
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2020085
Volume 29, Number 1, March 2021 pp. 1661–1679

THRESHOLD DYNAMICS OF STOCHASTIC MODELS WITH

TIME DELAYS: A CASE STUDY FOR YUNNAN, CHINA

Zhimin Li and Tailei Zhang∗

School of Science

Chang’an University

Xi’an 710064, China

Xiuqing Li

College of Economics and Management

Shanxi Normal University

Linfen 041004, China

(Communicated by Yong Li)

Abstract. In this paper, we provide an effective method for estimating the

thresholds of the stochastic models with time delays by using of the nonnega-
tive semimartingale convergence theorem. Firstly, we establish the stochastic

delay differential equation models for two diseases, and obtain two thresholds

of two diseases and the sufficient conditions for the persistence and extinction
of two diseases. Then, numerical simulations for co-infection of HIV/AIDS

and Gonorrhea in Yunnan Province, China, are carried out. Finally, we dis-

cuss some biological implications and focus on the impact of some key model
parameters. One of the most interesting findings is that the stochastic fluctu-

ation and time delays introduced into the deterministic models can suppress

the outbreak of the diseases, which can provide some useful control strategies
to regulate the dynamics of the diseases, and the numerical simulations verify

this phenomenon.

1. Introduction. At present, in order to better study the transmission mechanism
of infectious diseases, many researchers introduced noises into the deterministic
models and studied the effect of noise on the dynamics of the established stochastic
epidemic models. Stochastic models could be a more appropriate way of modeling
epidemics in many circumstances [11, 24]. In particular, Liu et al. [11] established
a deterministic model with non-linear incidence rate, and studied the global stabil-
ity of the model by the basic reproduction number of the model. Then, based on
the deterministic model, the stochastic model is established, the dynamics of the
stochastic model is proved theoretically, and the properties of these two models are
compared. The paper [24] shows that the stochastic models are able to consider
randomness of infectious contacts occurring in the latent or infectious periods. The
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combination of stochastic model and deterministic counterpart can make people un-
derstand the epidemic trend of infectious diseases more comprehensively, and make
the established theory and prevention strategy more reliable. Many realistic sto-
chastic epidemic models can be derived based on their corresponding deterministic
counterparts. Britton [3] gave an excellent survey on stochastic differential equation
(SDE) epidemic models which presented the exact and asymptotic properties of a
simple stochastic epidemic model, and illustrated by studying effects of vaccination
and inference procedures for important parameters such as the basic reproduction
number and the critical vaccination coverage. Allen [1] provided a great introduc-
tion to the methods of derivation for various types of stochastic models including
SDE epidemic models. There are different possible approaches including random
effects in the models, both from biological and mathematical perspective [9]. The
general stochastic differential equation SIRS model introduced in this paper adopts
the modeling approach from Mao et al. [13], which has been pursued in [11, 24], and
assume that the parameters involved in the model always fluctuate around some
average value due to continuous fluctuation in the environment.

On the other hand, the spread of infectious diseases is not only related to the
current state, but also to the historical state (see [25, 23]). Therefore, it is more
practical to use stochastic differential equation model with time delay to describe
the spread of infectious diseases. Recently, many scholars have studied the stochas-
tic infectious disease model with time delay. In particular, Liu et al. [10] proposed
and studied the stochastic SEIR epidemic model with infinite distribution delay,
and obtained the sufficient conditions for the global asymptotic stability of the en-
demic equilibrium. Another part of the work is to introduce the disturbance of some
parameter variables in the system, which can make the system have a disease-free
equilibrium point and give the stability conditions of the disease-free equilibrium
point. However, when the parameters of the delay infectious disease model are
disturbed randomly, the stochastic model generally does not have disease-free equi-
librium and endemic equilibrium. Tornatore et al. [19] proposed a stochastic model
with latency and time delay for mosquito transmission, and proposed a strategy for
controlling disease transmission. After that, Fan et al. [5] considered the persistence
and extinction of a class of stochastic SIR epidemic model with generalized nonlin-
ear incidence and transient immunity and time delay, and obtained the threshold
of the model. On the basis of [19, 5], Berrhazi et al. [2] considered the stochastic
SIR epidemic model with Beddington-DeAngelis incidence and delayed immune loss
under Lévy noise disturbance, and studied its persistence, extinction and thresh-
old problems. Considering the effect of vaccination and the incubation period of
some diseases (such as tuberculosis, AIDS, measles) after infection, Liu et al. [12]
discussed the stochastic SVEIR epidemic model with distribution delay. By con-
structing appropriate stochastic Lyapunov function, the existence, uniqueness and
ergodicity of the positive distribution of the system were obtained.

Motivated by above mentioned papers, we introduce time delays and stochastic
into the deterministic differential equations. This paper is organized as follows:
In Section 2.1, we give the basic theory and related lemmas. In Section 2.2, we
construct a class of stochastic differential equations models with time delays, and
give the thresholds and dynamics of the models by using the theorems and lemmas
of Section 2.1. In Section 3, we do a case study of the models in Section 2.2.
In addition, we carry out some numerical simulations aiming to HIV/AIDS and
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Gonorrhea transmission in Yunnan by using the models. In Section 4, we summarize
the whole paper.

2. Modeling and theoretical analysis.

2.1. Basic theory and related lemmas. Firstly, we introduce some lemmas and
notations, which will be used in the following parts. Generally speaking, the d-
dimensional stochastic differential equation can be expressed as follows:

dX(t) = f(t,X(t))dt+ g(t,X(t))dB(t), (2.1.1)

where f(t,X(t)) is a function in Rd defined in [t0,+∞] × Rd and g(t,X(t)) is a
d ×m matrix, f, g are locally Lipschitz with respect to the second variable. B(t)
is an m-dimensional standard Brownian motion defined on the above probability
space. The differential operator L of system (2.1.1) is defined by

L =
∂

∂t
+

d∑
i=1

fi(t)
∂

∂xi
+

1

2

d∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
. (2.1.2)

If L acts on a function V ∈ C2,1(Rd × [t0,+∞];R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gT (x, t)g(x, t)], (2.1.3)

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ( ∂V∂x1

, · · · , ∂V∂xd
), Vxx = ( ∂2V

∂x1∂xj
)d×d. In view of Itô’s

formula, if x(t) ∈ Rd, then dV (x, t) = LV (x, t)dt+ Vx(x, t)g(x, t)dB(t).

Lemma 2.1. [27] Let A(t) and U(t) be two continuous adapted increasing processes
on t > 0 with A(0) = U(0) = 0 a.s. Suppose that M(t) is a real-valued continuous
local martingale with M(0) = 0 a.s. and X(0) a nonnegative F0-measurable random
variable with E (X(0)) < ∞. Define X(t) = X(0) + A(t) − U(t) + M(t) for all
t > 0. If X(t) is nonnegative, then limt→∞A(t) < ∞ implies that limt→∞ U(t) <
∞, limt→∞X(t) <∞ and −∞ < limt→∞M(t) <∞ with probability one.

Lemma 2.2. [27] Let M(t), t > 0, be a local martingale vanishing at time 0 and
define

ρM (t) :=

∫ t

o

d [M,M ]( s)

(1 + s)2
, t > 0, (2.1.4)

where [M,M ] (t) is Meyers angle bracket process. Then lim
t→∞

M(t)
t = 0 a.s. provided

lim
t→∞

ρM (t) <∞ a.s.

Lemma 2.3. [4] Set f ∈ C [[0,∞]× Ω, (0,∞)], and 〈x(t)〉 = 1
t

∫ t
0
x(s)ds. Suppose

that there exist positive constants λ0, λ such that

log f(t) = λt− λ0
∫ t

0

f(s)ds+ F (t) a.s. (2.1.5)

for all t > 0, where F ∈ C [[0,∞]× Ω, (0,∞)] and limt→∞
F (t)
t = 0 a.s. Then

lim
t→∞

〈f(t)〉 =
λ

λ0
a.s. (2.1.6)

In real world, a group of people will often be infected with a variety of diseases,
especially two of them have the same or similar transmission routes. We discuss a
class of models with two infectious diseases as follows.
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2.2. Modeling and analysis for double diseases. In the paper [14], Meng and
Zhao formulated a kind of epidemic model with two classes of epidemics as follows

dS

dt
= A− dS − β1SI1

1 + a1I1
− β2SI2

1 + a2I2
+ r1I1 + r2I2,

dI1
dt

=
β1SI1

1 + a1I1
− (d+ α1 + r1)I1,

dI2
dt

=
β2SI2

1 + a2I2
− (d+ α2 + r2)I2,

(2.2.1)

where S denotes the number of the population susceptible to the diseases, I1 and
I2 are the total population of the infective in terms of two diseases at time t,
respectively. The recruitment to the susceptible population is to be considered as
a constant A, β1 and β2 are the contact rates, d is natural mortality rate, α1 and
α2 are the rates of diseases-related death, r1 and r2 are the treatment cure rates
of two diseases, respectively. ai is the parameter that measure the inhibitory effect
for Ii. The incidence rate βiSIi

1+aiIi
(i = 1, 2) of susceptible individuals through their

contacts with infectious. The two thresholds of the model are R1 = β1A
d(d+α1+r1)

and R2 = β2A
d(d+α2+r2)

, and the four equilibria are E0 =
(
A
d , 0, 0

)
, E1 = (S∗1 , I

∗
1 , 0),

E2 = (S∗2 , 0, I
∗
2 ) and E∗ = (S∗, I∗∗1 , I∗∗2 ), respectively. In addition, the dynamic

behavior for the model (2.2.1) is described in the following theorem.

Theorem 2.4. [14] For system (2.2.1), the following conclusions are true.
(i) If R1 < 1 and R2 < 1, then both diseases go extinct and system (2.2.1) has

a unique stable diseases-extinction equilibrium E0.
(ii) If R1 > 1 and R2 < 1, then the disease I2 goes extinct and system (2.2.1)

has a unique stable equilibrium E1.
(iii) If R1 < 1 and R2 > 1, then the disease I1 goes extinct and system (2.2.1)

has a unique stable equilibrium E2.
(iv) If R1 > 1 and R2 > 1, then E∗ is a unique stable equilibrium, which implies

both diseases of system (2.2.1) are permanent.

Next, we study the stochastic model with time delays corresponding to model
(2.2.1).

dS =

[
A− dS − β1S(t− τ1)I1

1 + a1I1
− β2S(t− τ2)I2

1 + a2I2
+ r1I1 + r2I2

]
dt+ σ3SdB3(t),

dI1 =

[
β1S(t− τ1)I1

1 + a1I1
− (d+ α1 + r1)I1

]
dt+ σ1I1dB1(t),

dI2 =

[
β2S(t− τ2)I2

1 + a2I2
− (d+ α2 + r2)I2

]
dt+ σ2I2dB2(t),

(2.2.2)
where Bi(t) represents a standard Brownian motion with Bi(0) = 0 and σ2

i > 0 (i =
1, 2, 3) denotes the intensity of the white noise, τi denotes that S has become the
susceptible population of Ii before τi. On the basis of model (2.2.2), we define

two thresholds: R∗1 = 1
d+α1+r1

·
(
β1A
d −

σ2
1

2

)
and R∗2 = 1

d+α2+r2
·
(
β2A
d −

σ2
2

2

)
,

respectively.
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Lemma 2.5. For the solution (S(t), I1(t), I2(t)) of model (2.2.2) with any initial
value (S(0), I1(0), I1(0)) ∈ R3

+, we have

lim sup
t→∞

(S(t) + I1(t) + I2(t)) <∞ a.s. (2.2.3)

Moreover,

lim
t→+∞

1

t

∫ t

0

σ1I1(θ)dB1(θ) = 0, lim
t→+∞

1

t

∫ t

0

σ2I2(θ)dB2(θ) = 0,

lim
t→+∞

1

t

∫ t

0

σ3S(θ)dB3(θ) = 0, lim
t→+∞

1

t

∫ t

0

σidBi(θ) = 0, (i = 1, 2, 3) a.s.

(2.2.4)

Proof. From (2.2.2), we get

d(S + I1 + I2) = [A− d(S + I1 + I2)− α1I1 − α2I2] dt

+σ3SdB3(t) + σ1I1dB1(t) + σ2I2dB2(t).
(2.2.5)

This equation has the solution

S(t) + I1(t) + I2(t) =
A

d
+

[
(S(0) + I1(0) + I2(0))− A

d

]
e−dt

−α1

∫ t

0

e−d(t−s)I1(s)ds− α2

∫ t

0

e−d(t−s)I2(s)ds+M(t)

≤ A

d
+

[
(S(0) + I1(0) + I2(0))− A

d

]
e−dt +M(t),

(2.2.6)

where

M(t) = σ3

∫ t

0

e−d(t−s)S(s)dB3(s) + σ1

∫ t

0

e−d(t−s)I1(s)dB1(s)

+σ2

∫ t

0

e−d(t−s)I2(s)dB2(s)

is a continuous local martingale with M(0) = 0 a.s. Define

X(t) = X(0) +A(t)− U(t) +M(t), (2.2.7)

with X(0) = (S(0) + I1(0) + I2(0)), A(t) = A
d (1 − e−dt) and U(t) = (S(0) +

I1(0) + I2(0))(1 − e−dt) for all t ≥ 0. Due to the stochastic comparison theorem,
S(t)+I1(t)+I2(t) ≤ X(t) a.s. It is easy to check that A(t) and U(t) are continuous
adapted increasing processes for t ≥ 0 with A(0) = U(t) = 0. By using Lemma 2.1,
we have limt→∞X(t) <∞ a.s. This completes the proof of (2.2.3).

For convenience, we denote

M1(t) = σ1

∫ t

0

I1(s)dB1(s),M2(t) = σ2

∫ t

0

I2(s)dB2(s),M3(t) = σ3

∫ t

0

S(s)dB3(s),

M4(t) = σ1

∫ t

0

dB1(s),M5(t) = σ2

∫ t

0

dB2(s),M6(t) = σ3

∫ t

0

dB3(s).

(2.2.8)

Computing [M1,M1] (t) = σ2
1

∫ t
0
I21 (s)ds, by Lemma 2.2 and (2.2.3), we obtain

lim
t→∞

ρ1(t) = lim
t→∞

∫ t

0

σ2
1I

2
1 (s)ds

(1 + s)2
≤ σ2

1 sup
t≥0

{
I21 (t)

}
<∞. (2.2.9)

Then, by Lemma 2.2, limt→∞
1
t

∫ t
0
σ1I1(s)dB1(s) = 0. The left can be proved simi-

larly. This completes the proof.
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Lemma 2.6. For the solution (S(t), I1(t), I2(t)) of model (2.2.2) with any initial
value (S(0), I1(0), I1(0)) ∈ R3

+, we have

lim sup
t→∞

〈S(t) + I1(t) + I2(t)〉 < A

d
a.s. (2.2.10)

Proof. We set

Ma(t) =

∫ t

0

S(s)dB3(s), M∗a (t) =

∫ t

0

e−d(t−s)S(s)dB3(s),

Mb(t) =

∫ t

0

I1(s)dB1(s), M∗b (t) =

∫ t

0

e−d(t−s)I1(s)dB1(s),

Mc(t) =

∫ t

0

I2(s)dB2(s), M∗c (t) =

∫ t

0

e−d(t−s)I2(s)dB2(s).

(2.2.11)

By Lemma 2.5, we have

lim
t→∞

1

t
Ma(t) = 0, lim

t→∞

1

t
M∗a (t) = 0,

lim
t→∞

1

t
Mb(t) = 0, lim

t→∞

1

t
M∗b (t) = 0,

lim
t→∞

1

t
Mc(t) = 0, lim

t→∞

1

t
M∗c (t) = 0 a.s.

(2.2.12)

From (2.2.6), since

〈M(t)〉 =
σ3
t

∫ t

0

∫ s

0

e−d(s−u)S(u)dB3(u)ds

+
σ1
t

∫ t

0

∫ s

0

e−d(s−u)I1(u)dB1(u)ds

+
σ2
t

∫ t

0

∫ s

0

e−d(s−u)I2(u)dB2(u)ds

=
σ3
t

(∫ t

0

S(u)dB3(u)−
∫ t

0

e−d(t−u)S(u)dB3(u)

)
+
σ1
t

(∫ t

0

I1(u)dB1(u)−
∫ t

0

e−d(t−u)I1(u)dB1(u)

)
+
σ2
t

(∫ t

0

I2(u)dB2(u)−
∫ t

0

e−d(t−u)I2(u)dB2(u)

)
,

(2.2.13)

by (2.2.12), we obtain limt→∞ 〈M(t)〉 = 0. From (2.2.6), we get

lim
t→∞

1

t

∫ t

0

[
S(0) + I1(0) + I2(0)− A

d

]
e−dsds

= lim
t→∞

1

dt

{[
S(0) + I1(0) + I2(0)− A

d

]
(1− e−dt)

}
= 0.

(2.2.14)

By (2.2.6), (2.2.13) and (2.2.14), we obtain

lim sup
t→∞

〈S(t) + I1(t) + I2(t)〉 < A

d
a.s.

This completes the proof.
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Lemma 2.7. For any given initial value (S(0), I1(0), I1(0)) ∈ R3
+, there exists

a unique positive solution (S(t), I1(t), I2(t)) to system (2.2.2) on t ≥ 0 and the
solution will remain in R3

+ with probability one, that is to say, (S(t), I1(t), I2(t)) ∈
R3

+ for all t ≥ 0 almost surely.

Proof. Since the coefficients of system (2.2.2) are locally Lipschitz continuous, for
any given initial value (S(0), I1(0), I1(0)) ∈ R3

+, there exists a unique local solution
(S(t), I1(t), I2(t)) on t ∈ [0, τe), where τe denotes the explosion time (see [3]). To
verify that this solution is global, we only need to prove τe = +∞ a.s.

Let k0 > 0 be enough large such that each component of (S(0), I1(0), I1(0)) is
no large than k0. For each integer k > k0, define the stopping time

τk = inf {t ∈ [0, τe) : S(t) ≥ k, I1(t) ≥ k, I2(t) ≥ k} ,

where throughout this paper we set inf ∅ = +∞. Obviously, τk is increasing as
k →∞. Set τ∞ = limk→∞ τk, then we can get τ∞ ≤ τe a.s.

Define a C2-function V : R3
+ → R+ by

V (X) = S + I1 + I2.

By Itô’s formula, we get

dV (X) = [A− dS − dI1 − dI2 − α1I1 − α2I2] dt

+σ3SdB3(t) + σ1I1dB1(t) + σ2I2dB2(t)

, LV dt+ σ3SdB3(t) + σ1I1dB1(t) + σ2I2dB2(t),

where

LV = A− dS − dI1 − dI2 − α1I1 − α2I2 6 A.

For any k > k0, there exists T > 0 such that τk ∈ (0, T ∧ τk]. By the generalized
Itô’s formula, for any t ∈ (0, T ∧ τk], we have

EV (X(T ∧ τk)) = EV (X(S(0), I1(0), I2(0))) + E

∫ T∧τk

0

LV (X(s))ds

6 EV (X(S(0), I1(0), I2(0))) +AT,

where E is the expectation of the function. Let k → ∞, then t → ∞, it follows
that limk→∞ P (τk 6 T ) = 0, therefore P (τ∞ 6 T ) = 0. Since T > 0 is arbitrary, it
results in

P (τ∞ <∞) = 0, P (τ∞ =∞) = 1.

This completes the proof.

Theorem 2.8. Let (S(t), I1(t), I2(t)) be the positive solution of model (2.2.2) with
initial value (S(0), I1(0), I2(0)) ∈ R3

+. Then as R∗i < 1, two infectious diseases of
model (2.2.2) go extinct almost surely, i.e. limt→∞ Ii(t) = 0, i = 1, 2. Moreover,
limt→∞ S(t) = A

d a.s.

Proof. Define a function V = ln Ii(t). By Itô’s formula, we obtain

d ln Ii(t) =

(
βiS(t− τi)

1 + aiIi
− (d+ αi + ri)−

1

2
σ2
i

)
dt+ σidBi(t). (2.2.15)
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Integrating (2.2.15) from 0 to t gives

ln Ii(t) = βi

t∫
0

S(r − τi)
1 + aiIi

dr − (d+ αi + ri)t−
1

2
σ2
i t+ σiBi(t)− σiBi(0) + ln Ii(0)

6 βi

t∫
0

S(r − τi)dr − (d+ αi + ri)t−
1

2
σ2
i t+ σiBi(t)− σiBi(0) + ln Ii(0)

= βi

t∫
0

S(r)dr + βi

0∫
−τi

S(r)dr − βi

t∫
t−τi

S(r)dr − (d+ αi + ri)t

−1

2
σ2
i t+ +σiBi(t)− σiBi(0) + ln Ii(0)

, βi

t∫
0

S(r)dr − (d+ αi + ri)t−
1

2
σ2
i t+ P (t),

(2.2.16)
where

P (t) = βi

0∫
−τi

S(r)dr − βi

t∫
t−τi

S(r)dr + σiBi(t)− σiBi(0) + ln Ii(0).

Dividing both sides of (2.2.16) by t, we have

ln Ii(t)

t
6 βi 〈S〉 − (d+ αi + ri)−

1

2
σ2
i +

P (t)

t
. (2.2.17)

By integrating the model (2.2.2) and dividing the two sides by t, we conclude that

S(t)− S(0)

t
= A− d 〈S〉 − β1

t

t∫
0

S(r − τ1)I1
1 + a1I1

dr − β2
t

t∫
0

S(r − τ2)I2
1 + a2I2

dr

+r1 〈I1〉+ r2 〈I2〉+
σ3
t

t∫
0

S(r)dB3(r),

Ii(t)− Ii(0)

t
=
βi
t

t∫
0

S(r − τi)Ii
1 + aiIi

dr − (d+ αi + ri) 〈Ii〉+
σi
t

t∫
0

Ii(r)dBi(r).

(2.2.18)
Calculating the sum of (2.2.18), we can assert that

S(t)− S(0)

t
+
I1(t)− I1(0)

t
+
I2(t)− I2(0)

t
= A− d 〈S〉+ r1 〈I1〉+ r2 〈I2〉 − (d+ α1 + r1) 〈I1〉 − (d+ α2 + r2) 〈I2〉

+
σ3
t

t∫
0

S(r)dB3(r) +
σ1
t

t∫
0

I1(r)dB1(r) +
σ2
t

t∫
0

I2(r)dB2(r)

, A− d 〈S〉 − (d+ α1) 〈I1〉 − (d+ α2) 〈I2〉+
W

t
,

(2.2.19)
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where

W

t
=
σ3
t

t∫
0

S(r)dB3(r) +
σ1
t

t∫
0

I1(r)dB1(r) +
σ2
t

t∫
0

I2(r)dB2(r).

According to (2.2.19), we have

d 〈S〉 = A− (d+ α1) 〈I1〉 − (d+ α2) 〈I2〉+
W

t

−S(t)− S(0)

t
− I1(t)− I1(0)

t
− I2(t)− I2(0)

t
.

(2.2.20)

Putting (2.2.20) into (2.2.17), we obtain

ln Ii(t)

t
6 βi

(
A

d
− (d+ α1)

d
〈I1〉 −

(d+ α2)

d
〈I2〉+

W

td
− S(t)− S(0)

td

−I1(t)− I1(0)

td
− I2(t)− I2(0)

td

)
− (d+ αi + ri)−

1

2
σ2
i +

P (t)

t
.

(2.2.21)

By Lemma 2.5 and Lemma 2.6, we get

lim
t→∞

ln Ii(t)

t
6 βi

A

d
− (d+ αi + ri)−

1

2
σ2
i

−βi
(d+ α1)

d
lim
t→∞

〈I1〉 − βi
(d+ α2)

d
lim
t→∞

〈I2〉

6 βi
A

d
− (d+ αi + ri)−

1

2
σ2
i .

(2.2.22)

That is, whenR∗i = 1
d+αi+ri

·
(
βiA
d −

σ2
i

2

)
< 1, there obviously holds lim sup

t→∞

ln Ii(t)
t <

0, which implies lim
t→∞

Ii(t) = 0, lim
t→∞

S(t) = A
d = S0. This completes the proof.

Theorem 2.9. Let (S(t), I1(t), I2(t)) be any positive solution of model (2.2.2) with
initial value (S(0), I1(0), I2(0)) ∈ R3

+, then we have the following results.
(i) If R∗1 > 1 and R∗2 < 1, then the disease I2 goes extinct and the disease I1 is

permanent on average. Moreover, I1 satisfies

lim inf
t→∞

〈I1(t)〉 =
1

a1 + β1(d+α1)
d(d+α1+r1)

(R∗1 − 1) > 0.

(ii) If R∗2 > 1 and R∗1 < 1, then the disease I1 goes extinct and the disease I2 is
permanent on average. Moreover, I2 satisfies

lim inf
t→∞

〈I2(t)〉 =
1

a2 + β2(d+α2)
d(d+α2+r2)

(R∗2 − 1) > 0.

(iii) If R∗1 > 1 and R∗2 > 1, then the two infections diseases I1 and I2 are
permanent on average. Moreover, I1 and I2 satisfy

lim inf
t→∞

〈a2I1(t) + a1I2(t)〉 > 1

max {m1,m2}
{a2(R∗1 − 1) + a1(R∗2 − 1)} > 0,

where

m1 , a1(d+ α1) +
β1
d

(d+ α1) +
a1β2(d+ α1)

a2d
+ a1r1,

m2 , a2(d+ α2) +
β2
d

(d+ α2) +
a2β1(d+ α2)

a1d
+ a2r2.
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Proof. Firstly, we prove (i). From model (2.2.2), we obtain

dS =

[
A− dS − β1S(t− τ1)I1

1 + a1I1
− β2S(t− τ2)I2

1 + a2I2
+ r1I1 + r2I2

]
dt+ σ3SdB3(t)

=

[
A− dS − β1

a1
S(t− τ1) +

1

a1

β1S(t− τ1)

1 + a1I1
− β2S(t− τ2)I2

1 + a2I2
+ r1I1 + r2I2

]
dt

+σ3SdB3(t).

(2.2.23)
Integrating (2.2.23) and dividing the two sides by t, we may assert that lim

t→∞
I2(t) =

0 as R∗2 < 1. From Theorem 2.8, we obtain

S(t)− S(0)

t
= A− d 〈S〉 −

 β1
a1t

t∫
0

S(r)dr +
β1
a1t

0∫
−τ1

S(r)dr − β1
a1t

t∫
t−τ1

S(r)dr


+

1

a1t

t∫
0

β1S(r − τ1)

1 + a1I1
dr − 1

t

t∫
0

β2S(r − τ2)I2
1 + a2I2

dr

+r1 〈I1〉+ r2 〈I2〉+
σ3
t

t∫
0

S(r)dB3(r)

= A− d 〈S〉 − β1
a1t

t∫
0

S(r)dr +
1

a1t

t∫
0

β1S(r − τ1)

1 + a1I1
dr + r1 〈I1〉+ r2 〈I2〉

−1

t

t∫
0

β2S(r − τ2)I2
1 + a2I2

dr − β1
a1t

0∫
−τ1

S(r)dr +
β1
a1t

t∫
t−τ1

S(r)dr

, A−
(
d+

β1
a1

)
〈S〉+

1

a1t

t∫
0

β1S(r − τ1)

1 + a1I1
dr + r1 〈I1〉+

Q

t
,

(2.2.24)
where

Q

t
= −1

t

t∫
0

β2S(r − τ2)I2
1 + a2I2

dr − β1
a1t

0∫
−τ1

S(r)dr +
β1
a1t

t∫
t−τ1

S(r)dr.

By (2.2.24), we deduce

A−
(
d+

β1
a1

)
〈S〉+

1

a1t

t∫
0

β1S(r − τ1)

1 + a1I1
dr + r1 〈I1〉 =

S(t)− S(0)

t
− Q

t
,

Φ

t
.

(2.2.25)
From model (2.2.2), we also obtain

A− d 〈S〉 − (d+ α1) 〈I1〉 − (d+ α2) 〈I2〉 ,
Θ

t
, (2.2.26)

where

Θ

t
=
S(t)− S(0) + I1(t)− I1(0) + I2(t)− I2(0)−M1(t)−M2(t)−M3(t)

t
.
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Define function V = ln I1(t). By using Itô’s formula and combining with (2.2.17),
we obtain

ln I1(t)

t
=

1

t

t∫
0

β1S(r − τ1)

1 + a1I1
dr − (d+ α1 + r1)− 1

2
σ2
1 +

P (t)

t
. (2.2.27)

Putting (2.2.25) and (2.2.26) into (2.2.27), we obtain

ln I1(t)

t
= a1

[
−A+

(
d+

β1
a1

)
〈S〉 − r1 〈I1〉

]
− (d+ α1 + r1)− 1

2
σ2
1 +

P (t)

t
+
a1Φ

t

= −a1A+ (a1d+ β1) 〈S〉 − a1r1 〈I1〉 − (d+ α1 + r1)− 1

2
σ2
1 +

P (t)

t
+
a1Φ

t

= −a1A+ (a1d+ β1)

[
A

d
− (d+ α1)

d
〈I1〉 −

(d+ α2)

d
〈I2〉 −

Θ

dt

]
−a1r1 〈I1〉 − (d+ α1 + r1)− 1

2
σ2
1 +

P (t)

t
+
a1Φ

t

=

[
Aβ1
d
− (d+ α1 + r1)− 1

2
σ2
1

]
−
[
a1d+ a1α1 +

β1(d+ α1)

d
+ a1r1

]
〈I1〉

− (a1d+ β1)
(d+ α2)

d
〈I2〉 − (a1d+ β1)

Θ

dt
+
P (t)

t
+
a1Φ

t
.

(2.2.28)
According to Lemma 2.3, Lemma 2.5 and Lemma 2.6, when R∗1 > 1 and R∗2 < 1,
we have

lim
t→∞

〈I1〉 =
λ

λ0
=

Aβ1

d − (d+ α1 + r1)− 1
2σ

2
1

a1d+ a1α1 + β1(d+α1)
d + a1r1

=
1

a1 + β1(d+α1)
d(d+α1+r1)

(R∗1 − 1) > 0.

This completes the proof of (i).

(ii) The proof of (ii) is similar to that of (i).

(iii) From model (2.2.2), we get

dS =

[
A− dS − β1S(t− τ1)I1

1 + a1I1
− β2S(t− τ2)I2

1 + a2I2
+ r1I1 + r2I2

]
dt+ σ3SdB3(t)

=

[
A− dS − β1

a1
S(t− τ1) +

1

a1

β1S(t− τ1)

1 + a1I1
− β2
a2
S(t− τ2)

+
1

a2

β2S(t− τ2)

1 + a2I2
+ r1I1 + r2I2

]
dt+ σ3SdB3(t).

(2.2.29)
Similar to (2.2.23)-(2.2.25), integrating (2.2.29) yields

A−
(
d+

β1
a1

+
β2
a2

)
〈S〉+

1

a1t

t∫
0

β1S(r − τ1)

1 + a1I1
dr

+
1

a2t

t∫
0

β2S(r − τ2)

1 + a2I2
dr + r1 〈I1〉+ r2 〈I2〉

=
S(t)− S(0)

t
− Q

t
,

Ψ

t
.

(2.2.30)
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From model (2.2.2), we also get

A− d 〈S〉 − (d+ α1) 〈I1〉 − (d+ α2) 〈I2〉 ,
Θ

t
, (2.2.31)

where

Θ

t
=
S(t)− S(0) + I1(t)− I1(0) + I2(t)− I2(0)−M1(t)−M2(t)−M3(t)

t
.

Define the function V = ln(a2I1(t) + a1I2(t)). Similar to (i), using Itô’s formula,
we get

ln(a2I1(t) + a1I2(t))

t

=
a2
t

t∫
0

β1S(r − τ1)

1 + a1I1
dr +

a1
t

t∫
0

β2S(r − τ2)

1 + a2I2
dr − a2(d+ α1 + r1)

−a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2 +

a2M1(t)

t
+
a1M2(t)

t
.

(2.2.32)

Substituting (2.2.30) and (2.2.31) into (2.2.32), we get

ln(a2I1(t) + a1I2(t))

t

= −a1a2A+ a1a2

(
d+

β1
a1

+
β2
a2

)
〈S〉 − a1a2r1 〈I1〉 − a1a2r2 〈I2〉+ a1a2

Ψ

t

−a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2 +

a2M1(t)

t
+
a1M2(t)

t

, −a1a2A− a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2

+ (a1a2d+ a2β1 + a1β2) 〈S〉 − a1a2r1 〈I1〉 − a1a2r2 〈I2〉+
Υ

t

= −a1a2A− a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2

+ (a1a2d+ a2β1 + a1β2)

[
A

d
− (d+ α1)

d
〈I1〉 −

(d+ α2)

d
〈I2〉 −

Θ

dt

]
−a1a2r1 〈I1〉 − a1a2r2 〈I2〉+

Υ

t

=

[
A

d
(a2β1 + a1β2)− a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2

]
−
[
(a1a2d+ a2β1 + a1β2)

(d+ α1)

d
+ a1a2r1

]
〈I1〉

−
[
(a1a2d+ a2β1 + a1β2)

(d+ α2)

d
+ a1a2r2

]
〈I2〉

− (a1a2d+ a2β1 + a1β2)
Θ

dt
+

Υ

t
.

(2.2.33)
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Then we obtain

ln(a2I1(t) + a1I2(t))

t

>

[
A

d
(a2β1 + a1β2)− a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2
a2σ

2
1 −

1

2
a1σ

2
2

]
−max {m1,m2} [a2 〈I1〉+ a1 〈I2〉]− (a1a2d+ a2β1 + a1β2)

Θ

dt
+

Υ

t
,

(2.2.34)
where

m1 , a1(d+ α1) +
β1
d

(d+ α1) +
a1β2(d+ α1)

a2d
+ a1r1,

m2 , a2(d+ α2) +
β2
d

(d+ α2) +
a2β1(d+ α2)

a1d
+ a2r2.

By Lemma 2.3, Lemma 2.5 and Lemma 2.6, we take the limit on both sides of
(2.2.34) to get

lim inf
t→∞

〈a2I1(t) + a1I2(t)〉

>
λ

λ0
=

A
d (a2β1 + a1β2)− a2(d+ α1 + r1)− a1(d+ α2 + r2)− 1

2a2σ
2
1 − 1

2a1σ
2
2

max {m1,m2}

=
1

max {m1,m2}
{a2(R∗1 − 1) + a1(R∗2 − 1)} > 0.

This completes the proof.

From Theorem 2.8 and Theorem 2.9, we can claim that the thresholds R∗i (i =
1, 2) of the model (2.3.2) can describe the persistence and extinction of two diseases.
In other words, if R∗1 < 1 and R∗2 < 1, then the two infections diseases I1 and I2
of model (2.3.2) go extinct; if R∗1 > 1 and R∗2 < 1, then the disease I2 goes extinct
and the disease I1 is permanent on average; if R∗2 > 1 and R∗1 < 1, then the disease
I1 goes extinct and the disease I2 is permanent on average; if R∗1 > 1 and R∗2 > 1,
then the two infections diseases I1 and I2 are permanent on average.

3. A case study for Yunnan in China. In this section, basing on the model
(2.2.1) and (2.2.2), we do a case study for HIV/AIDS and Gonorrhea in Yunnan
Province, China. The transmission routes of these two kinds of diseases are close to
those of the main infected population. The main transmission modes are as follows:
sexual transmission, blood transmission, mother to child transmission. According
to the report data [26]: The cumulative number HIV positives reported at the end
of September 2018 was 850,000, including 260,000 recorded deaths in China, and
the estimated number living with HIV/AIDS was 36.9 million around the world. At
present, there are many papers about the spread of HIV/AIDS. The basic math-
ematical models of HIV/AIDS in-host has been developed to describe interactions
between immune system and viruses [21]. In [7] and [16], a class of HIV/AIDS
model with time delay and a class of HIV/AIDS model with age structure are stud-
ied respectively. In [15], a cell-to-cell transmission model of HIV/AIDS is studied.
There are few literatures about Gonorrhea, the way of transmission is similar to
AIDS, and its harm is not as serious as AIDS. Gonorrhea is a purulent inflamma-
tory disease of genitourinary system caused by Neisseria gonorrhoeae. It is also
because the transmission route and AIDS are similar, so it is necessary to study the
co-infection model of these two infectious diseases. Yunnan is located in southwest
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Table 1. Cumulative total of reported HIV/AIDS cases and the
number of Gonorrhea infections increased annually from 2007 to
2016 in Yunnan Province, China (see [26, 18])

Year 2007 2008 2009 2010 2011
HIV/AIDS 57325 64460 71852 78613 85999
Gonorrhea 2358 2230 1818 1819 1720

Year 2012 2013 2014 2015 2016
HIV/AIDS 92666 98555 104903 111351 117817
Gonorrhea 1893 1643 2104 3028 4098

Table 2. Parameters and numerical values chosen for the simulation

Parameters Definition Value Source
A Recruitment rate for the 92136 Estimated

susceptible population
d Natural mortality rate 0.0149 [6]
α1 Death rate for HIV/AIDS 0.7114 [26]
α2 Death rate for Gonorrhea 0.3 Estimated
r1 Cure rate for HIV/AIDS 0.79 Estimated
r2 Cure rate for Gonorrhea 0.99994 Estimated
β1 Infection rate for HIV/AIDS 0.9 Estimated
β2 Infection rate for Gonorrhea 0.25 Estimated
a1 Inhibition rate of HIV/AIDS 0.9 Estimated

on transmission
a2 Inhibition rate of Gonorrhea 1 Estimated

on transmission
τ1 Incubation period of AIDS 8 year [26]
τ2 Incubation period of Gonorrhea 0 [18]
S(0) Initial value of susceptible population 80000 Estimated
I1(0) Initial value of HIV/AIDS patients 57325 [26]
I2(0) Initial value of Gonorrhea patients 12358 Estimated

of China, bordering the countries of Myanmar, Laos and Vietnam. According to
the sixth national census in 2011 [17], there are 45,596,000 people in Yunnan. From
the cumulative number of HIV/AIDS infections in Yunnan Province in 2007 [26],
combining with the number of newly increased infections and deaths of HIV/AIDS
from 2007 to 2016 [18], the cumulative number of HIV/AIDS infections in Yunnan
Province from 2007 to 2016 is obtained (see Table 1). In addition, the number of
Gonorrhea infections increased annually from 2007 to 2016 in Yunnan Province [18]
is shown in Table 1.

Using Eviews 7.0, we will test the stationarity of the data for the number of people
infected with HIV/AIDS and Gonorrhea from 2007 to 2016 in Yunnan Province,
respectively. The autocorrelation and partial correlation coefficients of the test
results show that the data series is stable and the statistics are good. Next, the
parameters of the model (2.2.2) are further determined for fitting. The specific idea
is that part of the parameters are based on the known literatures and some biological
values, and then, based on the data in Table 1 and the parameters obtained, the
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least square method is used to fit the model to estimate the remaining parameters.
For the natural mortality of people in Yunnan Province, we choose d = 1/67 = 0.0149
where 67 is the average life of people in Yunnan [6]. For HIV/AIDS and Gonorrhea
patients’ death rate αi(i = 1, 2) in Yunnan, we know that 1 − e−αit is the death
probability of HIV/AIDS and Gonorrhea patients. We can take α1 = 0.7114 (see
[7]) and detailed parameters values are shown in Table 2. We take 2007 as the
initial time t = 0, according to the cumulative number of HIV/AIDS infections in
Yunnan Province in 2007 [26], so we take I1(0) = 57325, and the other two initial
values S(0) and I2(0) are obtained by estimation, as shown in Table 2. The number
of susceptible persons, the population infected with HIV/AIDS and the population
infected with Gonorrhea are obtained by numerical fitting using the parameters of
Table 2, as shown in Fig.1, including the comparison of fitting data and statistical
data.

When the parameters in Table 2 are substituted into the two thresholds of the
model (2.2.1), they are both greater than unity, that is, both diseases are persistent.
To illustrate the significance of model (2.2.2) in disease control, we first describe the
dependence of each parameter in thresholds R∗i (i = 1, 2) of model (2.2.2), namely
the partial rank correlation coefficients (PRCCs). As shown in Fig.2. Considering
the objective conditions of medical equipment and human life span, combining
with the results of PRCC, we can adopt four ways to control the two diseases:
(1) improving the recovery rate of diseases ri; (2) reducing the infections rate of
infectious diseases βi; (3) reducing the number of imports to susceptible persons A
and (4) using big noises σi(i = 1, 2).

According to the results of PRCC, we take the following values: A = 400, r1
= 0.75, r2 = 0.2,d = 0.0149, β1 = 0.00007, β2 = 0.00002, α1 = 0.7114, α2 = 0.1,
a1 = 0.0001, a2 = 0.0001, σ1 = 0.95, σ2 = 0.9, σ3 = 0.2, τ1 = τ2 = 0.5. It follows
that R1 = 1.2729 > 1 > R∗1 = 0.9672, R2 = 1.7050 > 1 > R∗2 = 0.4189. Under
these conditions, the two diseases of the deterministic model (2.2.1) will be persis-
tent, whereas the two diseases described by the model (2.2.2) will be extinct (see
Fig.3 and Fig.4).
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Figure 1. The model (2.2.2) is simulated by the parameters values
in Table 2, and compared with the HIV/AIDS and Gonorrhea data
in Yunnan Province from 2007 to 2016.
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Figure 2. Partial rank correlation coefficients(PRCCs) results for
the dependence of R∗i on each parameter.
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Figure 3. When R1 = 1.2729 > 1 > R∗1 = 0.9672, model (2.2.1)
describes HIV/AIDS infection I1 will be persistent, but stochas-
tic differential equation with time delay model (2.2.2) describes
HIV/AIDS infection I1 will be extinct.

4. Discussions. The fluctuation of natural environment will bring variability to
biological system [20]. And environmental changes have a vital impact on the devel-
opment of epidemics. Variability of temperature and rainfall may cause significant
fluctuations in the dynamics of pathogenic fungi [22, 8]. In terms of human dis-
ease, the nature of epidemic spread and growth is inherently random due to the
unpredictability of person-to-person contacts [11, 24]. Therefore, the variability
and randomness of the environment are introduced into the epidemic model [20].
In general, the threshold of the model is a very important quantity for theoretical
analysis of differential equation models describing infectious diseases. That is to say,
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Figure 4. When R2 = 1.7050 > 1 > R∗2 = 0.4189, model (2.2.1)
describes Gonorrhea infection I2 will be persistent, but stochastic
differential equation with time delay model (2.2.2) describes Gon-
orrhea infection I2 will be extinct.

the relationship between the threshold and 1 is used to analyze whether the disease
is extinct or not. Therefore, in this paper, we discuss two classes of differential
equations models. Specifically in each class of models, considering the introduc-
tion of randomness and time-delays, the change of infection rate, the existence of
immunity loss and so on, then we theoretically analyze the thresholds changes in
each class. We obtain the sufficient conditions for the extinction and persistence of
diseases. In addition, we do a case study of (2.2.1) and (2.2.2), and we also carry
out some numerical simulations aiming to HIV/AIDS and Gonorrhea transmission
in Yunnan by using the models.

Through the case study, the results of numerical simulation and theoretical anal-
ysis are consistent, i.e., when R∗i > 1 (i = 1, 2), the diseases will be persistent;
when R∗i < 1 (i = 1, 2), the diseases will be extinct. By comparing the thresholds
of model (2.2.1) and model (2.2.2), and combining with the numerical simulations
results, its are found that there are always Ri > R∗i (i = 1, 2). Therefore, we
are mostly concerned about the situations Ri > 1 > R∗i (i = 1, 2), which are the
significances of stochastic differential equations in controlling infectious diseases.
Finally, we discuss some biological implications and focus on the impact of some
key model parameters, the strategies of controlling HIV/AIDS and Gonorrhea are
given, i.e., controlling the spread of infectious diseases by improving the recovery
rate of diseases ri, reducing the infections rate of infectious diseases βi, declining
the number of imports to susceptible people A and using big noises σi(i = 1, 2).

Another possible and important extension for future work is that there is a class
of stochastic model and its corresponding deterministic model, and the threshold of
the stochastic model is larger than that of the deterministic model. That is, when
the threshold of the stochastic model is greater than 1 and then greater than the
threshold of the deterministic model, the disease of the deterministic model will
be extinct, but the disease of the stochastic model will be persistent. This is the
risk of introducing random noises into the deterministic models for the infectious
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diseases models, but for the population models, this can maintain the growth of the
population, so it is very meaningful to study this problem. All the aforementioned
possible extensions are interesting, biologically important but yet mathematically
challenging, and we have to leave them for future research projects.
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