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ABSTRACT. In this paper, we investigate a final boundary value problem for a
class of fractional with parameter 8 pseudo-parabolic partial differential equa-
tions with nonlinear reaction term. For 0 < 8 < 1, the solution is regularity-
loss, we establish the well-posedness of solutions. In the case that g > 1, it has
a feature of regularity-gain. Then, the instability of a mild solution is proved.
We introduce two methods to regularize the problem. With the help of the
modified Lavrentiev regularization method and Fourier truncated regulariza-
tion method, we propose the regularized solutions in the cases of globally or
locally Lipschitzian source term. Moreover, the error estimates is established.

1. Introduction. We consider the final value problem:

ug — mAug + (=A)u = f(t,z;u), in (0,7] x £,
u(t,z) = 0, on (0,T] x 09, (Pr)
WTz) = @), in 0

where m > 0, and Q C R?, (d > 1) is a bounded domain with smooth boundary 052,
the operator (—A)? with is the fractional Laplace operator with 0 < 3 # 1 and the
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final data ¢ € L?(Q2). Pseudo-parabolic equations have many applications in science
and technology, especially in physical phenomena such as seepage of homogeneous
fluids through a fissured rock, aggregation of populations,... see e.g. Ting [24], R.
Xu [17,31-33] and references therein.

For g = 1, the direct problem is

us — mAuy — Au = f(t,x;u), in (0,T] x Q, (1.1)

with conditions u(0,z) = wo(z), z € Q and u(t,xz) = 0, (¢,z) € (0,T] x 9.
Problem (1.1) has been studied by many authors. Specifically,

1. f =0, see e.g. [11,22,24], the existence and uniqueness of solutions is estab-
lished. Moreover, the asymptotic behavior and regularity are investigated.

2. f(u) = wP, p > 1, in [5], the authors investigate large time behavior of
solutions. R. Xu et al. [32] proved the invariance of some sets, global existence,
nonexistence and asymptotic behavior of solutions with initial energy J(ug) <
d and finite time blow-up with high initial energy J(ug) > d and some related
works [18,34]. For the case of f(u) = |u|P~2u, there are other results on the
large time behavior of solutions of the pseudo-parabolic see [7,28-30, 35, 36]
and their references.

3. When the source term is a logarithmic nonlinearity f(u) = |u[Pulog|ul, very
recently, the work [10] focus on the initial conditions, which ensure the solu-
tions to exist globally, blow up in finite time and blow up at infinite time. The
asymptotic behaviour for the solutions has been considered in [4,6,8,12, 34]
and the references therein.

4. For nonlocal source, f(u) = |u|p/ G(z,y)|[ulP (y)dy, y € Q, the authors
Q

of [19] considered blow-up time for solutions, obtained a lower bound as well
as an upper bound for the blow-up time under different conditions, respec-
tively. Also, they investigated a nonblow-up criterion and compute an exact
exponential decay, see also [9,23].

For 0 < 8 # 1, [14] considered the Cauchy problem
uy — mAuy + (=A)Pu=uPT in Ry xQ, (1.2)

supplemented with initial condition «(0, z) = ug(x), = € Q and Dirichlet boundary
condition u(t,x) =0, (t,z) € Ry x 9Q. The paper established the global existence
and time-decay rates for small-amplitude solutions.

As mention above, initial value problems of nonlinear pseudo-parabolic equations
have been considered in many papers see [1,4-15,19,21-24, 32, 35-37]. However,
there are not many results devoted to Problem (Pr). Our approach includes as
special cases all previously on the reaction terms. In this work, we consider two
cases; first, the source f is globally Lipschitz and in the second case, we consider f
is general locally Lipschitz function (a coercive-type condition). At this point, we
remark that there exists some locally Lipschitz functions, but we cannot determine
its specific Lipschitz coefficient e.g. f = u(a — bu?),b > 0 of the Ginzburg-Landau
equation. Hence, we have to find another method to study the problem with the
locally Lipschitz source which is similar to the Ginzburg-Landau equation, etc. (see
Subsection 4.2.2 for more details).

The solution of Problem (Pr) is of the regularity-loss structure for 0 < g < 1,
x € Q,t € (0,T], we consider the existence and regularity of Problem (Pr). In the
case 8 > 1, the regularity-gain type for € Q,t € (0,7] and the Problem (Pr) is
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ill-posed. So the regularization methods are required. As we know, there are many
regularization methods to suit each problem [2,3,16,20,25-27]. For problem (Pr),
we propose two methods to regularize solution: Modified Lavrentiev regularization
(MLR) method and Fourier truncated regularization (FTR) method.

The plan of the paper is as follows. Section 2 contains notations and formulation
of a solution of Problem (Pr) and the proof of its instability. In Section 3, the case
0 < B < 1, well-posedness of solutions of Problem (P7) is established. In Section 4,
the case 8 > 1, the proof that Problem (IPy) is ill-posed and the well-posedness of
the regularized problem are presented. We also propose two regularization meth-
ods: MLR method and FTR method for the globally Lipschitz or locally Lipschitz
reaction terms, respectively.

2. Preliminaries.

2.1. Relevant notations. Let us recall that the spectral problem
{(—A)ﬁej(x) = Nej(x), nQ g>0,
ej(z) =0, on 012,
admits a family of eigenvalues
0<A<A<A3< .. <N <. oo

The notation || - ||p stands for the norm in the Banach space B. We denote by
L%(0,T;B),1 < q < 00, the Banach space of real-valued measurable functions w :
(0; T) — B with norm

T a
lwlizeqo,r;8) = (/ IIw(t)IIqut> , for1<q<oo,
0

lwl| Lo 0,7;8) = esssup [|[w(t)||z, for ¢ = oo.

The norm of the function space C*([0,7]; B),0 < k < oo is denoted by
k

wllexqo,m;8) = Z sup [lw' (t)|| < oo.
i—0 t€[0,T]

For any v > 0, we define the space
o0
H'(Q)={ we L*Q): ZA?”(w,q)iz(Q) <00y,
j=1

where (-,-)2(q) is the inner product in L?(Q); H”(Q2)) is a Hilbert space with the
norm

2

o0
lwllgv @) = Z A2 (w, e5)F 20
j=1

The Gevrey of order 3 class of functions with index 71,72 > 0, defined by the
spectrum of the Laplacian is denoted by

G(m,m)(Q) = qwe LX(Q): Y A exp (772)\93) (w,€j)72q) < 0 ¢

j=1
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and its norm given by

2

2
Hw”GB(Th,nz)(Q) = ZA;‘hﬁ exp (7]2)\f> <w7 €j>L2(Q)
j=1

Next, we give the formulation of solution of the problem (Pr).

2.2. Mild solution of the Problem (P7). Now, assume that Problem (P7) has
a unique solution, then we find its the form. Let u(t,z) = Zjoil u;j(t)e;j(x) be the
decomposition of u in L*(Q) with u;(t) = (u(t,-), ej>L2(Q). From (P7), taking the
inner product of both sides of (Py) with e;(x), we obtain the ordinary differential
equation

(1+ mg )y (t) + Ay (t) = f3(u)(t),

d Lo
where u}(t) = &<u(t, )1€5) 120> [i (W (t) = (f(t, 5 u), €5) 12 (), Whose solution is
(T —t)\? 1 T (r—t)\]
uj(t) = exp (um % Trmy J ew Trmy, ) it

where ¢; = (. €j) 12

Definition 2.1 (Mild solution of Problem (Pr)). A function u is a mild solution
of (Pr) if u € C([0,T]; L*(Q)) and satisfies the following integral equation

> T —t)\] T T — )\
u(t) =y [exp<(1 = ) o= [ oo <(1+2>\) fj(u)(T)dT] (2.
" (2.2)

for all (¢,2) € (0,T) x Q, and 8 > 0.

Now we introduce the main results in this paper.

3. The case 0 < 5 < 1: Well-posedness of solutions to the Problem (Pr).
In this section, we prove that the Problem (Pr) is well-posed. First prove that for
the Problem (P7) exists a unique mild solution, then the regularity of the solution
is established.

We will make the following assumptions:

(A1) Assume that f satisfy the global Lipschitz condition:

1,5 w1) = (L s w2l p2q) < K [lwr — w2l f2q) (3.1)
with K > 0 independent of ¢, x,wy,ws, and (¢,z) € [0,T) x Q,w; € C([0,T];
L?(Q)),i=1,2.
(A2) Weset f(0):= f(t,z;0) =0, (t,z) €[0,T) x Q and
1t 5wl ey < K ooy w e OO, T L)), (3.2)

Theorem 3.1 (L*-Existence). Let 0 < [ < 1, assume that f satisfy the as-
sumption (A1). Then, the integral equation (2.2) has a unique mild solution in
L>(0,T; L3(%)).
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Proof. We prove the existence of the solution u € L>(0,T; L*(€2)) of the integral
equation (2.2). For w € L*(0,T; L?(f2)), we consider the following operator:

“ oo (T — )A? (r =t}
A (w)(t, ) =]; [exp (W) ®j — 1+m/\ / ( sy ) fj(W)(T)dT} ej(@),
(3.3)

and we aim to show that .#* is a contraction mapping on the space L>(0,T; L%(Q)).
In fact, we will prove that for every wy,ws € L% (0,T; L%(£2)), it holds

_ (e () e -0)

L2(Q) — k!

[ERCHICOEEATAICD!

llwi — wall oo (0,7;02(02)) -
(3.4)

We will prove (3.4) by induction. For k = 1, using Parseval’s relation and assump-
tion (A1), one obtains

17 (w1) (L, ) = A (w2)(t, )| 12 ()

T oo _ )\3
“J ;MQXI’(W)(ff'(‘””“)—ff(wz)(r»ej ar

T
< /

1 2(r — )\
ex
(14 m);)? PAT

HMg

) £ (w1)(1) = f;(ws)(7)]Pdr

S < ) ||f( T, 7w1) f(Ta'aw2)||L2(Q) dr

S ( /\ ) le(Ta') _w2(7-a')HLQ(Q) dr

= m/\1 P < A1 (T =) lwn = wall g (o 3122 - (3.5)
Assume now that (3.4) is satisfied for k = ko, let us prove that it is satisfied for

k = ko + 1. Tt holds

”%ko—kl(wl)(t, - %pkoﬂ(wQ)(t,.)HLz(m
K T r
< e () [ It e

1 (K T\ T
Sl — = Wa| e 0,17 T —r)*d
= ol (m)\1 P (m)\l)> lwy — e, <07T,L2(ﬂ>>/t (T —7)™dr

ko+1
1 K T \\*
= o 1) (m/\l b <m)\1>> (T = )"+ wr = wa o (0 72209

1 KT T \\""™
(ko +1)! \mX\y P mA; hor =02l o 7,22 -

Therefore, by the induction principle we get (3.4). Since the right hand side of (3.5)
is independent of ¢, we deduce that

1 (KT 7 \\"
H;ﬂ(wl) - jf’“(wg)H <5 (—1 exp <m—h>) lwn = wall poe 0 7212y -

L0 (0,T;L2(Q)) mA
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k1
When £ is large enough, we have ﬁ ( K/\T exp (%)) — 0. Hence there exists
1\ mA mA1
k1 such that

0< ! AT e T " <1
— — X .
!l Uy P Uy

We claim that the mapping ./#*! is a contraction, i.e. #* (u) = u. We have

A (A () = A (A5 (u) = H(w).

Due to the uniqueness of the fixed point of 71, it holds #(u) = u. We conclude
that the integral equation (3.3) has a unique solution in L>(0,T; L*(Q2)). O

Theorem 3.2 (Regularity). Let 0 < 8 < 1, and f only satisfy the assumption
(A1), we have the following:

a) If p € L?(Q) and £(0) € LY(0,T; L*(R)), then there exists C(T,m,\1) > 0 such
that

. (3.6)

£ O 12 0 22
prmmﬂmnﬁaﬂmdﬂowmmﬁ- POTLD) )

b) If p € HA(2), f(0) € L>=(0,T; L%(Q)) then there exists C(T,m, \1,3) > 0 such
that

T FO) o 072220
WhmmmmmﬁaﬂmﬁmﬂOWmmﬁ xV @) 3

Here, we recall f(0) := f(t,z;0), V(t,z) € [0,T) x Q.

Proof. First, we set

_ )\5
! zexp<1+;; Jors

© T T —1)A;
My = g 1+m)\ / exp <(1+ t))\ >f]( )7 )dT‘| ej(x).

a) First, using the Parseval’s relation, we infer that

1/2

[Ma(e)(t, )l § e T4 s <exp| —=5 | ll#l
X i X
! L2(Q) = P 1—|—m)\ ¥ =P m)\}fﬁ plza@,
(3.8)

—)A\P
where for 3 € (0,1), we have exp (m) < exp (%) ,Vt € [0,T),j € N*.
mAy

We also obtain

T || /\ﬁ
IMa)( ooy < [ §;+;mec+gA>vam i
t = j

L2(Q)
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1/2

2(r — t)A? )
=/t g e p< Hmjf) @R dr
1 T T
= mAy o (m)&_ﬁ> /t (5 w)ll 2 o) A (3.9)

where we have used V5 € N* and for 8 € (0,1) we implies that

1
1+m)\ S m)\ ’

2(r — )] T
—— | < _— 0<t<r<T.
eXp( 1+m)\j S exp m)\% 3 STUS TS

Using (3.1), we obtain
(-5 u) = f(t 5 0) 2 < Kllult, )29,
then
(5wl 2y < Kllult, )z + 1FE 50l p2q) - (3.10)
Combining (3.10) with (3.9), leads to

[ M)t M2y < 55 exp (mAiﬁ) IOz 07220

T
Tﬂ)/t (T, ) p2(o) AT (3.11)

From (3.8) and (3.11) yields

T
[ult, ) L2y < exp <m/\1> <||90||L2 @ + 5 1£0 )IILl(o,T;Lz(Q)))

1

K T T
S : dr.
mA; P <m>\iﬁ> /t I Mgy 7

Thanks to Gronall’s inequality

T
lu(t, M L2q) < exp <m/\1> (HSO”L @+ Hf( )||L1(0,T;L2(Q))>

1

K T
— | (T -1t
o) >),
this imlpies (3.6).

b) We observe that for 8 € (0,1)

> 2T — t)N?
_ 28 J 2
ML)t oy = | DA exp <1+m)\j> j

T
< exp (mAl‘B) ol e ()- (3.12)
1

_|_

1/2
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We conclude that

T r—t)\?
IMa ey < [ |2 T o0 (W) Be|  ar
t =1

HA(2)
(3.13)

TS N 2(r — )\
:/t \Z (1 +:n>\~)2 eXp( §+n:)/\jj> il ar

< 71 eXp | —3-3 / I £( u) d
X T, T.
m)\%_ﬁ mx\rﬂ t e

Inequality (3.10) associated with (3.13) leads to
[Ma(w)(t; )l s )

/ml (1

) (KHU( Mz + (7, ';0)||L2(Q)> dr

-
Al

T

D 5 €XP ( > [0 ||L<><>(0,T;L2(Q))

A1

K

e ( > (T, )2 (e)dT. (3.14)

A

Estimates ( .12) and (3.14) lead to

(T — )X
()l e o) < Zexp 1+mA Pi€;
HA(Q)

T 1 (r—t)A]
+/t ;71+m)\j <1+m)\ )fj(u)(T)ej » dr

T T
< exp I ol s ) + e 1 O oo (0,722 (2))
1 1

K T T
o (ml_ﬁ)/t Jutr s aydr (3.15)
1

1

where we have used that ||wl|gso) > )\f||wHL2(Q) for g € (0,1). Gronwall’s in-
equality allows to obtain

T
1wt M o) < <||<P|HB(Q) + ] ||f(0)||Loo(0,T;L2(sz))>
1
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y KT T n T
exp —— exp — — ,
m)\% 28 m)\% B m)\% B

we implies (3.7). The proof is complete. O

4. The case § > 1: Ill-posedness and regularization methods for Problem
(Pr).

4.1. Tll-posedness of the solution of Problem (Pr).

Definition 4.1 (Ill-posed). The well-posed problem in the sense of Hadamard is
to satisfy the following properties:

i) a solution exists;

ii) the solution is unique;

iii) the solution’s behaviour changes continuously with the initial conditions.

If at least one of the three properties above does not satisfy, the problem is ill-posed.

Next, we give an example which shows that the solution u*) (¢, z) (for any k € N*)
of Problem (Pr) is not stable (property iii) is unsatisfied). For 8 > 1, let us set

") (z) = A ter(x), Yk € N (4.1)

- N
ft,z;w) = Z)\ T~ exp< - > (w(t,),€5) p2(o€i(®@), m>1, (4.2)

1+m)\
j=1

for (t,x) € (0,T) x Q and w € C([0,T]; L*()). The solution u¥) (¢, z) satisfies the
integral equation

> /\
(¢, z) Z lexp ( : +2)\ ) ﬁ(k)] ej()

J=1

S 1 r (r—tAT\ ~
o T ) _— (2, () d ) n
j;l 1+m/\j/t exp<1—|-m)\j fi(®)(7)dr| ej(), (4.3)
where
R — (k) .
i <%0 ’€J>L2(9)’
and

L)) = (T3, e)

e Step 1. We show that (4.3) has a unique solution u®) € C([0, T]; L*(2)).
Indeed, we consider the function

> T — )\
G(w)(t,z) = [ex (M) 5@)] e;(x)

1 T (r—t)A]
1+m;

)fg( )(T )dT] ej(@).
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Then for any wi, w2 € C([0,T7]; L*(£2)), we obtain
19 (w1)(t, ) = (w2)(t, )l L2

T &= (r—t)A]
S/t Z dr

1+;A.e"p<1+mx )(mwl)() fj(w2)(T))} ¢
i=1 ! L2(@)

_ 1/2
T [ 1 -0 \\" L, —TA? ,
= / g exp J A;T™ " exp J |wi,;(7T) — wa,;(7)] dr
t = 1+m)\j 1+m)\j 1+m)\j

1/2
T 1 (r—t=T)\; , /
= /t Z m2T2 P _ |w1,5(T) — w2,;(7) dr

= 14+ mA;

T 1 1
< / —— lwn () = war gy A7 < - llws = wallego ez -
where we denote w; ;(t) := (w;(t, ), 6j>L2(Q)7 1=1,2.
This implies that
1
19 (w1) = & (w2)lleqoryza@) < llwr = walloqoryra -

Hence ¢ is a contraction because m > 1. Using the Banach fixed-point theorem,
we conclude that ¢ (w) = w has a unique solution a*) € C([0, T]; L*(R)).
e Step 2. The solution of Problem (4.3) is instable. We have

N LA
k (k)
HU( )( ez = Zexp< 1+ mh, Pj €5

L2(Q)

=M () (1)

T F— )\ﬁ
T+ mh; / P <(1+72/\> fa(%))(f)dT] €

=My (TR))(t)

Il

L2(Q)

It is easy to see that (here, noting that from (4.2), we have E(O) =0)
M (@9 ()] = 19@D) () = Z ) Dl12(0)

1,
< g||u(k)\|cqo,T];L2(ﬂ))~
Hence
- - 1,
179, Mz 2 [Ma@)O] = 179 o,z
This leads to

||a(k)||c([0,T];L2(Q)) > sup ‘Mg,((ﬁ(k))(t) . (4.4)

m+1o<i<r
We continue to estimate the right hand side of the latter inequality. Indeed, since
{ej(z)};>1 is a basis of L?(), i.e.,

<€k’ej>L2(Q) =1, k=,

<ekvej>L2(Q) :Oa k#]v
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we have

(k) AT —0N\ /gy \?
’M?’ (SD ) (t)‘ - Zexp 1+m)\ <@j ’€j>L2(Q)
)\5
= \ ZQXP ( 1+ Y ’ ) <)‘I;16k7€j>iz(ﬂ)

mA;
! (T — )}
Mexp( 1+ mn .
(T - )A;

1+ mAk
to variable ¢ € [0,T] and 8 > 1, we deduce that

_ 1 (T —t)A? TN 1
M (65 (¢ ‘ > — L% ) ) = M%)
Oiltlé)T ‘ 3 (QO ) ( ) - Ozltlé)T Ak b 14+ mg P 1+mAg | A\

(4.5)

Since the function x(t) := exp is a decreasing function with respect

Combining (4.4) and (4.5) yields

k) m TN, |\ 1
5 g > s ()
c(0,1;L2(Q) — m+1 14+mMg | A

As k ' oo, we see that

lexll L2 (o) 1
i H k)’ lim ARE2@ oy L,
kl/‘n;o 14 L2(Q) kl/‘n;o py kl/‘nolo Ak 0

but

li H k) H > 1i m ex A ! 00
11m u im ———- S —— — = .
kMoo C([0,T);L2(Q)) ~ kSocom + 1 P 1+ mAg | M

Thus, it is shown that Problem (P7)is ill-posed in the Hadamard sense in L2-norm
for 5 > 1.

4.2. Regularization and error estimate. In order to obtain the stable numerical
solutions, we propose two regularization methods to solve the Problem (Pr) in two
cases of f:

e f is globally Lipschitz: MLR method.

e f is locally Lipschitz: FTR method.

4.2.1. MLR method: Globally Lipschitz source term. In this subsection, the func-
tions f(t, x; u) is satisfy the globally Lipschitz (A;). To approximate u, we introduce
the regularized solutions U, given by MLR method as follows

> T —t)\]
Us(tz)=> [ﬁj(a,T) exp (M) <p;] e;(x)
j=1 J

o0

1 T (r— t))\é? .
_ ; T [/t L;(a,T)exp <1+m)\]> fj(ua)(T)dT] e;(x), (4.6)
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~TN]
xp 1+ m)\j
£5(0,T) = (4.7)

N TN
N TP T,

where we set

and the coefficient « := a(e) satifies lim+ «a = 05 it plays the role of a regularization
e—0

parameter.
The following technical lemma plays the key role in our analysis.

Lemma 4.2. For 0 <t <7 <T, we have

(T — t)\? . T -7
(o, T — )l <art | —— 4.
(a) |£;(e, T)exp ( 1+mA; =t (log(a—lT)> ’ (48)
(T — t))\ﬂ t—r T T’;t
b (o, T — 1 )|l<aT [ ——M— . 4.
( ) ‘CJ(Q7 )GXp ( 1+m>\] sSa’ (log(a—lT)> ( 9)
Proof. a). First, from (4.7), it holds
—t\?
(T —t)A] P THmx;
Li(a, T =
sl T) exp 14+mA; 3 ~T’
aXj + exp TFmag
—tAf
exp m
= T 11—
—TA\? T —TA? T
<a>\f + exp (1+mij)) (a)\? + exp (1+m/<J >)
1 1
< — < — (4.10)
8 —TA] T B (_ B ) T
(0‘%‘ +exp (1+mxj>> (O‘AJ +exp T’\J>
Using the inequality
1 vy
g S— 4.11
vi¢ +exp(—Cr2) ~ log(£2) (4.11)
forv; >0, i=1,2 and 0 < < ey, if a < €T, we obtain
1 a~'T 1=
= < (mwm) -
B B -T og (o
(oc)\j + exp (—T)\j ))
Whereupon
(T — t)/\ﬁ a~ T =%
Li(a, T — < | —— . 4.12
i, T) exp < 14+ mh; - (log (a—lT)> ( )

Using (4.12) into (4.10), we obtain (4.8).
With the same argument as in the proof of (4.8), we obtain (4.9). This concludes
the proof of the lemma. O
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A. The well-posedness of the regularized solution (4.6). In this subsection,
we will obtain the existence and regularity results for the regularized solution (4.6).

Theorem 4.3 (Existence-uniqueness). Suppose that f satisfying the assumption
(A1) then the regularized solution (4.6) has unique weak solution US € C (][0, T];
L*()).

Proof. For any Z € C([0,T); L*(Q)), we define the function
F: O([0,T]; L*()) — C((0,T]; L*(2))

(T — )X
Li(a,T)exp m 90; ej(z)

by

M8

F(9)(t,z) =

1

i

r—t)\?
o ] e (M) fj(ﬂ)<r)dr] 6 (a).

1

J

(4.13)
We also define .#* as follows
FE) =F - F(F(0)).
k—times
We shall prove by induction, for any couple 91,92 € C([0,T]; L?(£2)), that
- k
|7 @0, — #2000 < <Kml°g("T1T) (T_t)) 19 — D2l 1o 21 a1, -
’ N2y = 7l C(0,T):H2(2)
(4.14)
For k = 1, by using (A1) and Lemma 4.2 and noting that ﬁ 1, it holds
= -1
T (WT_lT)> g%, forall0<t<r<T,
then we have
.7 (00) (¢, ) = F (D2)(t, ) 20
< [ | Gt e ((W> (F5(0)(r) - fj(ﬁz)(f))] e dr
¢ = 1+mA; 1+mh; .

1/2

S - B 2
/ [Z 1+m\;) £i(on T) exp <(1+72))\\j> |ff(191)(7)—fj(192)(7)|2] dr

. 1/2
«

< g% £ E

_Kmkllog —1T/ [ [92,5(7) = Y2.5( ”} dr

-1
a T
mAi log (=17 /t 192(7, ) = 02(7: )l 20y A7
-1
a " T(T —t) )
mi log (a=17) 191 = Dall oo, ryiz2(0) » Vi = {0i,€j)p2(),1=1,2:

Hence, (4.14) holds for k = 1.
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Assume that (4.14) holds for k = N. We show now that (4.14) holds for k = N+1.
In fact, we have

[FXH W), ) = F V)2, '>HHV<Q>
a~ T r
SKW/t |7 N @1)(r,) = F¥ 02)(7 )| o A7

a7 \M T ()N
<<Kmlog<a—m> / A= Dallogoryea )

1 a~lT N
S (Kmlog @)L t>> 19y = P2lloo,myiz2 @)
By the induction principle, we deduce that (4.14) holds for all £ € N*. Notice that,
1 i g
as « is fixed, then o KW(T — t)> tends to 0 when k 7 0o, so there
exists a positive integer kg such that

1 =T ko
— | K—— (T -1t < 1.
Ko! ( mlog (a—lT)( )>

It means that .Z %0 is a contraction. Finally, it follows the desired conclusion that the
problem (4.6) has a unique solution U5 € C([0,T]; L?(£2)). The proof is complete.
O

Given a constant « € (0,1) (which will be assumed from now on) and a function
w € C([0,T); L3(£2)), we denote the scaling with « as follows:

lwll, .. = sup (a_T ||w(t,-)||L2(Q)). (4.15)
0<t<T

Theorem 4.4 (Regularity). Assume that f satisfy the assumptions (A1) and (Az).
We have the following results:
a) If p° € L?(Q), then U given by (4.6) satisfies

a~ T KT?
Wbl < s o (oo ) 19 s (1.16)

b) If o € HY(Q), then

o~ T KT?q~1!
U Lo (0,711 (2)) < log(T) &P (m)q log(T)> 1650 211 @) - (4.17)

Proof. We rewrite (4.6) as

oo B B
U (t,x) = Z (o, T)exp <(Tt))\]> @?] ej(x)

= 1 +m)\J

=:Ms(¢%)(t7)

T — )\ﬁ
1+m)\ / Li(a,T)exp <(1+ t))\ )fj(us)(r)drl ej(x).

=:Mg(UE)(t,x)

-y

J=1

(4.18)
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a) Using (3.10) (noting that f(¢,2;0) = 0, for all (t,z) € (0,T) x ) and Lemma
4.2b), we first observe that

[MeU) ()l L2

KT /T i
< — a T || U (T, dr, 4.19
T /. U7, ) 120 (4.19)

Tt

T

where we have used (bg(a%@)) < 10g(T)7 fora € (0,1),0<t<7<T.

The next observation, from Lemma 4.2a), is that

[Ms(0°)(E, )l 20
- T -\ ]
,ZZ: (0, T) exp ) &
_q T

ot <log —1T> 1% 2@y < @7 5o 1972y (4.20)
<

IN

r—1

T

noting that ( Lz ) ok, forall0 <t <T.0<a <1,
Combining (4.18)-(4.20) and multiplying the two sides of of the result obtained
by of%, we deduce that
o T U, ) p20)
< IMs (@) )l 20 + M6 Ua)(E) 22 (0
T KT E—
o7 1l + o pogmy . @ F I lsacey o

Using Gronwall’s inequality, we get

ot < Oéil KT2
o Ry < s g e (e s ) (@)

Since the right side of (4.21) does not depend on ¢, we have

ailT KT?
E (1
This leads to (4.16).
b) From Lemma 4.2a), we first observe that

0 T — 1)\ 2
M5 (%)t ey <D l)\jﬁj(Oé’T) exp <(t)J> wj]

=1 1 + m)\j

log

<ot (L) L
og(a=11)) 17l = fogry 19 e
(4.22)
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The next observation, using Lemma 4.2b), is that

[Me(U)(Es) g1

JE[2
t]

eV
1 T t—7 T TT_t €

<o [0 () MOl 07
KTa !

T
o )| Iy (4.23)

T—t

Wherewehaveusedat%(+>T <ar 0<t<r<Tflor0<a<l.

(r— t)/\@
L;(a,T)exp 7171]] fi U (T)

IN

log(a—1T) = Tog(T)’
From (4.22) and (4.23), we deduce that
a 1T KTa™1 T
—_— d
< gy Wl + smpcogrzs /I iy o

where ||w||r2) < Hw”/\& Thanks to Grénwall’s inequality, we get

e a~lT KTa !
A5 8 Moy < s 19 oy 39 (o g (T 0)

which implies (4.17). This concludes the proof. O

146 (& ) <

B. Error estimate In this subsection, by using MLR method, the error between
the exact solution and the regularized solution is obtained. Now, we can formulate
the main theorem.

Theorem 4.5 (Error estimate). Let « := «(e) satisfy

lim a =0,

0t (4.24)
lim ea™ = My < 0.
e—0t

Assume that f satisfy the assumptions (A1) — (Az) and Problem (Pr) has a unique
solution u satisfying
uw € L=(0,T;Gp(n,n2) () and ||ull oo (0,16 4 (1 ma)(0)) < P (4.25)

for some known positive constants Py andny > 2,19 > 73—;[:1 Then (for allt € [0,T])

4G (t, ) = u(t, )l 2oy < V2 (Mo + Po) exp (%(T - t)) o (m) -
(4.26)

t I-%
Remark 1. The error estimate in (4.26) is of order O(e) = aT (W) Tte
[0, 7).
o If t & T, then O(e) = « tends to zero according to (4.24).
o If t = 0, then O(g) = T'log™* (@™'T) tends to zero as e — 0.

+
Remark 2. Choose o = " “—% 0, for some 0 < r < 1, then the estimate in (4.26)

is of order
t—T

T [T/ log (T/ef’“)] T
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Proof. For all t € (0,T), the triangle inequality gives

L5t ) = ult, ) L2y < MU ) = Ual(t, )l L2 (0 + 1Uha(t, ) = ult, )l L2 (o)

=M% (t,x) =:Mg " (t,x)

(4.27)

where U, (t, z) is the solution of Problem (4.6) corresponding to exact datum ¢(z).
In order to estimate M3 (¢,2) and Mg “(¢,x), we need to divide the proof in two
steps.
Step 1. Estimate M>°(t, z).

Thanks to Parseval’s relation and basic inequality (a+b)? < 2a%+2b%, Va,b > 0,
we obtain

2
T (=N |, .
(@ T)exp | (5 — i)

oo

A5 () = Ua(t, ) 720 Z

=M ()
2
- 1 4 (1 — t))\
Trmy J, Sl DeP{ s : (Ua)(7) dr |
2; ey /t Lj(a,T)exp ( [y (f;UE)(7) = f;(Ua) (7)) dr
=M (1)
(4.28)
To estimate M?3.°(¢), let us use Lemma 4.2a) yields
Mz (0)]
= ¢ T 2-%
< F-2
72;OZT (log(a—lT)) |<'0J ‘
# r = 2t T 2-%
<2077 <oa¥2( L 2
>~ 2T (]Og (OélT)) || S0HL2(Q aT (log (alT)> c
(4.29)

Next, we estimate M7°(t). Using Holder’s inequality, (A1) and Lemma 4.2b) , one
obtains

Mz=(#)]
(r—t)\]

= 2; Hlm%/t Lj(e, T)exp (HTTD\;) (f;U(T) = fj(ua)(T))dT]

<2Ti41 /T (T =N
= 0 )

2
]>‘ U (T) = £ Ua) () dr
T
ot (gaem) | S0 o

1+ m)\j
272t

2T T s, T T
o | o () | MU~ Sy o

Li(a,T)exp <

IN

IN
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27 —2t
2K2T [T 5isr T T 9
< mg)\%/t a T (log(a—lT)> U (7, ) = Ua (T, )12y dr. (4.30)
Combining the results in (4.28)-(4.30), we get
2
UGt ) = Ualt, ) 720

9_ 2t

< 204%_2 771 ’ g2
- log (a=1T)
27 —2t
2K2T [T 5o, T T 9
+ mg)\%/t a7 <log(a—1T)> 4, (7, ) *Ua(Ta')Hp(Q) dr.

2t
Multiplying by QT (ﬁ) " both sides, we deduce that

N

=2t T . )
@ <W> 4 (2, ) = Ua(t, )72 0
T 2
<90 2 —— 2
<2« (log (alT)) €

2Kk2T (T . T T )
R ) MR R e

Gronwall’s inequality allows to obtain

2t

=2t T T e 2
aT (bg(a—lT)> U, ) = Ualt, )72

T 2 QKT
<9272 —2 ) 2 2 r-b).
=20 (1og<a1T>> : exP(m?A%< >)

Similar calculations yield

K2T . T -
S(t) — M aren < -1 (T - T — - .
U, ) = Ualt, )l 2oy < V2a~leexp (mz/\% (T t)> a <log (alT)>
(4.31)

Step 2. Estimate Mg °(t). Let us define an operator

Ou(t,x) = [£5(0,T) (wlt, ), €3) 2y | €5(@), for w e C([0,T]; L3()).

.
=

It clearly follows that

(T — )X
: Li(a,T)exp m vj| &)
(r— t))\f

_ ; 1—|—7n)\7/t Li(a,T)exp <1+Tn)\3> fj(u)(T)dT‘| ej(x).

The triangle inequality allows to write

[Ua(t,7) = ult, )2y < 2 Whalt,) — Oult, )2y + 2 [Oult,) — ult, )22
= M, (1) + M (1),

Ou(t,x) =

NE
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We estimate for Mg, (t) as follows (similarly as in (4.30)):

| Mg, (8)]
/t 1 +m)\ ——Lj(a,T)exp (HmAj) (fiUL) (1) = fi(u)(1))dr

=9 Z
2T —2t

2K2T 2t—2r T T 2
Smg)\%/t a T (log(alT)) [Ua (7, ) = w(T, )12 dT-

The term Mg, (t) is estimated by using (4.8) as

=D (L@, T) = 1) |u; (1)

(r— 1)\ ’

2
-7}
& exp 1+mA; 5
> Ly fuy(®)]

— 8 T\
j=1 a/\ +exp<1+m)\

oz)\@

=2 Z 5 TP
7=1 \ @] +exp <)]\>
exp< iy ) i 8
s 1+m/\ 2T\
<20%)° 7 exp <j> ()2
j=1 oz)\ﬁ + exp (1+m>\ ) J
2—

¢ T T 2T
<242 2t 28 A2 (D)2
2 Za (log —1T)> A;” exp A lu; ()]

2t

= 2at <10g(0¢—1T)) 1t Mm@ >

Juj (£)]

S

P A
where we have used m < —— )\1 for all j € N* and n; > 2,12 > nzzi

Combining all these inequalities, we deduce

e (t, ) = ult, )7z o

22t
2t T " 2
§ 2O[T <_11_‘)> Hu(t?')”Gg('f]lﬂD)(Q)

272t
2K2T (T 5iar T T 9
+7n2>‘%/t o T <()> [Ua(T, ") _U(Tv')HL2(SZ) dr.

2t
Multiplying by a7t (—L )" , we obtain
log(a=1T)

2t
-2t T r ]
“r <10g(04_1T)> ”uoz(t, ) - u(tv ')||L2(Q)
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<o —1 2 p
~ \log (a™!T) et M .y (2

KT [T s T 7 )
+ m2>\%/t T (log(a—lT)> [Ua(T,) = (T, ) 72(q) dT-

Using Gronwall’s inequality, we thus obtain

[Ua(t, ) = ult, )l 20
. T -t K2T
<V2aT (log(alT)> 1wt MG me) ) P (M(T - t)) - (432)

Combining (4.27), (4.31) and (4.32), we complete the proof of Theorem 4.5. O

4.2.2. FTR method: Locally Lipschitz source term. In Subsection 4.2.1 has ad-
dressed the Problem (P7) in which f is a globally Lipschitz function, in the rest
of this paper, we extend the analysis to a locally Lipschitz function f. Up to the
present, the results of Problem (Pr) for the locally Lipschitz cases are still very
scarce. Hence, we have to find another regularization method to study the problem
with the locally Lipschitz source. Thus, the FTR method is a very effective method
for this case.

We begin by establishing the locally Lipschitz properties of f by the following
assumption:

(Ag) Assume that for each ¢ > 0, there exists K, > 0 such that

lf(t, z;u) — f(t,x;0)| < Kplu—v|, if max{|ul, |v|} <o, (4.33)
and
t o _ t.x:
Kg:sup{ faiw) = JES0)) <0 wst v, (4a) € 0,7) xn},
u—v
K, is a non-decreasing function of p. We assume that lim K, = oo.

000
Example 1. Let f;(u) = u|u|?. Easy calculations show that
[f1(u) = fi(v)] = [ulul? = v]v]?|
= [(u—v)[ul* + v(|u® — [v]*)]
= (Jul + Jvllul + [v]?) |u —v].
Clearly, f1 is not globally Lipschitz. For ¢ > max{|ul, |v|}, from (4.33), one can
compute explicitely the coefficient K, = 30°.

Example 2. Let fo(u) = u(a — bu?) (Ginzburg-Landau type), with a € R,b > 0.
It can be easily seen that f5 is locally Lipschitz source. Moreover, we are possible
to verify computationally the coefficient K, = 3p?max{|al,b}. In order to solve
the problem with the locally Lipschitz sources as above (and some other types), we
outline our ideas to construct an approximation of the function f. For all ¢ > 0,
we define

-0, if we (_007 _Q)a
folt,m;u) == f(t,z;u), where u:=( u, if wel-p 0, (4.34)
0, if e (p,00).

With this definition, we claim that f, is global Lipschitz function. Before stating
the main theorem, we first consider the following lemma.
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Lemma 4.6. Let f,- € L=([0,T] x Q@ x R) given as (4.34). Then we have

[for (t,z5u) — for (t,250)| < Kpelu—v|, V(t,z) €[0,T)xQ, u,veR, (4.35)
where lim,_,o+ 0° = lim,_,o+ Ky = 00.
Proof. The proof can be found in [2]. O

Remark 3. For p® > 0 satisfying lim+ 0° = 0o, we implies that
e—0

U= u, almost everywhere in [0,7") x Q,
for (t,z;u) = f(t,z;uw), almost everywhere in [0,7") x Q.

Based on the above analysis, we propose the regularized solution by using FTR
method as follows

Vﬁs(t,x)

(7] (T — t)\? 1 T (1 — )N
_ J e _ J c (VE. :
—; |:exp( 1+ mh > ®j 1+ mh, /t exp ( 1+ mx > fo J(VA )(7')de| ej($)7

(4.36)

where fﬂf 2J (V/Elf)(T) = <fQ€ (T7 g Vflf)v €j>L2(Q)‘

The regularity estimates of the solution V5. given by (4.36) is possible that
but we will not develop this point here because it is an argument analogous to the
previous one. We continue with the error estimate result.

Theorem 4.7 (Error estimate). Suppose that we can choose %, A > 0 such that
lim,_,g+ A = lim,_,o+ 0° = 0o and satisfying

lim exp <(A€)I8 T) €= Ny < o0 (4.37)
e—0t m/\1 ’
and let us choose
may |1/2

Ko = |log (log (e7")) ™ — 00, as ¢ tends to 0.
Let fye satisfy Lemma 4.6. Then nonlinear integral system (4.36) has a unique
solution V4. € C([0,T]; L*(Q)). Assuming further that equation (4.36) has a unique

exact solution u satisfying

u€ L™ (0,T;Ga(n,m2)(Q)), withn >2+25, ng > .
1

and
|l oo (0,736 5 (n1m2) (@) < ]36, for some known constant IDVO > 0.
Then the following stability estimate holds for any t € [0,T], § > 0,

valg (t’ ) - u(tv ')||L2(Q)

) () () o

mi/BAL P A/log(e—") e—=07F
Remark 4. We can choose A° = Vi g(e”") <20 oo, for some r € (0, 1),

then the condition in (4.37) is fulfiled. Then the estimate in (4.38) is of order

e (log(sf’"))lf% —0ase— 0", foralltel0,T).
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Remark 5. Obviously, from (4.26), one can raise the question about I in (4.25)
is large, then the estimate in (4.26) is not exist naturally. By using FTR method,
this problem is improved as in (4.38) by the term (Af)% — 0 as € goes to 0F.

Proof. We divide the proof into two parts. In Part a, we prove that the integral

equation (4.36) has a unique solution V5. € C([0,T]; L*(Q2)). In Part b, the error

between the exact solution and regularized solution is obtained.

Part a. The existence and uniqueness of a solution of the integral equation (4.36).
For ¢ € C([0,T]; L3(£2)), we consider the following function

-i”(C)(t x)

— )] T T — )\
—Z [exp (L;& )@—H;Mj [ e (M) fg,j<<><7>d71 os(x).
(4.39)

Let us define .Z* as follows

LN =2 L(ZLQ).
—_———
k—times
To explore the proof, we only need to prove that there exists kg € N* such that the
operator .%o which also maps C([0, T]; L?(f)) into itself, is a contraction. In fact,
we prove by mathematical induction that for any couples (1,2 € C([0,T]; L*(9))
then

||$k(< )~ gk(CQ)HC([O,T];Lz(Q))

< [Kgs exp (T(AE)B> (T - t)} k|

mA
- k!
for ¢1,¢2 € C([0,T); L?(€2)). The proof of the latter inequality is similar to that of
Theorem 4.3 and thus it is omitted.
Part b. The error estimate between the exact solution u and the regularized solution
V5-. Using the triangle inequality, we have

Vi (t,-) — ult, )liz2 2 < IVae(t, ) = Wae(t, )l 2@) + IWas (t, ) —ult, )l 220,

IC1 — Calleqo,m);22(0))5

=MJT () =M (1)
(4.40)
where
Wae (t7 x)
] (T — 1)\ 1 T (r—t)\?
_ J o A e B i(z).
—; |:exp( 1+ mh ) ' 1+mx; /t exp ( 1+ m > foe,i(Wa )(7')de| e; ()

To estimate (4.40), we divide the right-hand side of (4.40) into two steps
e Step 1. Estimate M{ (t). One has

[A7] T — NP
Viu(ta) — Waelha) = 3 [exp (M) (o5 - %’)] 5 (2)
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[4%]
2
j=1

T (r— t))\j@ ]
I—&—m)\j/t exp m (for i WA )(T) = for s (Vi) (7)) dT| € ().

(4.41)

Using the Hoélder’s inequality with Parseval’s relation, we obtain

My (1)
4] T —t)\? ?
= Qj [QXP <(1+m),\;> (5 — %)1
(r—t /\ﬁ 8
l—i—m/\ / 14 /\ (for s Wae)(7) = for 5 (Vi) (7)) dr
[A%]
=2ew <2<m£) Z i

T r— e\B (A°] )
w2 [ e (AT S s 0Va ) — fir Vi) b
< 2exp <2(Tt)(/1€)ﬂ> &2

m>\1
TR (T (- ()
e e 2
+ EST /t exp ( - ) [Wae (7, +) = Vi (7, )2 dT- (4.42)

Multiplying both sides (4.42) by exp (2( i t), we get

~

Il
_

2

u Mg

exp (2#”) ) Vit = Wit e

A* 2TKZ [T (A%)P .
<2 (27030 )4 T [ o (20 0 ) D920 Vi i

Applying Gronwall’s inequality yields

A%)P -
exp (2055 ) D50 = Wi )

2(A%)P 2T K2
< 2exp ( " T) g2 exp ( mz)\% (T—-1)].

Consequently,

Vi (t,) = Wae(t, Ml gy < VEexp (‘Ae)ﬁ (T - t)) oxp (”K@E (T 1)

mh; m2\2

e Step 2. Estimate of M3y (t). One has
M )]

© T — )\° T T —t)\? 2
=2 Z |:exp <(1 +m)/\j] ) w; — 1+1n/\j /t exp <(1+7r3/\j> fgf,j(WAE)(T)dT:|

j=[A%]+1
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[4%] - Y ,
N 2; ﬁ/t exp <(1+2)\j> (fi(u)(T) = foe j(Was)(7)) dT
= Mioa(t) + Mipy(t). (4.44)

To estimate M1, (t), we proceed as follows for § > 0 be arbitrary

M)

—2t\? TN
=2 Z exp(1Jr )\)[exp(ler)\)
—[A°]+1
1+m)\/ Ty, | feaOVa) (e

. B
< 2(AE)*2§*265 exp (_ Zt(/l )ﬁ) Z )\2(54‘35) exp <2T>>\\ ) <u(t, '),6j(')>2Lz(Q)

A mAL
s Qt(AE) 2T
< 2(4%)2 waexp( ) U Wy 22
(4.45)

Since lim,_,o+ 0° = o0, for a sufficiently small € > 0, there is an ¢° > 0 such that
0° > |ullp~(o,1;22())- For this value of o (from (3.54)) we have f,-(t,z;u) ~
f(t,2;u). We estimate of M4, (t) as follows

M)
[A%] T B 2
1 (T =)
=23 |y [, o (um) s 0)(7) = for OVac) 7))
27 [T 2( — t)(
< e [ e (O )ng A0 = Fe V)
2TK2 [T — 1)(AE
<o [ ew (Q(m’fj()) W) =l gy e (446)

Combining (4.45) and (4.46), we get
Was (¢, ) = ult, )12 q)

o (As)ﬁ
2(/15) 28—286 exp (-21,‘ m)\l ||u(ta ')“2(}5(1717772)(9)

2TKp. (T 21 — t)(A%)P
o oo () ) -l e dn )
1 t

m>\1

A)

Multiplying by exp ( ) both sides and using Gronwall’s inequality, we obtain

[Wae (t,-) = ult, )l 2(0)
\/iexp (—Lm)ﬁ

mA1

) TKZ
< (Ae)3 73 [lu(t, ')”Gg(mm)(ﬂ) exp 7m2)\% (T-1)]. (4.48)
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Combining (4.40), (4.43) and (4.48), we obtain (4.38). This completes the proof of
Theorem 4.7. O

5. Conclusion. The paper investigate a final boundary value problem for a class
of pseudo-parabolic partial differential equations with nonlinear reaction term. For
0 < B < 1, the well-posedness of solution is established. For 5 > 1, the problem
is ill-posed. Thus, we propose two methods to regularize the problem. The error
estimates are given in the cases of globally or locally Lipschitzian source term.
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