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ABSTRACT. In this paper, the second-order scalar auxiliary variable approach
in time and linear finite element method in space are employed for solving
the Cahn-Hilliard type equation of the phase field crystal model. The energy
stability of the fully discrete scheme and the boundedness of numerical solution
are studied. The rigorous error estimates of order O(72 4 h2) in the sense of
L?-norm is derived. Finally, some numerical results are given to demonstrate
the theoretical analysis.

1. Introduction. The phase field crystal (PFC) model is proposed by Elder et
al.[5, 6] to study the microstructural evolution of crystal growth on atomic length
and diffusive time scales. The PFC models are applied to describe a broad range of
phenomena, including grain boundary dynamics, crystal nucleation, crystal growth,
glass formation, crack propagation and many other properties of condensed matter
[1].

It is challenging to solve the PFC model numerically due to the high-order deriva-
tive and its nonlinearity. Additionally, to obtain physical results of the PFC model,
numerical schemes should be constructed to guarantee the energy dissipation. As
a well-known approach, the convex splitting approach[8] can guarantee the numer-
ical energy stability. For solving the PFC model, the convex splitting approach
combined with different spatial discretization methods is studied, including spec-
tral method[4, 19], finite difference method[13, 16, 29], finite element method[9, 26],
and local discontinuous Galerkin method[11, 12]. However, all second-order schemes
in the above study are nonlinear, and their implementations are too complex and
costly owing to nonlinear equations to be solved at each time step. To obtain
linear schemes for this model, the major difficulty is how to discretize the nonlin-
ear and maintain energy stability. As a result, the stabilization method has been
presented[22, 30], which adds an extra term with sufficient time accuracy. Yang and
Han[31] have constructed linearly unconditionally energy stable schemes by using

2020 Mathematics Subject Classification. Primary, 656M12, 65M60, 35Q56.

Key words and phrases. Error estimates, energy stability, finite element method, scalar auxil-
iary variable approach, Crank-Nicolson scheme, phase field crystal model.

The first author is supported by the General Project Hunan Provincial Education Department
of China (19C0467).

* Corresponding author, Liupeng Wang.

1735


http://dx.doi.org/10.3934/era.2020089

1736 LIUPENG WANG AND YUNQING HUANG

the Invariant Energy Quadratization (IEQ) approach. Recently, Shen et al.[23] have
proposed the scalar auxiliary variable (SAV) approach, which enjoys the advantages
and overcomes most of the disadvantages of the IEQ approach. By introducing a
scalar auxiliary variable, the SAV approach handles the nonlinear term explicitly
and maintains the energy stable. More studies about the PFC problem can be found
in recent literature [7, 14, 15, 18, 20, 21, 27].

There are many numerical studies of the PFC model, but few works are about
convergence analysis and error estimates. Wise, Wang and Lowengrub[29] have
provided the error estimates for the nonlinear first-order finite difference method
based on the convex splitting method. Baskaran et al.[2] have given the convergence
analysis of second-order fully discrete scheme equipped with splitting scheme and
cell-centered finite differences method. Grasselli and Pierre[10] have established
existence, uniqueness and discrete energy estimate for the semi-discrete and fully
discrete finite element scheme for the modified PFC equation. Li and Shen[17] have
carried out the analysis of energy stability and convergence for the SAV fourier-
spectral method. In [28], we have used the finite element method with first-order
SAV approach to solve the Allen-Cahn type equation of the PFC model, and give
its energy stability and error analysis. Here, we furthermore give a second-order
scheme and its detailed mathematical analysis.

The main contribution of this paper includes two parts. Firstly, we construct
a fully discrete scheme for the Cahn-Hilliard type equation of the PFC model
by combining linear finite element method and the SAV approach with Crank-
Nicolson/Adams-Bashforth scheme. Our numerical scheme has four advantages
including, (i) guaranteeing discrete energy stability; (ii) linear equations with con-
stant coefficients is easy to implement at each time step; (iii) high flexibility via
C° finite elements; (iv) second-order accuracy in time and space. Secondly, we
provide rigorous mathematical analysis for the fully discrete scheme. We prove the
energy stability and give further the discrete H? bound of the numerical solution.
Using the discrete Gronwall’s inequality, we derive optimal error estimate of the
fully discrete scheme in detail.

The rest of this paper is organized as follows. We introduce the Landau-Brazovskii
free energy functional, the governing equation and the coupled system in Sec.2. In
Sec. 3, we give the time and space discretization in detail. In Sec. 4, we analyze the
mathematical properties of the fully discrete scheme, such as stability, boundedness
and convergence. Some numerical experiments are shown to illustrate the accuracy
and effectiveness of our scheme in Sec.5. In Sec. 6, some concluding remarks are
given.

2. Physical model. The free energy functional of Landau-Brazovskii (LB) model
has the dimensionless form

o) = [ {18+ D0 + S0l - Jow + low] par ()

ol 2 2 -3l 41
The Cahn-Hilliard type dynamical equation of LB model is
o€
=A—. 2
6 =A% ©)

Let 8 > 0, and denote that

N(¢):“;'B¢2—%¢3+%¢4, (3)
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then
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Therefore, LB model becomes

§ B
eto) = [ {18462+ 56+ M) ()
The governing equation can be derived as
o = A, (5a)
b =E(A+1)%0+ B+ N'(9), (5b)
g—ﬁ:Q W:Q g—ﬁzo on ON. (5¢)

By introducing a new function ¥ = (A + 1)¢, we can write Eq. (5) as the coupled
system

¢t = A¢7 (6&)

Y =E(A+1)p+ o+ N'(9), (6b)

p=(A+1)0, (6¢)
99 ¢ oy

Remark 2.1. In Eq. (6), we apply the splitting technique, which is only applicable
to convex regions [3].

Remark 2.2. The numerical scheme and analytical techniques in this paper can
also be applied to the coupled system (6) with periodic boundary conditions.

3. The fully discrete numerical scheme. Here, we shall construct the semi-
discrete scheme using the SAV approach, then derive fully discrete scheme by ap-
plying linear finite element method.

3.1. Time discretization, second-order SAV scheme. Applying the SAV ap-
paorch with Crank-Nicolson/Adams-Bashforth scheme developed by Shen et al.[23],
we discretize Eq. (6) in time direction.

The inner product and norm of L*(2) = H°(Q) is denoted as (w,v) = [, wvdr
and ||w|| = (w,w), respectively.

Let &, (¢) = (N(),1), and u(¢) = \/%. We introduce the scalar auxiliary

variable s = \/&1(¢) + Do, where Dy is a constant which ensures & (¢) + Dy > 0
and write Eq. (6) as

¢t - A,(/J7 (7&)
b= E(A+ 1)p+ Bé + u(@)s, (7h)
o= (D+1), (7c)
5= L (u(@), br). (7d)

2
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Denote by f™ the approximation of f(r, ") at time " = n7, where 7 is a fixed
time step. For any sequence of functions { f” n_1, we define

n+1 fn _ fn+1 + fn R 3fn _ f'nfl
pLntl — f n+1/2 _ n+1/2 _
i L7 A e

The second-order SAV scheme of Eq. (9) is constructed as follows, for n > 0,
given (¢"T1/2 " o™ s™), find (¢nF1, /2 prtl snt1) such that

(8a)

Drg"t = AyrH/2, (92)
wn+l/2 — fQ(A—l— 1)¢n+1/2 +6¢?n+1/2 +u(én+1/2)§n+1/27 (9b)
P = (A + gt (9¢)

1 o
DL = L (u(§ %), D). (9d)

Remark 3.1. There are several semi-discrete schemes based on SAV technique in
Ref.[23].

3.2. Spatial discretization, linear FEM. We discretize Eq. (9) in space using
the linear finite element method. Let V(Q) represent the trial and test function
spaces

ov

V(Q) = {ve H(Q), o =0 on JIQ}. (10)

The corresponding Galerkin form of Eq. (9) can be stated as follows, for n > 0,
given (@12 ¢ " s, find (¢" T, /2 ot gntl) guch that

(DLo" ™ v) = —(Vy" T2 Vo) Vv eV, (11a)
(¢n+1/2’<~) 52( —n+1/2 C) _ 52 (V@nJrl/Q,VC)

+ (B"T2,0) + (w(dmTH/2)sm 2 ¢) Ve e, (11b)

("1 x) = ("1, x) — (Vo' T, VX) Vx eV, (11c)

DL /2 = 2 (u(§" /%), D), (11

Let 7;, = {K} be a partition of 2, such as a conforming triangulation in two-
dimensional bounded domain, and define the linear finite element space

Vi = {v, € C°(Q), vn|x € PL(K),VK € Tp,}.

Thus, we have the following fully discrete numerical scheme of Eq. (11), for n > 0,
given (172, 61, o 51), find (41, 92, i s7+), such that

(D1¢n+1 ) (an+1/2 Vvh) Yo, € Va, (12&)
( n+1/2,<:h> 52( n+1/2’<h) fQ(V —n+1/2 vCh)
+ B0 2 G) + (@ s G) VG e Vi, (12D)

(er ™ xn) = (o0 xn) — (Vo Vxa)  Yxn € Vi, (12¢)
D‘]I__S’Z,Jrl _ %(U( AZ+1/2) D1¢n+1), (12d)

n+1/2 n+1 n+1 n+1/2
Where¢ 7¢Z 7@h7§0h 9 h GV
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Remark 3.2. When n = 0, ¢'/2 in Eq. (12) can be calculated by the following
discrete scheme,

1/2
—
( T/2
(1%, h) = € (01, Ch) — E(Vipy/*, Vo)
+ BV 0) + (u(6d)s¢) Vh €V, (13b)

LRI —(Vw,ll/z,Vvh) Vo € Vg, (13a)

(Wi/Q,Xh) = ( 1/27Xh) (V¢1/2 Vxn) ¥Xn € Vi, (13¢)
/2 1/2 0

S, — Sp . 1 7¢

S T e T, -

4. Mathematical analysis of the fully discrete scheme. In this section, we
are devoted to give the detailed mathematical analysis of the fully discrete scheme

(9).
4.1. Stability. First of all, we shall analyze the energy stability of the scheme (12).

Theorem 4.1. The scheme (12) is unconditionally energy stable with the modified
energy £, where

- 2
£p,6,9) = Sell?+ D6l + 5* ~ Do,

Proof. We take vy, = wZH/Q in Eq. (12a) and find
(D1¢n+1 "+1/2) _ 7||v¢;b+1/2”2 (14)
Taking (, = Dlgi)"“ in Eq. (12b), we have
( Z+1/2 D1¢n+1) gh( n+1/2 D1¢n+l) 52(V¢n+1/2 (D1¢n+l))

(15)
+B( n+1/2 D71-¢n+1) +(u( Z+1/2) D1¢n+1)_n+1/2
According to Eq. (12¢), it is easy to obtain
(Drenttxn) = (Drop ™t xn) — (V(DroR™), Vixa). (16)
Setting xp, = @ZH to Eq. (16), we have
(D1¢n+1, @Z—H) ( (D1¢n+1) v(pn—}—l)
1, n+l —n+1 n+12 n| 2 (17)
= (Dropthontt) = (||<P 17 = llenl®)-
Multiplying Eq. (12d) with 2_"Jr1 leads to
_n n+1/2 n n n 1 n
S (@), Dhep ) = 25 DL = LT - 07 ()
Combining Eq. (14), Eq. (15), Eq. (17) and Eq. (18), we find
51( "H, [ SZH) 51(@2,%,82)
||90”+1||2 - 5HSOZ||2 ||¢”+1||2 H(bh\lz + (s = (s7)? (19)
—rlln P < 0.
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4.2. Boundedness of numerical solution. Let L3(Q), = {v € L*(Q)|(v,1) = 0}
and V = L2NV, where V C L2().
We define the discrete Laplace operator Ay, V}, — V3 such that

(Ahwh, Uh) = ( — Vwy, V’Uh), Yop € Vi, (20)
and the inverse discrete Laplace operator (—Ap) ™1, V,, — Vj, such that
(V(—Ah)_lwh,Vvh) = (wh,vh), Yop € Vp,. (21)

Then the discrete H? norm and H ! norm can be defined as follows

lonllzrs = ol + IVonl + [ Awonl, Yon € Vi, (22a)
lonll - =/ ((~2n)~Lon, vn) Yo, € Vi (22D)

We shall establish the H2-boundness for the numerical solution of the scheme (12),
which is of great significance to the derivation of error estimate.

Lemma 4.2. Let ¢} be solutions of the scheme (12). There exists a positive constant
C such that,

onllm < C. (23)
Proof. According to Theorem 4.1, there exists a positive constant C' such that ,
ez + 2ikE + b <o, vro 24)
2 Ph o 1Ph Sh) =0, =Y,

then
loill < C,  llepll < C. (25)
Thanks to Eq. (12c), we have
(Vor, Vor) = (0h,61) — (#h: oh),
(Vor, VArgR) = (o5, Andy) — (¢h: Andh),
it follows that
IVaEIIP < llokl” + ok llekll < C,

1ARGHIP < N0l ARSE + ek 1Ak, (26)
1ARGEI < 651+ o]l < C.
Using Eq. (25) and Eq. (26), we can deduce Eq. (23). O

4.3. Error estimate. Here, we shall derive error estimates with further assump-
tion of the smoothness of the exact solution.
For simplification, we define

Iy = DLW fi ),

T}z+1/2 _ f_(tn+1/2) _ f(tn+1/2), (27)

T}n _ 2fn _ fnfl _ fnJrl.
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Lemma 4.3. Forv = —1,0,1,2, the following estimates hold,

tn+1
1, 1/2
|, < / 102 () |3,
t’ﬂ
tn+1
|72, < 8 / | beee () (28)
t"L

tn+1

75 e <7 [ u(nl.ar

Lemma 4.4. If w is the solution of Eq.(9) or Eq. (12), using Lemma 4.2, we have
N (w) |, [N (w)], IV (w)] < C. (29)

Lemma 4.5. For s in Eq.(9), and assuming that |V ¢|| 1 o,1)x0) < C, it follows
that

tn+1 tn+1

[ lsear<c [ ol +lon|Par (30)

A t

[ P <e [ Qoo + ool
oD+ ) By 1)

Proof. Using Lemma 4.4, we obtain

St = — 4m/ )¢td7“)

+26’1W§)—|—D()/gzN (9)7 + N'(¢) e )dr

< CUN@)IPll6elTe + IV (@) dellTe + 1N (@)l e}
< Cllleellz + oull},

and

¢td7"

wﬁ (e
/ N (6)gudr / (N"(6)67 + N'(8)bur)dr

(51(¢)+Do
1
N e / N(8)62 + BN"(6)beue + N (&) duar)dr
< CUN @) 16e%0 + IN @6l o IN" (@) e 2o + IN (&)1 del])
TN @) delZo + el s IV () b

+ HNH( )H||V¢HL°°((O,T)><Q)||¢tttHH*1}
< C{lldellFn + 6ellEn + 62ell® + N peell 1}

Then Lemma 4.5 is obtained. O



1742 LIUPENG WANG AND YUNQING HUANG

Assuming that the solutions ¢, and ¢ of Eq. (9) exist and satisfy

1 a2 + el ez + el + el m2
+ 1|0l a2 + |0l 2 + | Peell 2 + | deeell i < C,

(32)
101l Loe 0,751 00) + 1Bt Loo (0,7,22) + 1 Bell 20,711y + | Peell L2 (0,75 22)
+ |@eeell 220,751 + el L2(0,7,m3) < C.
Let

0 = wp — Rpw,  py = Rpw — w(t), (33)

where Rpw € V}, is the standard elliptic projection operator of wy, i.e.
(V(Rpw —w(t)),Vup) =0, Yo, € Vj,. (34)

It is easy to know

el = wf —w(t") = 7 + . (35)

Lemma 4.6. ([25]) If w,w, € C(0,T; H?), there exists a positive constant C inde-
pentent of t € [0,T], such that

lpwll + B Vpull < Ch?, (36)
1pw, || + BIVpu, || < Ch2. (37)

Theorem 4.7. Let ¢ and ¢} be solutions of Eq.(9) and FEq.(12), respectively.
Assume ¢° € H? and the assumption (32) holds, we have

leill” + llegll* + (e2)* < C(r* + h%), 0 <n<T/r. (38)

Proof. We shall show the proving process in six steps.

Step 1. we construct the error equaiton (43) by using Eq. (9) and Eq. (12).
Eq. (9) can be reformulated as

(6e(t"F1/2),0n) = — (V(t"F1/2), V), (39a)
(0" T2), ) = E(p(t" %), ) = (Vep(t"H1/2), V()

+ B(A( ), ) + (wld(t™2)s(t"12),Gr),  (39D)

(1), xn) = (6" ), xn) — (VO™ ), Vxa), (39c)

SUE) = (B 2), 607 2)). (394)

Subtracting Eq. (39) from Eq. (12) leads to

(Dleg+1 + Ti’nﬂ/{vh) = —(VeZH/Q, Vuy), (40a)
(€z+1/274h) _ 52 (éZ+1/2 + T£+1/2,Ch) . 52 (V(é’;H/Q + TSH/Q), VCh)
+B(e5 2, G) + (@ )8 = (o)) s(072), ), (40D)
(eZH,Xh) = (eZ“,Xh) - (Ve:;H,VXh), (40c¢)
DRyt 4 T = (@), DA — (), 6 )),
(40d)
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n41/2 int1/2 .
Let ep™/? = u(ey™ %y — u(¢(t"*+1/2)), we obtain

U(QBZ+1/2)§Z+1/2 - u(¢(tn+1/2))8(tn+l/2)

= u(@y )@ A TR e s ), (41a)
(u(G ™), DI = (wl(@™ /%), au(t11)
_ (u( A’Z+1/2)’Dieg+l +T(;,n+1/2) + (éZ+l/2,¢t(tn+l/2)). (41b)

Then we can write Eq. (40) as
(Drep™, vn) = —(T;’nH/Q,vh) — (VeZH/Z, Vo), (42a)
(QZH/QvCh) _ 52 (é$+1/2 + T$+1/2,Ch) . 52 (v(ég+1/2 + T;LJrl/Q)’ VCh)
+ B, ¢)
+ (@ T2 T2+ TR 4 et 247 ?), ), (42D)

(€™ xn) = (5™ xn) = (Ve Vi), (42¢)
Dl = L{(u(@y %), Dl + TS
+ (e g (e TYR)) ) - TR, (42d)

Combining Eq.(42) with Eq.(34)-(35), we arrive at
(DL3H up) + (VO 2 W) = —(T," 2 0y) — (DEoit o), (43a)
(0Z+1/2’<’l) . 52 (§$+1/27<h) + 52 (Véngl/Q,VCh) o B(§Z+1/2,Ch)
= E2(TPFY2, ) — E(VIRHY2,VG,) + (€202 = pl 2 )
+ B2 ) + 2 (w( TR, )

+ T2 (u( Gy ), ) + (T2 (€02, G), (43D)
(QZ—H»Xh) - (92+17Xh) + <VGZ+17 VXh) = (pg+1 - PZ+17 Xh)7 (43C)
D1 = (u(dy %), D10y + (u(dy %), Dyl ™)

+ (u(AZH/Z),T;’"H/Q) + (éZH/Q,fbt(t”H/Q)) _ 2T51,n+1/2. (43d)

Step 2. we derive the error estimate formulas (48) on the basis of Eqs. (43).

_ gn+1/2
_Hw

Setting vy in Eq. (43a) gives

1gn+1 pn+1/2 n+1/2,2 1,n+1/2 Hn+1/2 n+1 pn+1/2
(D374, 60077) + IVe, 7|12 = = (T, 0, 7) = (Drpy ™, 0,777). (44)

Taking (p, = D}_QZH in Eq. (43b) leads to

_B
2
_ §2 (T;LJFI/Z,DiGZ'H) _ 52 (vT;lJrl/Q’ VDi@g‘H) + (52ﬁ3+1/2 . pZH/Q’Die;—H)
+B(py T2, DronEY) et (u(y %), DL
+ T2 (u(gp2), DRORHY) + s(¢7H1/2) (ent /2, DL, (45)

(6,777, DY) — € (B2, DLoy ™) + (VO VD) — S D6t
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Using Eq. (43¢) and writing xp, = §$+1/2, we have

DO (DI, 05717) + (D105 ), 903
_ (D‘Il_pg+1’éz+1/2) _ (Dlpg+17§g+1/2)_ (46)
Multiplying Eq. (43d) by gnti/2 gives rise to
DX (ent)? = &t (u(@ %), Droptt) + et 2 (u(gy ), DRt
e R AT L)
— ggntl/2plntl/2, (47)
Together with Eq. (44)-Eq. (47), we can derive
& b
2 2
_ _(Té,n+1/27ez+1/2) _ (D}_pg+17ez+1/2)
_¢ (Tg+1/27Di92+1> e (vfgﬂm7 VDMZH)
. (€2ﬁg+1/2 _ pz+1/2,D19:;+1) _ B(ﬁg“”,Die;*l)
_ Tsn+1/2 (U(QEZH/Q)’DEZH) . s(t”H/Q)(éZ“/Q,DiQZH)
+€(DLplt, §Z+1/2) _e (D71_pn+179’2+1/2)

D65 + 5Dy 05 I + Di(ert)? + Vo)

%)
_n n+1/2 n _n n+1/2 1,n+1/2

+es+l/2 (u(¢h+ / )5D1p¢+1) +es+1/2 (u(¢)h+ / )aTd; * / )

4 éZLJrl/Q (éz+1/27 ¢t(tn+1/2)) _ 2é?+1/2T3’n+1/2- (48)

Step 3. we estimate each term at the right of Eq. (48) and obtain Eq. (63).
Using Lemma 4.3 and Lemma 4.6, we find

1,n+1/2 ntl/2 1,n41/2 1 nt1/2
(1,20 < AT+ Ve
1
< Ot 4 Ltz 4
<orts v (49)

1
n +1/2 n +1/2
—(Dlpg 0 < DL+ Ve

< Ch® + %HV%H/QHZ, (50)

(T DY) < agh TR + LDty
< ort 4 DM, (51

~(VIL2, VDL < g [ATER ) 4 [ Dl
<ot 4 %HDiegHH?, (52)

and

1
—n+ n+1/2 + —n+ n+1/2 +
(£2FLP 1/2 Fa / 7D71'92 1) < ||§21CLP 1/2 ltw / H2 16||D71—92 1”2

< Ol + — | Doy, (53)

L
16
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_n+1/2 n _n+1/2 1 n
6Py, Doyt < Blll TP + 5Dk
1
< Ch* 4+ —||DLon T2 54
< + 16|| 57 (54)
nn 52 n n
& (Droit, o2y < ZHDiPZHHQ + 20012 + 21617,
< CR* + |02 1> + €216211°, (55)
n nn €2 n n n
—&(Dypitt, o0t ?) < ZHDileHQ + 00012 + 216217,
S Ch* + )10 12 + &2 )107 1% (56)

Using Lemma 4.2, we can obtain ||u(9272+1/2)|| < C. With the assumption (32),
we get

=n n-+1/2 n qnt1/2y ) pn 1 n
STV (@), DY) < luldy T ANTEYA)? gD
1
< 4 | L plpgnt12
< o'+ D10 P, (57)
n 5T 3 AT ]' n
—s(t"2) (€2, DoY) < Ollest 2 + g DR, (58)

n n+1/2 n 1 n+1/2 n n n
et (u(dy ), DL < @ ) PUDEL R + ()2 + (e}

S

< C{h* + (et1)? + (e2)?}, (59)
N 1 A
—n n+1/2 1,n+1/2 n+1/2 1,n+1/2 n n
S (T B I | e LR CA N Col
< O{r* + (2T + (e)?), (60)
e e A ) LluE P (llen 2 + (e + (1)),
< O{llent I + (erth)? + (e2)?, (61)
Qe AT < TR 4 (Y2 4 ()2,
< Orh () + (D) (62)
Using Eq. (49)-(62), Eq. (48) can be rewritten as
S ni1)2 4 B op1ygnt1g2 1ontiy2 , ! n+1/22
DL 7 + S Do + D) + L Iveg

< CEN05TH7 + 1105117 + 165 11> + 16511 + (™)
e AT 3 n
(e5)%) + O 21 4+ SIDR05 TP + Clr + A, (63)

Step 4. we eliminate ||Di0;+1||2 at the right hand side of Eq. (63).
Taking vy, = GZH in Eq. (43a), and we have
1pgn+1 pgn+1 n+1/2 n+1
(D734, 0570) + (VO /7, Ve,
_ 1Ln+1/2 pn+1 1 n+l gn+l
*7(T¢n a0¢ )7(D~rp¢ 70([) )7
it follows that
1

1
S DM + S| Doy



1746 LIUPENG WANG AND YUNQING HUANG
1 n
< VO 05 P+ S Iv0g 2R + Ot + ). (64)
Setting xpn = 9;”‘1 in Eq. (43c) gives that

(9$+179n+1) _ (9n+1 9(7;+1) + (V92+17V92+1)
(ngrl pg-i-l 9;+1),

then
Vo512 < CUOEI + 105FHI%) + C(r* + %), (65)
Using Eq. (64) and Eq. (65), Eq. (63) can be transformed into

2
+1 1 5 n
%D71_||03+1||2 ﬁ 5 D1||0n+1||2 —|—D1( n+1) §||D71_0;L+1H2 + §||V9¢+1/2H2

< 105> + €105 + 1051 + 10517 + () + (e2)?)

+ C||enti2)12 4 C(rt + Y. (66)

Step 5. we estimate ||é2/?||2 in different situation.

Let G(w) = /&1 (w) + Dy, we can deduce that
e = (@) —u(e(t" )

_ NG N

G Glo(tn i)

Nl(¢n+1/2) Nl(¢n+1/2) N/( n+1/2) - Nl(¢(tn+1/2))
GrT2)  Gle(172) T Gle(tn 1) Glo(tn 1))

_ NG (e ?) — £ ))
GOy G (o 2)[G () + Glo(tnt112))]

N'(@GT2) = N (p(tm+1/2))
o) o

+

Combining with the assumption of (32) and Lemma 4.4, we get
et/ < Cllgy 2 = g2 (68)
when n = 0, we have
e/l = 1165 = o(t/2) ] < 10211+ Cn2.

Starting from Eq. (13), and using a similar process described as step 1-4, we can
obtain

£ 5+ 1/2 1 A1/2 5 2
% Drl62IP + =5 =DrI6,|* + D1(el/*) + S ID16, I + S I1Ve,”

< O(E210%1° + é“2||98>||2 + 1165717 + 165117 + (e3/2) + (2)?)
+Cllu(dh) — u(d(t'/?))[* + C(r* + h')
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< C(EN102|17 + 21621% + II%/QII2 + 1169117 + (e/?)* + (e2)?)
+Cllg(t%) — o(t /)| + C(r* + h*)
< C(E2]|0Y/2]1 + €2/16%01> + 12117 + 1631 + (e1/2)? + (¢2)?)
+ C(1% + nY).
Owing to 63| < Ch? (w = 6,4, 9), ¢

we have

&2 5
(1= 20m) 10717 + ( —on))|6g?)?

B+1
2
then

10L/212 + 11852112 + (e1/?)? < (7% + hY).
Therefore
1eY/2]| < C(+3/% + ).

When n > 1, using Lemma 4.3, we can obtain

n 3 n n—1
I/ = gmsy) = | 2RI i
3¢n n ! T n+1/2 Z/n+1/2 n+1/2
< 5 — Q")+ o(t"TE) — ot
3e™ n—1 ny _ n—1) _ n+1 B
< ” € 2605 + 2¢(t ) ¢)(t 5 ) ¢(t ) —|—T¢(tn+1/2)||
n _ 6;—1

T T 4 Ty )
sl + 171 + 0
OO + 10371 + O + A,
Then

et 2l < Copl + 165D + C(r? + h2).
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(69)

= 0, and ignoring some nonnegative terms,

+ (1 —C7)(el/?)? <o+ hY,

(70)

(71)

(72)

Step 6. with the help of the discrete Gronwall’s inequality, we obtain the final

result, i.e. Eq. (38).
For n = 0, Eq. (66) can be written as

2
+ 1 1
i ﬂ 7HD16‘$+1H2+

+(e5)* + (€9)?)

5 DHI0G1° + == D7 1051 + D7(es) +

<C(§ ||01||2+§ 162117 + 104117 + 165]]* +
+ C|le?|2 + o+t + 1)

S CEN0L117 + 105117 + (e2)?) + C(7° + ).

D 1 pnt1/2
S Ive e

It is easy to obtain

16217 + 16511 + (es)® < C(r* + h?),
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For n > 1, Eq. (66) can be transformed into the following inequality,

52 n 5—'_1 n n 1 n ) n+1/2
DM + o= DHIep I + D(en ) + < DRg R 4 2 vt

< 05" + 5 16511 + 11512 + 105 1> + 105" 11
+ (€2 4 (em)?) + C(t* + h). (75)

Multiplying Eq. (63) by 7 and ignoring some nonnegative terms, summing over
n,n=0,1,--- ,m(m > 1), we have

2
1
o+ P o+ ey

<CZTg2||9“||2+OZT||9 ||2+CZ 21 0(rt + hY). (76)

n=0 n=0

Applying the discrete Gronwall’s inequality[24], it follows that
1051+ 1105112 + (e )2 < C(78 + h?). (77)

Thus it is easy to get Eq. (38) by Eq. (74)-(77) and Lemma 4.4. O

5. Numerical results. In this section, several numerical examples are given to
verify the effectiveness and practicability of our method. Firstly, mesh refinement
tests are designed to validate the convergence rate of L?-norm error of our proposed
method in time and space direction. Next, phase transition experiments are used
to demonstrate the energy dissipation and numerical effectiveness of the method.

5.1. Accuracy tests. In all simulations, we choose £ = 1.0,a = —1.0,7=0.2,8 =
0.1 and Dy = 50.

5.1.1. One dimension. We consider one-dimensional problem in domain [0, L1](L; =
47) using the uniform mesh of size h and starting with an initial condition ug =
cos(x).

In Tab 1, the space step size is fixed at h = 279L; and the numerical errors are
calculated on t = 274, then it is easy to observe that the second-order accuracy in
the time direction in our simulations. By fixing a small time step as 7 = 27'%, we
compute every numerical error at t = 278 for different mesh size. The second-order
accuracy in the space direction is shown in Tab. 2.

TABLE 1. Time errors and convergence rates

Coarse 7 | Fine 7 | |ley|| | rate | |leg]| | rate les] rate
2—10 211 1113E-6 | —— [ 3.72E-7| —— | 1.86E-8 | ——
2- 1T 212 [ 2.82E-7 | 2.01 [ 9.26E-8 | 2.00 | 5.74E-9 | 1.70
212 213 [ 7.02E-8 | 2.00 | 2.31E-6 | 2.00 | 1.62E-9 | 1.83
213 21 [ 1.75E-8 | 2.00 | 5.78E-9 | 2.00 | 4.30E-10 | 1.91
2~ 14 2= [4.38E-9 [ 2.00 | 1.44E-9 | 2.00 | 1.11E-10 | 1.95
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TABLE 2. Space errors and convergence rates

Coarse h | Fine h | |ley] | rate | [leg| | rate les] rate
2711, 27°L; | 942E-2 | —— [287E4 | — [1.63E-2 | ——
27°L, 276, | 2.41E-2 | 1.97 | 7.19E-5 | 2.06 | 4.26E-3 | 1.94
275, 277L; | 6.05E-3 | 1.99 [ 1.84E-5 | 1.97 | 1.08E-3 | 1.98
2771, 280, | 1.51E-3 | 2.00 | 4.67E-6 | 1.98 | 2.70E-4 | 2.00
278, 279L; | 3.78E-4 | 2.00 | 1.17E-6 | 2.00 | 6.75E-7 | 2.00

5.1.2. Two dimension. Two-dimensional problem with initial value ug = cos(x) and
domain Q = [0, La] x [0, L2](Lg = 27) is considered. First, we use h x h(h = 275Ls)
as the space step size and choose different time step size to calculate numerical
errors at t = 274, The second-order accuracy in the time direction is shown in Tab
3. Afterward, the second-order accuracy in the space direction is found in Tab. 4,
and numerical errors at ¢t = 2710 is computed by fixing the time step 7 = 2718,

TABLE 3. Time errors and convergence rates

Coarse 7 | Fine 7 | |ley|| | rate | |ley|l | rate les] rate
27 278 [8.06E-5| —— | 484E-5 | —— [ 3.7T9E-6 | —
278 277 | 2.19E-5 | 1.88 | 1.25E-5 | 1.95 | 1.03E-6 | 1.97

279 2-10 T 572E-6 | 1.93 | 3.21E-6 | 1.97 | 2.62E-7 | 1.97
2—10 2—11 [ 147E-6 | 1.96 | 8.19E-7 | 1.89 | 6.68E-8 | 1.97
o-11 2-12 1 375E-7 | 1.97 | 2.06E-7 | 1.99 | 1.69E-8 | 1.98

TABLE 4. Space errors and convergence rates

Coarse h | Fine h | |ley| | rate | |egl | rate les] rate
2720, [ 2730, [493E-1] —— [2.72E-2 | —— | 1.34E-2 | ——
2730y | 27%Ly | 1.57E-2 | 1.65 | 9.93E-3 | 1.45 | 3.94E-3 | 1.77
27%L, [ 27°L, [ 3.84E-2 | 2.03 | 3.29E-3 | 1.59 | 1.03E-3 | 1.94
27°Ly, | 27%L, | 9.43E-3|2.02 | 9.10E-4 | 1.85 | 2.60E-4 | 1.99
276L, [ 277L, [ 2.35E-2 | 2.00 | 2.35E-4 | 1.96 | 6.50E-5 | 2.00

5.2. Phase transition and energy dissipation. In these experiments, the pro-
cesses of phase transition are simulated on a hexagon domain with the radius
r = 2m. The parameters ¢ = 1.0,a = —1.0,7 = 0.8, = 0.1,h = 27%r. We
choose the tetragonal cylinder structure as the initial phase through a given ¢g =
0.5 + 0.5cos(x)cos(y).

Firstly, we set 7 = 0.01 and select different Dy as 150, 500 and 1000. The lower
energy value of hexagonal cylinder structure compared with tetragonal cylinder
structure, and the latter is metastable structure, thus the phase transition from
the latter to the former occurs. For different Dg, there are the same dynamical
processes of phase evolution in Fig. 1. The modified free energy and the original
free energy with different Dy are given in Fig. 2. We observe that the energy
dissipative property is maintained and is independent of the value of Dy.
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FiGURE 1. The phase evolution occurs.
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FIGURE 2. The energy dissipative occurs.

Secondly, we choose different 7 as 0.005, 0.01, 0.050.1, 0.51 and fix Dy = 250.
We give the processes of energy evolution with time in Fig. 3. As we have seen,
for difference values of 7, the modified free energies go down over time. However,
with the increase of the value of 7, the original free energy becomes inconsistent
with the modified free energy, and the original free energy cannot keep dissipating.
It should be pointed out that the modified free energy is different from the original
free energy, especially in the case of large time step. In theory, our method only
guarantees the unconditional stability of the modified free energy. How to keep the
original free energy consistent with the modified free energy for our method needs
further study.

6. Conclusions. A second-order SAV finite element method equipped with Crank-
Nicolson/Adams-Bashforth scheme is present to solve phase field crystal model in
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7=0.005 7=0.01 7=10.05
20 20 20
free energy free energy ——free energy
0 —-——modified free energy o = modified free energy 0 —-—--modified free energy
20 -20 20
g -40 g -40 g -40
Z Z Z
B B B
5 -60 5 -60 5 -60
-80 -80 -80
-100 -100 -100 =
-120 -120 -120
0 5 1 0 5 1 0 5 10
t t t
(A) 7 =0.005 (B) 7=0.01 (c) =0.05
7=0.1 T7=05 T

free energy

free energy free energy
0 -~ modified free energy --—-modified free energy ~——modified free energy

=1
0 N
N
S
N
3
-50 <
.
~
N
N

-80 Y -100 ',
4150 | .
100 — \ \

-40

energy
energy
energy

-60

-120 200 -150
(p) T=0.1 (E) T=0.5 (F) T=1

FI1GURE 3. The energy energy changing processes with difference 7.

this paper. The stability and convergence of the fully discrete scheme are analyzed in
detail. The validity of the proposed method is shown theoretically and numerically.
It can be seen from numerical experiments that the energy dissipation of the original
free energy for our method cannot be guaranteed when the time step is large. In
recent studies, such as [15, 17], the allowable time step can be effectively improved by
combining the SAV approach with the stabilization method for time discretization.
Therefore, the second-order SAV finite element method can be further developed in
the future by incorporating with the stabilization method.
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