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Abstract. In present paper, we deal with the behavior of a solution beyond
the occurrence of wave breaking for a modified periodic Coupled Camassa-Holm

system. By introducing a new set of independent and dependent variables,

which resolve all singularities due to possible wave breaking, this evolution
system is rewritten as a closed semilinear system. The local existence of the

semilinear system is obtained as fixed points of a contractive transformation.

Moreover, this formulation allows us to continue the solution after wave break-
ing, and gives a global conservative solution where the energy is conserved

for almost all times. Returning to the original variables. We finally obtain a

semigroup of global conservative solutions, which depend continuously on the
initial data. Additionally, our results repair some gaps in the pervious work.

1. Introduction. In this paper, we investigate the Cauchy problem of the modified
periodic coupled Camassa-Holm system that has the following form:

mt + 2mux +mxu+ (mv)x + nvx = 0, t > 0, x ∈ R,
nt + 2nvx + nxv + (nu)x +mux = 0, t > 0, x ∈ R,
m(0, x) = m0(x), n(0, x) = n0(x), t = 0, x ∈ R,

m(t, x) = m(t, x+ 1), n(t, x) = n(t, x+ 1), t > 0, x ∈ R,

(1)

where m = u − uxx and n = v − vxx are periodic function respect to x. The
system (1) is a generalization of the Camassa-Holm equation with peakon solitons
in the form of a superposition of multipeakons which was firstly proposed by Fu
and Qu in [13]. The well-posedness and blow-up solutions of periodic case for the
system (1) were discussed by Fu et al. in [14]. In [30], the authors established the
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local well posedness and blow-up solutions in Besov spaces. The attractor, non-
uniform dependence and persistence properties of the system (1) were discussed in
[29, 33]. Furthermore, Tian el at. in [28] investigated the global conservative and
dissipative solutions of system (1) by tansforming it into an equivalent semilinear
ODE system. However, there is gap in [28, 31], i.e., the second derivative terms uxx
and vxx appeared in the equivalent ODE system cannot be controlled by the H1(R)
conservation law. This paper repair the gap in the following sections.

It is known to us, when u = v and let t̃ = 2t, system (1) can be degenerated to
the famous Camassa-Holm equation:

mt + 2mux +mxu = 0, m = u− uxx. (2)

The Camassa-Holm equation (2) was first implicitly contained in a bi-Hamiltonian
generalization of the Korteweg-de Vries equation by Fuchssteiner and Fokas [15], and
later deduced as a model for unidirectional propagation of shallow water over a flat
bottom by Camassa and Holm [4]. Similar to the KdV equation, the Camassa-Holm
equation has a bi-Hamilton structure [15, 24], and is completely integrable [4, 5, 23].
The equation (2) not only holds an infinity of conservative laws, but also can be
solved by its corresponding inverse scattering transform [2, 9]. The solitary waves of
equation (2) are solitons (i.e., it can keep their shape and velocity after interacted by
the same type nonlinear wave). Compared to the KdV equation, the Camassa-Holm
equation has many advantages, such as, it has both the finite time wave-breaking
solutions (i.e. the solution keeps bounded but the slope becomes unbounded in finite
time) and the global strong solutions [6, 7, 11, 25]. The solitary wave solutions are
peaked waves and a specific case was given in [4], it is not a classical solution because
it has a peak at their crest. The local well-posedness of equation (2) with the inial
data u0 ∈ Hs, s > 3

2 was studied in [1, 7, 25]. Many papers have investigated the
weak solutions for the equation (2). Especially, in the non-periodic case, Bressan
and Constantin in [3] has done many works, they developed a new method to
investigate a conservative solution’s semigroup. In the periodic case, Holden and
Raynaud in [22] applied the semigroup theory to investigate the periodic Camassa-
Holm equation, and proved its conservative solutions, depending continuously on
the initial data, which can also construct a semigroup.

Of course, the Camassa-Holm equation has many generalizations such as the
modified two-component Camassa-Holm equation (M2CH) and the coupled
Camassa-Holm equation. The M2CH equation was firstly introduced by Holm et al.
in [21] as a modified version of the two-component Camassa-Holm equation (2CH)
that was proposed by Constantin and Ivanov [10] in the context of shallow water
theory. The M2CH equation is integrable and its form as follow;{

mt + 2mux +mxu+ ρρ̄x = 0,
ρt + (ρu)x = 0,

(3)

where m = u− uxx. The equations (3) was testified that admits singular solutions
in both of the variables m and ρ in [21]. The well-posedness, blow-up phenomena,
Lipschitz metric and the global weak solution for the equations (3) were studied
by Guan et al. in [17, 18, 19, 20]. Tan et al. investigated the global conservative
solutions for both of the periodic case and the non-periodic case in [26, 27]. Guan
proved the Cauchy problem of the M2CH with the initial data z0 = (u0, ρ0) ∈
H1(R)× (H1 ∩W 1,∞)) has a unique global conservative weak solution in [16].

Inspired by [3, 22, 26, 34, 35], this paper mainly discusses the global conser-
vative solutions of the modified periodic Camassa-Holm system. As is known to
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us, equations (1) is a system, so it’s more difficult than the single one. Moreover,
the interactions between u and v greatly increases the complexity of the research.
To overcome these difficulties, we set the characteristics that completely different
from the one used in [3, 22, 26]. Thus, the calculation is largely reduced. By in-
troducing new variables, we transform the system (1) into a equivalent semilinear
ODE system. Firstly, we get the global solutions of the equivalent semilinear ODE
system. Then we get the global conservative solutions for the system (1) from the
global solutions of the equivalent ODE system. Finally, we obtain a semigroup of
the solutions depending continuously on inial data for the original system.

The rest of this paper is organized as follows. Section 2 is the basic equation.
In section 3, we get a equivalent semilinear system and the global solutions of the
semilinear system. In section 4, we obtain the global conservative solution of the
system (1) and construct a solution semigroup.

2. The basic equations. Now, we reformulate the system (1). Let m = u− uxx
and n = v−vxx. Note that G := 1

2 sinh 1
2

cosh(x− [x]− 1
2 ), x ∈ R, and (1−∂2

x)−1f =

G ∗ f for all f ∈ L2(R). Thus, we can rewrite system (1) as follow:
ut + (u+ v)ux + P1 + P2,x = 0, t > 0, x ∈ R,
vt + (u+ v)vx +Q1 +Q2,x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), v(0, x) = v0(x), t = 0, x ∈ R,

u(t, x) = u(t, x+ 1), v(t, x) = v(t, x+ 1), t > 0, x ∈ R,

(4)

where P1, P2, Q1, Q2 have the following form:

P1 = G ∗ (uvx),

P2 = G ∗ (u2 +
1

2
u2
x + uxvx +

1

2
v2 − 1

2
v2
x),

Q1 = G ∗ (vux),

Q2 = G ∗ (v2 +
1

2
v2
x + uxvx +

1

2
u2 − 1

2
u2
x).

According to the fact that the above representations, P1 and Q1 are symmetrical, P2

andQ2 are symmetrical, For convenience, we can set P1(u, v) = Q1(v, u) = G∗(uvx).
So do P2 and Q2.

In fact, for smooth solutions, differentiating the first and the second equations
in (4) with respect to x, we get{

uxt + u2x + uxvx + uuxx + vuxx + P1,x + P2 − (u2 + 1
2
u2x + uxvx + 1

2
v2 − 1

2
v2x) = 0,

vxt + v2x + uxvx + vvxx + uvxx +Q1,x +Q2 − (v2 + 1
2
v2x + uxvx + 1

2
u2 − 1

2
u2x) = 0.

(5)

Multiplying the first and the second equations in (4) by u and v, and multiplying
the first and the second equations in (5) by ux and vx, respectively, we get following
conservation laws

(u2

2

)
t

+
(u2

x

2

)
t

+
(u2v + uu2

x + vu2
x + 2uP2

2

)
x

− ux(v2 + v2
x) + vx(u2 − u2

x)

2
+ uP1 + uxP1,x = 0,(v2

2

)
t

+
(v2

x

2

)
t

+
(v2u+ vv2

x + uv2
x + 2vQ2

2

)
x

− vx(u2 + u2
x) + ux(v2 − v2

x)

2
+ vQ1 + vxQ1,x = 0.

(6)
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For regular solutions, using (6) and integrating by parts, it is clear that the total
energy

E(t) =

∫
S
(u2 + u2

x + v2 + v2
x)dx

is a constant in time. If u and v are smooth, from (4)-(6), it is not very hard to
check that

(u2 + u2
x + v2 + v2

x)t + ((u+ v)(u2 + u2
x + v2 + v2

x))x

= (u3 − 2uP2 − 2uP1,x + v3 − 2vQ2 − 2vQ1,x)x.
(7)

3. A equivalent semilinear system. Firstly, we introduce the space E1:

E1 =
{
f ∈ H1

loc(R)|f(θ + 1) = f(θ) + 1},

and define the characteristics y : R 7→ E1, t 7→ y(t, ·) as the solution of

yt(t, θ) = (u+ v)(t, y(t, θ)). (8)

In addition, we denote 
U(t, θ) = u(t, y(t, θ)),

V (t, θ) = v(t, y(t, θ),

M(t, θ) = ux(t, y(t, θ),

N(t, θ) = vx(t, y(t, θ),

(9)

and

H(t, θ) =

∫ y(t,θ)

y(t,0)

(
u2 + u2

x + v2 + v2
x

)
dx. (10)

By (7) and (8), we get
dH

dt
=
[(
u3 − 2uP1,x − 2uP2 + v3 − 2vQ1,x − 2vQ2

)
◦ y
]θ
0
,

Hθ =
[(
u2 + u2

x + v2 + v2
x

)
◦ y
]
yθ.

(11)

Using (10), the periodicity of u, v and y ∈ E1, we obtain

H(t, θ + 1)−H(t, θ) = H(t, 1)−H(t, 0).

According to (11), it is very easy to prove that H(t, 1) − H(t, 0) is a constant in
time. Thus, we get that H(t, 1) −H(t, 0) = H(0, 1) −H(0, 0). For every t > 0, H
belongs to the vector space E defined as follow

E = {f ∈ H1
loc(R)|f(θ + 1)− f(θ) = f(1)− f(0)}.

We define the norm ‖f‖E = ‖f‖H1
[0,1]

for E. For convenience, we will replace H1
[0,1]

by H1. Later, we will verify that E is complete.
We derive formally a system equivalent to system (4). From the definition of the

characteristics, it follows that

Ut(t, θ) = (−P1 − P2,x) ◦ y(t, θ),

Vt(t, θ) = (−Q1 −Q2,x) ◦ y(t, θ),

Mt(t, θ) = (−M
2

2
− N2

2
+ U2 +

V 2

2
− P1,x − P2) ◦ y(t, θ),

Nt(t, θ) = (−N
2

2
− M2

2
+ V 2 +

U2

2
−Q1,x −Q2) ◦ y(t, θ).

(12)
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Then, we get the explicit expression for Pi, Qi, Pi,x, Qi,x (i = 1, 2):

P1(u, v) =
1

2 sinh 1
2

∫ 1

0

cosh
(
x− y − [x− y]− 1

2

)(
u(t, y)vx(t, y)

)
dy,

P1,x(u, v) =
1

2 sinh 1
2

∫ 1

0

sinh
(
x− y − [x− y]− 1

2

)(
u(t, y)vx(t, y)

)
dy,

P2(u, v) =
1

2 sinh 1
2

∫ 1

0

cosh
(
x− y − [x− y]− 1

2

)
×
(
u2(t, y) +

1

2
u2
x(t, y) + ux(t, y)vx(t, y) +

1

2
v2(t, y)− 1

2
v2
x(t, y)

)
dy,

P2,x(u, v) =
1

2 sinh 1
2

∫ 1

0

sinh
(
x− y − [x− y]− 1

2

)
×
(
u2(t, y) +

1

2
u2
x(t, y) + ux(t, y)vx(t, y) +

1

2
v2(t, y)− 1

2
v2
x(t, y)

)
dy,

and Q1(u, v) = P1(v, u), Q1,x(u, v) = P1,x(v, u), Q2(u, v) = P2(v, u), Q2,x =
P2,x(v, u).

In the above formulae, we can perform the change of variables y = y(t, θ′), and
rewrite the convolution respect to θ′. From (9), we get new expressions of Pi, Qi,
Pi,x, Qi,x(i = 1, 2) with the new variable θ

P1(t, θ) =
1

2(e− 1)

∫ 1

0
cosh

(
y(t, θ) − y(t, θ′)

)(
UNyθ

)(
t, θ′

)
dθ′

+
1

4

∫ 1

0
exp

(
− sgn(θ − θ′)

(
y(θ) − y(θ′)

))(
UNyθ)

)(
t, θ′

)
dθ′,

P1,x(t, θ) =
1

2(e− 1)

∫ 1

0
sinh

(
y(t, θ) − y(t, θ′)

)(
UN)yθ

)(
t, θ′

)
dθ′

−
1

4

∫ 1

0
sgn(θ − θ′) exp

(
− sgn(θ − θ′)

(
y(θ) − y(θ′)

))(
UNyθ)

)(
t, θ′

)
dθ′,

P2(t, θ) =
1

2(e− 1)

∫ 1

0
cosh

(
y(t, θ) − y(t, θ′)

)(
Hθ + (U2 + 2MN −N2)yθ

)(
t, θ′

)
dθ′

+
1

4

∫ 1

0
exp

(
− sgn(θ − θ′)

(
y(θ) − y(θ′)

))
×
(
Hθ + (U2 + 2MN −N2)yθ

)(
t, θ′

)
dθ′,

P2,x(t, θ) =
1

2(e− 1)

∫ 1

0
sinh

(
y(t, θ) − y(t, θ′)

)(
Hθ + (U2 + 2MN −N2)yθ

)(
t, θ′

)
dθ′

−
1

4

∫ 1

0
sgn(θ − θ′) exp

(
− sgn(θ − θ′)

(
y(θ) − y(θ′)

))
×
(
Hθ + (U2 + 2MN −N2)yθ

)(
t, θ′

)
dθ′,

(13)

and 

Q1(u(t, θ), v(t, θ)) = P1(v(t, θ), u(t, θ)),

Q1,x(u(t, θ), v(t, θ)) = P1,x(v(t, θ), u(t, θ)),

Q2(u(t, θ), v(t, θ)) = P2(v(t, θ), u(t, θ)),

Q2,x(u(t, θ), v(t, θ)) = P2,x(v(t, θ), u(t, θ)).

(14)
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Straight computation shows that
P1,θ = P1,xyθ, P1,xθ = −UNyθ + P1yθ,

P2,θ = P2,xyθ, P2,xθ = −[Hθ + (U2 + 2MN −N2)yθ] + P2yθ,

Q1,θ = Q1,xyθ, Q1,xθ = −VMyθ +Q1yθ,

Q2,θ = Q2,xyθ, Q2,xθ = −[Hθ + (V 2 + 2MN −M2)yθ] +Q2yθ.

(15)

From (8), (11)-(12) and (13)-(15), we obtain a new system which is equivalent to
system (4). And the Cauchy problem of the new system can be rewritten with
respect to the variables (y, U, V,M,N,H) in the following form

∂y

∂t
= U + V,

∂U

∂t
= −P1 − P2,x,

∂V

∂t
= −Q1 −Q2,x,

∂M

∂t
= −M

2

2
− N2

2
+ U2 +

V 2

2
− P1,x − P2,

∂N

∂t
= −N

2

2
− M2

2
+ V 2 +

U2

2
−Q1,x −Q2,

∂H

∂t
=
(
u3 − 2uP1,x − 2uP2 + v3 − 2vQ1,x − 2vQ2

)
|θ0.

(16)

Differentiating (16) with respect to θ and utilizing (15), we have

∂yθ
∂t

= Uθ + Vθ,

∂Uθ
∂t

=
Hθ

2
+
(U2

2
+MN −N2 − P1,x − P2

)
yθ,

∂Vθ
∂t

=
Hθ

2
+
(V 2

2
+MN −M2 −Q1,x −Q2

)
yθ,

∂Hθ

∂t
=
(
3U2 − 2P2

)
Uθ +

(
3V 2 − 2Q2

)
Vθ − 2

(
UP2,x + V Q2,x

)
yθ

− 2
(
MP1,x + UP1 − U2N +NQ1,x + V Q1 − V 2M

)
yθ.

(17)

The system (17) is semilinear for the variables yθ, Uθ, Vθ and Hθ. By introducing
the space H1

per

H1
per = {f ∈ H1

loc(R)|f(θ + 1) = f(θ)},

with the norm ‖f‖H1
per

= ‖f‖H1
[0,1]

, We define a linear map Φ: ‖f‖H1
per
×R 7→ E as

Φ : (σ, h) 7→ f = σ + hId.

Lemma 3.1. The map Φ defined above is homeomorphism from H1
per × R to E.

It is clear that the space E is a Banach space, because the space H1
per × R

is a Banach space. Let’s introduce η = y − Id and (σ, h) = σ + hId, i.e. h =
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H(t, 1)−H(t, 0) and σ = H − hId. Therefore, the system (16) is equivalent to

∂η

∂t
= U + V,

∂U

∂t
= −P1 − P2,x,

∂V

∂t
= −Q1 −Q2,x,

∂M

∂t
= −M

2

2
− N2

2
+ U2 +

V 2

2
− P1,x − P2,

∂N

∂t
= −N

2

2
− M2

2
+ V 2 +

U2

2
−Q1,x −Q2,

∂σ

∂t
=
(
u3 − 2uP1,x − 2uP2 + v3 − 2vQ1,x − 2vQ2

)
|θ0,

∂h

∂t
= 0.

(18)

In the next section, the well-posedness of system (18) will be proved as an ordinary
differential equations in the Banach space W . Note that

W = H1
per ×H1

per ×H1
per × L∞per × L∞per ×H1

per × R.

We have a bijection(η, U, V,M,N, σ, h) 7→ (y, U, V,M,N,H) from W to E1×H1
per×

H1
per × L∞per × L∞per × E with y = η + Id and H = σ + hId.

Theorem 3.2. Let X̄ = (η̄, Ū , V̄ , M̄ , N̄ , ρ̄, h̄) ∈W , there exists a T > 0 depending
only on ‖X̄‖W such that the system (18) has a unique solution in C1([0, T ], E) with
initial data X̄.

Proof. To prove the this theorem, the key step is to prove the Lipchitz continuity
of the right side of system (18). We define the map ψ:W 7→W

ψ(X) = (U + V,−P1 − P2,x,−Q1 −Q2,x,−
M2

2
− N2

2
+ U2 +

V 2

2
− P1,x − P2,

− N2

2
− M2

2
+ V 2 +

U2

2
−Q1,x −Q2,

(
u3 − 2uP1,x − 2uP2 + v3 − 2vQ1,x − 2vQ2

)
|θ0, 0).

Firstly, we testify that Pi, Qi, Pi,x, Qi,x are local Lipchitz continuous. Note that
BM = {X = (η, U, V,M,N, σ, h) ∈ W | ‖X‖W ≤ M}. Let X = (η, U, V,M,N, σ, h)
and X̄ = (η̄, Ū , V̄ , M̄ , N̄ , σ̄, h̄) belong to BM . Then, we get that

‖y‖L∞ = ‖Id+ η‖L∞ ≤ 1 + C‖η‖H1 ≤ 1 + CM

and ‖ȳ‖L∞ ≤ 1+CM . It is clear that coshx and sinhx are local Lipchitz continuous
on {X ∈ R| |X| ≤ 1 + CM} where C is a constant that depends only on M , we
yield

| cosh(y(θ)− y(θ′))− cosh(ȳ(θ)− ȳ(θ′))| ≤ C|y(θ)− y(θ′)− ȳ(θ) + ȳ(θ′)|
≤ C‖η − η̄‖L∞ ,

and

| exp(−sgn(θ − θ′)(y(θ)− y(θ′))− exp(−sgn(θ − θ′)(ȳ(θ)− ȳ(θ′))| ≤ C‖η − η̄‖L∞ ,
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for all θ, θ′ in [0, 1]. Then, we have

‖ cosh(y(θ)− y(θ′))(
(
Hθ + (U2 + 2MN −N2)yθ

)
)− cosh(ȳ(θ)

− ȳ(θ′))
(
H̄θ + (Ū2 + 2M̄N̄ − N̄2)ȳθ

)
‖L∞

≤ C(‖η − η̄‖L∞ + ‖U − Ū‖L∞ + ‖V − V̄ ‖L∞ + ‖M − M̄‖L2

+ ‖N − N̄‖L2 + ‖ηθ − η̄θ‖L2 + ‖σθ − σ̄θ‖L2 + |h− h̄|)
≤ C‖X − X̄‖W .

So does exp(−sgn(θ−θ′)(y(θ)−y(θ′)))[Hθ+(U2 +2MN−N2)yθ]. Thus, we obtain
that

‖P2 − P̄2‖L∞ ≤ C‖X − X̄‖W .
The similar computation shows that

‖P2,x − P̄2,x‖L∞ ≤ C‖X − X̄‖W .
Utilizing (15), we have

‖P2,xθ − P̄2,xθ‖L2 ≤ C(‖X − X̄‖W + ‖P2 − P̄2‖L∞) ≤ C‖X − X̄‖W ,
and

‖P2 − P̄2‖L2 ≤ C(‖X − X̄‖W .
In conclusion, the local Lipchitz continuity from W to H1

per of P2 and P2,x has been
proven, and so do P1, P1,x, Q1, Q1,x, Q2 and Q2,x. For above certify, it is easy to
prove that ψ is locally Lipchitz continuous from W to W . Therefore, the theorem
follows the standard theory of ordinary differential equations on Banach spaces.

Now, we prove the existence of a global solution of system (18). As we all know
that initial data is very significant to system (18), but, here, we will only consider
a particular initial data that belong to

W1 = W 1,∞
per ×W 1,∞

per ×W 1,∞
per × L∞per ×W 1,∞

per × R.

W1 is complete subspace of W . Let X̄ ∈W1. We investigate the short time solution
X = (η, U, V,M,N, σ, h) ∈ ([0, T ], E) of system (18) given by Theorem 3.2. Because
X ∈ C([0, T ],W ), Pi, Qi, Pi,x, Qi,x ∈ C([0, T ],W ), we now consider U , V , Pi, Qi,
Pi,x, Qi,x as functions in C([0, T ], H1

per) and M,N in C([0, T ], L∞per). Then, for any
fixed θ in R, we can solve the following system of ordinary differential equations in
R4 given by

∂

∂t
α(t, θ) = β(t, θ) + γ(t, θ),

∂

∂t
β(t, θ) =

h̄+ δ(t, θ)

2
+
(U2

2
+MN −N2 − P1,x − P2

)
(1 + α(t, θ)),

∂

∂t
γ(t, θ) =

h̄+ δ(t, θ)

2
+
(V 2

2
+MN −M2 −Q1,x −Q2

)
(1 + α(t, θ)),

∂

∂t
δ(t, θ) =

(
3U2 − 2P2 − 2P1,x + 2V 2)β(t, θ) +

(
3V 2 − 2Q2 − 2Q1,x + 2U2)γ(t, θ)

− 2
(
UP2,x + UP1 + V Q2,x + V Q1

)
(1 + δ(t, θ)).

(19)

which is obtained by substituting ηθ, Uθ, Vθ and σθ in system (17) by α, β, γ and
δ, respectively. We also replaced h(t) by h, hence h(t) = h for all t. Let

S = {θ ∈ R||Ūθ(θ)| ≤ ‖Ūθ(θ)‖L∞ , |V̄θ(θ)| ≤ ‖v̄θ(θ)‖L∞ , |η̄θ(θ)| ≤ ‖η̄θ(θ)‖L∞ ,
|σ̄θ(θ)| ≤ ‖σ̄θ(θ)‖L∞}.
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It is not very hard to check that meas(Sc) = 0. For all θ ∈ S, let

(α(0, θ), β(0, θ), γ(0, θ), δ(0, θ)) = (η̄θ(θ), Ūθ(θ), v̄θ(θ), σ̄θ(θ)).

For θ ∈ Sc, we take (α(0, θ), β(0, θ), γ(0, θ), δ(0, θ)) = (0, 0, 0, 0).

Lemma 3.3. Given initial data

X̄ = (η̄, Ū , V̄ , M̄ , N̄ , σ̄, h̄) ∈ [W 1,∞
per ]3 × [L∞per]

2 ×W 1,∞
per × R.

Let X = (η, U, V,M,N, σ, h) ∈ C([0, T ],W ) be the solution of system (18) followed
Theorem 3.2. Then

X ∈ C1([0, T ], [W 1,∞
per ]3 × [L∞per]

2 ×W 1,∞
per × R),

and the functions α(t, θ), β(t, θ), γ(t, θ), δ(t, θ), which solve system (19) for any fixed
θ with the specified initial data above, coincide for almost every θ and for all time
with (ηθ, Uθ, Vθ, σθ), that is, for all t ∈ [0, T ], for almost every θ,

(α(t, θ), β(t, θ), γ(t, θ), δ(t, θ)) = (ηθ(t, θ), Uθ(t, θ), Vθ(t, θ), σθ(t, θ)). (20)

Proof. Firstly, let’s introduce a key space B∞per in which elements are bounded
periodic functions with the norm ‖f‖B∞per = supθ∈[0,1] |f(θ)|, clearly, this space
is complete. According to the initial data conditions in the lemma, the solution
for system (19) in space [B∞per]

4 can be defined as (α(t, θ), β(t, θ), γ(t, θ), δ(t, θ)).
It is not very difficult to check that the solutions exists on the interval [0,T] on
which (η, U, V,M,N, σ, h) is defined, since the system (19) is linear in (α, β, γ, δ).
According system (18), we get that

ηθ(t, θ) = η̄θ +

∫ t

0

(
Uθ(τ, θ) + Vθ(τ, θ)

)
dτ,

Uθ(t, θ) = Ūθ +

∫ t

0

(1

2
(h̄+ δ(τ, θ)) + (

U2

2
+MN −N2 − P1,x − P2)(1 + α(τ, θ))

)
dτ,

Vθ(t, θ) = V̄θ +

∫ t

0

(1

2
(h̄+ δ(τ, θ)) + (

V 2

2
+MN −M2 −Q1,x −Q2)(1 + α(τ, θ))

)
dτ,

σθ(t, θ) = σ̄θ +

∫ t

0

(
(3U2 − 2P2 − 2P1,x + 2V 2)β(τ, θ) + (3V 2 − 2Q2 − 2Q1,x + 2U2)γ(τ, θ)

− 2
(
UP2,x + UP1 + V Q2,x + V Q1

)
(1 + δ(τ, θ))

)
dτ.

(21)

Since B∞per imbeds in L2
per, the integral form of system (19) holds in L2

per sense.
Now, we know that (α, β, γ, δ) and (ηθ, Uθ, Vθ, σθ) satisfy the linear system (19)
with the same initial data in L2 sense on the interval [0, T ]. By uniqueness, we get
that

(α(t), β(t), γ(t), δ(t)) = (ηθ(t), Uθ(t), Vθ(t), σθ(t))

in L2
per on [0, T ].

Now, we give the initial data as follow

Ū(θ) = ū ◦ ȳ(θ), V̄ (θ) = v̄ ◦ ȳ(θ),

M̄(θ) = ūx ◦ ȳ(θ), N̄(θ) = v̄x ◦ ȳ(θ),

H̄(θ) =

∫ ȳ(θ)

0

(ū2 + ū2
x + v̄2 + v̄2

x)dx,∫ ȳ(θ)

0

(ū2 + ū2
x + v̄2 + v̄2

x)dx+ ȳ(θ) = (1 + h̄)θ,

(22)
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where h̄ =
∫ 1

0
(ū2+ū2

x+v̄2+v̄2
x)dx. By (22), we know that ȳ(θ) is continuous, strictly

increasing. In the following work, we will testify that (ȳ−Id, Ū , V̄ , m̄, N̄ , H̄−h̄Id, h̄)
belongs to G which is defined as follows.

Definition 3.4. The set G is made up of all (η, U, V,M,N, σ, h) ∈W such that
(η, U, V,M,N, σ, h) ∈ [W 1,∞

per ]3 × [L∞per]
2 ×W 1,∞

per × R,
yθ ≥ 0, Hθ ≥ 0, yθ +Hθ ≥ 0 almost everywhere,

yθHθ = U2y2
θ + U2

θ + V 2y2
θ + V 2

θ almost everywhere,

(23)

where y = η(θ) + θ, H(θ) = σ(θ) + hθ.

We know that the initial data (η̄, Ū , V̄ , M̄ , N̄ , σ̄, h̄) belongs to G. We will certify
that the solution of system (18) exists globally in time with any initial data in G.

Lemma 3.5. Given the initial data X̄ = (η̄, Ū , V̄ , M̄ , N̄ , σ̄, h̄) in G. Let

X(t) = (η(t), U(t), V (t),M(t), N(t), σ(t), h(t))

be the local solution of system (18) in C([0, T ],W ) for some T > 0, with the above
initial data. Then

(i) X(t) belongs to G for all t ∈ [0, T ];
(ii) almost every t ∈ [0, T ],yθ(t, θ) > 0 for almost every θ.

Proof. (i) We continue to use S defined above. Therefore, from Lemma 3.3, the
first one of (23) holds for all t ∈ [0, T ] and X ∈ C1([0, T ],W ). We will prove that
the second and third inequality of (23) hold for all θ ∈ S. Fixed θ ∈ S and dropped
it in the notation without ambiguity. By system (17), we get

(yθHθ)t = yθtHθ + yθHθt

= (Uθ + Vθ)Hθ + yθ
[(

3U2 − 2P2 − 2P1,x + 2V 2
)
Uθ

+
(
3V 2 − 2Q2 − 2Q1,x + 2U2

)
Vθ

− 2
(
UP2,x + UP1 + V Q2,x + V Q1

)
yθ
]
,

and on the other hand,

(U2y2θ + U2
θ + V 2y2θ + V 2

θ )t

= 2UUtyθ + 2U2yθyθt + 2UθUθt + 2V Vtyθ + 2V 2yθyθt + 2VθVθt

= (Uθ + Vθ)Hθ + yθ
[(

3U2 − 2P2 − 2P1,x + 2V 2)Uθ +
(
3V 2 − 2Q2 − 2Q1,x + 2U2)Vθ

− 2
(
UP2,x + UP1 + V Q2,x + V Q1

)
yθ
]
.

It is not very difficult to check that (Myθ)t = (Uθ)t,M̄ȳθ = Ūθ, (Nyθ)t = (Vθ)t
and N̄ ȳθ = V̄θ. We can get that M(t, θ)yθ(t, θ) = Vθ(t, θ) for t ∈ [0, T ], since the
uniqueness of ordinary differential equation. Thus, (23) is defined. Now, we define
t∗ as follow

t∗ = sup{t ∈ [0.T ]|yθ(t′) ≥ 0 for all t′ ∈ [0, t]}.

If t∗ ≤ T , we obtain

yθ(t
∗) = 0

for the continuity of yθ(t) on time. From (23), we get that Uθ(t
∗) = Vθ(t

∗) = 0.
Then, utilizing (17), we have

yθt(t
∗) = Uθ(t

∗) + Vθ(t
∗) = 0.
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From system (17) and the fact yθ(t
∗) = Uθ(t

∗) + Vθ(t
∗) = 0, we can infer

yθtt(t
∗) = Uθt(t

∗) + Vθt(t
∗) = Hθ(t

∗).

If Hθ(t
∗) = 0, combining with (23), we can deduce that

yθ(t
∗) = Uθ(t

∗) = Vθ(t
∗) = Hθ(t

∗) = 0.

This is a contradiction to the uniqueness of system (17). If Hθ(t
∗) < 0, then

yθtt < 0. Thus, yθ(t
∗) is the strict maximum. This contradicts the definition of

t∗. Hence Hθ(t
∗) > 0 implies that yθ(t

∗) is the strict maximum. This contradicts
the fact t∗ < T . Therefore, we get yθ(t

∗) ≥ 0 for all t ∈ [0, T ]. Let us certify that
Hθ(t) ≥ 0. This follows from (23) when yθ(t) > 0. If yθ(t) = 0 then as above,
Hθ(t) < 0 implies that yθ(t) = 0 is the strict maximum. This contradicts the fact
yθ(t) ≥ 0 on [0, T ]. Hence Hθ(t) ≥ 0 on [0, T ]. Now we have that yθ(t) +Hθ(t) ≥ 0.
If the equality holds, it then follows that yθ(t) = Uθ(t) = Vθ(t) = Hθ(t) = 0. This
contradicts the uniqueness of system (17) for yθ > 0.

(ii) Let

A = {(t, θ) ∈ [0, T ]× R|yθ(t, θ) = 0}.
Fubini’s theorem infers that

meas(A) =

∫
R
meas(Aθ)dθ =

∫ T

0

meas(At)dθ, (24)

where

Aθ = {t ∈ [0, T ]|yθ(t, θ) = 0}, At = {θ ∈ R|yθ(t, θ) = 0}.
From the above proof, we know that for θ ∈ A, the time points t satisfying
yθ(t, θ) = 0 are isolated. Thus, we have that meas(Aθ) = 0. It follows from
(24) and meas(Ac) = 0 that

meas(At) = 0 for almost every t ∈ [0, T ].

We denote by K the set of times such that meas(At) > 0, i.e.

K = {t ∈ R+|meas((A)t) > 0}.
Then, meas(K) = 0. For all t ∈ Kc,yθ > 0 almost everywhere. Therefore, y(t, θ) in
strictly increasing and invertible.

Theorem 3.6. Given any X̄ = (ȳ, Ū , V̄ , M̄ , N̄ , H̄) ∈ G. Then the system (16)
admits a global solution X(t) = (y(t), U(t), V (t),M(t), N(t), h(t)) in C1(R+,W )
with the initial data X̄ = (ȳ, Ū , V̄ , M̄ , N̄ , H̄) and X(t) ∈ G for all t ∈ R+. Moreover,
by equipping G with the topology inducted by the E-norm then the map D: G×R+ 7→
G defined as

Dt(X̄) = X(t)

is a continuous semigroup.

Proof. Let us write (y, U, V,M,N,H) to denote η, U, V,M,N, σ, h with y = η + Id
and H = σ + hId. Assuming (η, U, V,M,N, σ, h) be a solution of system (18) in
C1(R+,W ) with the initial data (η̄, Ū , V̄ , M̄ , N̄ , σ̄, h̄), we have

sup
t∈[0,T )

‖(η(t, .), U(t, .), V (t, .),M(t, .), N(t, .), σ(t, .), h(t, .))‖W <∞. (25)

It is clear that h(t) = h̄ for all t ∈ R+. According to system (16) we get that
H(t, 0) = 0. Because Hθ ≥ 0, we obtain ‖H‖L∞ ≤ H(t, 1) = h̄. Hence, ‖σ‖L∞ ≤
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2h̄, and supt∈[0,T ) ‖σ‖L∞ ≤ 2h̄. For θ and θ′ in [0,1], we have that |y(θ)−y(θ′)| ≤ 1

for yθ ≥ 0 and y(1)− y(0) = 1. Thus, we claim that

U2yθ ≤ Hθ, UθM ≤ Hθ, V
2yθ ≤ Hθ, VθN ≤ Hθ. (26)

Indeed, using (23), we obtain that yθ = 0 which deduces Uθ = 0. Thus, (26) holds
if yθ = 0. Othetwise, if yθ ≥ 0, from (23), we have

U2 +
U2
θ

yθ
+ V 2 +

V 2
θ

yθ
= Hθ (27)

and 
UθM ≤

U2
θ

yθ
+M2yθ, UθN ≤

V 2
θ

yθ
+N2yθ,

VθN ≤
V 2
θ

yθ
+N2yθ, VθM ≤

U2
θ

yθ
+M2yθ.

(28)

Utilizing (27)-(28), we get (26). From (13)-(22), we have that

sup
t∈[0,T ]

‖ρi‖L∞ ≤ Ch̄, sup
t∈[0,T ]

‖ρi,x‖L∞ ≤ Ch̄,

where the constant C is independent of t and the initial data. From system (18),
we have following estimates

sup
t∈[0,T ]

‖U(t)‖L∞ ≤ ∞, sup
t∈[0,T ]

‖V (t)‖L∞ ≤ ∞,

sup
t∈[0,T ]

‖M(t)‖L∞ ≤ ∞, sup
t∈[0,T ]

‖N(t)‖L∞ ≤ ∞.

For ηt = U + V , therefore

sup
t∈[0,T ]

‖η(t)‖L∞ ≤ ∞.

Now, we have certified that

C1 = sup
t∈[0,T ]

{‖U(t)‖L∞ + ‖V (t)‖L∞ + ‖M(t)‖L∞ + ‖N(t)‖L∞

+‖ρ1‖L∞ + ‖ρ1,x‖L∞ + ‖ρ2‖L∞ + ‖ρ2,x‖L∞
+‖ρ3‖L∞ + ‖ρ3,x‖L∞ + ‖ρ4‖L∞ + ‖ρ4,x‖L∞}

is finite. Let

Z(t) = ‖yθ(t)‖L2 + ‖Uθ(t)‖L2 + ‖Vθ(t)‖L2 + ‖Hθ(t)‖L2 .

Since the system (17) is semilinear, we have that

Z(t) = Z(0) + C

∫ t

0

Z(τ)dτ,

where C is only depend on C1. Applying Gronwall’s inequality, we get (25). By the
standard theorem of ordinary differential equation, we obtain thatDt is a continuous
semigroup.
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4. The original system. In this section, we will investigate how to obtain a global
conservative solution of system (4) from the global solution of system (17) with the
initial variables (t, x). Let (y, U,V,M,N,H) be the global solution of system (17).
Note that

u(t, x)
.
= u(t, θ), v(t, θ)

.
= v(t, θ), if y(t, θ) = x. (29)

Theorem 4.1. Let (y, U, V,M,N,H) be a global solution of system (17). Then the
pair function (u(t,x),v(t,x)) defined by (29) is the global solution to the system (4).
Moreover, this solution (u, v) satisfies the following property:

‖u(t, ·)‖2H1 + ‖v(t, ·)‖2H1 = ‖u(0, ·)‖2H1 + ‖v(0, ·)‖2H1 , a.e. t ≥ 0. (30)

Furthermore, let (ūn, v̄n) be a sequence of the initial data such that

‖ūn − ū‖H1 → 0, ‖v̄n − v̄‖H1 → 0.

Then the corresponding solutions (ūn, v̄n) converge to (u(t, x), v(t, x)) uniformly for
all (t, x) in any bounded set.

Proof. Firstly, what we have to do is to show that the definition of u and v make
sense. Given x ∈ [0, 1), if θ1 ≤ θ2, x = y(t, θ1) = y(t, θ2), then

yθ(θ) = 0 in [θ1, θ2].

We can obtain that Uθ = Vθ = 0 in [θ1, θ2]. Therefore, U(θ1) = U(θ2), V (θ1) =
V (θ2), and we can get that (u(t, x), v(t, x)) from the above definition is meaningful.
It is clear that u(x + 1) = u(x) and v(x + 1) = v(x). Now we will certify u ∈ H1.
Obviously, u ∈ L∞, which yields u ∈ L2. So does v. Next, we will show that
ux, vx ∈ L2. From (23), we have

∫ 1

0

u2
xdx =

∫ y−1(1)

y−1(0)

u2
x(t, y(θ))yθdθ =

∫ 1

0

u2
x(t, y(θ))yθdθ

=

∫
θ∈[0,1]|yθ

Uθ
yθ
dθ ≤ (H(1)−H(0)) = h̄.

It is similar to vx. Now, we testify the pair function (u, v) satisfied (4). Given
φ ∈ C∞(R+ × R) with compact support. Let (y, U, V,M,N,H) be the solution of
system (16), then∫

R+×R
[−(u+ v)φt + (u+ v)(ux + vx)φ(t, x)]dxdt

=

∫
R+×R

[−(U + V )yθφt + (U + V )(Uθ + Vθ)φ(t, Y )]dθdt. (31)

Utilizing yt = U + V and yθt = Uθ = Vθ, we get

[(U + V )yθφ ◦ y]t − [(U + V )2]θ

= (Ut + Vt)yθφ ◦ y + (U + V )yθφ− (U + V )(Uθ + Vθ)φ. (32)
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Integrating (32) over R+ × R, using (23) and taking x = y(t, θ), we have that∫
R+×R

[−(U + V )yθφt + (U + V )(Uθ + Vθ)φ(t, Y )]dθdt

=

∫
R+×R

(Ut + Vt)yθ ◦ yθφdθdt

=

∫
R+×R

(−P1 − P2,x −Q1 −Q2,x)φ(t, x)dxdt

=

∫
R+×R

(−P1 − P2,x −Q1 −Q2,x)yθ(t, θ)φ(t, y(t, θ))dθdt.

(33)

By (31)-(33), we obtain the first two equation of system (4). When t ∈ Kc, we have
yθ(t, θ) > 0 a.e. Utilizing (23), we obtain

Hθ = U2yθ +
Uθ
yθ

+ V 2yθ +
Vθ
yθ

holds almost everywhere. By taking x = y(t, θ), we have∫ 1

0

(u2(t, x) + u2
x(t, x) + v2(t, x) + v2

x(t, x))dx

=

∫ 1

0

(u2(0, x) + u2
x(0, x) + v2(0, x) + v2

x(0, x))dx.

Therefore, we get (30).
Finally, let (ūn, v̄n) converge to (ū, v̄) in H1×H1. From (22), it is not very hard

to check that

‖ȳn − ȳ‖L∞ → 0, ‖Ūn − Ū‖L∞ → 0, ‖V̄n − V̄ ‖L∞ → 0,

‖H̄n − H̄‖L∞ → 0, ‖h̄n − h̄‖L∞ → 0.

Now, we certify that

‖ȳnθ − ȳθ‖L2 → 0, ‖Ūnθ − Ūθ‖L2 → 0, ‖V̄nθ − V̄θ‖L2 → 0,

‖M̄n − M̄‖L2 → 0, ‖N̄n − N̄‖L2 → 0.

Let gn = u2
n + u2

nx + v2
n + v2

nx and g = u2 + u2
x + v2 + v2

x. From (22), we have that

(1 + h)(ȳθ − ȳnθ) = (gn ◦ yn − g ◦ y)ynθyθ + (h− hn)yθ. (34)

The first item on the right side of (34) can be written as follow

(gn ◦ yn − g ◦ y)ynθyθ = (gn ◦ yn − g ◦ yn)ynθyθ + (g ◦ yn − g ◦ y)ynθyθ.

Because 0 ≤ yθ ≤ 1 + h, it follows that∫ 1

0

|(gn ◦ yn − g ◦ y)ynθyθ|dθ ≤ (1 + h)‖gn − g‖L1 .

Note that g ∈ L1. For any ε ≥ 0, there exists a continuous function r such that
‖g − v‖L1 ≤ ε. Then∫ 1

0

|g ◦ y − g ◦ yn|ynθyθdθ ≤
∫ 1

0

(|g ◦ y − r ◦ y|+ |r ◦ y − r ◦ yn|)ynθyθdθ

+

∫ 1

0

|r ◦ yn − g ◦ yn|ynθyθdθ.

The first and third item tend to zero for the boundedness of ynθ, yθ and the arbi-
trariness of ε. The second item tends to zero by utilizing the dominated convergence
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theorem. Hence ȳnθ → ȳθ in L1. We finally obtain that ȳnθ → ȳθ in L2, because
ynθ is bounded in L∞. From (22), we get H̄nθ → H̄θ in L2,

M̄n − M̄ = ūnx ◦ yn − ūx ◦ y = ūnx ◦ yn − ūx ◦ yn + ūx ◦ yn − ūx ◦ y.

For ūnx → ūx in L∞, we know that∫ 1

0

|ūnx ◦ yn − ūx ◦ yn|2dθ ≤ ‖ūnx − ūx‖2L∞ → 0.

Given any ε > 0, there exists a continuous function r(θ) such that∫ 1

0

|ūx ◦ y − r|2dθ ≤ ε. (35)

Then

ūnx ◦ yn − ūx ◦ y = ūnx ◦ y ◦ y−1 ◦ yn − ūx ◦ y
= ūnx ◦ y ◦ y−1 ◦ yn − r ◦ y−1 ◦ yn + r ◦ y−1 ◦ yn − r + r − ūx ◦ y.

Utilizing (35), we have∫ 1

0

|ūx ◦ y ◦ y−1 ◦ yn − r ◦ y−1 ◦ yn|2dθ ≤ ε,

and ∫ 1

0

|r − ūx ◦ y|2dθ ≤ ε.

According to dominated convergence theorem, we get∫ 1

0

|r ◦ y−1 ◦ yn − r|2dθ → 0.

Thus, we have M̄n → M̄ in L2. Similarly, N̄n → N̄ in L2.
According to (23), ‖Ūn− Ū‖L∞ → 0, ‖V̄n− V̄ ‖L∞ → 0, with Mn →M , ynθ → yθ

in L2, we get ‖Unθ‖L2 → ‖Uθ‖L2 . So does ‖Vnθ‖L2 → ‖Vθ‖L2 . What we only need
to do to prove Unθ → Uθ and Vnθ → Nθ in L2 is to show that for any continuous
function Ψ with compact support, we have∫

R
UnθΨdθ =

∫
R
unx ◦ ynynθΨdθ =

∫
R
unxΨ ◦ y−1

n dx.

Thus,

lim
n→∞

∫
R
UnθΨdθ =

∫
R
uxΨ ◦ y−1

n dx =

∫
R
UθΨdθ.

Then, we obtain Unθ → Uθ in L2. With the same calculation we have Vnθ → Vθ in
L2. Now we have{

yn → y in H1, Un → U in H1, Vn → V in H1,

Hn → H in H1,Mn →M in L2, Nn → N in L2.
(36)
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Combining (16)-(17) and (36), we get

d

dt

(
‖Un(t)− U(t)‖L∞ + ‖Vn(t)− V (t)‖L∞ + ‖yn(t)− y(t)‖L∞

+‖Mn(t)−M(t)‖L2 + ‖Nn(t)−N(t)‖L2 + ‖Unθ(t)− Uθ(t)‖L2

+‖Vnθ(t)− Vθ(t)‖L2 + ‖Hnθ(t)−Hθ(t)‖L2 + ‖ynθ(t)− yθ(t)‖L2

)
≤ C

(
‖Un(t)− U(t)‖L∞ + ‖Vn(t)− V (t)‖L∞ + ‖yn(t)− y(t)‖L∞

+‖Mn(t)−M(t)‖L2 + ‖Nn(t)−N(t)‖L2 + ‖Unθ(t)− Uθ(t)‖L2

+‖Vnθ(t)− Vθ(t)‖L2 + ‖Hnθ(t)−Hθ(t)‖L2 + ‖ynθ(t)− yθ(t)‖L2

)
.

According to Gronwall’s inequality, we conclude that yn → y,Un → U and Vn → V
in L∞ on any bounded time interval. This yields that

un(t, x)→ u(t, x), vn(t, x)→ v(t, x),

are uniformly Hölder continuous on any bounded time interval.

Lastly, we shall certify that the solutions obtained in Theorem 4.1 construct a
semigroup.

Theorem 4.2. Given initial data (ū, v̄) ∈ H1
per×H1

per. Let (u(t), v(t)) = Ft(ū, v̄) be
the corresponding global solution of system (4) constructed in Theorem 4.1. Then
the map F : H1

per ×H1
per × [0,∞] 7→ H1

per ×H1
per is semigroup.

Proof. Fix (ū, v̄) ∈ H1
per ×H1

per and τ > 0. For every t > 0, what we need to do is
prove

Ft(Fτ (ū, v̄)) = Fτ+t(ū, v̄).

Let (y(τ, θ), U(τ, θ), V (τ, θ), M(τ, θ), N(τ, θ), H(τ, θ)) be the solution of system
(16) with the initial data given by (22). For any time τ , we have the new initial
data as follows ∫ ŷ(θ)

0

(u2 + u2
x + v2 + v2

x)dx+ ŷ(θ) = (1 + h̄)θ, (37)

and 
Ĥ(θ) =

∫ ŷ(θ)

0

(u2 + u2
x + v2 + v2

x)dx,

Û(θ) = u(t, ŷ(t, θ)), V̂ (θ) = v(t, ŷ(t, θ)),

M̂(θ) = ux(t, ŷ(t, θ)), N̂(θ) = vx(t, ŷ(t, θ)).

(38)

Let (ŷ(t + τ, θ), Û(t + τ, θ), V̂ (t + τ, θ), M̂(t + τ, θ), N̂(t + τ, θ), Ĥ(t + τ, θ)) be a
solution of the system (16) with the initial data (37)-(38). We claim that

(y(t+ τ, θ),U(t+ τ, θ), V (t+ τ, θ),M(t+ τ, θ), N(t+ τ, θ), H(t+ τ, θ))

= (ŷ(t+ τ, θ̃), Û(t+ τ, θ̃), V̂ (t+ τ, θ̃), M̂(t+ τ, θ̃), N̂(t+ τ, θ̃), Ĥ(t+ τ, θ̃)),

where θ̃ is defined as ŷ(τ + t, θ̃) = y(τ + t, θ).

Actually, the equality ŷ(τ + t, θ̃) = y(τ + t, θ) yields that

ŷθ(τ + t, θ̃)dθ = yθ(τ + t, θ)dθ. (39)

Utilizing (39), we claim that

Qi(τ + t, θ̃) = Qi(τ + t, θ(θ̃)), Qi,x(τ + t, θ̃) = Qi,x(τ + t, θ(θ̃)), i = 1, 2.
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For Pi, Pi,x(i = 1, 2), we can get the similar results. At the time τ , y(τ, θ) = ŷ(τ, θ̂)
implies that

(y(τ, θ(θ̂)), U(τ, θ(θ̂)), V (τ, θ(θ̂)),M(τ, θ(θ̂)), N(τ, θ(θ̂)), H(t+ τ, θ))

= (ŷ(τ, θ̃), Û(τ, θ̃), V̂ (τ, θ̃), M̂(τ, θ̃), N̂(τ, θ̃), Ĥ(τ, θ̃)).

Therefore, we get that (y(τ, θ(θ̂)), U(τ, θ(θ̂)), V (τ, θ(θ̂)),M(τ, θ(θ̂)), N(τ, θ(θ̂)), H(t+

τ, θ)) is a solution of system (16). Utilizing (29) and ŷ(τ + t, θ̃) = y(τ + t, θ), we
obtain that the solution of the system (4) constructs a semigroup.
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