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Abstract. Unique identifiability by finitely many far-field measurements in
the inverse scattering theory is a highly challenging fundamental mathematical

topic. In this paper, we survey some recent progress on the inverse obstacle

scattering problems and the inverse medium scattering problems associated
with time-harmonic waves within a certain polyhedral geometry, where one

can establish the unique identifiability results by finitely many measurements.

Some unique identifiability issues on the inverse diffraction grating problems
are also considered. Furthermore, the geometrical structures of Laplacian and

transmission eigenfunctions are reviewed, which have important applications in

the unique determination for inverse obstacle and medium scattering problems
with finitely many measurements. We discuss the mathematical techniques

and methods developed in the literature. Finally, we raise some intriguing
open problems for the future investigation.

1. Introduction. Inverse scattering problems are a central topic in applied math-
ematics, which have many applications of practical importance in modern tech-
nologies including radar, medical imaging, nondestructive testing, remote sensing,
geophysical exploration and ultrasound tomography (cf. [27]). Inverse obstacle scat-
tering problems and inverse medium scattering problems are two main themes in
inverse scattering problems. Uniqueness issue in inverse scattering problems is con-
cerned with the unique identifiability on the shape and/or the physical material
parameters of the underlying obstacle and medium by the corresponding measure-
ments through wave probing. In this paper, we provide an overview of some re-
cent mathematical developments on the inverse scattering problems and the inverse
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medium scattering problems as well as the inverse diffraction grating problems re-
garding on the unique identifiability issue. Those are fundamental results in the
inverse scattering theory.

In this paper, we focus on the inverse obstacle and medium scattering problems
for time-harmonic acoustic waves from an impenetrable or penetrable scatterer in a
homogeneous background medium. Considering the scattering of a time-harmonic
acoustic wave by a bounded obstacle Ω ⊂ Rn which is unknown or inaccessible,
n ≥ 2. Let k = ω/c ∈ R+ be the wavenumber with ω ∈ R+ and c ∈ R+, respectively,
denoting the frequency and the sound speed. Assume that the incident wave is given
by the plane wave of the form

ui(x; k,d) = eikx·d, x ∈ Rn, (1)

where d ∈ Sn−1 signifies the incident direction and Sn−1 := {x ∈ Rn : |x| =
1} is the unit sphere in Rn. Physically speaking, Ω can be a penetrable or an
impenetrable obstacle in scattering phenomenon, which shall fulfill the following
two systems, respectively. For a penetrable inhomogeneous medium, the forward
medium scattering problem can be modeled by

∆u+ k2V u = 0 in Rn,
u(x) = ui(x) + us(x),

limr→∞ r
n−1
2

(
∂us

∂r − ikus
)

= 0,

(2)

where V denotes the refractive index satisfying V (x) ≡ 1 for x ∈ Rn\Ω, r = |x|
and us is the scattered wave field generated by the presence of the obstacle Ω =
supp(1 − V ). The limit equation in (2) is known as the Sommerfield radiation
condition which ensures the outgoing nature of the scattered wave us. The unique
solvability of the scattering problem (2) in H2

loc(Rn) is well-known if V ∈ L∞(Rn)
(see [27] for details).

If Ω is an impenetrable obstacle, the corresponding forward obstacle scattering
problem can be formulated by the following Helmholtz system:

∆u+ k2u = 0 in Rn\Ω,
Bu = 0 on ∂Ω,

u = ui + us in Rn,
limr→∞ r

n−1
2

(
∂us

∂r − ikus
)

= 0.

(3)

The boundary operator relies on the physical property of the obstacle. Precisely
speaking, B could be of Dirichlet type Bu := u for the sound-soft obstacle or Neu-
mann type Bu := ∂νu for the sound-hard obstacle or Robin type Bu := ∂νu+ηu with
ν being the exterior unit normal vector to ∂Ω and η ∈ L∞(∂Ω) for the impedance
obstacle. Here, η denotes the boundary impedance parameter fulfilling <η ≥ 0 and
=η ≥ 0. In what follows, we formally take u = 0 on ∂Ω as ∂νu + ηu = 0 on ∂Ω
with η = +∞. In doing so, we can unify the three boundary conditions as the
generalized impedance boundary condition:

B(u) = ∂νu+ ηu = 0 on ∂Ω, (4)

where η could be ∞, corresponding to a sound-soft obstacle. It is well-understood
in [27] and [48] that there exists a unique solution u ∈ H1

loc(Rn\Ω) for Ω with
Lipschitz boundary ∂Ω.
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The Sommerfeld radiation condition in (2) or (3) leads to the asymptotic expan-
sion (cf. [27]) for us to (2) or (3) as follows

us(x; k,d) =
eikr

r(n−1)/2
u∞(x̂; k,d) +O

(
1

r(n+1)/2

)
as r →∞ (5)

uniformly with respect to all directions x̂ := x/|x| ∈ Sn−1, where u∞(x̂; k,d) is
referred to as the far-field pattern or the scattering amplitude, and x̂ denotes the
observation direction. Furthermore, x̂ := x/|x| ∈ Sn−1 is a real-analytic function
on Sn−1. By introducing an operator F which sends the obstacle Ω together with
the physical parameter V (the refractive index) or η (the boundary parameter) to
the corresponding far-field pattern through the Helmholtz system (2) or (3), the
inverse medium or obstacle problem can be formulated as the following abstract
operator equations:

FP(Ω, V ) = u∞(x̂; k,d) , (6)

and

FI(Ω, η) = u∞(x̂; k,d) , (7)

where FP and FI are defined by the forward medium or obstacle scattering system
respecitivley, and are nonlinear. That is, one intends to determine (Ω, V ) or (Ω, η)
from the knowledge of u∞(x̂; k,d).

A primary issue for the inverse medium problem (6) and inverse obstacle problem
(7) is the unique identifiability, which is concerned with the sufficient conditions such
that the correspondence between Ω and u∞ is one-to-one. There is a widespread
belief that one can establish uniqueness for (6) and (7) by a single or at most finitely
many far-field patterns. We remark that by a single far-field pattern we mean that
u∞(x̂, k,d) is collected for all x̂ ∈ Sn−1, but is associated with a fixed incident wave
eikx·d. Indeed, it states that the analytic function u∞ on the unit sphere associated
with at most finitely many k and d can determine the shape of a generic domain Ω
and the physical parameter V or η. This problem is known as the Schiffer problem
in the inverse scattering community. It is named after M. Schiffer for his pioneering
contribution around 1960 which was actually appeared as a private communication
in the monograph by Lax and Phillips [41]. There is a long and colourful history on
the study of the Schiffer’s problem, and we refer to a recent survey paper by Colton
and Kress [28] which contains an excellent account of the historical development of
this problem.

By now, only under a-prior geometric assumptions on the size or the shape of
the scatterer, unique identifiability results by using one incident plane wave have
been established. Colton and Sleeman [29] proved that the shape of the obstacle
could be uniquely determined with one incident wave when the size of the scatterer
satisfies some generic conditions. The sound-soft ball can be uniquely determined
by a single measurement (cf. [42]). Later, Alessandrani and Rondi in [2, 3], Cheng
and Yamamoto in [25] and [26], Liu and Zou [46] studied the global uniqueness
results with respect to a single far-field pattern for sound-soft, sound-hard obstacles
within a certain polyhedral geometry. The proofs in [2, 3, 25, 46] mainly utilize
the reflection principle for the Helmholtz equation with respect to a Dirichlet or
Neumann hyperplane and the path argument, where the path argument is initially
developed in [46]. Such kind of methodologies cannot tackle the uniqueness results
for an impedance polygonal or polyhedral obstacle with a single far-field pattern.
Please refer to Section 2 for more discussions related to the Schiffer’s problem on
the inverse obstacle problems.
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The obstacle with the impedance boundary condition can be uniquely deter-
mined by the far-field pattern with infinite incident directions and one fixed wave
number (cf. [40]). The Schiffer’s problem for an impedance obstacle is mathemati-
cally challenging, which concerns with the unique determination for an impedance
obstacle with a single far-field pattern. Recently, two of the authors establish the
“local” unique identifiability results [23,24] on the polygonal or polyhedral obstacle
with the impedance boundary condition by at most two far-field patterns, where
the polygonal or polyhedral obstacles satisfy some generic geometrical conditions.
Furthermore, the local arguments for uniquely determining the shape and boundary
parameters of the impedance obstacle by at most two far-field patterns are devel-
oped in [23,24], which are quite different from the proofs in [2,3,25,46] for tackling
the uniqueness results for sound-soft and sound-hard obstacles with respect to a
single far-filed pattern. A direct consequence of the uniqueness results in [23,24] is
that the shape of the convex hull of a concave polygonal or polyhedral obstacle can
be uniquely determined by at most two far-field patterns. To our best knowledge,
the findings in [23, 24] are the first results concerning the uniqueness results with
finite many far-field measurements for general concave polygonal or polyhedral ob-
stacles. The corresponding detailed discussions for Schiffer’s problem with respect
to the aforementioned results can be seen in Section 2.

For the inverse medium problem (6), Nachman [51], Novikov [52], and Ramm
[53] established that the refractive index V in (2) could be uniquely determined
from the far-field pattern with infinite incident directions and a fixed wave number.
A uniqueness result in determining the refractive index V by using the Cauchy
data for the inverse medium scattering problem (6) in the two-dimensional case
was established by Bukhgeim [15]. Uniqueness and stability results using a single
incident plane wave to determine the support of V under the assumption that the
support is a convex polyhedron were presented in [10,12,35].

Consider the direct medium scattering problem (6) with the transmission condi-
tion

u− = u+, ∂νu
− = ∂νu

+ on ∂Ω, Ω = supp(1− V ),

where u− and u+ are interior and exterior total wave fields with respect to Ω
corresponding to (2) separately, and ν is the exterior normal vector to ∂Ω. Bl̊asten
and Liu [12] proved that a single far-field pattern of the direct medium scattering
problem (6) with the transmission condition determines the refractive index V on
the corners of its support under certain assumptions, where these assumptions can
be satisfied for example in the low acoustic frequency regime. As a consequence, if
the refractive index V is piecewise constant with either a polyhedral nest geometry
or a known polyhedral cell geometry, such as a pixel or voxel array, the unique
identifiability for V by a single far-field pattern was established, which is the first
unique determination result of its type in the literature.

Recently, two of the authors [30] consider the unique determination of the shape
of the reflective index’s support Ω by a single far-field pattern corresponding to the
direct medium scattering problem (6) with the conductive transmission condition

u− = u+, ∂νu
− = ∂νu

+ + ηu+ on ∂Ω,

where η ∈ L∞(∂Ω). In the two-dimensional case, when Ω is a convex polygon,
a single far-field pattern can uniquely determine the shape of Ω and the constant
conductive parameter η under some generic assumptions. Please refer to Section 3
for more detailed discussions.
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Very recently, the inverse problem of recovering a conductive medium body was
considered in [22]. The conductive medium body arises from several applications of
practical importance, including the modeling of an electromagnetic object coated
with a thin layer of a highly conducting material and the magnetotellurics in geo-
physics. The inverse problem is concerned with the determination of the material
parameters inside the body as well as on the conductive interface by the associated
electromagnetic far-field measurements. Under the transverse-magnetic polarisa-
tion, two of the authors derived two novel unique identifiability results in determin-
ing a 2D piecewise conductive medium body associated with a polygonal-nest or
a polygonal-cell geometry by a single active or passive far-field measurement. The
detailed discussion can be found in Section 3.

Indeed, the unique identifiability [12, 22, 30] for the inverse medium problem (6)
by a single far-field pattern relies heavily on the geometrical structures of the interior
transmission eigenfunctions [21]. The study on the interior transmission eigenvalue
problem has a long history and is of significant importance in scattering theory;
see [27,37]. Let Ω be a bounded Lipschitz domain in Rn, n = 2, 3, and V ∈ L∞(Ω)
be possibly complex-valued functions. The interior transmission eigenvalue problem
can be formulated as

(∆ + k2)v = 0 in Ω,

(∆ + k2(1 + V ))w = 0 in Ω,

w = v, ∂νw = ∂νv, on ∂Ω.

(8)

If there exits a nontrivial pair (v, w) and k ∈ R+ fulfill (8), then (v, w) is named
as the transmission eigenfunctions and k is the corresponding interior transmission
eigenvalue. One can refer [21] for a recent survey on the systematic discussions
about the spectral properties of the transmission eigenvalues. In [11], Bl̊asten and
Liu presented the first quantitive result on the intrinsic geometric properties of
transmission eigenfunctions. We refer to Section 3 for more relevant discussions
on recent progress on the study of transmission eigenfunctions and inverse medium
scattering problems.

The study on scattering problems by periodic structures especially for diffraction
grating has received a lot of attention (cf. [5]). The corresponding discussions are
of practical applications in many areas such as radar imaging, micro-optics and
nondestructive testing. The problem was first raised by Rayleigh on the scattering
of plane waves from corrugated surface. In Section 4, we will give more explanations
on the recent developments and the mathematical formulations towards the direct
and inverse diffraction grating problems.

The rest of the paper is organized as follows. In Section 2, we discuss some re-
cent progress on Schiffer’s problem on inverse obstacle scattering problems including
sound-soft, sound-hard and impedance obstacles within a certain polyhedral geom-
etry. The study on the unique identifiability for impedance obstacles are important
due to the novelty and challenge compared with the sound-soft and sound-hard
cases. In Sections 3, we present some intriguing studies on the inverse medium
scattering problem together with the geometrical structures of interior transmission
eigenfunctions at the corner point. Section 4 is devoted to the mathematical de-
velopments of inverse diffraction grating problems. Similar to Section 2, we mainly
present the unique determination for gratings with impedance boundary. In Section
5, we conclude our review paper on recent progress on inverse scattering problems
and present some intriguing open problems.
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2. Inverse obstacle scattering problems. In this section, we focus on the
unique determination of the shape of the obstacle in (7) by finite many far-field pat-
terns when the obstacle is a polygon or a polyhedron. As mentioned in the introduc-
tion, the aforementioned theory is related to Schiffer’s problem in inverse scattering
problem, which has a long and colorful history; see a recent survey paper [28] for
related developments. Indeed, for sound-soft or sound-hard polyhedral scatterers,
the corresponding unique identifiability results can be found in [2], [25], [44], [45]
and [46], where the mathematical arguments adopt the reflection principle and path
argument. In [47], the partial determination for impedance obstacle by finite many
far-field patterns was also attained by Liu and Zou following the reflection prin-
ciple argument. Recently, Cao, Diao, Liu and Zou in [23] and [24] developed a
completely new approach on Schiffer’s problem for impedance obstacles in R2 and
R3, respectively. The methods therein can uniformly tackle Schiffer’s problem for
sound-soft, sound-hard and impedance obstacles and are completely local, which
can be applicable to recover the obstacle and the surface impedance parameter si-
multaneously in a more general scenario. The technical arguments in [23] and [24]
are heavily related to the geometrical structures of Laplacian eigenfunctions at the
intersecting point of two line segments or plane cells when the underlying Laplacian
eigenfunctions fulfill certain homogenous boundary conditions on the corresponding
line segments or plane cells; see more discussions in Subsection 2.1.

In the following, we first review recent progress on the geometrical structures of
Laplacian eigenfunctions (cf. [23,24]). Subsections 2.2 and 2.3 are devoted to review
the unique inedibility results for sound-soft, sound-hard and impedance polyhedral
scatterers.

2.1. Recent progress on geometrical structures on Laplacian eigenfunc-
tions. The geometric structures of Laplacian eigenfunctions and their deep rela-
tionship to the quantitive behaviours of the underlying eigenfunctions in R2 was
revealed in [23]. As an extension and continuation, in [24], two of the authors inves-
tigated the analytic behaviours of Laplacian eigenfunctions at corners in R3. These
new findings and novel results are of significant importance in spectral theory and
Schiffer’s problem in the inverse obstacle scattering problems.

For u ∈ L2(Ω) and λ ∈ R+, where Ω ⊂ Rn is an open subset, consider the
Laplacian eigenvalue problem

−∆u = λu in Ω. (9)

Recall the following two definitions in [23].

Definition 2.1. [23, Definition 1.1] For a Laplacian eigenfunction u in (9), a line
segment Γh ⊂ Ω is called a nodal line of u if u = 0 on Γh, where h ∈ R+ signifies
the length of the line segment. For a given complex-valued function η ∈ L∞(Γh), if
it holds that

∂νu(x) + η(x)u(x) = 0, x ∈ Γh, (10)

then Γh is referred to as a generalized singular line of u. For the special case that
η ≡ 0 in (10), a generalized singular line is also called a singular line of u in Ω. We
use N λ

Ω , SλΩ and Mλ
Ω to denote the sets of nodal, singular and generalized singular

lines, respectively, of an eigenfunction u in (9).

Definition 2.2. [23, Definition 1.2] Let u satisfy (9) and be a nontrivial eigen-
function. For a given point x0 ∈ Ω, if there exits a number N ∈ N ∪ {0} such



RECENT PROGRESS ON INVERSE SCATTERING PROBLEMS 1759

that

lim
r→+0

1

rm

∫
B(x0,r)

|u(x)|dx = 0 for m = 0, 1, . . . , N + 1, (11)

where B(x0, r) is a disk centered at x0 with radius r ∈ R+, we say that u vanishes
at x0 up to the order N . The largest possible N such that (11) is fulfilled is called
the vanishing order of u at x0, and we write

Vani(u; x0) = N.

If (11) holds for any N ∈ N, then we say that the vanishing order is infinity.

Combining with Definition 2.1 and Definition 2.2, under the mathematical setup
in [23, Section 3], where we assume that

∠(Γ+
h ,Γ

−
h ) = α · π, α ∈ (0, 2), and Γ+

h ∩ Γ−h = 0 ∈ Ω, (12)

with Γ±h being the intersecting two line segments, and ∠(Γ+
h ,Γ

−
h ) denoting the

corresponding intersecting angle, we are provided with an accurate characterization
of the relationship between the vanishing orders of Laplacian eigenfunctions and
the intersecting angle of two nodal/generalized singular lines. Roughly speaking, it
is known that the vanishing order is generically infinity if the intersecting angle is
irrational and the vanishing order is finite if the intersecting angle is rational. The
precise spectral results are as follows.

Theorem 2.3. Let u be a Laplacian eigenfunction to (9). Suppose that there are
two generalized singular lines Γ+

h and Γ−h from Mλ
Ω such that (12) holds. Assume

that η1 ≡ C1 and η2 ≡ C2, where C1 and C2 are two constants. Then the Laplacian
eigenfunction u vanishes up to the order N at 0:

N ≥ n, if u(0) = 0 and α 6= q

p
, p = 1, . . . , n− 1, (13)

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p− 1.

Theorem 2.4. Let u be a Laplacian eigenfunction to (9). Suppose that there are
two nodal lines Γ+

h and Γ−h from N λ
Ω such that (12) holds. Then the Laplacian

eigenfunction u vanishes up to the order N at 0:

N ≥ n, if α 6= q

p
, p = 1, . . . , n− 1, (14)

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p− 1.

Theorem 2.5. Let u be a Laplacian eigenfunction to (9). Suppose that there are
two singular lines Γ+

h and Γ−h from SλΩ such that (12) holds. Then the Laplacian
eigenfunction u vanishes up to the order N at 0:

N ≥ n, if u(0) = 0 and α 6= q

p
, p = 1, . . . , n− 1, (15)

where n ∈ N, n ≥ 3 and for a fixed p, q = 1, 2, . . . , p− 1.

Next, we have vanishing orders of Laplacian eigenfunctions at the corner inter-
sected by a generalized singular (singular) line and a nodal line.

Theorem 2.6. Let u be a Laplacian eigenfunction to (9). Suppose that a generalized
singular line Γ+

h ∈ Mλ
Ω intersects with a nodal line Γ−h ∈ N λ

Ω at 0 with the angle
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∠(Γ+
h ,Γ

−
h ) = α · π. Assume that the boundary parameter η2 ≡ C2 on Γ+

h is a
constant. Then the Laplacian eigenfunction u vanishes up to the order N at 0:

N ≥ n, if α 6= 2q + 1

2p
, p = 1, . . . , n− 1, (16)

where n ∈ N, n ≥ 2 and for a fixed p, q = 0, 1, . . . , p− 1.

Theorem 2.7. Let u be a Laplacian eigenfunction to (9). Suppose that a singular
line Γ+

h ∈ SλΩ intersects with a nodal line Γ−h ∈ N λ
Ω at the origin with the angle

∠(Γ+
h ,Γ

−
h ) = α · π. Then the Laplacian eigenfunction u vanishes up to the order N

at 0:

N ≥ n, if α 6= 2q + 1

2p
, p = 1, . . . , n− 1, (17)

where n ∈ N, n ≥ 2 and for a fixed p, q = 0, 1, . . . , p− 1.

Theorem 2.8. Let u be a Laplacian eigenfunction to (9). Suppose that a singular
line Γ+

h ∈ SλΩ intersects with a generalized singular line Γ−h ∈Mλ
Ω at the origin with

the angle ∠(Γ+
h ,Γ

−
h ) = α · π. Assume that the boundary parameter η1 on Γ−h is a

non-zero constant, i.e., η1 ≡ C1 6= 0. Then the Laplacian eigenfunction u vanishes
up to the order N at 0:

N ≥ n, if u(0) = 0 and α 6= q

p
, p = 1, . . . , n− 1, (18)

where n ∈ N, n ≥ 3 and q = 1, 2, . . . , p− 1 for a fixed p.

Indeed, Theorem 2.8 is a direct corollary of Theorem 2.3 by taking η2 = 0.
If α in (12) is irrational, which implies that the conditions (13), (14), (15), (16),

(17) and (18) are automatically satified, we have the vanishing orders of Laplacian
eigenfunctions for irrational intersection in the following few Theorems.

Theorem 2.9. Let u be a Laplacian eigenfunction to (9). Suppose that there are
two generalized singular lines Γ+

h and Γ−h from Mλ
Ω such that (12) holds. Assume

that η1 ≡ C1 and η2 ≡ C2, where C1 and C2 are two constants. If ∠(Γ+
h ,Γ

−
h ) = α ·π

with α ∈ (0, 2) irrational, then there hold that

Vani(u; 0) = 0, if u(0) 6= 0;

Vani(u; 0) = +∞, if u(0) = 0.

Theorem 2.10. Let u be a Laplacian eigenfunction to (9). Suppose that a gener-
alized singular line Γ−h ∈ Mλ

Ω intersects with a nodal line Γ+
h ∈ N λ

Ω at 0 with the

angle ∠(Γ+
h ,Γ

−
h ) = α · π. Assume that the boundary parameter η1 ≡ C1 on Γ−h is a

constant. If α ∈ (0, 2) is irrational, then there holds

Vani(u; 0) = +∞.

Theorem 2.11. Let u be a Laplacian eigenfunction to (9). Suppose that a singular
line Γ+

h ∈ SλΩ intersects with a generalized singular line Γ−h ∈ Mλ
Ω at 0 with the

angle ∠(Γ+
h ,Γ

−
h ) = α · π. Assume that the boundary parameter η1 ≡ C1 on Γ−h is a

constant. If α ∈ (0, 2) is irrational, then there hold that

Vani(u; 0) = 0, if u(0) 6= 0;

Vani(u; 0) = +∞, if u(0) = 0.
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Theorem 2.12. Let u be a Laplacian eigenfunction to (9). Suppose that a singular
line Γ−h ∈ SλΩ intersects with a nodal line Γ+

h ∈ N λ
Ω at 0 with the angle ∠(Γ+

h ,Γ
−
h ) =

α · π. If α ∈ (0, 2) is irrational, then there holds

Vani(u; 0) = +∞.

We can know from above theorems that the eigenfunction is generically vanishing
to infinity, namely u is identically zero in Ω for irrational intersection. Here, the
generic condition u(0) = 0 can be easily fulfilled in the inverse obstacle scattering
problem by the superposition of two incident waves and one can refer [23, Section
7] for more detailed discussions.

In the subsequent studies, we only present some latest studies concerning the
unique identifiability for sound-soft, sound hard and impedance polyhedral scatter-
ers, respectively.

2.2. Unique identifiability for sound-soft or sound-hard polyhedral scat-
terers. In this subsection, we review the existing results on the unique identifi-
ability for sound-soft or sound-hard polyhedral scatterers by finite many far-field
patterns. In 1994, Liu and Nachman [43] investigated the unique determination
results for the convex hull of a polyhedral obstacle by knowledge of the far-field
pattern with the help of the reflection principle for solutions of the Helmholtz equa-
tion across a flat boundary. Later, Cheng and Yamamoto [25] proved that a polyg-
onal obstacle in R2 could be uniquely determined by the far-field pattern under a
certain geometrical condition, which was expressed by the absence of trapped rays
in the exterior domain of the obstacle. Then, Alessandrini and Rondi [2] in 2005
studied the uniqueness of a sound-soft polyhedral scatterer by the far-field pattern
corresponding to an incident wave at one given wavenumber and a given incident
direction in Rn, n ≥ 2. For further illustration, we consider the obstacle scattering
problem (3) with Bu = u for time-harmonic acoustic waves with a sound-soft obsta-
cle Ω ⊂ Rn, n ≥ 2. Then the determination of Ω by a single far-field measurement
can be stated as

Theorem 2.13. [2, Theorem 2.2] Let us fix d ∈ Sn−1 and k > 0. A polyhedral
scatterer Ω is uniquely determined by the far-field pattern u∞.

Theorem 2.13 can be proved by following a reflection argument discussed in [25].
Instead of examining the boundary behavior of the nodal set of u, Alessandrini and
Rondi investigated the structure of the nodal set in the exterior of Ω. The detailed
proof of Theorem 2.13 can be found in [2, Section 3].

By introducing the concept of Dirichlet/Neumann set and Dirichlet/Neumann
hyperplane, Liu and Zou [46] in 2006 initiated a nowadays well-known path ar-
gument to establish the uniqueness for both the sound-soft and sound-hard cases.
Following the same definition of a polyhedral scatterer in [2], Liu and Zou derived
the unique identifiability result as follows.

Theorem 2.14. [46, Theorem 2] The polyhedral scatterer Ω is uniquely determined
by a single far-field pattern u∞ corresponding to an incident wave eikx·d with k > 0
and d ∈ Sn−1 fixed.

Very recently, Cao, Diao, Liu and Zou [23] established a completely novel ap-
proach in dealing with the Schiffer’s problem for sound-soft, sound-hard and
impedance obstacles. The uniqueness results can be regarded as direct applica-
tions of the new spectral findings by utilizing the critical connection between the
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intersecing angles of the nodal/generalized singular lines and the vanishing order of
the Laplacian eigenfunctions in R2. The relevant study for the three-dimensional
case is also concerned in [24]. The unique identifiabilities in [23] and [24] develop
a new argument that can treat the unique identifiability issue for several inverse
scattering problems in a unified manner, especially in terms of general materials
properties. Indeed, most existing uniqueness results concerning Schiffer’s problem
require certain geometrical a-prior knowledge, which is also need in [23] and [24].
Please refer to Subsection 2.3 for more detailed discussions.

The existing studies on the unique identifiability for sound-hard obstacles with
finitely many measurements depend heavily on the geometric setup of the scatterer.
Cheng and Yamamoto in [25] presented the unique determination results for sound-
hard polygons in R2 by two incident plane waves under a so called “non-trapping”
condition. Later, Elschner and Yamamoto in 2005 demonstrated that a sound-hard
polygonal obstacle could be uniquely determined by one single incident plane wave.
However, the argument in [33] is only valid in R2. In 2006, Liu and Zou investigated
the uniqueness for a very general sound-hard obstacle and the approaches they
established work for any Rn, n ≥ 1. We can see the following few theorems for the
mathematical illustrations in the aforementioned literatures.

Considering the scattering problem (3) with Bu = ∂νu, the paper by Liu and
Zou [46] significantly generalized the aforementioned results in two aspects. First the
restriction on the geometry of the scatterer is relaxed to a very general sound-hard
obstacle. Second, the uniqueness results in [46] are appliable to any dimension larger
than 1. However, finitely many incident plane waves are still required therein. The
main approach in the corresponding argument is reflection principle. We present
the main theorem as follows without proof. One can refer [46, Section 2] for the
rigorous analyses.

Theorem 2.15. [46, Theorem 1] Let d` ∈ Sn−1, ` = 1, 2, · · · , n, be n linearly
independent direcions and k > 0 be fixed. A polyhedral scatterer Ω is uniquely
determined by the far-field patterns U∞ = {u1,∞, u2,∞, · · · , un,∞}.

We would like to remark that the scatterer Ω defined in Theorem 2.15 is supposed
to fulfill the requirements introduced in [2].

Later, Liu, Petrini, Rondi and Xiao [44] also established an optimal stability
estimate for the determination of sound-hard polyhedral scatterers in Rn, n ≥ 2,
with the help of a minimal number of far-field measurements. They gave more
discussions of several admissible scatterers with minimal regularity assumptions,
which can be utilized on many occasions. The main idea follows similar to [54].

Very recently, as we mentioned earlier in Subsection 2.2, the unique determination
for sound-hard obstacles in a certain polygonal setup without any further technical
restrictions was derived in [23] for the two-dimiensional case and [24] for the three-
dimensional case, respectively. Compared with the existing literatures, the results
in [23] and [24] hold for the scatterers of more general material properties and
can be obtained by at most two far-field patterns. To avoid repetation, we also
refer to Subsection 2.3 for a brief introduction on the novel findings of Laplacian
eigenfunctions as well as the Schiffer’s problem for sound-hard obstacles, which are
presented in a unified representation on the boundary condition in (21).

2.3. Unique identifiability for impedance polyhedral scatterers. As dis-
cussed in Subsection 2.2, there is a widespread consensus that the unique identifi-
ability for a sound-soft obstacle can be derived by a single incident wave and for



RECENT PROGRESS ON INVERSE SCATTERING PROBLEMS 1763

a sound-hard obstacle, the unique determination can be obtained by a single inci-
dent plane wave with some fixed k ∈ R+ and d ∈ Sn−1. However, the study on
the Schiffer’s problem for impedance obstacles still remains to be challenging since
the reflection principle for Dirichlet and Neumann hyperplanes does not work for
impedance hyperplanes. But the study for impedance obstacle is of more practi-
cal applications compared with sound-soft and sound-hard cases. In [17], [18], [19]
and [20], reconstruction by linear sampling method was conducted for numerical
studies. On the theoritical side, in 2007, Liu and Zou [47] addressed the unique
determination for partially coated polyhedral scatterers in Rn, n ≥ 2. Precisely
speaking, two kinds of partially coated structures are considered. One is the scat-
terer of mixed sound-soft and impedance type. It suffices to derive the uniqueness
results by one single incident wave. The other one is the scatterer of mixed sound-
soft, sound-hard and impedance type. For this case, n independent incident waves
are needed in the recovery in Rn with n ≥ 3 and one incident wave is sufficient
to uniquely determine the scatterer in R2. Here, considering the scattering prob-
lem (3), we only present the main unique identifiability results for partially coated
obstacles according to the cases stated above. One can refer [47] for more details.

For the scatterer Ω, assume that

∂Ω = ∂ΩD ∪ U ∪ ∂ΩI ,

where ∂ΩD ⊂ ∂Ω and ∂ΩI ⊂ ∂Ω are two disjoint relatively open subsets having U
as their common boundary on ∂Ω. The total wave field in (3) fulfills

u = 0 on ∂ΩD, ∂νu+ iλu = 0 on ∂ΩI , (19)

where λ(x) ∈ C(∂ΩI) satisfing λ(x) ≥ λ0 > 0. Then we can know that for the
scatterer of mixed sound-soft and impedance type, there holds

Theorem 2.16. [47, Theorem 2.1] For any fixed k0 > 0 and d0 ∈ Sn−1, let Ω

and Ω̃ be two polyhedral scatterers on which the condition (19) is enforced with

respective surface impedance λ(x) and λ̃(x). Then we have Ω = Ω̃ and λ = λ̃, as

long as u∞(x̂; Ω, λ, k0,d0) = u∞(x̂; Ω̃, λ̃, k0,d0) for x̂ ∈ Sn−1.

And for the scatterer of mixed sound-soft, sound-hard and impedance type, the
following boundary conditions are satisfied

u = 0 on ∂ΩI , ∂νu = 0 on ∂ΩN , ∂νu+ iλu = 0 on ∂ΩI . (20)

In (20), ∂ΩD ⊂ ∂Ω, ∂ΩN ⊂ ∂Ω and ∂ΩI ⊂ ∂Ω are three disjoint relatively open
subsets. Then the unique determination can be derived as follows.

Theorem 2.17. [47, Theorem 2.2] For any fixed k0 > 0 and n linearly indepen-
dent directions d1,d2, · · · ,dn ∈ Sn−1, let u1(x), · · · , un(x) be the total fields of the
scattering problem associated with the boundary condition (20) corresponding to the

incident waves eikx·d1 , · · · , eikx·dn , respectively. Let Ω and Ω̃ be two polyhedral scat-

terers on which (20) is enforced with respective surface impedance λ(x) and λ̃(x).

Then we have Ω = Ω̃ and λ = λ̃, as long as u∞(x̂; Ω, λ, k0,dj) = u∞(x̂; Ω̃, λ̃, k0,dj)
for j = 1, · · · , n and x̂ ∈ Sn−1.

In particular, if ∂ΩI = ∅, which implies that the scatterer is of mixed sound-soft
and sound-hard type, then the following theorem holds concerning more general
results in R2 allowing all possible physical conditions.
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Theorem 2.18. [47, Theorem 2.4] For any fixed d0 ∈ S1 and k0 > 0, let Ω

and Ω̃ be two polygonal scatterers in R2 with unknown physical properties. Then

we have Ω = Ω̃, and both scatterers have the same physical properties, as long as

u∞(x̂; Ω, k0,d0) = u∞(x̂; Ω̃, k0,d0) for x̂ ∈ S1.

As a direct application of the geometric structures of Laplacian eigenfunctions
in Subsection 2.1, we have the unique identifiability results for Schiffer’s problem
for a certain type of admissible complex polygonal obstacle by at most two far-
field patterns. Furthermore, the constant impedance boundary parameter η can be
recovered simultaneously for impedance obstacle.

Definition 2.19. [23, Definition 8.1] Suppose that Ω ⊂ R2 is an obstacle associated
with the following boundary condition

Bu = ∂νu+ ηu = 0 on ∂Ω. (21)

Ω is said to be an admissible polygonal obstacle if it is an open polygon and on each
edge of Ω, η is a constant (possibly zero) or ∞. If all the angles of Ω are irrational,
Ω is called an irrational obstacle. Otherwise, if there exists a corner angle of Ω
being rational, then it is called a rational obstacle.

Definition 2.20. Ω is said to be an admissible complex polygonal obstacle if it
fulfills for N ∈ N

(Ω, η) =

N⋃
`=1

(Ω`, η`), with η =

N⋃
`=1

η`χ∂Ω`∩∂Ω, (22)

where each Ω` is an admissible polygonal obstacle. Moreover, if all Ω` are irra-
tional, ` = 1, · · · , N , then Ω is said to be irrational, otherwise, it is said to be
rational of degree p, where p is the smallest degree among all the degrees of rational
components.

Now the unique determination results on Schiffer’s problem with respect to an
admissible complex irrational polygonal obstacle or an admissible complex rational
polygonal obstacle of degree p ≥ 3 by at most two far-field patterns can be stated
as the following two theorems, respectively.

Theorem 2.21. Let (Ω, η) and (Ω̃, η̃) be two admissible complex irrational obsta-
cles. Let k ∈ R+ be fixed and dj, j = 1, 2 be two distinct incident directions from

S1. Let G denote the unbounded connected component of R2\(Ω ∪ Ω̃). Let u∞ and

ũ∞ be, respectively, the far-field patterns associated with (Ω, η) and (Ω̃, η̃). If

u∞(x̂,dj) = ũ∞(x̂,dj), x̂ ∈ S1, j = 1, 2, (23)

then one has that (
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
cannot have a corner on ∂G.

The precise proof of this theorem can be found in [23, Theorem 8.3]. The similar
unique identifiability also holds for the convex hull of an admissible complex irra-
tional obstacle and the impedance boundary parameter η can be recovered at the
same time. Indeed, we have the following corollary.
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Corollary 1. Let (Ω, η) and (Ω̃, η̃) be two admissible complex irrational obstacles.
Let k ∈ R+ be fixed and dj, j = 1, 2 be two distinct incident directions from S1.

Let G denote the unbounded connected component of R2\(Ω ∪ Ω̃).Let u∞ and ũ∞

be, respectively, the far-field patterns associated with (Ω, η) and (Ω̃, η̃). If

u∞(x̂,dj) = ũ∞(x̂,dj), x̂ ∈ S1, j = 1, 2, (24)

then one has that

CH(Ω) = CH(Ω̃) := Σ, (25)

and

η = η̃ on ∂Ω ∩ ∂Ω̃ ∩ ∂Σ. (26)

The uniqueness of the impedance boundary parameter η can be proved by con-
tradiction with the help of Holmgren uniqueness property.

For an admissible complex rational obstacle of degree p ≥ 3, we have

Theorem 2.22. Let (Ω, η) be an admissible complex rational obstacle of degree
p ≥ 3. Let k ∈ R+ be fixed and dj, j = 1, 2 be two distinct incident directions
from S1. Set uj(x) = u(x; k,dj) to be the total wave fields associated with (Ω, η)
and eikx·dj , j = 1, 2, respectively. Recall that G denotes the unbounded connected

component of R2\(Ω ∪ Ω̃). If the following condition is fulfilled,

L (u2 · ∇u1 − u1 · ∇u2) (xc) 6= 0, (27)

where xc is any vertex of Ω, then then one has that(
∂Ω\∂Ω̃

)
∪
(
∂Ω̃\∂Ω

)
cannot have a corner on ∂G.

Theorem 2.22 is based on the fact that the rational degree of an admissible
complex rational polygonal obstacle is at least 2, which is a direct conclusion of
theorem 2.3 to theorem 2.12.

Remark 1. In (32), for a function f ∈ L2
loc(R2\Ω), L(f) is defined as

L(f)(xc) := lim
r→+0

1

|Ωr(xc)|

∫
Ωr(xc)

f(x) dx, (28)

if the limit exists, where Ωr(xc) = B(xc, r) ∩ R2\Ω, r ∈ R+, with B(xc, r) being
introduced in (11). Indeed, from a practical point of view, this condition (32)
depends on the a-priori knowledge of the underlying obstacle as well as the choice
of the incident waves. One can refer [23, Page 36] for more specific explanations.

Similar to Corollary 1, the unique determination of the convex hull of an admis-
sible complex rational obstacle can also be derived, which is omitted.

The new approach developed in the proofs of Theorem 2.21 and Theorem 2.22 can
uniformly tackle the unique determination for sound-soft, sound-hard and impedance
obstacles by at most two far-field measurements and is completely local, which en-
ables us to determine an impedance obstacle as well as its surface impedance by at
most two far-field patterns.

It is the first time in the literature to present a systematic study of the intriguing
connections between the vanishing orders of Laplacian eigenfunctions and the inter-
secting angles of their nodal/generalized singular lines. The unique identifiability
for the impedance or generalized impedance cases in Theorem 2.21 and 2.22 has
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been an open problem for a long time. Therefore, these results should be truly
original and of significant interest in the spectral theory of Laplacian eigenfunctions
and also Schiffer’s problem for inverse obstacle scattering problems.

As an extension of [23], two of the authors [24] further investigated in R3 the
analytic behaviours of Laplacian eigenfunctions at places where nodal or general-
ized singular planes intersect. The relevant geometric setup is more complicated,
where an edge corner intersected by two planes and a vertex corner intersected by
at least three planes are considered respectively. Precisely speaking, the vanishing
order of Laplacian eigenfunctions at an edge corner is related to the rationality of
the intersecting angle similar to the two-dimensional case and the vertex corner
case is related to the intersecting angle as well as the intrinsic properties of the Le-
gendre polynomails. An important and direct application of these vanishing results
is the unique identifiability for determining the scatterer and the surface impedance
parameter (for impedance obstacle) by at most two far-field measurements. To
avoid repetation, we skip the detailed analyses for the vanishing order of Laplacian
eigenfunctions in [24, Section 2 and 3] at edge corners and vertex corners, respec-
tively. But we present the unique determination results for sound-soft, sound-hard
and impedance obstacles in a uniform way in the following theorem. In particu-
lar, for impedance obstacles, the corresponding surface parameter can be recovered
simultaneously.

The definition for an admissible polyhedral obstacle is quite different from that
of two-dimensional case due to the more complicated geometric formulation. We
refer to [24, Definition 6.1] for the rigorous statements.

Similar to the two-dimensional case, we separately have the unique determination
for an admissible complex irraitonal polyhedral obstacle and an admissible complex
rational polyhedral obstacle of degree p ≥ 3 in the following two therorems.

Theorem 2.23. Consider a fixed k ∈ R+, and two distinct incident directions

d1 and d2 from S2. Let (Ω, η) and (Ω̃, η̃) be two admissible complex irrational
obstacles, with u∞ and ũ∞ being their corresponding far-field patterns and G being

the unbounded connected component of R3\(Ω ∪ Ω̃). If u∞ and ũ∞ are the same in
the sense that

u∞(x̂; k,dj) = ũ∞(x̂; k,dj), for j = 1, 2 and all x̂ ∈ S2, (29)

then (∂Ω\∂Ω̃)
⋃

(∂Ω̃\∂Ω) cannot possess a vertex corner on ∂G. Moreover,

η = η̃ on ∂Ω ∩ ∂Ω̃. (30)

Theorem 2.24. Consider a fixed k ∈ R+, and two distinct incident directions d1

and d2 from S2. Let (Ω, η) and (Ω̃, η̃) be two admissible complex rational obstacles
of degree p ≥ 3, with uj(x) := u(x; k,dj) and ũj := ũ(x; k,dj) being their corre-
sponding total wave fields associated with the incident field eikx·dj , and u∞(x̂; k,dj)
and ũ∞(x̂; , k,dj) being their corresponding far-field patterns for j = 1, 2. We fur-

ther write G for the unbounded connected component of R3\(Ω ∪ Ω̃). Then the

set (∂Ω\∂Ω̃) ∪ (∂Ω̃\∂Ω) can not possess a vertex corner on ∂G, if the following
conditions are satisfied:

u∞j (x̂; k,dj) = ũ∞j (x̂; k,dj), x̂ ∈ S2, j = 1, 2, (31)

L (u2 · ∇u1 − u1 · ∇u2) (xc) 6= 0 and L (ũ2 · ∇ũ1 − ũ1 · ∇ũ2) (xc) 6= 0 (32)

for all vertices xc of Ω, where L is defined in (28).
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The main proofs of Theorem 2.23 and Theorem 2.24 are similar to the correspond-
ing two-dimensional case, one can also refer [24, Section 6] for detailed analyses.

We would like to emphasize that the unique identifiability results as well as the
corresponding argument in both R2 and R3 are “localized” around the corner by
utilizing the spectral results for Laplacian eigenfunctions. This indeed provides a
completely new and effective approach in studying inverse scattering problems.

3. Inverse medium scattering problems. As mentioned in the introduction,
there are quite a lot of studies concerning the unique identifiability on the inverse
medium scattering problems with the penetrable scatterers in the inhomogeneous
medium, which shall be focused on the case that the support of the medium pa-
rameter is of polygonal or polyhedral geometry in this section. Before that, we
first review some recent progress on geometrical structures of transmission eigen-
functions to (35), which have important applications in unique determinations by
a single far-field pattern in the inverse medium problems.

3.1. Recent progress on geometrical structures of transmission eigenfunc-
tions. The interior transmission eigenvalue problem was first introduced by A.
Kirsch [37] in 1986. The theoretical studies on interior transmission eigenvalue
problems are of significant interest in the inverse medium scattering problems. An
important application is to the invisibility phenomenon. The first quantitive result
on the intrinsic properties of transmission eigenfunctions was studied by Bl̊asten
and Liu in [11]. They rigorously investigated the vanishing properties of the interior
transmission eigenfunctions at a corner whose angle is less than π by establishing
a quantitive lower bound associated with incident Herglotz waves. Compared with
the study for eigenvalues, the analyses concerning eigenfunctions are more difficult
and still remain to be a fascinating topic. Later, in [9], it was further numerically
investigated that the transmission eigenfunctions vanish near a corner whose angle
is less than π, whereas the transmission eigenfunctions would localize at a corner
whose angle is larger than π. Under the H2-regularity on the transmission eigen-
functions, Bl̊asten [8] proved that the the transmission eigenfunctions must vanish
at the corner point if the corner is not degenerated.

The mathematical argument in [11] is indirect which connects the vanishing
property of the interior transmission eigenfunctions with the stability of a certain
wave scattering problem with respect to variation of the wave field at the corner
point. The main results in [11] can be summarized by

Theorem 3.1. [11, Theorem 3.2] Let n ∈ {2, 3} and V = φχΩ, where φ(x) is
a Hölder-continuous function in Rn and Ω is a convex polygon in R2 or a cuboid
in R3. Assume that k > 0 is a transmission eigenvalue and the corresponding
transmission eigenfunctions v, w ∈ L2(Ω) satisfying (8). If v can be approximated
in the L2-norm by a sequence of Herglotz waves vj defined by

vj(x) =

∫
Sn−1

eikξ·xgj(ξ)dσ(ξ), ξ ∈ Sn−1, x ∈ Rn. (33)

satisfying one of the following two assumptions

(a) the kernel gj ∈ L2(Sn−1) is uniformly bounded,
(b) the Herglotz waves vj and its kernel gj fulfill that

‖v − vj‖L2(Ω) ≤ e−j , ‖gj‖L2(Sn−1) ≤ C(ln j)β , (34)

where the constants C > 0 and 0 < β < 1/(2n+ 8), (n = 2, 3),
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then

lim
ρ→0

1

m(B(xc, r) ∩ Ω)

∫
B(xc,r)∩Ω

|v(x)|dx = 0,

where m(B(xc, r) ∩ Ω) is the measure of B(xc, r) ∩ Ω, xc is any vertex of Ω such
that φ(xc) 6= 0.

Bl̊asten [8] utilized an energy identity from the enclosure method and constructed
a new type of planar complex geometrical optics solution whose logarithm is a
branch of the square root to reveal that the transmission eigenfunction v to (35)
must vanish at the corner point in R2 or an edge corner point xc in R3 if v is
Hölder-continuous at xc and V (xc) 6= 0. Indeed, it is stated that

Theorem 3.2. [8, Theorem 4.2] Let n ∈ {2, 3} and Ω be bounded domain in
Rn. Let V ∈ L∞(Ω). Assume that k > 0 is a transmission eigenvalue and the
corresponding transmission eigenfunctions v, w ∈ L2(Ω) satisfying (8). Let xc be
any vertex or edge point of Ω such that V is Cα smooth near xc. If v or w is
H2-smooth in a neighborhood of xc in Ω, then v(xc) = w(xc) = 0 if V (xc) 6= 0.

In [13], Bl̊asten and Liu further extended their results on geometric structures of
transmission eigenfunctions at corners intersected by line segments to the corners
with curvature. Roughly speaking, they established a relationship among the value
of transmission eigenfunctions, the diameter of the domain and the underlying re-
fractive index, which yields that the interior transmission eigenfunctions must be
nearly vanishing at a high-curvature point on the boundary. These new findings
significantly relaxed the dependence on the geometry of the scatterer (smallness
assumption) but focus on local structures, which are more practicle and interesting.
The main theoretical results on the vanishing properties of transmission eigenfunc-
tions at high-curvature point can be seen in [13, Section 3] and one can also refer
to [13, Section 4] for the uniqueness results for the inverse scattering problem asso-
ciated with the high curvature geometry of the underlying obstacle.

Consider the following interior transmission eigenvalue problem with a conductive
boundary condition for v, w ∈ H1(Ω),

∆w + k2(1 + V )w = 0 in Ω,

∆v + k2v = 0 in Ω,

w = v, ∂νv + ηv = ∂νw on ∂Ω,

(35)

where Ω is a bounded Lipschitz domain in Rn, n = 2, 3, V ∈ L∞(Ω) and η ∈
L∞(∂Ω), ν ∈ Sn−1 signifies the exterior unit normal vector to ∂Ω. If for a certain
k ∈ R+, there exists a pair of nontrivial solutions (v, w) ∈ H1(Ω)×H1(Ω) to (35),
then k is called a conductive transmission eigenvalue and (v, w) is referred to as
the corresponding pair of conductive transmission eigenfunctions. Especially, when
η ≡ 0, (35) degenerates to be (8).

The geometric properties studied in [11] are significantly generalized in a recent
paper [30] concerning the geometric structures of conductive transmission eigen-
functions to (35). Roughly speaking, the results are extended in the following three
aspects. First, the conductive transmission eigenfunctions include the interior trans-
mission eigenfunctions as a special case. The geometric structures established for
the conductive transmission eigenfunctions in [30] include the results in [11] as a
special case. Second, the vanishing property of the conductive transmission eigen-
functions is established for any corner as long as the corner singularity is not degen-
erate. Third, the regularity requirements on the interior transmission eigenfunctions
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in [11] are significantly relaxed for the conductive transmission eigenfunctions. Fur-
thermore, geometrical structures have practical and important applications in the
inverse medium problems. In the following, we review the intriguing discoveries
regarding the geometric properties of conductive transmission eigenfunctions in R2

as well as a unique identification for the polygonal conductive obstacle by a sin-
gle far-field measurement. The argument for the three-dimensional case follows a
similar approach to the two-dimensional case with the help of the dimension re-
duction operator, hence we skip the details. However, we would like to point out
that the corresponding analyses in R3 are much more tedious and one can refer
to [30, Section 3] for more discussions.

In order to present main results on the geometric properties of the conductive
transmission eigenfunctions, which shall play a critical role in the unique identifia-
bility for the conductive scatterer, we first introduce the following notations. Denote
Bh(x) by an open ball of radius h ∈ R+ and centered at x and Wxc(θW ) is an open
sector in R2 with the vertex xc and the open angle θW .

Then the main theorems in [30] concerning the vanishing properties of conductive
transmission eigenfunctions can be summarized as follows.

Theorem 3.3. [30, Theorem 2.1] Let v ∈ H1(Ω) and w ∈ H1(Ω) be a pair of
eigenfunctions to (35) associated with k ∈ R+. Assume that the Lipschitz domain
Ω ⊂ R2 contains a corner Ω ∩ BR(xc) = Ω ∩Wxc(θW ), where xc is the vertex of
Ω ∩Wxc(θW ) and R > 0. Moreover, there exits a sufficiently small neighbourhood
Sh(xc) = Ω ∩ Bh(xc) = Ω ∩Wxc(θW ) (i.e. h > 0 is sufficiently small) of xc in Ω,
where

Γ±h (xc) := ∂Wxc(θW ) ∩Bh(xc), ΣΛh(xc) := Sh(xc)\Sh/2(xc),

Sh/2(xc) := Ω ∩Bh/2(xc) = Ω ∩Wxc(θW ),
(36)

such that qw ∈ Cα(Sh(xc)) with q := 1 + V and η ∈ Cα
(

Γ±h (xc)
)

for 0 < α < 1,

and v − w ∈ H2(ΣΛh(xc)). If the following conditions are fulfilled:

(a) the transmission eigenfunction v can be approximated in H1(Sh) by the Her-
glotz functions vj, j = 1, 2, . . ., with kernels gj satisfying

‖v − vj‖H1(Sh) ≤ j−1−Υ, ‖gj‖L2(S1) ≤ Cj%, (37)

for some constants C > 0, Υ > 0 and 0 < % < 1, where vj is defined in (33);
(b) the function η(x) doest not vanish at the corner, i.e.,

η(xc) 6= 0, (38)

(c) the open angle of the open sector Wxc(θW ) satisfy

θW 6= π, (39)

then one has

lim
ρ→+0

1

m(Bρ(xc) ∩ Ω)

∫
Bρ(xc)∩Ω

|v(x)|dx = 0, (40)

where m(Bρ(xc) ∩ Ω) is the area of Bρ(xc) ∩ Ω.

The proof of this theorem is based on microlocal analysis combining with the
specific complex geometrical optics solutions introduced in [8].

If stronger regularity conditions can be fulfilled by the conductive transmission
eigenfunction v to (35), it is apparent to have



1770 XINLIN CAO, HUAIAN DIAO AND JINHONG LI

Theorem 3.4. [30, Theorem 2.2] Let v ∈ H2(Ω) and w ∈ H1(Ω) be eigenfunctions
to (35). Assume that the Lipschitz domain Ω ⊂ R2 contains a corner Ω∩BR(xc) =
Ω ∩Wxc(θW ), where xc is the vertex of Ω ∩Wxc(θW ) and R > 0. Moreover, there
exits a sufficiently small neighbourhood Sh(xc) = Ω ∩ Bh(xc) = Ω ∩Wxc(θW ) (i.e.

h > 0 is sufficiently small) of xc in Ω such that qw ∈ Cα(Sh(xc)) with q := 1 + V

and η ∈ Cα
(

Γ±h (xc)
)

for 0 < α < 1, and v−w ∈ H2(ΣΛh(xc)), where Γ±h (xc) and

ΣΛh(xc) are defined in (36). Under the following assumptions:

(a) the function η(x) doest not vanish at the corner, i.e.,

η(xc) 6= 0, (41)

(b) the open angle of the open sector Wxc(θW ) satisfy

θW 6= π,

then we have v(xc) = w(xc) = 0.

3.2. Unique recovery results for inverse medium problems. Consider the
following medium scattering system for u ∈ H1

loc(Rn) in a bounded domain Ω ⊂ Rn:

∆u− + k2(1 + V )u− = 0 in Ω,

∆u+ + k2u+ = 0 in Rn\Ω,

u+ = u−, ∂νu
+ = ∂νu

− on ∂Ω,

u+ = ui + us in Rn\Ω,

lim
r→∞

r(n−1)/2 (∂ru
s − ikus) = 0, r = |x|,

(42)

where ui = ui = eikx·d is the incident wave, V denotes the material parameter
or potential of an inhomogeneous acoustic medium supported in Ω, and the last
equation of (42) is the Sommerfield radiation condition which ensures the outgoing
nature of the scattered wave us.

The Sommerfeld radiation condition in (42) implies that the asymptotic expan-
sion (5) still holds with the far-field pattern u∞(x̂;ui) for all x̂ := x/|x| ∈ Sn−1. The
inverse problem associated with (42) is to recover V by the knowledge of u∞(x̂;ui).
Bl̊asten and Liu first established the unique identifiability results by single far-field
pattern for (42) when the support of V fulfills certain polyhedral cell and nest
geometry; see [12, Section 2].

Consider the scattering problem (42) with a piecewise constant refractive index

V :=
∑
`

V`χΣ` , Ω =
⋃
`

Σ`, ` ∈ N, (43)

where V` ∈ C are constants and Σ` ⊂ Rn are mutually disjoint bounded open
subsets.

Definition 3.5. [12, Definition 2.1] An admissible cell Σ ⊂ Rn is a bounded open
convex polytope, i.e. a polygon in R2 and a polyhedron in R3.

Based on Definition 3.5, in the following two definitions, the polyheral cell and
nest geometry are defined, respectively.

Definition 3.6. [12, Definition 2.2] For ` ∈ N let each of Σ` ⊂ Rn be an admissible
cell or the empty set, ∪`Σ` is simply connected, bounded and Σ` ∩Σk = ∅ if ` 6= k.
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A bounded potential V ∈ L∞(Rn) is said to be piecewise constant with polyhedral
cell geometry if

1. there are constants V` ∈ C such that

V (x) =

∞∑
`=1

V`χΣ`(x),

with V` = 0 if Σ` = ∅, and
2. each Σ` 6= ∅ has a vertex that can be connected to infinity by a path that

stays distance d ≥ d0 > 0 from any Σk with k > `.

Definition 3.7. [12, Definition 2.4] For ` ∈ N, let each of Σ` ⊂ Rn be an admissible
cell or the empty set, and

Σ` c Σ`+1.

A bounded potential V ∈ L∞(Rn) is said to be piecewise constant with polyhedral
nested geometry if there are constants V` ∈ C, with V1 6= 0, V`+1 6= V` such that

V (x) =

∞∑
`=1

V`χU`(x)

where U` := Σ` \ Σ`+1.

Bl̊asten and Liu also introduced a more general case that the potential V is of
Hölder continuous at the corner. The corresponding definition for the admissible
potential can be described by

Definition 3.8. [12, Definition 2.4] A potential V ∈ L∞ is a non-constant admissi-
ble potential if there is an admissible cell Σ ⊂ Rn and bounded function ψ ∈ L∞(Rn)
such that V = χΣψ. Moreover we require that ψ be Hölder Cα-continuous in a
neighbourhood of each of the vertices of Σ with α > 0 in 2D and α > 1/4 in 3D.
Finally, the function ψ must not vanish at any of the vertices.

Bl̊asten and Liu presented the main uniqueness results for the refractive index in
a certain medium structure based on the assumption that for each ` ∈ N, the total
wave field does not vanish at any vertex of Σ`. This assumption can be fulfilled for
low-frequencies with incident plane waves, i.e. k is small enough.

Theorem 3.9. [12, Theorem 2.6] Let n ∈ {2, 3} and k > 0. Let V and Ṽ be two
piecewise constant potentials with common polyhedral cell geometry. Let ui be an
incident wave such that u(xc) 6= 0 or ũ(xc) 6= 0 for each vertex xc of the cells of V

and Ṽ . If u∞(x̂;ui) = ũ∞(x̂;ui), then V = Ṽ .

Theorem 3.10. [12, Theorem 2.7] Let n ∈ {2, 3} and k > 0. Let V and Ṽ be two
piecewise constant potentials with polyhedral nested geometry. Let ui be an incident

wave such that u(xc) 6= 0 or ũ(xc) 6= 0 for each vertex xc of the cells of V and Ṽ .

If u∞(x̂;ui) = ũ∞(x̂;ui) then V = Ṽ .

For more general mediums with potentials of Cα-continuity, it is known that

Theorem 3.11. [12, Theorem 2.5] Let n ∈ {2, 3}, k > 0 and V = χΣψ, Ṽ = χΣ̃ψ̃

be two non-constant admissible potentials. Let ui be an incident wave such that

u(xc) 6= 0 or ũ(xc) 6= 0 for the total waves u, ũ at each vertex xc of Σ or Σ̃.
Assume that

u∞(x̂;ui) = ũ∞(x̂;ui)
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for the far-field patterns arising from V and Ṽ , respectively. Then Σ = Σ̃ and

ψ(xc) = ψ̃(xc) on each vertex xc of Σ = Σ̃.

Theorems 3.9, 3.10 and 3.11 were established by investigating the singular be-
haviors of the transmission eigenfunctions at the corner point, which can also be
proved by using the geometrical structures of transmission eigenfunctions at the
corner (cf. [8, 11]).

In the following, we are concerned with the time-harmonic electromagnetic wave
scattering from a conductive medium body. The conductive medium body arises in
several applications of practical importance, including the modeling of an electro-
magnetic object coated with a thin layer of a highly conducting material and the
magnetotellurics in geophysics. Indeed, the following conductive scattering prob-
lem (44) can be derived by the transverse-magnetic (TM) polarisation from the
time-harmonic Maxwell system

∆u− + k2qu− = 0 in Ω,

∆u+ + k2u+ = 0 in R2\Ω,

u+ = u−, ∂νu
+ + ηu+ = ∂νu

− on ∂Ω,

u+ = ui + us in R2\Ω,

lim
r→∞

r1/2 (∂ru
s − ikus) = 0, r = |x|,

(44)

where q = 1 + V , ui = eikx·d is the impinging incident wave and us is the corre-
sponding scattered wave interrupt by Ω. The well-posedness of the direct problem
(44) is known (cf. [14]). The detailed discussions on the aforementioned two specific
applications and the mathematical formulations of the associated inverse problems
can be found in [22, Section 1] and [30, Section 4], respectively.

Theorem 3.3 and Theorem 3.4 can be applied directly to establish the uniquely
determination of the shape of an admissible conductive scatterer by a single far-field
pattern.

Definition 3.12. Let (Ω; k,d, q, η) be a conductive scatterer associated with the
incident plane wave ui = eikx·d with d ∈ S1 and k ∈ R+. Consider the scattering
problem (44) and u is the total wave fields therein. The scatterer is said to be
admissible if it fulfills the following conditions:

(a) Ω is a bounded simply connected Lipschitz domain in R2, and q ∈ L∞(Ω),
η ∈ L∞(∂Ω).

(b) Following the notations in Theorem 3.3, if Ω possesses a corner Bh(xc)∩Ω =
Ω ∩Wxc(θW ) where xc the vertex of the sector Wxc and the open angle θW

of Wxc(θW ) satisfies θW 6= π, then qu ∈ Cα(Sh(xc)), η ∈ Cα(Γ±h (xc)), where

Sh(xc) and Γ±h (xc) are defined in (36).
(c) The total wave field u is non-vanishing everywhere in the sense that for any

x ∈ Rn,

lim
ρ→+0

1

m(B(x, ρ))

∫
B(x,ρ)

|u(x)|dx 6= 0. (45)

Theorem 3.13. [30, Theorem 4.1] Consider the conductive scattering problem
(44) associated with two conductive scatterers (Ωj ; k,d, qj , ηj), j = 1, 2, in R2. Let
u∞j (x̂;ui) be the far-field pattern associated with the scatterer (Ωj ; qj , ηj) and the
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incident field ui. Suppose that (Ωj ; k,d, qj , ηj), j = 1, 2 are admissible and

u∞1 (x̂;ui) = u∞2 (x̂;ui) (46)

for all x̂ ∈ S1 and a fixed incident wave ui. Then

Ω1∆Ω2 :=
(
Ω1\Ω2

)
∪
(
Ω2\Ω1

)
(47)

cannot possess a corner. Hence, if Ω1 and Ω2 are convex polygons in R2, one must
have

Ω1 = Ω2. (48)

If conductive parameter η is constant, then it can be recovered simultaneously
once the admissible conductive scatter Ω is determined.

Theorem 3.14. [30, Theorem 4.2] Consider the conductive scattering problem (44)
associated with the admissible conductive scatters (Ωj ; k,d, q, ηj), where Ωj = Ω for
j = 1, 2 and ηj 6= 0, j = 1, 2, are two constants. Let u∞j (x̂;ui) be the far-field

pattern associated with the scatter (Ω; k,d, q, ηj) and the incident field ui. Suppose
that (Ω; k,d, q, ηj), j = 1, 2, are admissible and

u∞1 (x̂;ui) = u∞2 (x̂;ui) (49)

for all x̂ ∈ S1 and a fixed incident wave ui. Then if k is not an eigenvalue of the
partial differential operator ∆ + k2q in H1

0 (Ω), we have η1 = η2.

It is clear that Theorem 3.14 is established with a-prior knowledge that the
medium parameter q is known. Indeed, in our recent study [22], we proved further
that the medium parameter q as well as the conductive surface parameter η can
be uniquely determined simultaneously by a single far-field measurement within a
more general geometry. In [22, Section 2], two geometric setups called polygonal-
nest geometry and polygonal-cell geometry for the conductive medium body were
introduced.

Similar to the geometric setup proposed from Definition 3.5 to Definition 3.7,
following the rigorous definitions for the polygonal-nest geometry in [22, Definition
2.3] and the polygonal-cell geometry in [22, Definition 2.4], an admissible conductive
medium of polygonal-nest or polygonal-cell structure was established in [22, Defi-
nition 4.1]. Indeed, the admissibility condition in [22, Definition 4.1] indicates that
the total field u is not vanishing at any vertex of the polygonal-nest partition or
the boundary of the polygonal-cell conductive medium body. For compatibility, a
local uniqueness regarding the shape of an admissible polygonal-nest or polygonal-
cell conductive medium body by a single far-field measurement was first presented
without knowing the medium parameter and the conductive surface parameter.

Before presenting the unique identification results, similar to (43), we are sup-
posed to introduce some necessary notions first, which shall be utilized in the sub-
sequent discussions. For a polygonal-nest conductive medium body (Ω; q, η) as
described in [22, Definition 2.3], denote

(Ω; q, η) =

N⋃
`=1

(U`; q`, η`) (50)

and

Ω =

N⋃
`=1

U`, q =

N∑
`=1

q`χU` , η =

N∑
`=1

η`χ∂Σ` , (51)
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where U` := Σ`\Σ`+1 and each Σ` is a conductive medium body, q := 1 + V ∈
L∞(Rn) with V being introduced in (42).

For a polygonal-cell conductive medium body (Ω; q, η) as described in [22, Defi-
nition 2.4], denote

(Ω; q, η) =

N⋃
`=1

(Σ`; q`, η
∗) (52)

and

Ω =

N⋃
`=1

Σ`, q =

N∑
`=1

q`χΣ` , η =

N∑
`=1

η∗χ∂Σ` , (53)

where each Σ` is a conductive medium body and η∗ is the uniform conductive
surface parameter.

Σ1

Σ2

Σ3

(a) Polygonal-nest geometry

Σ1

Σ2

Σ3

Σ4

Σ5

(b) Polygonal-cell geometry

Figure 1. Schematic illustration of the two polygonal geometries
in R2 for a conductive medium body.

Fig. 1 (b) presents a typical polygonal-cell partition of Ω with five hexagonal cells.
It is interesting to note that it is the honeycomb graphene structure. We would like
to emphasize that for a polygonal-cell partition, each cell is not necessary to be
convex.

Definition 3.15. Let (Ω; q, λ) be polygonal-nest or polygonal-cell conductive
medium body as described in (50) and (52), respectively. The scatterer is said
to be admissible if it fulfills the following condition: consider a polygonal-nest con-
ductive medium body with the polygonal-nest partition {Σ`}N`=1, for any vertex
xc ∈ ∂Σ`, u(xc) 6= 0; consider a polygonal-cell conductive medium body, for any
vertex xc ∈ ∂Ω, u(xc) 6= 0, where u is the solution to (44).

Theorem 3.16. [22, Theorem 4.1] Consider the conductive scattering problem (44)
associated with two admissible polygonal-nest or polygonal-cell conductive medium
bodies (Ωj ; qj , ηj), j = 1, 2, in R2. Let u∞j (x̂;ui) be the far-field pattern associated

with the conductive medium body (Ωj ; qj , ηj) and the incident field ui, respectively.
Suppose that

u∞1 (x̂;ui) = u∞2 (x̂;ui) (54)

for all x̂ ∈ S1 and a fixed incident wave ui. Then

Ω1∆Ω2 :=
(
Ω1\Ω2

)
∪
(
Ω2\Ω1

)
(55)

cannot possess a corner. Furthermore, if Ω1 and Ω2 are two admissible polygonal-
nest conductive medium bodies, one must have

∂Ω1 = ∂Ω2. (56)
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It is easy to see from Theorem 3.16 that for a polygonal-nest medium body,
the local uniqueness results readily imply the global uniqueness results. The corre-
sponding proof for Theorem 3.16 is based on the geometrical structures of conductive
transmission eigenfunctions established in Theorem 3.4.

Next, the simultaneous unique determination for the piecewise constant medium
parameter as well as the conductive surface parameter associated with an admis-
sible polygonal-nest or polygonal-cell conductive medium body can be achieved as
the following two theorems. However, a-prior knowledge on the cell structure of
an admissible polygonal-cell conductive medium body is assumed to be known in
advance. The proof of Theorems 3.17 and 3.18 can be obtained by utilizing certain
microlocal analysis and the complex geometrical optics solution introduced in [8].

Theorem 3.17. [22, Theorem 4.2] Considering the conductive scattering prob-
lem (44) associated with two admissible polygonal-cell conductive medium bodies
(Ω; qj , ηj) in R2, j = 1, 2. For j = 1, 2, we let the material parameters qj and ηj
with a common polygonal-cell partition {Σ`}N`=1 defined in (53) be characterized by

qj =

N∑
`=1

q`,jχΣ`,j , ηj =

N∑
`=1

η∗jχ∂Σ`,j . (57)

Let u∞j (x̂;ui) be the corresponding far-field pattern associated with the incident wave

ui corresponding to (Ω; qj , ηj), respectively. Suppose that (Ω; qj , ηj), j = 1, 2, fulfill

u∞1 (x̂;ui) = u∞2 (x̂;ui) (58)

for all x̂ ∈ S1 and a fixed incident wave ui. Then we have q1 = q2 and η1 = η2.

Theorem 3.18. Considering the conductive scattering problem (44) associated with
two admissible polygonal-nest conductive medium bodies (Ωj ; qj , ηj) in R2, j = 1, 2,

where the associated polygonal-nest partitions {Σ`,1}N1

`=1 and {Σ`,2}N2

`=1 are defined

in (51) with Ω1 =
⋃N1

`=1 U`,1 and Ω2 =
⋃N2

`=1 U`,2, where U`,j = Σ`,j\Σ`+1,j, ` =
1, . . . , Nj. For j = 1, 2, we let the material parameters qj and ηj be characterized
by

qj =

Nj∑
`=1

q`,jχU`,j , ηj =

Nj∑
`=1

η`,jχ∂Σ`,j . (59)

Let u∞j (x̂;ui) be the corresponding far-field pattern associated with the incident wave

ui corresponding to (Ωj ; qj , ηj), respectively. Suppose that (Ωj ; qj , ηj), j = 1, 2,
fulfill

u∞1 (x̂;ui) = u∞2 (x̂;ui) (60)

for all x̂ ∈ S1 and a fixed incident wave ui. Then we have N1 = N2 = N , ∂Σ`,1 =
∂Σ`,2 for ` = 1, . . . , N , q1 = q2 and η1 = η2.

4. Inverse diffraction grating problems. The study on scattering theory by
periodic structures has received a lot of attention in recent years. It arises from the
first work studied by Rayleigh on the scattering by plane waves from corrugated
surfaces. In particular, if the corrugations are exact sinusoids, then the sinusoidally
corrugated surface provides a model of a reflection grating. There are quite many
applications on grating problems in spectroscopy and oceanography. For example,
it can be utilized to study the structure of the ocean surface by measuring sound
scattering from below or the scattering of light or radar from above. We refer to [5]
and [55] for more historical discussions.
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In this section, we focus on the existing studies on the uniqueness issue for
inverse diffraction grating problems. It is known that a general periodic grating
structure can be uniquely determined by one incident wave if the wave number k is
a real number; see [5] and [34]. In [5], the researcher also presented the uniqueness
results within C2-smooth functions in R2 in the case of lossy medium. Kirsch
in [39] and Hettlich, Kirsch in [34] also investigated the case for C2-smooth functions
by all quasi-periodic incident waves and for a sufficiently small wave number or
grating height, respectively. In R3, Ammari [4], Bao and Zhou [7] as well as Bao,
Zhang and Zou [6] discussed the more complicated doubly periodic structures. By
making use of reflection principle, Elschner, Schmidt and Yamamoto (see [31] and
[32]) obtained some results on global uniqueness for the particular piecewise linear
periodic structures.

In the subsequent discussions, we just present some of the aforementioned results
to illustrate the development on inverse diffraction grating problem. Consider the
direct diffraction grating problem associated to Helmholtz system as:

∆u+ k2u = 0 in Ωf ; B(u)
∣∣
Λf

= 0 on Λf , (61)

with the generalized impedance boundary condition

B(u) = ∂νu+ ηu = 0, (62)

where η can also be ∞ or 0, corresponding to a sound-soft or sound-hard grating,
respectively.

In (61), for a periodic Lipschitz function f with period 2π,

Ωf := {x ∈ R2;x2 > f(x1), x1 ∈ R}

is filled with a material whose refraction index (or wave number) k is a positive
constant. Λf signifies a diffraction grating profile given by the curve

Λf = {(x1, x2) ∈ R2; x2 = f(x1)}. (63)

The corresponding incident wave is defined as

ui(x; k,d) = eikd·x, d = (sin θ,− cos θ)>, θ ∈
(
−π

2
,
π

2

)
,

which propogates to Λf from the top.
In order to derive the uniqueness results for the inverse grating problem associ-

ated with (61), the total wave field u should be α-quasiperiodic in the x1-direction,
with α = k sin θ, which means that

u(x1 + 2π, x2) = e2iαπ · u(x1, x2),

and the scattered field us satisfies the Rayleigh expansion (cf. [49, 50]):

us(x; k,d) =

+∞∑
n=−∞

une
iξn(θ)·x for x2 > max

x1∈[0,2π]
f(x1), (64)

where un ∈ C(n ∈ Z) are called the Rayleigh coefficient of us, and

ξn(θ) = (αn(θ), βn(θ))
>
, αn(θ) = n+ k sin θ,

βn(θ) =


√
k2 − α2

n(θ), if |αn(θ)| ≤ k

i
√
α2
n(θ)− k2, if |αn(θ)| > k

.
(65)
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The existence and uniqueness of the α-quasiperiodic solution to (61) for the
sound-soft or impedance boundary condition with η ∈ C being a constant satisfying
=(η) > 0 can be found in [1,16,38,39]. It should be pointed out that the uniqueness
of the direct scattering problem associated with the sound-hard condition is not
always true (see [36]). In our subsequent study, we assume the well-posedness
of the forward scattering problem and focus on the study of the inverse grating
problem.

Introduce a measurement boundary as

Γb := {(x1, b) ∈ R2; 0 ≤ x1 ≤ 2π, b > max
x1∈[0,2π]

|f(x1)|}.

The inverse diffraction grating problem is to determine (Λf , η) from the knowledge
of u(x|Γb ; k,d), and can be formulated as the operator equation:

F(Λf , η) = u(x; k,d), x ∈ Γb,

where F is defined by the forward diffraction scattering system, and is nonlinear.
The pioneer work of Kirsch in [39] determined the unknown grating structure

by the knowledge of incident waves and the scattered wave fields with the help of
associated expansion of incident wave as

ui(x) = ui(x1, x2) =
∑
n∈Z

ψne
iαnx1+iβn(b−x2), x2 ≤ b, (66)

where x = (x1, x2), ψn are the Fourier coefficients of any ψ ∈ L2(0, 2π) such that
FΛfψ(x1) = u(x1, b). Instead of the notations introduced in [39], we follow the
uniform notations in this section to present the main uniqueness result.

Theorem 4.1. [39, Theorem 3.1] Assume that βn 6= 0 in (66) for all n ∈ N. Let

f, f̃ ∈ C2(R) be 2π-periodic and b > max{maxx1∈R f,maxx1∈R f̃}. If FΛf = FΛ
f̃

then Λf = Λf̃ , i.e. if the outputs are the same for f and f̃ for all incident waves

(66), then Λf and Λf̃ have to coincide.

All the literatures mentioned at the beginning of this subsections are concerning
the unique recovery results on the inverse diffraction grating problem with the
sound-soft (namely η = ∞ in (62)) or sound-hard (namely η = 0 in (62), partially
solved) boundary condition by a finite number of incident plane waves. However, the
unique identifiability has still remained to be open for the impedance or generalized
impedance cases until recently in [23], a completely new approach was proposed
by utilizing the spectral properties of Laplacian eigenfunctions in Subsection 2.1
to address this problem in R2. Indeed, the unique determination for the inverse
diffraction grating problem in [23] is also referred to as a direct application of the
geometric structures of Laplacian eigenfunctions presented in Subsection 2.1. We
only provide the main unique determination results and some relating discussions
here.

First, we are supposed to give the precise definition of admissible polygonal
gratings associated with the inverse diffraction grating problem.

Definition 4.2. [23, Definition 8.1] Let (Λf , η) be a periodic grating as described
in (63). Suppose there is a partition, [0, 2π] = ∪`i=1[ai, ai+1] with ai < ai+1, a1 = 0
and a`+1 = 2π. If on each piece [ai, ai+1], 1 ≤ i ≤ `, f is a linear polynomial and
η is either a constant (possibly zero) or ∞, then (Λf , η) is said to be an admissible
polygonal grating.
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Definition 4.3. Let (Λf , η) be an admissible polygonal grating. Let Γ+ and Γ− be
two adjacent pieces of Λf . The intersecting point of Γ+ and Γ− is called a corner
point of Λf , and ∠(Γ+,Γ−) is called a corner angle. If all the corner angles of Λf
are irrational, then it is said to be an irrational polygonal grating. If a corner angle
of Λf is rational, it is called a rational polygonal grating. The smallest degree of the
rational corner angles of Λf is referred to as the rational degree of Λf .

Similar to Theorem 2.21 and Theorem 2.22 for the study on admissible irrational
and rational complex polygonal obstacles, we have the unique determination results
for rational and irrational polygonal gratings, respectively. In particular, for the
rational case, we are concerned with the admissible rational polygonal grating of
degree p, p ≥ 3, due to the fact that the rational degree of Λf is at least 2.

Theorem 4.4. [23, Theorem 8.13] Let (Λf , η) and (Λf̃ , η̃) be two admissible irra-

tional polygonal gratings, and G be the unbounded connected component of Ωf ∩Ωf̃ .

Let k ∈ R+ be fixed and d`, ` = 1, 2 be two distinct incident directions from S1,
with

d` = (sin θ`,− cos θ`)
>, θ` ∈

(
−π

2
,
π

2

)
.

Let u(x; k,d`) and ũ(x; k,d`) denote the total fields associated with (Λf , η) and
(Λf̃ , η̃) respectively and let Γb be a measurement boundary given by

Γb :=

{
(x1, b) ∈ R2; 0 ≤ x1 ≤ 2π, b > max

{
max

x1∈[0,2π]
|f(x1)|, max

x1∈[0,2π]
|f̃(x1)|

}}
,

If it holds that

u(x; k,d`) = ũ(x; k,d`), ` = 1, 2, x = (x1, b) ∈ Γb, (67)

then it cannot be true that there exists a corner point of Λf lying on ∂G\∂Λf̃ , or a

corner point of Λf̃ lying on ∂G\∂Λf .

Combining with the fact that {eiξ`·x; x ∈ U, ` = 1, 2, · · · , n} are linearly inde-
pendent with n distinct vectors ξ`, ` = 1, 2, · · · , n, for any open subset U ⊂ R2, the
proof of this theorem can be formulated similarly to the argument in Theorem 2.21.
One can refer [23, Section 8] for the rigorous analyses.

As the result in Theorem 2.22 for the inverse obstacle problem, the unique deter-
mination of an admissible rational polygonal grating of degree p, p ≥ 3, can also be
derived by two measurements if a similar condition to (32) is introduced in this new
setup. In such a case, one can establish the local unique recovery result, similar to
Theorem 4.4.

5. Discussions and some open problems. In this paper, we present a review
on some recent progress on inverse scattering problems including inverse obstacle
problems, inverse medium scattering problems and inverse diffraction grating prob-
lems.

For Schiffer’ problem in inverse obstacle scattering in Section 2, there has been
a colorful and long history for the relevant study. We investigate the unique iden-
tification of sound-soft, sound-hard and impedance obstacles with certain polyhe-
dral geometry, respectively. The existing literatures are mainly concerned with the
uniqueness discussions for sound-soft and sound-hard obstacles, where the reflec-
tion principle is utilized for establishing the corresponding results. It has been an
open problem for a long time on the study about impedance case. In [47], Liu and
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Zou investigated the unique determination for certain partially coated structures of
the obstacle following reflection principle. And very recently, in [23] and [24], by
applying the geometric structures of Laplacian eigenfunctions in Subsection 2.1, the
unique identifiability for a more general structure of impedance obstacles were con-
sidered in R2 and R3, respectively. The theoretical findings and the corresponding
applications are completely novel and inspiring.

For inverse medium scattering problems in Section 3, we first review thegeomet-
rical structure of interior transmission eigenfunctions and the more generalized case
with the conductive boundary condition. Those theoretical novel findings play an
important role in the corresponding applications for the unique identifiability of
the inverse medium scattering problems within the polyhedral geometry by a sin-
gle far-field measurement under certain assumptions. Recently, some simultaneous
recovery results regarding the scatterer as well as the conductive surface parame-
ter and the medium parameter were obtained in [22]. The study therein are more
generalized with respect to the medium structure and the regularity assumptions.

In the study on the inverse diffraction grating problem in Section 4, we first
formulate the mathematical setup with the generalized impedance boundary which
is more practical. By introducing the existing uniqueness results which are mainly
concerning gratings with sound-soft or sound-hard boundary, we emphasize the
developments on impedance case therein. The corresponding argument is similar
to the unique identifiability for impedance obstacles by making use of the spectral
properties of Laplacian eigenfunctions.

At the end of our paper, we propose some interesting open problems as follows.

• Establish the global unique identifiability result for an impedance polyhedral
obstacle by a single far-field measurement by relaxing the generic condition
in Definition 2.19. A more challenging problem is to establish the unique
identification for an impedance obstacle of a non-polyhedral geometry by a
single far-field measurement.

• Develop a uniform approach to tackle the unique identification result for the
Schiffer’s problem associated with an impedance polyhedral obstacle in Rn,
n > 4.

• Establish the global unique identifiability result for a medium polyhedral scat-
terer by a single far-field measurement by relaxing the generic condition in
Definitions 3.8 and 3.12. A more challenging problem is to establish the
unique identification for a medium scatterer within more general geometries
by a single far-field measurement.

• Generalize the geometrical structures of interior transmission eigenfunctions
at the corner to a more general interior transmission eigenvalue problem with
respect to the anisotropic metric which can be formulated as

∆gu+ k2(1 + V )u = 0 in Ω,

∆v + k2v = 0 in Ω,

u = v, ∂νgu = ∂νgv on ∂Ω,

where (Ω, g) is a Riemannian manifold and ∆g is the Laplacian-Beltrami op-
erator.
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