
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2020088
Volume 29, Number 1, March 2021 pp. 1709–1734

ON A FINAL VALUE PROBLEM FOR A NONLINEAR

FRACTIONAL PSEUDO-PARABOLIC EQUATION

Vo Van Au

Division of Applied Mathematics, Thu Dau Mot University
Thu Dau Mot City, Vietnam

Hossein Jafari

Department of Mathematics, University of Mazandaran, Babolsar, Iran
Department of Mathematical Sciences, University of South Africa

UNISA0003, South Africa

Department of Medical Research, China Medical University Hospital
China Medical University, Taichung 110122, Taiwan

Zakia Hammouch

Department of Mathematics, FSTE Moulay Ismail University of Meknes
BP 509 Boutalamine, Errachidia 52000, Morocco

Nguyen Huy Tuan∗

Division of Applied Mathematics, Thu Dau Mot University

Binh Duong Province, Vietnam
Department of Mathematics and Computer Science, University of Science

Ho Chi Minh City, Vietnam
Vietnam National University

Ho Chi Minh City, Vietnam

(Communicated by Runzhang Xu)

Abstract. In this paper, we investigate a final boundary value problem for a

class of fractional with parameter β pseudo-parabolic partial differential equa-

tions with nonlinear reaction term. For 0 < β < 1, the solution is regularity-
loss, we establish the well-posedness of solutions. In the case that β > 1, it has
a feature of regularity-gain. Then, the instability of a mild solution is proved.

We introduce two methods to regularize the problem. With the help of the
modified Lavrentiev regularization method and Fourier truncated regulariza-

tion method, we propose the regularized solutions in the cases of globally or

locally Lipschitzian source term. Moreover, the error estimates is established.

1. Introduction. We consider the final value problem:ut −m∆ut + (−∆)βu = f(t, x;u), in (0, T ]× Ω,
u(t, x) = 0, on (0, T ]× ∂Ω,
u(T, x) = ϕ(x), in Ω,

(PT )

where m > 0, and Ω ⊂ Rd, (d ≥ 1) is a bounded domain with smooth boundary ∂Ω,
the operator (−∆)β with is the fractional Laplace operator with 0 < β 6= 1 and the
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final data ϕ ∈ L2(Ω). Pseudo-parabolic equations have many applications in science
and technology, especially in physical phenomena such as seepage of homogeneous
fluids through a fissured rock, aggregation of populations,... see e.g. Ting [24], R.
Xu [17,31–33] and references therein.

For β = 1, the direct problem is

ut −m∆ut −∆u = f(t, x;u), in (0, T ]× Ω, (1.1)

with conditions u(0, x) = u0(x), x ∈ Ω and u(t, x) = 0, (t, x) ∈ (0, T ] × ∂Ω.
Problem (1.1) has been studied by many authors. Specifically,

1. f = 0, see e.g. [11, 22, 24], the existence and uniqueness of solutions is estab-
lished. Moreover, the asymptotic behavior and regularity are investigated.

2. f(u) = up, p ≥ 1, in [5], the authors investigate large time behavior of
solutions. R. Xu et al. [32] proved the invariance of some sets, global existence,
nonexistence and asymptotic behavior of solutions with initial energy J(u0) ≤
d and finite time blow-up with high initial energy J(u0) > d and some related
works [18, 34]. For the case of f(u) = |u|p−2u, there are other results on the
large time behavior of solutions of the pseudo-parabolic see [7, 28–30, 35, 36]
and their references.

3. When the source term is a logarithmic nonlinearity f(u) = |u|pu log |u|, very
recently, the work [10] focus on the initial conditions, which ensure the solu-
tions to exist globally, blow up in finite time and blow up at infinite time. The
asymptotic behaviour for the solutions has been considered in [4, 6, 8, 12, 34]
and the references therein.

4. For nonlocal source, f(u) = |u|p
∫

Ω

G(x, y)|u|p+1(y)dy, y ∈ Ω, the authors

of [19] considered blow-up time for solutions, obtained a lower bound as well
as an upper bound for the blow-up time under different conditions, respec-
tively. Also, they investigated a nonblow-up criterion and compute an exact
exponential decay, see also [9, 23].

For 0 < β 6= 1, [14] considered the Cauchy problem

ut −m∆ut + (−∆)βu = up+1, in R+ × Ω, (1.2)

supplemented with initial condition u(0, x) = u0(x), x ∈ Ω and Dirichlet boundary
condition u(t, x) = 0, (t, x) ∈ R+ × ∂Ω. The paper established the global existence
and time-decay rates for small-amplitude solutions.

As mention above, initial value problems of nonlinear pseudo-parabolic equations
have been considered in many papers see [1, 4–15, 19, 21–24, 32, 35–37]. However,
there are not many results devoted to Problem (PT ). Our approach includes as
special cases all previously on the reaction terms. In this work, we consider two
cases; first, the source f is globally Lipschitz and in the second case, we consider f
is general locally Lipschitz function (a coercive-type condition). At this point, we
remark that there exists some locally Lipschitz functions, but we cannot determine
its specific Lipschitz coefficient e.g. f = u(a − bu2), b > 0 of the Ginzburg-Landau
equation. Hence, we have to find another method to study the problem with the
locally Lipschitz source which is similar to the Ginzburg-Landau equation, etc. (see
Subsection 4.2.2 for more details).

The solution of Problem (PT ) is of the regularity-loss structure for 0 < β < 1,
x ∈ Ω, t ∈ (0, T ], we consider the existence and regularity of Problem (PT ). In the
case β > 1, the regularity-gain type for x ∈ Ω, t ∈ (0, T ] and the Problem (PT ) is
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ill-posed. So the regularization methods are required. As we know, there are many
regularization methods to suit each problem [2, 3, 16, 20, 25–27]. For problem (PT ),
we propose two methods to regularize solution: Modified Lavrentiev regularization
(MLR) method and Fourier truncated regularization (FTR) method.

The plan of the paper is as follows. Section 2 contains notations and formulation
of a solution of Problem (PT ) and the proof of its instability. In Section 3, the case
0 < β < 1, well-posedness of solutions of Problem (PT ) is established. In Section 4,
the case β > 1, the proof that Problem (PT ) is ill-posed and the well-posedness of
the regularized problem are presented. We also propose two regularization meth-
ods: MLR method and FTR method for the globally Lipschitz or locally Lipschitz
reaction terms, respectively.

2. Preliminaries.

2.1. Relevant notations. Let us recall that the spectral problem{
(−∆)βej(x) = λβj ej(x), in Ω, β > 0,

ej(x) = 0, on ∂Ω,
(2.1)

admits a family of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λj ≤ ...↗∞.
The notation ‖ · ‖B stands for the norm in the Banach space B. We denote by
Lq(0, T ;B), 1 ≤ q ≤ ∞, the Banach space of real-valued measurable functions w :
(0;T )→ B with norm

‖w‖Lq(0,T ;B) =

(∫ T

0

‖w(t)‖qBdt

) 1
q

, for 1 ≤ q <∞,

‖w‖L∞(0,T ;B) = ess sup
t∈(0,T )

‖w(t)‖B , for q =∞.

The norm of the function space Ck([0, T ];B), 0 ≤ k ≤ ∞ is denoted by

‖w‖Ck([0,T ];B) =

k∑
i=0

sup
t∈[0,T ]

‖w(i)(t)‖B <∞.

For any ν ≥ 0, we define the space

Hν(Ω) =

w ∈ L2(Ω) :

∞∑
j=1

λ2ν
j 〈w, ej〉2L2(Ω) <∞

 ,

where 〈·, ·〉L2(Ω) is the inner product in L2(Ω); Hν(Ω)) is a Hilbert space with the
norm

‖w‖Hν(Ω) =

 ∞∑
j=1

λ2ν
j 〈w, ej〉2L2(Ω)

 1
2

.

The Gevrey of order β class of functions with index η1, η2 > 0, defined by the
spectrum of the Laplacian is denoted by

Gβ(η1, η2)(Ω) :=

w ∈ L2(Ω) :

∞∑
j=1

λη1β
j exp

(
η2λ

β
j

)
〈w, ej〉2L2(Ω) <∞

 ,
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and its norm given by

‖w‖Gβ(η1,η2)(Ω) =

 ∞∑
j=1

λη1β
j exp

(
η2λ

β
j

)
〈w, ej〉2L2(Ω)

 1
2

.

Next, we give the formulation of solution of the problem (PT ).

2.2. Mild solution of the Problem (PT ). Now, assume that Problem (PT ) has
a unique solution, then we find its the form. Let u(t, x) =

∑∞
j=1 uj(t)ej(x) be the

decomposition of u in L2(Ω) with uj(t) = 〈u(t, ·), ej〉L2(Ω). From (PT ), taking the

inner product of both sides of (PT ) with ej(x), we obtain the ordinary differential
equation

(1 +mλj)u
′
j(t) + λβj uj(t) = fj(u)(t),

where u′j(t) =
d

dt
〈u(t, ·), ej〉L2(Ω), fj(u)(t) = 〈f(t, ·;u), ej〉L2(Ω), whose solution is

uj(t) = exp

(
(T − t)λβj
1 +mλj

)
ϕj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)dτ,

where ϕj = 〈ϕ, ej〉L2(Ω).

Definition 2.1 (Mild solution of Problem (PT )). A function u is a mild solution
of (PT ) if u ∈ C([0, T ];L2(Ω)) and satisfies the following integral equation

u(t, x) =

∞∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)dτ

]
ej(x).

(2.2)

for all (t, x) ∈ (0, T )× Ω, and β > 0.

Now we introduce the main results in this paper.

3. The case 0 < β < 1: Well-posedness of solutions to the Problem (PT ).
In this section, we prove that the Problem (PT ) is well-posed. First prove that for
the Problem (PT ) exists a unique mild solution, then the regularity of the solution
is established.

We will make the following assumptions:

(A1) Assume that f satisfy the global Lipschitz condition:

‖f(t, ·;w1)− f(t, ·;w2)‖L2(Ω) ≤ K ‖w1 − w2‖L2(Ω) , (3.1)

with K > 0 independent of t, x, w1, w2, and (t, x) ∈ [0, T )× Ω, wi ∈ C([0, T ];
L2(Ω)), i = 1, 2.

(A2) We set f(0) := f(t, x; 0) = 0, (t, x) ∈ [0, T )× Ω and

‖f(t, ·;w)‖L2(Ω) ≤ K ‖w‖L2(Ω) , w ∈ C([0, T ];L2(Ω)). (3.2)

Theorem 3.1 (L∞-Existence). Let 0 < β < 1, assume that f satisfy the as-
sumption (A1). Then, the integral equation (2.2) has a unique mild solution in
L∞(0, T ;L2(Ω)).
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Proof. We prove the existence of the solution u ∈ L∞(0, T ;L2(Ω)) of the integral
equation (2.2). For w ∈ L∞(0, T ;L2(Ω)), we consider the following operator:

H (w)(t, x) =

∞∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕj −

1

1 +mλj

∫ T

t
exp

(
(τ − t)λβj
1 +mλj

)
fj(w)(τ)dτ

]
ej(x),

(3.3)

and we aim to show that H k is a contraction mapping on the space L∞(0, T ;L2(Ω)).
In fact, we will prove that for every w1, w2 ∈ L∞(0, T ;L2(Ω)), it holds

∥∥∥H k(w1)(t, ·)−H k(w2)(t, ·)
∥∥∥
L2(Ω)

≤

(
K
mλ1

exp
(

T
mλ1

)
(T − t)

)k
k!

‖w1 − w2‖L∞(0,T ;L2(Ω)) .

(3.4)

We will prove (3.4) by induction. For k = 1, using Parseval’s relation and assump-
tion (A1), one obtains

‖H (w1)(t, ·)−H (w2)(t, ·)‖L2(Ω)

≤
∫ T

t

∥∥∥∥∥∥
∞∑
j=1

1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

)
(fj(w1)(τ)− fj(w2)(τ))ej

∥∥∥∥∥∥
L2(Ω)

dτ

≤
∫ T

t

√√√√ ∞∑
j=1

1

(1 +mλj)
2 exp

(
2(τ − t)λβj
1 +mλj

)
|fj(w1)(τ)− fj(w2)(τ)|2dτ

≤ 1

mλ1
exp

(
T

mλ1

)∫ T

t

‖f(τ, ·, w1)− f(τ, ·, w2)‖L2(Ω) dτ

≤ K

mλ1
exp

(
T

mλ1

)∫ T

t

‖w1(τ, ·)− w2(τ, ·)‖L2(Ω) dτ

≤ K

mλ1
exp

(
T

mλ1

)
(T − t) ‖w1 − w2‖L∞(0,T ;L2(Ω)) . (3.5)

Assume now that (3.4) is satisfied for k = k0, let us prove that it is satisfied for
k = k0 + 1. It holds∥∥H k0+1(w1)(t, ·)−H k0+1(w2)(t, ·)

∥∥
L2(Ω)

≤ K

mλ1
exp

(
T

mλ1

)∫ T

t

∥∥H k0(w1)(τ, ·)−H k0(w2)(τ, ·)
∥∥
L2(Ω)

dτ

≤ 1

k0!

(
K

mλ1
exp

(
T

mλ1

))k0+1

‖w1 − w2‖L∞(0,T ;L2(Ω))

∫ T

t

(T − τ)k0dτ

≤ 1

(k0 + 1)!

(
K

mλ1
exp

(
T

mλ1

))k0+1

(T − t)k0+1 ‖w1 − w2‖L∞(0,T ;L2(Ω))

≤ 1

(k0 + 1)!

(
KT

mλ1
exp

(
T

mλ1

))k0+1

‖w1 − w2‖L∞(0,T ;L2(Ω)) .

Therefore, by the induction principle we get (3.4). Since the right hand side of (3.5)
is independent of t, we deduce that∥∥∥H k(w1)−H k(w2)

∥∥∥
L∞(0,T ;L2(Ω))

≤ 1

k!

(
KT

mλ1
exp

(
T

mλ1

))k
‖w1 − w2‖L∞(0,T ;L2(Ω)) .
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When k is large enough, we have 1
k1!

(
KT
mλ1

exp
(

T
mλ1

))k1

→ 0. Hence there exists

k1 such that

0 <
1

k1!

(
KT

mλ1
exp

(
T

mλ1

))k1

< 1.

We claim that the mapping H k1 is a contraction, i.e. H k1(u) = u. We have

H k1(H (u)) = H (H k1(u)) = H (u).

Due to the uniqueness of the fixed point of H k1 , it holds H (u) = u. We conclude
that the integral equation (3.3) has a unique solution in L∞(0, T ;L2(Ω)).

Theorem 3.2 (Regularity). Let 0 < β < 1, and f only satisfy the assumption
(A1), we have the following:
a) If ϕ ∈ L2(Ω) and f(0) ∈ L1(0, T ;L2(Ω)), then there exists C(T,m, λ1) > 0 such
that

‖u‖L∞(0,T ;L2(Ω)) ≤ C(T,m, λ1)

(
‖ϕ‖L2(Ω) +

‖f(0)‖L1(0,T ;L2(Ω))

mλ1

)
. (3.6)

b) If ϕ ∈ Hβ(Ω), f(0) ∈ L∞(0, T ;L2(Ω)) then there exists C(T,m, λ1, β) > 0 such
that

‖u‖L∞(0,T ;Hβ(Ω)) ≤ C(T,m, λ1, β)

(
‖ϕ‖Hβ(Ω) +

T ‖f(0)‖L∞(0,T ;L2(Ω))

mλ1−β
1

)
. (3.7)

Here, we recall f(0) := f(t, x; 0), ∀(t, x) ∈ [0, T )× Ω.

Proof. First, we set

M1(ϕ)(t, x) :=

∞∑
j=1

exp

(
(T − t)λβj
1 +mλj

)
ϕjej(x),

M2(u)(t, x) := −
∞∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)dτ

]
ej(x).

a) First, using the Parseval’s relation, we infer that

‖M1(ϕ)(t, ·)‖L2(Ω) =

 ∞∑
j=1

exp

(
2(T − t)λβj
1 +mλj

)
ϕ2
j

1/2

≤ exp

(
T

mλ1−β
1

)
‖ϕ‖L2(Ω),

(3.8)

where for β ∈ (0, 1), we have exp

(
(T−t)λβj
1+mλj

)
≤ exp

(
T

mλ1−β
1

)
,∀t ∈ [0, T ), j ∈ N∗.

We also obtain

‖M2(u)(t, ·)‖L2(Ω) ≤
∫ T

t

∥∥∥∥∥∥
∞∑
j=1

1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)ej

∥∥∥∥∥∥
L2(Ω)

dτ
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=

∫ T

t

 ∞∑
j=1

1

(1 +mλj)
2 exp

(
2(τ − t)λβj
1 +mλj

)
|fj(u)(τ)|2

1/2

dτ

≤ 1

mλ1
exp

(
T

mλ1−β
1

)∫ T

t

‖f(τ, ·;u)‖L2(Ω) dτ, (3.9)

where we have used 1
1+mλj

≤ 1
mλ1

, ∀j ∈ N∗ and for β ∈ (0, 1) we implies that

exp

(
2(τ − t)λβj
1 +mλj

)
≤ exp

(
T

mλ1−β
1

)
, 0 ≤ t ≤ τ ≤ T.

Using (3.1), we obtain

‖f(t, ·;u)− f(t, ·; 0)‖L2(Ω) ≤ K‖u(t, ·)‖L2(Ω),

then

‖f(t, ·;u)‖L2(Ω) ≤ K‖u(t, ·)‖L2(Ω) + ‖f(t, ·; 0)‖L2(Ω) , (3.10)

Combining (3.10) with (3.9), leads to

‖M2(u)(t, ·)‖L2(Ω) ≤
1

mλ1
exp

(
T

mλ1−β
1

)
‖f(0)‖L1(0,T ;L2(Ω))

+
K

mλ1
exp

(
T

mλ1−β
1

)∫ T

t

‖u(τ, ·)‖L2(Ω) dτ. (3.11)

From (3.8) and (3.11) yields

‖u(t, ·)‖L2(Ω) ≤ exp

(
T

mλ1−β
1

)(
‖ϕ‖L2(Ω) +

1

mλ1
‖f(0)‖L1(0,T ;L2(Ω))

)

+
K

mλ1
exp

(
T

mλ1−β
1

)∫ T

t

‖u(τ, ·)‖L2(Ω) dτ.

Thanks to Grönall’s inequality

‖u(t, ·)‖L2(Ω) ≤ exp

(
T

mλ1−β
1

)(
‖ϕ‖L2(Ω) +

1

mλ1
‖f(0)‖L1(0,T ;L2(Ω))

)

× exp

(
K

mλ1
exp

(
T

mλ1−β
1

)
(T − t)

)
,

this imlpies (3.6).
b) We observe that for β ∈ (0, 1)

‖M1(ϕ)(t, ·)‖Hβ(Ω) =

 ∞∑
j=1

λ2β
j exp

(
2(T − t)λβj
1 +mλj

)
ϕ2
j

1/2

≤ exp

(
T

mλ1−β
1

)
‖ϕ‖Hβ(Ω). (3.12)
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We conclude that

‖M2(u)(t, ·)‖Hβ(Ω) ≤
∫ T

t

∥∥∥∥∥∥
∞∑
j=1

1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)ej

∥∥∥∥∥∥
Hβ(Ω)

dτ

(3.13)

=

∫ T

t

√√√√ ∞∑
j=1

λ2β
j

(1 +mλj)
2 exp

(
2(τ − t)λβj
1 +mλj

)
|fj(u)(τ)|2dτ

=

∫ T

t

√√√√ ∞∑
j=1

1

m2λ2−2β
j

exp

(
2(τ − t)λβj
1 +mλj

)
|fj(u)(τ)|2dτ

=
1

mλ1−β
1

exp

(
T

mλ1−β
1

)∫ T

t

√√√√ ∞∑
j=1

|fj(u)(τ)|2dτ

≤ 1

mλ1−β
1

exp

(
T

mλ1−β
1

)∫ T

t

‖f(τ, ·;u)‖L2(Ω) dτ.

Inequality (3.10) associated with (3.13) leads to

‖M2(u)(t, ·)‖Hβ(Ω)

≤
∫ T

t

1

mλ1−β
1

exp

(
T

mλ1−β
1

)(
K‖u(τ, ·)‖L2(Ω) + ‖f(τ, ·; 0)‖L2(Ω)

)
dτ

≤ T

mλ1−β
1

exp

(
T

mλ1−β
1

)
‖f(0)‖L∞(0,T ;L2(Ω))

+
K

mλ1−β
1

exp

(
T

mλ1−β
1

)∫ T

t

‖u(τ, ·)‖L2(Ω)dτ. (3.14)

Estimates (3.12) and (3.14) lead to

‖u(t, ·)‖Hβ(Ω) ≤

∥∥∥∥∥∥
∞∑
j=1

exp

(
(T − t)λβj
1 +mλj

)
ϕjej

∥∥∥∥∥∥
Hβ(Ω)

+

∫ T

t

∥∥∥∥∥∥
∞∑
j=1

1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)ej

∥∥∥∥∥∥
Hβ(Ω)

dτ

≤ exp

(
T

mλ1−β
1

)(
‖ϕ‖Hβ(Ω) +

T

mλ1−β
1

‖f(0)‖L∞(0,T ;L2(Ω))

)

+
K

mλ1−2β
1

exp

(
T

mλ1−β
1

)∫ T

t

‖u(τ, ·)‖Hβ(Ω)dτ, (3.15)

where we have used that ‖w‖Hβ(Ω) ≥ λβ1‖w‖L2(Ω) for β ∈ (0, 1). Grönwall’s in-
equality allows to obtain

‖u(t, ·)‖Hβ(Ω) ≤

(
‖ϕ‖Hβ(Ω) +

T

mλ1−β
1

‖f(0)‖L∞(0,T ;L2(Ω))

)
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× exp

(
KT

mλ1−2β
1

exp

(
T

mλ1−β
1

)
+

T

mλ1−β
1

)
,

we implies (3.7). The proof is complete.

4. The case β > 1: Ill-posedness and regularization methods for Problem
(PT ).

4.1. Ill-posedness of the solution of Problem (PT ).

Definition 4.1 (Ill-posed). The well-posed problem in the sense of Hadamard is
to satisfy the following properties:
i) a solution exists;
ii) the solution is unique;
iii) the solution’s behaviour changes continuously with the initial conditions.
If at least one of the three properties above does not satisfy, the problem is ill-posed.

Next, we give an example which shows that the solution ũ(k)(t, x) (for any k ∈ N∗)
of Problem (PT ) is not stable (property iii) is unsatisfied). For β > 1, let us set

ϕ̃(k)(x) = λ−1
k ek(x), ∀k ∈ N∗, (4.1)

f̃(t, x;w) =

∞∑
j=1

λjT
−1 exp

(
−Tλβj

1 +mλj

)
〈w(t, ·), ej〉L2(Ω)ej(x), m > 1, (4.2)

for (t, x) ∈ (0, T )×Ω and w ∈ C([0, T ];L2(Ω)). The solution ũ(k)(t, x) satisfies the
integral equation

ũ(k)(t, x) =

∞∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕ̃

(k)
j

]
ej(x)

−
∞∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f̃j(u

(k))(τ)dτ

]
ej(x), (4.3)

where

ϕ̃
(k)
j =

〈
ϕ̃(k), ej

〉
L2(Ω)

,

and

f̃j(ũ
(k))(t) =

〈
f̃(t, ·; ũ(k)), ej

〉
L2(Ω)

.

• Step 1. We show that (4.3) has a unique solution ũ(k) ∈ C([0, T ];L2(Ω)).
Indeed, we consider the function

G (w)(t, x) =

∞∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕ̃

(k)
j

]
ej(x)

−
∞∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f̃j(w)(τ)dτ

]
ej(x).
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Then for any w1, w2 ∈ C([0, T ];L2(Ω)), we obtain

‖G (w1)(t, ·)− G (w2)(t, ·)‖L2(Ω)

≤
∫ T

t

∥∥∥∥∥∥
∞∑
j=1

[
1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

)(
f̃j(w1)(τ)− f̃j(w2)(τ)

)]
ej

∥∥∥∥∥∥
L2(Ω)

dτ

=

∫ T

t

 ∞∑
j=1

(
1

1 +mλj
exp

(
(τ − t)λβj
1 +mλj

))2

λ2
jT
−2 exp

(
−Tλβj

1 +mλj

)
|w1,j(τ)− w2,j(τ)|2

1/2

dτ

=

∫ T

t

 ∞∑
j=1

1

m2T 2
exp

(
(τ − t− T )λβj

1 +mλj

)
|w1,j(τ)− w2,j(τ)|2

1/2

dτ

≤
∫ T

t

1

mT
‖w1(τ, ·)− w2(τ, ·)‖L2(Ω) dτ ≤

1

m
‖w1 − w2‖C([0,T ];L2(Ω)) ,

where we denote wi,j(t) := 〈wi(t, ·), ej〉L2(Ω), i = 1, 2.

This implies that

‖G (w1)− G (w2)‖C([0,T ];L2(Ω)) ≤
1

m
‖w1 − w2‖C([0,T ];L2(Ω)).

Hence G is a contraction because m > 1. Using the Banach fixed-point theorem,
we conclude that G (w) = w has a unique solution ũ(k) ∈ C([0, T ];L2(Ω)).
• Step 2. The solution of Problem (4.3) is instable. We have

‖ũ(k)(t, ·)‖L2(Ω) ≥

∥∥∥∥∥∥
∞∑
j=1

exp

(
(T − t)λβj
1 +mλj

)
ϕ̃

(k)
j ej

∥∥∥∥∥∥
L2(Ω)︸ ︷︷ ︸

=:M3(ϕ̃(k))(t)

−

∥∥∥∥∥∥
∞∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f̃j(ũ

(k))(τ)dτ

]
ej

∥∥∥∥∥∥
L2(Ω)︸ ︷︷ ︸

=:M4(ũ(k))(t)

.

It is easy to see that (here, noting that from (4.2), we have f̃j(0) = 0)∣∣∣M4

(
ũ(k)

)
(t)
∣∣∣ = ‖G (ũ(k))(t)− G (0)(t)‖L2(Ω)

≤ 1

m
‖ũ(k)‖C([0,T ];L2(Ω)).

Hence

‖ũ(k)(t, ·)‖L2(Ω) ≥
∣∣∣M3(ϕ̃(k))(t)

∣∣∣− 1

m
‖ũ(k)‖C([0,T ];L2(Ω)).

This leads to

‖ũ(k)‖C([0,T ];L2(Ω)) ≥
m

m+ 1
sup

0≤t≤T

∣∣∣M3(ϕ̃(k))(t)
∣∣∣ . (4.4)

We continue to estimate the right hand side of the latter inequality. Indeed, since
{ej(x)}j≥1 is a basis of L2(Ω), i.e.,{

〈ek, ej〉L2(Ω) = 1, k = j,

〈ek, ej〉L2(Ω) = 0, k 6= j,
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we have ∣∣∣M3

(
ϕ̃(k)

)
(t)
∣∣∣ =

√√√√ ∞∑
j=1

exp

(
2(T − t)λβj
1 +mλj

)〈
ϕ̃

(k)
j , ej

〉2

L2(Ω)

=

√√√√ ∞∑
j=1

exp

(
2(T − t)λβj
1 +mλj

)〈
λ−1
k ek, ej

〉2
L2(Ω)

=
1

λk
exp

(
(T − t)λβk
1 +mλk

)
.

Since the function χ(t) := exp

(
(T − t)λβk
1 +mλk

)
is a decreasing function with respect

to variable t ∈ [0, T ] and β > 1, we deduce that

sup
0≤t≤T

∣∣∣M3

(
ϕ̃(k)

)
(t)
∣∣∣ ≥ sup

0≤t≤T

(
1

λk
exp

(
(T − t)λβk
1 +mλk

))
= exp

(
Tλβk

1 +mλk

)
1

λk
.

(4.5)

Combining (4.4) and (4.5) yields∥∥∥ũ(k)
∥∥∥
C([0,T ];L2(Ω))

≥ m

m+ 1
exp

(
Tλβk

1 +mλk

)
1

λk
.

As k ↗∞, we see that

lim
k↗∞

∥∥∥ϕ̃(k)
∥∥∥
L2(Ω)

= lim
k↗∞

‖ek‖L2(Ω)

λk
= lim
k↗∞

1

λk
= 0,

but

lim
k↗∞

∥∥∥ũ(k)
∥∥∥
C([0,T ];L2(Ω))

≥ lim
k↗∞

m

m+ 1
exp

(
Tλβk

1 +mλk

)
1

λk
=∞.

Thus, it is shown that Problem (PT )is ill-posed in the Hadamard sense in L2-norm
for β > 1.

4.2. Regularization and error estimate. In order to obtain the stable numerical
solutions, we propose two regularization methods to solve the Problem (PT ) in two
cases of f :

• f is globally Lipschitz: MLR method.
• f is locally Lipschitz: FTR method.

4.2.1. MLR method: Globally Lipschitz source term. In this subsection, the func-
tions f(t, x;u) is satisfy the globally Lipschitz (A1). To approximate u, we introduce
the regularized solutions Uεα given by MLR method as follows

Uεα(t, x) =

∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕεj

]
ej(x)

−
∞∑
j=1

1

1 +mλj

[∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(Uεα)(τ)dτ

]
ej(x), (4.6)
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where we set

Lj(α, T ) =

exp

(
−Tλβj

1 +mλj

)

αλβj + exp

(
−Tλβj

1 +mλj

) , (4.7)

and the coefficient α := α(ε) satifies lim
ε→0+

α = 0; it plays the role of a regularization

parameter.
The following technical lemma plays the key role in our analysis.

Lemma 4.2. For 0 ≤ t ≤ τ ≤ T , we have

(a)

∣∣∣∣∣Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)∣∣∣∣∣ ≤ α t
T −1

(
T

log (α−1T )

)1− t
T

, (4.8)

(b)

∣∣∣∣∣Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)∣∣∣∣∣ ≤ α t−τ
T

(
T

log (α−1T )

) τ−t
T

. (4.9)

Proof. a). First, from (4.7), it holds

∣∣∣∣∣Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)∣∣∣∣∣ =

exp

(
−tλβj

1+mλj

)
αλβj + exp

(
−Tλβj
1+mλj

)

=

exp

(
−tλβj

1+mλj

)
(
αλβj + exp

(
−Tλβj
1+mλj

)) t
T
(
αλβj + exp

(
−Tλβj
1+mλj

))1− t
T

≤ 1(
αλβj + exp

(
−Tλβj
1+mλj

))1− t
T

≤ 1(
αλβj + exp

(
−Tλβj

))1− t
T

. (4.10)

Using the inequality

1

ν1ζ + exp (−ζν2)
≤

ν2

ν1

log(ν2

ν1
)
, (4.11)

for νi > 0, i = 1, 2 and 0 < ζ < eν2, if α < eT , we obtain

1(
αλβj + exp

(
−Tλβj

))1− t
T

≤
(

α−1T

log (α−1T )

)1− t
T

.

Whereupon ∣∣∣∣∣Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)∣∣∣∣∣ ≤
(

α−1T

log (α−1T )

)1− t
T

. (4.12)

Using (4.12) into (4.10), we obtain (4.8).
With the same argument as in the proof of (4.8), we obtain (4.9). This concludes

the proof of the lemma.
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A. The well-posedness of the regularized solution (4.6). In this subsection,
we will obtain the existence and regularity results for the regularized solution (4.6).

Theorem 4.3 (Existence-uniqueness). Suppose that f satisfying the assumption
(A1) then the regularized solution (4.6) has unique weak solution Uεα ∈ C ([0, T ];
L2(Ω)

)
.

Proof. For any F ∈ C([0, T ];L2(Ω)), we define the function

F : C([0, T ];L2(Ω))→ C([0, T ];L2(Ω))

by

F (ϑ)(t, x) :=

∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕεj

]
ej(x)

−
∞∑
j=1

[
1

1 +mλj

∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(ϑ)(τ)dτ

]
ej(x).

(4.13)

We also define F k as follows

F k(ϑ) = F · · ·F
(
F (ϑ)

)︸ ︷︷ ︸
k−times

.

We shall prove by induction, for any couple ϑ1, ϑ2 ∈ C([0, T ];L2(Ω)), that

∥∥∥F k(ϑ1)(t, ·)−F k(ϑ2)(t, ·)
∥∥∥
H2(Ω)

≤

(
K α−1T

m log(α−1T)
(T − t)

)k
k!

‖ϑ1 − ϑ2‖C([0,T ];H2(Ω)) .

(4.14)

For k = 1, by using (A1) and Lemma 4.2 and noting that α−1T
log(α−1T ) ≥ 1, it holds

α
t−τ
T

(
T

log (α−1T )

) τ−t
T

≤ α−1T

log (α−1T )
, for all 0 ≤ t ≤ τ ≤ T,

then we have

‖F (ϑ1)(t, ·)−F (ϑ2)(t, ·)‖L2(Ω)

≤
∫ T

t

∥∥∥∥∥
∞∑
j=1

[
1

1 +mλj
Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
(fj(ϑ1)(τ)− fj(ϑ2)(τ))

]
ej

∥∥∥∥∥
L2(Ω)

dτ

≤
∫ T

t

[
∞∑
j=1

1

(1 +mλj)
2

∣∣∣∣∣Lj(α, T ) exp
(
(τ − t)λβj
1 +mλj

)∣∣∣∣∣
2

|fj(ϑ1)(τ)− fj(ϑ2)(τ)|2
]1/2

dτ

≤ K α−1T

mλ1 log (α−1T )

∫ T

t

[
∞∑
j=1

|ϑ1,j(τ)− ϑ2,j(τ)|2
]1/2

dτ

≤ K α−1T

mλ1 log (α−1T )

∫ T

t

‖ϑ1(τ, ·)− ϑ2(τ, ·)‖L2(Ω) dτ

≤ K α−1T (T − t)
mλ1 log (α−1T )

‖ϑ1 − ϑ2‖C([0,T ];L2(Ω)) , ϑi,j = 〈ϑi, ej〉L2(Ω) , i = 1, 2.

Hence, (4.14) holds for k = 1.
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Assume that (4.14) holds for k = N . We show now that (4.14) holds for k = N+1.
In fact, we have∥∥FN+1(ϑ1)(t, ·)−FN+1(ϑ2)(t, ·)

∥∥
Hν(Ω)

≤ K α−1T

m log (α−1T )

∫ T

t

∥∥FN (ϑ1)(τ, ·)−FN (ϑ2)(τ, ·)
∥∥
L2(Ω)

dτ

≤
(
K

α−1T

m log (α−1T )

)N+1 ∫ T

t

(T − τ)
N

N !
dτ ‖ϑ1 − ϑ2‖C([0,T ];L2(Ω))

≤ 1

(N + 1)!

(
K

α−1T

m log (α−1T )
(T − t)

)N+1

‖ϑ1 − ϑ2‖C([0,T ];L2(Ω)) .

By the induction principle, we deduce that (4.14) holds for all k ∈ N∗. Notice that,

as α is fixed, then
1

k!

(
K

α−1T

m log (α−1T )
(T − t)

)k
tends to 0 when k ↗∞, so there

exists a positive integer k0 such that

1

k0!

(
K

α−1T

m log (α−1T )
(T − t)

)k0

< 1.

It means that F k0 is a contraction. Finally, it follows the desired conclusion that the
problem (4.6) has a unique solution Uεα ∈ C([0, T ];L2(Ω)). The proof is complete.

Given a constant α ∈ (0, 1) (which will be assumed from now on) and a function
w ∈ C([0, T ];L2(Ω)), we denote the scaling with α as follows:

‖w‖α,∞ = sup
0≤t≤T

(
α−

t
T ‖w(t, ·)‖L2(Ω)

)
. (4.15)

Theorem 4.4 (Regularity). Assume that f satisfy the assumptions (A1) and (A2).
We have the following results:
a) If ϕε ∈ L2(Ω), then Uεα given by (4.6) satisfies

‖Uεα‖α,∞ ≤
α−1T

log(T )
exp

(
KT 2

mλ1 log(T )

)
‖ϕε‖L2(Ω) . (4.16)

b) If ϕε ∈ H1(Ω), then

‖Uεα‖L∞(0,T ;H1(Ω)) ≤
α−1T

log(T )
exp

(
KT 2α−1

mλ1 log(T )

)
‖ϕε‖H1(Ω) . (4.17)

Proof. We rewrite (4.6) as

Uεα(t, x) =

∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕεj

]
ej(x)︸ ︷︷ ︸

=:M5(ϕε)(t,x)

−
∞∑
j=1

[
1

1 +mλj

∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(Uεα)(τ)dτ

]
ej(x)︸ ︷︷ ︸

=:M6(Uεα)(t,x)

.

(4.18)
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a) Using (3.10) (noting that f(t, x; 0) = 0, for all (t, x) ∈ (0, T ) × Ω) and Lemma
4.2b), we first observe that

‖M6(Uεα)(t, ·)‖L2(Ω)

≤
∫ T

t

√√√√ ∞∑
j=1

[
1

1 +mλj
Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(Uεα)(τ)

]2

dτ

≤ 1

mλ1

∫ T

t

α
t−τ
T

(
T

log (α−1T )

) τ−t
T

‖f(τ, ·;Uεα)‖L2(Ω) dτ

≤ KT

mλ1 log(T )

∫ T

t

α
t−τ
T ‖Uεα(τ, ·)‖L2(Ω) dτ, (4.19)

where we have used
(

T
log(α−1T )

) τ−t
T ≤ T

log(T ) , for α ∈ (0, 1), 0 ≤ t ≤ τ ≤ T .

The next observation, from Lemma 4.2a), is that

‖M5(ϕε)(t, ·)‖L2(Ω)

≤
∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕεj

]2

≤ α t
T −1

(
T

log (α−1T )

)1− t
T

‖ϕε‖L2(Ω) ≤ α
t
T −1 T

log(T )
‖ϕε‖L2(Ω) , (4.20)

noting that
(

T
log(α−1T )

) τ−t
T ≤ T

log(T ) , for all 0 ≤ t ≤ T, 0 < α < 1.

Combining (4.18)-(4.20) and multiplying the two sides of of the result obtained

by α−
t
T , we deduce that

α−
t
T ‖Uεα(t, ·)‖L2(Ω)

≤ ‖M5(ϕε)(t, ·)‖L2(Ω) + ‖M6(Uεα)(t, ·)‖L2(Ω)

≤ α−1 T

log(T )
‖ϕε‖L2(Ω) +

KT

mλ1 log(T )

∫ T

t

α−
τ
T ‖Uεα(τ, ·)‖L2(Ω) dτ.

Using Grönwall’s inequality, we get

α−
t
T ‖Uεα(t, ·)‖L2(Ω) ≤

α−1T

log(T )
‖ϕε‖L2(Ω) exp

(
KT 2

mλ1 log(T )

)
. (4.21)

Since the right side of (4.21) does not depend on t, we have

‖Uεα‖α,∞ ≤
α−1T

log(T )
exp

(
KT 2

mλ1 log(T )

)
‖ϕε‖L2(Ω) .

This leads to (4.16).
b) From Lemma 4.2a), we first observe that

‖M5(ϕε)(t, ·)‖H1(Ω) ≤
∞∑
j=1

[
λjLj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕεj

]2

≤ α t
T −1

(
T

log (α−1T )

)1− t
T

‖ϕε‖H1(Ω) ≤
α−1T

log(T )
‖ϕε‖H1(Ω) .

(4.22)
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The next observation, using Lemma 4.2b), is that

‖M6(Uεα)(t, ·)‖H1(Ω)

≤
∫ T

t

√√√√ ∞∑
j=1

[
λj

1 +mλj
Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(Uεα)(τ)

]2

dτ

≤ 1

m

∫ T

t

α
t−τ
T

(
T

log (α−1T )

) τ−t
T

‖f(τ, ·;Uεα)‖L2(Ω) dτ

≤ KTα−1

m log(T )

∫ T

t

‖Uεα(τ, ·)‖L2(Ω) dτ, (4.23)

where we have used α
t−τ
T

(
T

log(α−1T )

) τ−t
T ≤ α−1T

log(T ) , 0 ≤ t ≤ τ ≤ T for 0 < α < 1.

From (4.22) and (4.23), we deduce that

‖Uεα(t, ·)‖H1(Ω) ≤
α−1T

log(T )
‖ϕε‖H1(Ω) +

KTα−1

mλ1 log(T )

∫ T

t

‖Uεα(τ, ·)‖H1(Ω) dτ,

where ‖w‖L2(Ω) ≤
‖w‖H1(Ω)

λ1
. Thanks to Grönwall’s inequality, we get

‖Uεα(t, ·)‖H1(Ω) ≤
α−1T

log(T )
‖ϕε‖H1(Ω) exp

(
KTα−1

mλ1 log(T )
(T − t)

)
,

which implies (4.17). This concludes the proof.

B. Error estimate In this subsection, by using MLR method, the error between
the exact solution and the regularized solution is obtained. Now, we can formulate
the main theorem.

Theorem 4.5 (Error estimate). Let α := α(ε) satisfy lim
ε→0+

α = 0,

lim
ε→0+

εα−1 = M0 <∞.
(4.24)

Assume that f satisfy the assumptions (A1)− (A2) and Problem (PT ) has a unique
solution u satisfying

u ∈ L∞ (0, T ; Gβ(η1, η2)(Ω)) and ‖u‖L∞(0,T ;Gβ(η1,η2)(Ω)) ≤ P0, (4.25)

for some known positive constants P0 and η1 ≥ 2, η2 ≥ 2T
mλ1

. Then (for all t ∈ [0, T ])

‖Uεα(t, ·)− u(t, ·)‖L2(Ω) ≤
√
2 (M0 + P0) exp

(
K2T

m2λ2
1

(T − t)
)
α
t
T

(
T

log (α−1T )

)1− t
T

.

(4.26)

Remark 1. The error estimate in (4.26) is of order O(ε) = α
t
T

(
T

log(α−1T )

)1− t
T

, t ∈
[0, T ].
• If t ≈ T , then O(ε) = α tends to zero according to (4.24).
• If t ≈ 0, then O(ε) = T log−1

(
α−1T

)
tends to zero as ε→ 0+.

Remark 2. Choose α = εr
ε→0+

−→ 0, for some 0 < r < 1, then the estimate in (4.26)
is of order

εr
t
T

[
T/ log

(
T/ε−r

)] t−T
T .
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Proof. For all t ∈ (0, T ), the triangle inequality gives

‖Uεα(t, ·)− u(t, ·)‖L2(Ω) ≤ ‖U
ε
α(t, ·)− Uα(t, ·)‖L2(Ω)︸ ︷︷ ︸

=:Mα,ε
7 (t,x)

+ ‖Uα(t, ·)− u(t, ·)‖L2(Ω)︸ ︷︷ ︸
=:Mα,ε

8 (t,x)

,

(4.27)

where Uα(t, x) is the solution of Problem (4.6) corresponding to exact datum ϕ(x).
In order to estimate Mα,ε

7 (t, x) and Mα,ε
8 (t, x), we need to divide the proof in two

steps.

Step 1. Estimate Mα,ε
7 (t, x).

Thanks to Parseval’s relation and basic inequality (a+b)2 ≤ 2a2 +2b2, ∀a, b ≥ 0,
we obtain

‖Uεα(t, ·)− Uα(t, ·)‖2L2(Ω) ≤ 2

∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)(
ϕεj − ϕj

)]2

︸ ︷︷ ︸
=:Mα,ε

7a (t)

+ 2

∞∑
j=1

[
1

1 +mλj

∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
(fj(Uεα)(τ)− fj(Uα)(τ)) dτ

]2

︸ ︷︷ ︸
=:Mα,ε

7b (t)

.

(4.28)

To estimate Mα,ε
7a (t), let us use Lemma 4.2a) yields

|Mα,ε
7a (t)|

≤ 2

∞∑
j=1

α
2t
T −2

(
T

log (α−1T )

)2− 2t
T ∣∣ϕεj − ϕj∣∣2

≤ 2α
2t
T −2

(
T

log (α−1T )

)2− 2t
T

‖ϕε − ϕ‖2L2(Ω) ≤ 2α
2t
T −2

(
T

log (α−1T )

)2− 2t
T

ε2.

(4.29)

Next, we estimate Mα,ε
7b (t). Using Hölder’s inequality, (A1) and Lemma 4.2b) , one

obtains

|Mα,ε
7b (t)|

= 2

∞∑
j=1

[
1

1 +mλj

∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
(fj(Uεα)(τ)− fj(Uα)(τ)) dτ

]2

≤ 2T

∞∑
j=1

1

(1 +mλj)
2

∫ T

t

∣∣∣∣∣Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)∣∣∣∣∣
2

|fj(Uεα)(τ)− fj(Uα)(τ)|2 dτ

≤ 2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

∞∑
j=1

|fj(Uεα)(τ)− fj(Uα)(τ)|2 dτ

≤ 2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

‖f(Uεα)(τ)− f(Uα)(τ)‖2L2(Ω) dτ



1726 VO VAN AU, HOSSEIN JAFARI, ZAKIA HAMMOUCH AND NGUYEN HUY TUAN

≤ 2K2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

‖Uεα(τ, ·)− Uα(τ, ·)‖2L2(Ω) dτ. (4.30)

Combining the results in (4.28)-(4.30), we get

‖Uεα(t, ·)− Uα(t, ·)‖2L2(Ω)

≤ 2α
2t
T −2

(
T

log (α−1T )

)2− 2t
T

ε2

+
2K2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

‖Uεα(τ, ·)− Uα(τ, ·)‖2L2(Ω) dτ.

Multiplying by α
−2t
T

(
T

log(α−1T )

) 2t
T

both sides, we deduce that

α
−2t
T

(
T

log (α−1T )

) 2t
T

‖Uεα(t, ·)− Uα(t, ·)‖2L2(Ω)

≤ 2α−2

(
T

log (α−1T )

)2

ε2

+
2K2T

m2λ2
1

∫ T

t

α
−2τ
T

(
T

log (α−1T )

) 2τ
T

‖Uεα(τ, ·)− Uα(τ, ·)‖2L2(Ω) dτ.

Grönwall’s inequality allows to obtain

α
−2t
T

(
T

log (α−1T )

) 2t
T

‖Uεα(t, ·)− Uα(t, ·)‖2L2(Ω)

≤ 2α−2

(
T

log (α−1T )

)2

ε2 exp

(
2K2T

m2λ2
1

(T − t)
)
.

Similar calculations yield

‖Uεα(t, ·)− Uα(t, ·)‖L2(Ω) ≤
√

2α−1ε exp

(
K2T

m2λ2
1

(T − t)
)
α
t
T

(
T

log (α−1T )

)1− t
T

.

(4.31)

Step 2. Estimate Mα,ε
8 (t). Let us define an operator

Θw(t, x) =

∞∑
j=1

[
Lj(α, T ) 〈w(t, ·), ej〉L2(Ω)

]
ej(x), for w ∈ C([0, T ];L2(Ω)).

It clearly follows that

Θu(t, x) =

∞∑
j=1

[
Lj(α, T ) exp

(
(T − t)λβj
1 +mλj

)
ϕj

]
ej(x)

−
∞∑
j=1

[
1

1 +mλj

∫ T

t

Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
fj(u)(τ)dτ

]
ej(x).

The triangle inequality allows to write

‖Uα(t, ·)− u(t, ·)‖2L2(Ω) ≤ 2 ‖Uα(t, ·)−Θu(t, ·)‖2L2(Ω) + 2 ‖Θu(t, ·)− u(t, ·)‖2L2(Ω)

=:Mα
8a(t) +Mα

8b(t).
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We estimate for Mα
8a(t) as follows (similarly as in (4.30)):

|Mα
8a(t)|

= 2

∞∑
j=1

[∫ T

t

1

1 +mλj
Lj(α, T ) exp

(
(τ − t)λβj
1 +mλj

)
(fj(Uα)(τ)− fj(u)(τ)) dτ

]2

≤ 2K2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

‖Uα(τ, ·)− u(τ, ·)‖2L2(Ω) dτ.

The term Mα
8b(t) is estimated by using (4.8) as

|Mα
8b(t)| =

∞∑
j=1

(Lj(α, T )− 1)
2 |uj(t)|2

= 2

∞∑
j=1

 exp

(
−Tλβj
1+mλj

)
αλβj + exp

(
−Tλβj
1+mλj

) − 1


2

|uj(t)|2

= 2

∞∑
j=1

 αλβj

αλβj + exp

(
−Tλβj
1+mλj

)


2

|uj(t)|2

≤ 2α2
∞∑
j=1

 exp

(
−tλβj

1+mλj

)
αλβj + exp

(
−Tλβj
1+mλj

)


2

λ2β
j exp

(
2Tλβj

1 +mλj

)
|uj(t)|2

≤ 2α2
∞∑
j=1

α
2t
T −2

(
T

log (α−1T )

)2− 2t
T

λ2β
j exp

(
2T

mλ1
λβj

)
|uj(t)|2

≤ 2α
2t
T

(
T

log (α−1T )

)2− 2t
T

‖u(t, ·)‖2Gβ(η1,η2)(Ω) ,

where we have used
λβj

1 +mλj
≤

λβj
mλ1

, for all j ∈ N∗ and η1 ≥ 2, η2 ≥ 2T
mλ1

.

Combining all these inequalities, we deduce

‖Uα(t, ·)− u(t, ·)‖2L2(Ω)

≤ 2α
2t
T

(
T

log (α−1T )

)2− 2t
T

‖u(t, ·)‖2Gβ(η1,η2)(Ω)

+
2K2T

m2λ2
1

∫ T

t

α
2t−2τ
T

(
T

log (α−1T )

) 2τ−2t
T

‖Uα(τ, ·)− u(τ, ·)‖2L2(Ω) dτ.

Multiplying by α
−2t
T

(
T

log(α−1T )

) 2t
T

, we obtain

α
−2t
T

(
T

log (α−1T )

) 2t
T

‖Uα(t, ·)− u(t, ·)‖2L2(Ω)
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≤ 2

(
T

log (α−1T )

)2

‖u(t, ·)‖2Gβ(η1,η2)(Ω)

+
2K2T

m2λ2
1

∫ T

t

α
−2τ
T

(
T

log (α−1T )

) 2τ
T

‖Uα(τ, ·)− u(τ, ·)‖2L2(Ω) dτ.

Using Grönwall’s inequality, we thus obtain

‖Uα(t, ·)− u(t, ·)‖L2(Ω)

≤
√

2α
t
T

(
T

log (α−1T )

)1− t
T

‖u(t, ·)‖Gβ(η1,η2)(Ω) exp

(
K2T

m2λ2
1

(T − t)
)
. (4.32)

Combining (4.27), (4.31) and (4.32), we complete the proof of Theorem 4.5.

4.2.2. FTR method: Locally Lipschitz source term. In Subsection 4.2.1 has ad-
dressed the Problem (PT ) in which f is a globally Lipschitz function, in the rest
of this paper, we extend the analysis to a locally Lipschitz function f . Up to the
present, the results of Problem (PT ) for the locally Lipschitz cases are still very
scarce. Hence, we have to find another regularization method to study the problem
with the locally Lipschitz source. Thus, the FTR method is a very effective method
for this case.

We begin by establishing the locally Lipschitz properties of f by the following
assumption:

(A3) Assume that for each % > 0, there exists K% > 0 such that

|f(t, x;u)− f(t, x; v)| ≤ K%|u− v|, if max {|u|, |v|} ≤ %, (4.33)

and

K% = sup

{∣∣∣∣f(t, x;u)− f(t, x; v)

u− v

∣∣∣∣ , |u|, |v| ≤ %, u 6= v, (t, x) ∈ [0, T )× Ω

}
,

K% is a non-decreasing function of %. We assume that lim
%→∞

K% =∞.

Example 1. Let f1(u) = u|u|2. Easy calculations show that

|f1(u)− f1(v)| =
∣∣u|u|2 − v|v|2∣∣

=
∣∣(u− v)|u|2 + v(|u|2 − |v|2)

∣∣
=
(
|u|2 + |v||u|+ |v|2

)
|u− v| .

Clearly, f1 is not globally Lipschitz. For % ≥ max{|u|, |v|}, from (4.33), one can
compute explicitely the coefficient K% = 3%2.

Example 2. Let f2(u) = u(a − bu2) (Ginzburg-Landau type), with a ∈ R, b > 0.
It can be easily seen that f2 is locally Lipschitz source. Moreover, we are possible
to verify computationally the coefficient K% = 3%2 max{|a|, b}. In order to solve
the problem with the locally Lipschitz sources as above (and some other types), we
outline our ideas to construct an approximation of the function f . For all % > 0,
we define

f%(t, x;u) := f(t, x; ũ), where ũ :=


−%, if u ∈ (−∞,−%),

u, if u ∈ [−%, %],

%, if u ∈ (%,∞).

(4.34)

With this definition, we claim that f% is global Lipschitz function. Before stating
the main theorem, we first consider the following lemma.
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Lemma 4.6. Let f%ε ∈ L∞([0, T ]× Ω× R) given as (4.34). Then we have

|f%ε(t, x;u)− f%ε(t, x; v)| ≤ K%ε |u− v|, ∀(t, x) ∈ [0, T )× Ω, u, v ∈ R, (4.35)

where limε→0+ %ε = limε→0+ K%ε =∞.

Proof. The proof can be found in [2].

Remark 3. For %ε > 0 satisfying lim
ε→0+

%ε =∞, we implies that

ũ ≡ u, almost everywhere in [0, T )× Ω,

f%ε(t, x;u) ≡ f(t, x; ũ), almost everywhere in [0, T )× Ω.

Based on the above analysis, we propose the regularized solution by using FTR
method as follows

VεΛε(t, x)

=

[Λε]∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕεj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f%ε,j(VεΛε)(τ)dτ

]
ej(x),

(4.36)

where f%ε,j(VεΛε)(τ) = 〈f%ε(τ, ·;VεΛε), ej〉L2(Ω).

The regularity estimates of the solution VεΠα given by (4.36) is possible that
but we will not develop this point here because it is an argument analogous to the
previous one. We continue with the error estimate result.

Theorem 4.7 (Error estimate). Suppose that we can choose %ε, Λε > 0 such that
limε→0+ Λε = limε→0+ %ε =∞ and satisfying

lim
ε→0+

exp

(
(Λε)β

mλ1
T

)
ε = N0 <∞, (4.37)

and let us choose

K%ε =

∣∣∣∣log
(
log
(
ε−r
))mλ1

T

∣∣∣∣1/2 −→∞, as ε tends to 0+.

Let f%ε satisfy Lemma 4.6. Then nonlinear integral system (4.36) has a unique
solution VεΛε ∈ C([0, T ];L2(Ω)). Assuming further that equation (4.36) has a unique
exact solution u satisfying

u ∈ L∞ (0, T ; Gβ(η1, η2)(Ω)) , with η1 ≥ 2 + 2δ, η2 ≥
2T

mλ1
,

and

‖u‖L∞(0,T ;Gβ(η1,η2)(Ω)) ≤ P̃0, for some known constant P̃0 ≥ 0.

Then the following stability estimate holds for any t ∈ [0, T ], δ > 0,

‖VεΛε(t, ·)− u(t, ·)‖L2(Ω)

≤
√

2

(
P̃0

(Λε)β(1+δ)
+N0

)(
log

(
1

ε−r

))T−t
T

exp

(
−t (Λ

ε)β

mλ1

)
. (4.38)

Remark 4. We can choose Λε =
m1/βλ

1/β
1

β
√

log(ε−r)

T 1/β

ε→0+

−→ ∞, for some r ∈ (0, 1),
then the condition in (4.37) is fulfiled. Then the estimate in (4.38) is of order

ε
rt
T

(
log(ε−r)

)1− t
T → 0 as ε→ 0+, for all t ∈ [0, T ).
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Remark 5. Obviously, from (4.26), one can raise the question about I0 in (4.25)
is large, then the estimate in (4.26) is not exist naturally. By using FTR method,
this problem is improved as in (4.38) by the term I0

(Λε)β+δ → 0 as ε goes to 0+.

Proof. We divide the proof into two parts. In Part a, we prove that the integral
equation (4.36) has a unique solution VεΛε ∈ C([0, T ];L2(Ω)). In Part b, the error
between the exact solution and regularized solution is obtained.
Part a. The existence and uniqueness of a solution of the integral equation (4.36).

For ζ ∈ C([0, T ];L2(Ω)), we consider the following function

L (ζ)(t, x)

=

[Λε]∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕεj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f%,j(ζ)(τ)dτ

]
ej(x).

(4.39)

Let us define L k as follows

L k(ζ) = L · · ·L (L (ζ))︸ ︷︷ ︸
k−times

.

To explore the proof, we only need to prove that there exists k0 ∈ N∗ such that the
operator L k0 which also maps C([0, T ];L2(Ω)) into itself, is a contraction. In fact,
we prove by mathematical induction that for any couples ζ1, ζ2 ∈ C([0, T ];L2(Ω))
then ∥∥L k(ζ1)−L k(ζ2)

∥∥
C([0,T ];L2(Ω))

≤

[
K%ε exp

(
T (Λε)β

mλ1

)
(T − t)

]k
k!

‖ζ1 − ζ2‖C([0,T ];L2(Ω)),

for ζ1, ζ2 ∈ C([0, T ];L2(Ω)). The proof of the latter inequality is similar to that of
Theorem 4.3 and thus it is omitted.
Part b. The error estimate between the exact solution u and the regularized solution
VεΛε . Using the triangle inequality, we have

‖VεΛε(t, ·)− u(t, ·)‖[L2(Ω)]2 ≤ ‖VεΛε(t, ·)−WΛε(t, ·)‖L2(Ω)︸ ︷︷ ︸
=:MΛε,ε

9 (t)

+ ‖WΛε(t, ·)− u(t, ·)‖L2(Ω)︸ ︷︷ ︸
=:MΛε

10 (t)

,

(4.40)

where

WΛε(t, x)

=

[Λε]∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f%ε,j(WΛε)(τ)dτ

]
ej(x).

To estimate (4.40), we divide the right-hand side of (4.40) into two steps

• Step 1. Estimate MΛε,ε
9 (t). One has

VεΛε(t, x)−WΛε(t, x) =

[Λε]∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)(
ϕεj − ϕj

)]
ej(x)
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+

[Λε]∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
(f%ε,j(WΛε)(τ)− f%ε,j(VεΛε)(τ)) dτ

]
ej(x).

(4.41)

Using the Hölder’s inequality with Parseval’s relation, we obtain

|MΛε,ε
9 (t)|2

= 2

[Λε]∑
j=1

[
exp

(
(T − t)λβj
1 +mλj

)(
ϕεj − ϕj

)]2

+ 2

[Λε]∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
(f%ε,j(WΛε)(τ)− f%ε,j(VεΛε)(τ)) dτ

]2

≤ 2 exp

(
2(T − t)(Λε)β

mλ1

) [Λε]∑
j=1

|ϕεj − ϕj |2

+
2T

m2λ2
1

∫ T

t

exp

(
2(τ − t)(Λε)β

mλ1

) [Λε]∑
j=1

|f%ε,j(WΛε)(τ)− f%ε,j(VεΛε)(τ)|2 dτ

≤ 2 exp

(
2(T − t)(Λε)β

mλ1

)
ε2

+
2TK2

%ε

m2λ2
1

∫ T

t

exp

(
2(τ − t)(Λε)β

mλ1

)
‖WΛε(τ, ·)− VεΛε(τ, ·)‖

2
L2(Ω) dτ. (4.42)

Multiplying both sides (4.42) by exp
(

2(Λε)β

mλ1
t
)

, we get

exp

(
2t

(Λε)β

mλ1

)
‖VεΛε(t, ·)−WΛε(t, ·)‖2L2(Ω)

≤ 2 exp

(
2T

(Λε)β

mλ1

)
ε2 +

2TK2
%ε

m2λ2
1

∫ T

t

exp

(
2τ

(Λε)β

mλ1

)
‖WΛε(τ, ·)− VεΛε(τ, ·)‖2L2(Ω) dτ.

Applying Grönwall’s inequality yields

exp

(
2t

(Λε)β

mλ1

)
‖VεΛε(t, ·)−WΛε(t, ·)‖2L2(Ω)

≤ 2 exp

(
2(Λε)β

mλ1
T

)
ε2 exp

(
2TK2

%ε

m2λ2
1

(T − t)

)
.

Consequently,

‖VεΛε(t, ·)−WΛε(t, ·)‖L2(Ω) ≤
√

2 exp

(
(Λε)β

mλ1
(T − t)

)
ε exp

(
2TK2

%ε

m2λ2
1

(T − t)

)
.

(4.43)

• Step 2. Estimate of MΛε

10 (t). One has∣∣MΛε

10 (t)
∣∣2

= 2
∞∑

j=[Λε]+1

[
exp

(
(T − t)λβj
1 +mλj

)
ϕj −

1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
f%ε,j(WΛε)(τ)dτ

]2
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+ 2

[Λε]∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
(fj(u)(τ)− f%ε,j(WΛε)(τ)) dτ

]2

=:MΛε

10a(t) +MΛε

10b(t). (4.44)

To estimate MΛε

10a(t), we proceed as follows for δ > 0 be arbitrary∣∣∣MΛε

10a(t)
∣∣∣

= 2

∞∑
j=[Λε]+1

exp

(
−2tλβj

1 +mλj

)[
exp

(
Tλβj

1 +mλj

)
ϕj−

1

1 +mλj

∫ T

t

exp

(
−τλβj

1 +mλj

)
f%ε,j(WΛε)(τ)dτ

]2

≤ 2(Λε)−2β−2βδ exp

(
−2t(Λε)β

mλ1

) ∞∑
j=[Λε]+1

λ
2(β+βδ)
j exp

(
2Tλβj
mλ1

)
〈u(t, ·), ej(·)〉2L2(Ω)

≤ 2(Λε)−2β−2βδ exp

(
−2t(Λε)β

mλ1

)
‖u(t, ·)‖2Gβ(η1,η2)(Ω) , for 2 ≤ η1, η2 ≥

2T

mλ1
.

(4.45)

Since limε→0+ %ε = ∞, for a sufficiently small ε > 0, there is an %ε > 0 such that
%ε ≥ ‖u‖L∞(0,T ;L2(Ω)). For this value of %ε (from (3.54)) we have f%ε(t, x;u) ≈
f(t, x;u). We estimate of MΛε

10b(t) as follows∣∣∣MΛε

10b(t)
∣∣∣

= 2

[Λε]∑
j=1

[
1

1 +mλj

∫ T

t

exp

(
(τ − t)λβj
1 +mλj

)
(f%ε,j(u)(τ)− f%ε,j(WΛε)(τ)) dτ

]2

≤ 2T

m2λ2
1

∫ T

t

exp

(
2(τ − t)(Λε)β

mλ1

) [Λε]∑
j=1

|f%ε,j(u)(τ)− f%ε,j(WΛε)(τ)|2 dτ

≤
2TK2

%ε

m2λ2
1

∫ T

t

exp

(
2(τ − t)(Λε)β

mλ1

)
‖WΛε(τ, ·)− u(τ, ·)‖2L2(Ω) dτ. (4.46)

Combining (4.45) and (4.46), we get

‖WΛε(t, ·)− u(t, ·)‖2L2(Ω)

≤ 2(Λε)−2β−2βδ exp

(
−2t

(Λε)β

mλ1

)
‖u(t, ·)‖2Gβ(η1,η2)(Ω)

+
2TK2

%ε

m2λ2
1

∫ T

t

exp

(
2(τ − t)(Λε)β

mλ1

)
‖WΛε(τ, ·)− u(τ, ·)‖2L2(Ω) dτ. (4.47)

Multiplying by exp
(

2t (Λε)β

mλ1

)
both sides and using Grönwall’s inequality, we obtain

‖WΛε(t, ·)− u(t, ·)‖L2(Ω)

≤

√
2 exp

(
− t(Λ

ε)β

mλ1

)
(Λε)β+βδ

‖u(t, ·)‖Gβ(η1,η2)(Ω) exp

(
TK2

%ε

m2λ2
1

(T − t)

)
. (4.48)
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Combining (4.40), (4.43) and (4.48), we obtain (4.38). This completes the proof of
Theorem 4.7.

5. Conclusion. The paper investigate a final boundary value problem for a class
of pseudo-parabolic partial differential equations with nonlinear reaction term. For
0 < β < 1, the well-posedness of solution is established. For β > 1, the problem
is ill-posed. Thus, we propose two methods to regularize the problem. The error
estimates are given in the cases of globally or locally Lipschitzian source term.
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