonconservative one. The
other is we do it at every stage. Taking the 3rd order RKEI scheme in Table 2 as
an example, the first SLFD-RKEI scheme reads as follows

u(1) =un

u(2) =SLFDn

(
1

2
V (u(1))(x, tn),∆t

)
un

u(3) =SLFDn

(
−V (u(1))(x, tn) + 2V (u(2))(x, tn +

1

2
∆t),∆t

)
un

un+1 =SLFDc
( 1

12
a(u(1))(x, tn) +

1

3
a(u(2))(x, tn +

1

2
∆t)

+
5

12
a(u(3))(x, tn + ∆t),∆t

)
SLFDc

( 1

12
a(u(1))(x, tn)

+
1

3
a(u(2))(x, tn +

1

2
∆t)− 1

4
a(u(3))(x, tn + ∆t),∆t

)
un. (23)

We denote this scheme as “SLFDc1”. The other is

u(1) =un

u(2) =SLFDc

(
1

2
a(u(1))(x, tn),∆t

)
un
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u(3) =SLFDc

(
−a(u(1))(x, tn) + 2a(u(2))(x, tn +

1

2
∆t),∆t

)
un

un+1 =SLFDc
( 1

12
a(u(1))(x, tn) +

1

3
a(u(2))(x, tn +

1

2
∆t)

+
5

12
a(u(3))(x, tn + ∆t),∆t

)
SLFDc

( 1

12
a(u(1))(x, tn)

+
1

3
a(u(2))(x, tn +

1

2
∆t)− 1

4
a(u(3))(x, tn + ∆t),∆t

)
un. (24)

and we denote it as “SLFDc2”. The nonconservative scheme with SLFDn at every
stage is still denoted as “SLFDn”.

We note that for above schemes at each stage, we freeze V (u)(x, t) or a(u)(x, t)
with linear composition of explicitly known values of u at its corresponding time
stages, but leaving x as a changing variable. However we only know the values of u
at grid points {xi}. For x different from the grid points, an interpolation is needed.
With the frozen characteristic speed, the characteristic equation (4) or (7), which
now is an explicit ODE, can be solved by a high order Runge-Kutta method in a
backward way. Let us take the solution to the characteristic equation as X(t), and
we introduce w(X(t)) as the velocity function. Detailed procedures for a first order
scheme and a 3rd order scheme corresponding to (23) are given as follows:

• for a first order RKEI scheme, it has only one stage, the characteristic equation
is

w(X(t)) = a(u)(X(t), tn), (25){
dX(t)
dt = w(X(t)),

X(tn+1) = xi.
(26)

It can be solved with an Euler forward scheme, that is, we let w(xi) =
w(X(tn+1)) ≈ w(X(t)), then

x∗i = xi − w(xi)∆t = xi − a(u)(xi, tn)∆t. (27)

After that we call “SLFDc” to update un+1 from un;
• for a 3rd order RKEI scheme, it has three stages. For each stage, we have:

– Stage 1: The characteristic equation is

w(X(t)) =
1

2
V (u)(X(t), tn), (28){

dX(t)
dt = w(X(t)),

X(tn+1/2) = xi.
(29)

We solve it with a 3rd order Runge-Kutta scheme to get{
x
∗,(1)
i = X(tn)

u
(1)
i = Iu(x

∗,(1)
i , tn) ≈ u(xi, tn+ 1

2
).

(30)

– Stage 2: The characteristic equation is

w(X(t)) = −V (u)(X(t), tn) + 2V (u)(X(t), tn +
1

2
∆t)), (31){

dX(t)
dt = w(X(t)),

X(tn+1) = xi.
(32)
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We solve it with a 3rd order Runge-Kutta scheme to get{
x
∗,(2)
i = X(tn)

u
(2)
i = Iu(x

∗,(2)
i , tn) ≈ u(xi, tn+1).

(33)

– Stage 3: This stage has two steps. The first step has the characteristic
equation

w(X(t)) =
1

12

(
a(u)(X(t), tn) + 4a(u)(X(t), tn +

1

2
∆t)

− 3a(u)(X(t), tn + ∆t)
)
, (34){

dX(t)
dt = w(X(t)),

X(tn+1) = xi.
(35)

We solve it with a 3rd order Runge-Kutta scheme to get

x∗i = X(tn). (36)

Then we call “SLFDc” to obtain u(3) based on un. The second step has
the characteristic equation

w(X(t)) =
1

12

(
a(u)(X(t), tn) + 4a(u)(X(t), tn +

1

2
∆t)

+ 5a(u)(X(t), tn + ∆t)
)
, (37){

dX(t)
dt = w(X(t)),

X(tn+1) = xi.
(38)

Similarly, we solve it with a 3rd order Runge-Kutta scheme to get

x∗i = X(tn), (39)

and we call “SLFDc” to update un+1. Here it is starting from u(3) instead
of un.

In Stage 1 and Stage 2, Iu(x
(`)
i , tn) for ` = 1, 2 is an linear interpolation oper-

ator. Corresponding to the 5th order WENO reconstruction in the Appendix

A.2, a 6th order interpolation with equal points on both sides of x
(`)
i is used.

A similar procedure can be applied to other types of RKEI schemes, e.g., the 4th
order in Table 3. “SLFDc2” will have every stage as Stage 3 above. Here we all
omit them to save space.

4. Numerical test. In this section, numerical examples for one dimensional linear
and nonlinear hyperbolic equations are presented to verify the effectiveness of our
algorithms. Three schemes are considered. For the 3rd order RKEI scheme (2),
“SLFDc1” corresponds to (23), “SLFDc2” corresponds to (24), and “SLFDn” will
have “SLFDn” instead of “SLFDc” in the last stage of (23). The schemes with 4th
order RKEI (3) can be defined correspondingly.

The formal 5th order finite difference WENO reconstruction in the Appendix
A.2 is used, which is a combination of the interpolation and flux reconstruction,
and in this way we will not subject to time step restrictions. We note here this 5th
order WENO scheme achieves 5th order when a(u)(x, t) is a constant, but gives 3rd
order otherwise, as no optimal linear weights exist. For more details, we refer to
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the appendix or [19]. We denote the mesh size as N , the final time T and the time
step is taken as

∆t = CFL
∆x

maxx |a(u)(x, t)|
. (40)

Here “CFL” refers to the CFL number as used in an Eulerian scheme.

4.1. Linear case. First we consider the following linear equation with a(u)(x, t) =
1

ut + ux = 0, x ∈ (0, 2). (41)

We take the initial condition u(x, 0) = sin(πx) and periodic boundary condition.
The corresponding exact solution is u(x, t) = sin(πx− πt). The final time is set to
be T = 2.5 and CFL = 4.5 is used.

For this example, the characteristic equation (7) can be solved exactly, no tem-
poral errors exist. This example is used to test the spatial orders. In Table 1, we
show the errors in L1 and L∞ norms and the corresponding orders. We can observe
that the 5th orders are obtained as expected.

Table 1. Numerical errors and orders for the linear problem (41).
T = 2.5 and CFL = 4.5 in (40).

N L1 error Order L∞ error Order
20 1.25E-4 – 2.07E-4 –
40 3.83E-6 5.03 7.8E-6 4.73
80 1.15E-7 5.06 2.38E-7 5.04
160 3.55E-9 5.00 7.29E-9 5.03
320 1.10E-10 5.01 2.00E-10 5.19
640 3.42E-12 5.01 6.03E-12 5.05

4.2. Quasilinear case. In this example, we consider the quasilinear hyperbolic
equation with a variable coefficient

ut + (sin(x)u)x = 0, x ∈ (0, 2π). (42)

If we take the initial condition u(x, 0) = 1 and periodic boundary condition, the
exact solution can be given by [21]

u(x, t) =
sin(2 arctan(e−t tan(x2 )))

sin(x)
. (43)

For this example, the RKEI method for solving the characteristic equation (7)
becomes the classic RK method. We consider both the 3rd order RKEI scheme
with Butcher tableau (2) and the 4th order RKEI scheme with Butcher tableau (3).

For this quasilinear case, a large CFL number is still allowed. We take CFL = 4.5
and compute the solution up to time T = 1.5. In Table 2, we show the errors in L1

and L∞ norms as mesh refinements, with their corresponding convergence orders.
As we can see, with the mesh much refined, 3rd order accuracies are obtained for
both 3rd order RKEI and 4th order RKEI schemes, which demonstrate the leading
order is 3rd order in space.

For this problem, we also try to test the temporal orders. We take a very refined
mesh size N = 900. In order to clearly see the temporal orders, we take very large
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CFL numbers from 26 to 30 so that the temporal errors dominate. The errors in L1

and L∞ norms and the corresponding orders are presented in Table 3. The desired
temporal orders are obtained.

Table 2. Numerical errors and orders for the quasilinear case (42).
T = 1.5 and CFL = 4.5 in (40).

3rd order Scheme 4th order scheme
N L1 error Order L∞ error Order L1 error Order L∞ error Order
80 6.98E-4 – 4.25E-3 – 9.99E-5 – 1.30E-3 –
160 9.11E-5 2.94 6.15E-4 2.79 6.07E-6 4.04 2.00E-4 2.71
320 1.17E-5 2.96 7.92E-5 2.96 2.81E-7 4.43 1.62E-5 3.62
640 1.53E-6 2.94 1.08E-5 2.88 2.28E-8 3.63 1.27E-6 3.67
1280 1.95E-7 2.97 1.69E-6 2.95 3.09E-9 2.88 6.38E-8 4.32
2560 2.47E-8 2.98 1.77E-7 2.98 4.46E-10 2.79 7.59E-9 3.07

Table 3. Numerical errors and orders for the quasilinear case (42)
with different CFL numbers. N = 900 and T = 1.5.

CFL
3rd order RKEI (2) 4th order RKEI (3)

L1 error Order L∞ error Order L1 error Order L∞ error Order
40 1.54E-5 – 2.39E-5 – 5.95E-8 – 8.80E-8 –
39 1.39E-5 3.02 2.19E-5 2.58 5.13E-8 4.37 7.78E-8 3.64
38 1.25E-5 3.03 1.99E-5 2.73 4.41E-8 4.31 6.85E-8 3.63
37 1.12E-5 3.02 1.74E-5 3.69 3.88E-8 3.52 5.76E-8 4.77
36 1.00E-5 3.00 1.57E-5 2.73 3.29E-8 4.37 5.03E-8 3.59

4.3. Nonlinear case. In the third example, we consider the nonlinear hyperbolic
equation. We simply choose the Burger’s equation

ut +

(
u2

2

)
x

= 0, x ∈ (0, 2). (44)

We take the initial condition u(x, 0) = 0.5 + sin(πx) and periodic boundary con-
dition. For this example, since it is a nonlinear hyperbolic problem, we only take
relatively large CFL numbers up to 3 in the following, although the scheme is de-
signed to be stable for arbitrary large CFL numbers.

We first compute the solution up to T = 0.5
π when the solution is still smooth

[17]. For this nonlinear problem, the RKEI scheme will play its role. First we show
the errors and orders for the three schemes “SLFDn”, “SLFDc1” and “SLFDc2”,
with L1 and L∞ norms in Table 4 and Table 5 for the 3rd order RKEI scheme (2),
and with L1 and L∞ norms in Table 6 and Table 7 for the 4th order RKEI scheme
(3), respectively. For the nonlinear problem, we take CFL = 1.5. At least 3rd
order convergence for three schemes are all obtained. However, if we compare the
absolute errors, we can find that generally SLFDn has the smallest errors, SLFDc2
has the largest, while SLFDc1 is in between. This is expected, as nonconservative
updating involves less interpolation and reconstruction errors than the conservative
one. So SLFDc1 is better than SLFDc2 on this aspect.
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Then we would like to verify that the three schemes coupled with RKEI, can
achieve high order in time for this nonlinear problem. In Table 8, we show the
errors and orders for the nonconservative SLFDn scheme with 3rd order RKEI (2)
and 4th order RKEI (3), relatively large CFL numbers from 2.6 to 3 are used. We
take N = 800 and we measure the errors on the grid points |N − 400| > 100, as we
can find that around the position where u = 0, it has large errors. This is due to
the fact that at the position where u = 0, the RKEI scheme directly gives x∗i = xi,
which means the position u = 0 will not move in the nonconservative scheme. If the
initial values happened to not contain this point, it still affects the solution close to
it. We show another case evolving to shock solutions afterward. We plot the errors
for N = 320 in Fig. 1, for the 3rd order RKEI scheme and 4th order RKEI scheme
respectively. The plots clearly shows large errors around u = 0. Similarly for the
following conservative schemes. With the measurement away from u = 0, we can
see 3rd order and 4th order can be obtained.

We now compare the errors and orders for the two conservatives schemes, with
3rd order RKEI (2) and 4th order RKEI (3), in Table 9 and Table 10, respectively.
We take CFL numbers from 1.6 to 2 for the 3rd order and 2.6 to 3 for the 4th
order. We take N = 800 and the errors are measured in the same way as above. We
can find that the conservative scheme SLFDc2 with conservative updating at each
stage can achieve 3rd order and almost 4th order in time. Note here we only have
3rd order in space, the order will degenerate as CFL getting smaller. The SLFDc1
scheme seems to lose order as compared to SLFDc2. However, we should notice
that SLFDc1 has smaller absolute errors as compared to SLFDc2. The lost order
might be due to the pollute errors around u = 0. But it is still more accurate in
time as compared to SLFDc2. From the tables 8-10 and Fig. 1, we can also find
that the 4th order RKEI has much better accuracy than the 3rd order RKEI.

Finally we compute the solution to T = 2
π , where the shock wave is already

formed. We take CFL = 1.5 and N = 80. We compare the two conservative
schemes with the nonconservative scheme in Fig. 2, where the 3rd order RKEI
scheme with (2) and 4th order scheme with (3) are used respectively. We simply take
a 2nd order linear interpolation for the nonconservative scheme. We can see that
the two conservative schemes can capture the correct shock speed for both cases.
However, the nonconservative scheme cannot, which is essentially the limitation of
nonconservative schemes for hyperbolic conservation laws [17].

We further consider another initial condition
√

2/2+sin(πx), and we takeN = 88.
In this case, there is one grid where u = 0 initially. We take CFL = 1.5 and compute
the solution to T = 2/π with these three schemes. In Fig. 3, we show the results
at T = 0.7/π, 1.3/π and 2/π. At T = 0.7/π, the solution is still smooth, all three
schemes work well. Then at T = 1.3/π, the shock forms, both conservative schemes
capture the shock very well, however we can find that the nonconservative scheme
keeps a point with value to be 0. As the time further evolves to T = 2/π, the
point with value 0 is still there for the nonconservative scheme, and it causes large
oscillations of the solution, also the shock front is not valid. They are not the case
for the two conservative schemes. The reason is what we mentioned above, when
u = 0, the nonconservative scheme cannot evolve this point. These two tests with
shock waves clearly show the advantage and robustness of our conservative approach
over the nonconservative one.

Remark 1. For nonlinear hyperbolic problems, large time steps might be beneficial
when the dominant time scales are much larger than the characteristic-based time
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Table 4. Numerical L1 errors and orders for the nonlinear Burg-
ers’ equation (44). T = 0.5/π and CFL = 1.5 in (40). 3rd order
RKEI (2) is used.

SLFDn SLFDc1 SLFDc2
N L1 error Order L1 error Order L1 error Order
40 6.40E-5 – 1.36E-4 – 2.24E-4 –
80 7.42E-6 3.11 1.03E-5 3.72 2.30E-5 3.28
160 9.57E-7 2.95 9.29E-7 3.47 2.58E-6 3.16
320 1.35E-7 2.83 1.04E-7 3.16 3.24E-7 2.99
640 1.73E-8 2.97 1.17E-8 3.15 3.93E-8 3.04

scales [11]. However, when discontinuous solutions exist, such as shock waves are
formed, large time steps might still be allowed in some circumstances, e.g., if you
track the characteristics very accurately to get an entropy satisfying solution and
use total variation bounded (TVB) reconstructions [22]. Here we simply take a
relatively large CFL = 1.5 without pursuing this aspect, and numerical tests show
it works in our current settings.

Table 5. Numerical L∞ errors and orders for the nonlinear Burg-
ers’ equation (44). T = 0.5/π and CFL = 1.5 in (40). 3rd order
RKEI (2) is used.

SLFDn SLFDc1 SLFDc2

N L∞ error Order L∞ error Order L∞ error Order

40 3.35E-4 – 9.72E-4 – 1.20E-3 –

80 4.75E-5 2.82 7.51E-5 3.69 1.30E-4 3.26

160 6.17E-6 2.95 6.16E-6 3.61 1.59E-5 3.03

320 8.72E-7 2.82 7.09E-7 3.12 2.19E-6 2.86

640 1.10E-7 2.98 7.64E-8 3.22 2.66E-7 3.04

Table 6. Numerical L1 errors and orders for the nonlinear Burg-
ers’ equation (44). T = 0.5/π and CFL = 1.5 in (40). 4th order
RKEI (3) is used.

SLFDn SLFDc1 SLFDc2

N L1 error Order L1 error Order L1 error Order

40 5.19E-6 – 1.12E-4 – 1.12E-4 –

80 2.41E-7 4.43 7.04E-6 3.99 6.64E-6 4.08

160 1.09E-8 4.47 4.67E-7 3.91 3.95E-7 4.07

320 5.96E-10 4.19 4.16E-8 3.49 2.97E-8 3.74

640 3.23E-11 4.21 4.06E-9 3.36 2.29E-9 3.69
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Figure 1. Numerical errors as compared to the exact solution for
three schemes at T = 0.5/π for the nonlinear Burgers’ equation
(44). The solid line is nonconservative scheme SLFDn; the symbol
“o” is the conservative scheme SLFDc1 and the symbol “*” is the
conservative scheme SLFDc2. CFL = 1.5 and N = 320. Left: 3rd
order RKEI (2); right: 4th order RKEI (3).

Table 7. Numerical L∞ errors and orders for the nonlinear Burg-
ers’ equation (44). T = 0.5/π and CFL = 1.5 in (40). 4th order
RKEI (3) is used.

SLFDn SLFDc1 SLFDc2

N L∞ error Order L∞ error Order L∞ error Order

40 5.66E-5 – 9.66E-4 – 1.00E-3 –

80 2.80E-6 4.34 6.27E-5 3.95 6.33E-5 3.99

160 8.62E-8 5.02 3.94E-6 3.99 3.82E-6 4.05

320 4.01E-9 4.42 3.43E-7 3.52 3.16E-7 3.59

640 2.82E-10 3.83 2.79E-8 3.62 2.38E-8 3.73

Table 8. Numerical errors and orders for the nonlinear Burgers’
equation (44) from different CFL numbers, with SLFDn, 3rd or-
der (2) and 4th order (3) in time, respectively. 4th order linear
interpolation is used. N = 800 and T = 0.5/π.

CFL
3rd order SLFDn 4th order SLFDn

L1 error Order L∞ error Order L1 error Order L∞ error Order

3 4.51E-8 – 9.66E-8 – 2.33E-10 – 2.01E-9 –

2.9 4.07E-8 3.03 8.72E-8 3.02 2.03E-10 4.07 1.74E-9 4.23

2.8 3.72E-8 2.56 7.93E-8 2.71 1.88E-10 2.19 1.65E-9 1.52

2.7 3.32E-8 3.13 7.09E-8 3.08 1.59E-10 4.61 1.39E-9 4.54

2.6 2.94E-8 3.22 6.30E-8 3.13 1.33E-10 4.73 1.15E-9 5.02
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Table 9. Numerical errors and orders for the nonlinear Burgers’
equation (44) from different CFL numbers, with the two 3rd order
RKEI conservative schemes. N = 800 and T = 0.5/π.

CFL
3rd order SLFDc2 3rd order SLFDc1

L1 error Order L∞ error Order L1 error Order L∞ error Order

2 4.67E-8 – 3.20E-7 – 3.07E-8 – 1.28E-7 –

1.9 4.08E-8 2.63 2.84E-7 2.33 2.78E-8 1.93 1.16E-7 1.92

1.8 3.50E-8 2.84 2.45E-7 2.73 2.45E-8 2.33 9.83E-8 3.06

1.7 2.95E-8 2.99 2.05E-7 3.12 2.21E-8 1.81 8.98E-8 1.58

1.6 2.44E-8 3.13 1.67E-7 3.38 1.99E-8 1.73 8.21E-8 1.48

Table 10. Numerical errors and orders for the nonlinear Burgers’
equation (44) from different CFL numbers, with the two 4th order
RKEI conservative schemes. N = 800 and T = 0.5/π.

CFL
4th order SLFDc2 4th order SLFDc1

L1 error Order L∞ error Order L1 error Order L∞ error Order

3 5.46E-10 – 2.15E-9 – 2.53E-10 – 7.94E-10 –

2.9 4.75E-10 4.11 1.70E-9 6.93 2.37E-10 1.92 6.58E-10 5.54

2.8 4.16E-10 3.78 1.52E-9 3.19 2.32E-10 0.61 5.65E-10 4.34

2.7 3.66E-10 3.52 1.29E-9 4.51 2.23E-10 1.09 4.51E-10 6.20

2.6 3.25E-10 3.15 1.08E-9 4.71 2.15E-10 0.97 3.44E-10 7.17
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Figure 2. The shock wave solution at T = 2/π for the nonlinear
Burgers’ equation (44). The solid line is the exact solution. The
dashed line is the 2nd order nonconservative scheme SLFDn; the
symbol “o” is the conservative scheme SLFDc1 and the symbol ×
is the conservative scheme SLFDc2. CFL = 1.5. Left: 3rd order
RKEI (2); right: 4th order RKEI (3).
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Figure 3. Numerical solutions for the nonlinear Burgers’ equation
(44) with initial condition

√
2/2 + sin(πx). The solid line is the

exact solution. The dashed line is the 2nd order nonconservative
scheme SLFDn; the symbol “o” is the conservative scheme SLFDc1
and the symbol “+” is the conservative scheme SLFDc2. CFL =
1.5 and N = 88. 3rd order RKEI is used. Top left: T = 0.7/π; top
right: T = 1.3/π; bottom: T = 2/π.

5. Conclusions. In this paper, we propose two conservative SLFD schemes for
nonlinear scalar hyperbolic conservation laws, which is a combination of the conser-
vative SLFD scheme developed for the quasilinear equation and RKEI scheme for
nonlinear ODEs. The resulting schemes are conservative, allow large CFL numbers
and can deal with the nonlinear equation. In our numerical tests, we have verified
that the conservative schemes can achieve the same error levels as the nonconser-
vative one. 3rd and 4th order in time can be obtained. However, for shock wave
solution, the conservative schemes are more robust in shock capturing and avoid
the actionless point u = 0. Besides, the conservative scheme with conservation cor-
rection at the last stage shows to be better than the other one with conservation
updating at every stage. However, in this work, only one-dimensional problems are
considered. The extension to high dimensions is not straightforward, due to the
difficulty appeared in the spatial reconstructions. This will be subject to our future
work.

Another interesting direction would be applying the conservative SLFD schemes
for hyperbolic systems, e.g., the shallow water equations. However, current SL
schemes for hyperbolic systems are, e.g., either under the Lagrangian framework
which is similar to Lagrangian schemes [28], or updating the Riemann invariants
along characteristics [33]. However, the two approaches both are nonconservative
and they resort to Eulerian approach for mass conservation. So applying our current
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conservative SLFD schemes to hyperbolic system is highly nontrivial, and we leave
it to our future investigation.

Appendix A.. In this appendix, for completeness, we recall the finite difference
WENO reconstruction in [19]. After we solve the characteristic equation (7) to get
x∗i , we need to reconstruct a polynomial of u to do the integration in (18), we denote
this procedure as R1. Then from {Hi}, we will reconstruct {h±

i+ 1
2

} based on the

direction of the characteristics, which is denoted as R2. The final flux {ĥi+ 1
2
} in

(15) is obtained by combining these two reconstructions, which we denote as

R = R2 ◦R1. (A.1)

We note that it is important to combine these two reconstructions, especially to
achieve large time step without subject to stability restrictions.

For simplicity, we denote the characteristic speed in (7) simply as a.

A.1. First order reconstruction. We split it into two cases, |a|∆t ≤ ∆x and
|a|∆t > ∆x:

Case 1. |a|∆t ≤ ∆x: if a ≥ 0, x∗i ≤ xi,

ĥi+ 1
2

= h−
i+ 1

2

= (xi − x∗i )uni ≈ Hi =

∫ xi

x∗
i

u(x, tn)dx; (A.2)

if a < 0, x∗i > xi,

ĥi+ 1
2

= h+
i+ 1

2

= (xi − x∗i )uni+1 ≈ Hi =

∫ xi

x∗
i

u(x, tn)dx. (A.3)

Case 2. |a|∆t > ∆x, let i∗ be the index satisfying x∗i ∈ (xi∗−1, xi∗ ]:

when a ≥ 0,

ĥi+ 1
2

=

i∑
j=i∗+1

unj ∆x+ (xi∗ − x∗i )uni∗ ≈ Hi =

∫ xi

x∗
i

u(x, tn)dx; (A.4)

when a < 0,

ĥi+ 1
2

=

i∑
ji∗+1

unj ∆x+ (xi∗ − x∗i )uni∗ ≈ Hi =

∫ xi

xi∗

u(x, tn)dx. (A.5)

A.2. Fifth order reconstruction. We only consider a > 0, the case a < 0 can
be obtained symmetrically.

First, we consider a∆t ≤ ∆x. One chooses three three-point stencils

S1 = {uni−2, u
n
i−1, u

n
i }, S2 = {uni−1, u

n
i , u

n
i+1}, S3 = {uni , uni+1, u

n
i+2}. (A.6)

The reconstruction R = R1 ◦R2 is as follows:

1. reconstruction h(j)(xi+ 1
2
) for j = 1, 2, 3:

h(1)(xi+ 1
2
) = ∆x

(
(1/3ξ−2 + 1/4ξ2

−2 + 1/18ξ3
−2 − 7/24ξ2

−1 − 7/36ξ3
−1 − 11/24ξ2

0

+ 11/36ξ3
0)uni−2 + (−1/3ξ2

−2 − 1/9ξ3
−2 − 7/6ξ−1 + 7/18ξ3

−1

+ 11/6ξ2
0 − 11/18ξ3

0)uni−1 + (1/12ξ2
−2 + 1/18ξ3

−2 + 7/24ξ2
−1

− 7/36ξ3
−1 + 11/6ξ0 − 11/8ξ2

0 + 11/36ξ3
0)uni

)
,
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h(2)(xi+ 1
2
) = ∆x

(
(−1/6ξ−1 − 1/8ξ2

−1 − 1/36ξ3
−1 + 5/24ξ2

0 + 5/36ξ3
0 − 1/12ξ2

1

+ 1/18ξ3
1)uni−1 + (1/6ξ2

−1 + 1/18ξ3
−1 + 5/6ξ0 − 5/18ξ3

0 + 1/3ξ2
1

− 1/9ξ3
1)uni + (−1/24ξ2

−1 − 1/36ξ3
−1 − 5/24ξ2

0 + 5/36ξ3
0 + 1/3ξ1

− 1/4ξ2
1 + 1/18ξ3

1)uni+1

)
,

h(3)(xi+ 1
2
) = ∆x

(
(1/3ξ0 + 1/4ξ2

0 + 1/18ξ3
0 + 5/24ξ2

1 + 5/36ξ3
1 + 1/24ξ2

2

− 1/36ξ3
2)uni + (−1/3ξ2

0 − 1/9ξ3
0 + 5/6ξ1 − 5/18ξ3

1 − 1/6ξ2
2

+ 1/18ξ3
2)uni+1 + (1/12ξ2

0 + 1/18ξ3
0 − 5/24ξ2

1 + 5/36ξ3
1 − 1/6ξ2

+ 1/8ξ2
2 − 1/36ξ3

2)uni+2

)
,

where ξj = (xj − x∗j )/∆x, j = i− 2, ..., i+ 2.
2. compute the linear weights if a is a constant:

γ1 = 1/10 + 3/20ξ + 1/20ξ3,

γ2 = 3/5 + 1/10ξ − 1/10ξ3,

γ3 = 3/10 + 1/4ξ + 1/20ξ3,

in this case, all {ξj} (j = −2, ..., 2) are the same, which we write as ξ.
However when a(u)(x, t) is not a constant, no optimal linear weights to

achieve 5th order exist. We take

γ1 = 1/6, γ2 = 2/3, γ3 = 1/6,

which are used to ensure the non-oscillatory performance [24].
3. compute the smoothness indicator:

β1 = 13/12(uni−2 − 2uni−1 + uni )2 + 1/4(uni−2 − 4uni−1 + 3uni )2,

β2 = 13/12(uni−1 − 2uni + uni+1)2 + 1/4(uni−1 − uni+1)2,

β3 = 13/12(uni − 2uni+1 + uni+2)2 + 1/4(3uni − 4uni+1 + uni+2)2,

4. compute the nonlinear weights.

w̃j =
γj

(ε+ βj)2
, wj =

w̃j∑3
i=1 w̃i

, j = 1, 2, 3.

5. get the numerical flux.

ĥi+ 1
2

= h−
i+ 1

2

= w1h
(1)(xi+ 1

2
) + w2h

(2)(xi+ 1
2
) + w3h

(3)(xi+ 1
2
).

When a∆t > ∆x, let i∗ be the index such that x∗i ∈ [xi∗−1, xi∗ ], we can write the

flux ĥi+ 1
2

as

ĥi+ 1
2

=

i∑
j=i∗+1

4xunj +R(ui∗−p, ..., ui∗−q)

=

i∑
j=i∗+1

∆xunj + ĥi∗+ 1
2
,

where ĥi∗+ 1
2

will be reconstructed as the case a∆t < ∆x with {ui∗−2, ..., ui∗+2}.
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