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Abstract. The objective of the current paper is to investigate the dynamics
of a new bioeconomic predator prey system with only predator’s harvesting and

Holling type III response function. The system is equipped with an algebraic
equation because of the economic revenue. We offer a detailed mathematical

analysis of the proposed model to illustrate some of the significant results. The

boundedness and positivity of solutions for the model are examined. Coexis-
tence equilibria of the bioeconomic system have been thoroughly investigated

and the behaviours of the model around them are described by means of qual-

itative theory of dynamical systems (such as local stability and Hopf bifurca-
tion). The obtained results provide a useful platform to understand the role of

the economic revenue v. We show that a positive equilibrium point is locally

asymptotically stable when the profit v is less than a certain critical value v∗1 ,
while a loss of stability by Hopf bifurcation can occur as the profit increases.

It is evident from our study that the economic revenue has the capability of

making the system stable (survival of all species). Finally, some numerical
simulations have been carried out to substantiate the analytical findings.

1. Introduction. Human beings face the twin problems of food scarcity and en-
vironmental destruction. There is a great interest in studying and designing bio-
economic models with regard to the biodiversity for humanity’s long-term gains.
Researchers strive to produce certain potentially advantageous outcomes in order
to ensure the sustainable growth of the ecosystem and to preserve the enduring
prosperity.

More recently, the study of population dynamics with harvesting has become an
interesting topic in mathematical bio-economics due to its importance related to
the optimal management of renewable resources [5]. In 1954, Gordon introduced
a common property resource economic theory [6], studying the impact of harvest
effort on the ecosystem from an ecological viewpoint and suggests the following
economic principle:

Net Economic Revenue (NER) = Total Revenue (TR)-Total Cost (TC). (1)
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Many research efforts have been focused on the investigation of this sort of dy-
namics. In [13–16], the authors have studied the dynamical behaviour of a class
of predator-prey ecosystems formulated from several differential equations and an
algebraic equation. They have obtained interesting results, such as stability of inte-
rior equilibrium, Hopf bifurcation, limit cycle, singularity induced bifurcation, and
its control, and so on. But in all of these studied models, only the prey population
is subjected to harvesting. The interaction between predator and their prey was
investigated by using different functional response such as Holling I and II with the
assumption that there is a natural mortality of the isolated predator species. In [17],
the authors have studied the dynamics of the Beddington-DeAngilis predator-prey
system with predator harvesting.

As far as we are aware, the dynamical analysis of a predator-prey model where
both prey and predator grow logistically with Holling III functional response, sub-
ject to predator harvesting, has not been previously investigated. Thus, in the
present research, we investigate this type of models and discuss its dynamical be-
haviours, such as stability and Hopf bifurcation [1,2]. Moreover, we aim to find some
principles which are theoretically beneficial for the management and the control of
the renewable resources.

To achieve the ahead set goals, we organized the present article as follows: we
begin our study by describing the concept behind model building and specifying its
biological significance. Sequentially, we establish the positivity and boundedness of
solutions for the model. Next, we examine the existence of the positive equilibrium,
then we provide a detailed description of the stability and the Hopf bifurcation
analysis of the system. Finally, we give a numerical simulation experiments to
confirm the derived theoretical results.

2. Model formulation. In this section, we aim to develop a model that combines
both economic and biological aspects in resource management. The model is struc-
tured as follows: starting by the predation rate, it is known that the physiological
prey absorption capabilities by a predator are limited even if a large number of
prey is available. Such a response function presenting a plateau for large prey den-
sities is called Holling II functional response [10–12] in which the rate of capture
increases with increasing prey density and approaches saturation gradually. Type
III of Holling response function is similar to Type II except at low prey density,
where the rate of prey capture accelerates. In our proposed model, we assume that
there exists an upper limit for the maximum predation rate. To achieve this aim,

we have considered the predation term as
ax2y

d+ x2
. Point out that

lim
x→∞

ax2

d+ x2
= a.

Moreover, one way to add realism to the model is to consider the effects of crowding.
Space and resources are limited even if there are more density of the populations.
Therefore, the growth rates of both preys and predators are supposed to be logistic.
Taking into account the above hypothesis, we propose a model which consists of
prey having density x and predator having density y of the form

ẋ = rx
(

1− x

K

)
− ax2y

d+ x2
,

ẏ = sy
(

1− y

N

)
+

bx2y

d+ x2
.

(2)
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where ẋ = dx/dt, ẏ = dy/dt. Here r and s are positive constants stand for the
intrinsic growth rates of prey and predator population respectively. K and N
are positive constants representing the carrying capacity of the two species. d
and a are positive constants stand for half capturing saturation constant and the
maximal efficiency of predation respectively. b is a positive constant that represents
a conversion coefficient.

It is known that the harvest effort is an important factor to construct a useful
bioeconomic mathematical model, for this reason, and taking unto-account (1),
we extend the system (2) by considering the following algebraic equation which
describes the economic profit v of the harvest effort on predator:

E(t)(py(t)− c) = v, (3)

where 0 ≤ E(t) ≤ Emax and y(t) ≥ 0 represent the harvest effort and the density of
predator respectively. p represents the unit price of the harvested population and c
is the cost of the harvest effort, the total revenue is TR = pE(t)y(t) and the total
cost is TC = cE(t) .

Based on (2) and (3), a singular differential-algebraic model that consists of two
differential equations and an algebraic equation can be established as follows:

ẋ = rx
(

1− x

K

)
− ax2y

d+ x2
,

ẏ = sy
(

1− y

N

)
+

bx2y

d+ x2
− Ey,

0 = E(py − c)− v,

(4)

which is a semiexplicit DAE of the form{
ż = f(v,X),
0 = g(v,X),

(5)

where we denote X = (x, y, E)T , with (x, y)T the differential variable, E the al-
gebraic variable and v is the bifurcation parameter, f and g are smooth functions
given by

f(v,X) =

(
f1(v,X)
f2(v,X)

)
=

 x

(
r
(

1− x

K

)
− axy

d+ x2

)
y

(
s
(

1− y

N

)
+

bx2

d+ x2
− E

)
 ,

g(v,X) = E(py − c)− v.

3. Mathematical analysis and main results. For biological considerations, we
are only interested in the dynamics of this model in the positive octant R3

+. Thus,
we consider the biologically meaningful initial condition

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, E(0) = E0 =
v

py0 − c
, py0 − c > 0. (6)

3.1. Existence and uniqueness.

Proposition 1. The system (4) equipped by the initial conditions (6) have
a unique maximal solution (x(t), y(t), E(t)) in an open subset U of Ω =
{(x, y, E)T ∈ R3

+/py − c > 0} defined on some maximal interval [0, T [.
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Proof. Let (x, y, E)T ∈ U then, from the algebraic equation g(x, y, E, v) = 0 we

get E =
v

py − c
, substituting in the second differential equation of (4), the DAE is

transformed to the following ODE that have the same solution with respect to the
differential variables z = (x, y)T :

ẋ = rx
(

1− x

K

)
− ax2y

d+ x2
,

ẏ = sy
(

1− y

N

)
+

bx2y

d+ x2
− vy

py − c
,

(7)

its vectorial form is ż = F (z), where

F (z) =

 x

(
r
(

1− x

K

)
− axy

d+ x2

)
y

(
s
(

1− y

N

)
+

bx2

d+ x2
− v

py − c

)
 .

Clearly F ∈ C1(U ′), where U ′ is an open subset of Ω′ = {(x, y)T ∈ R2
+/py− c >

0}. Thus, by applying the Cauchy-Lipschitz’s theorem for ODE [8], we deduce the
local existence and uniqueness of a maximal solution (x, y)T to (7) for any (x0, y0) ∈
U ′, then, the local existence and uniqueness of solution for (4) is straightforward.

3.2. Positivity and boundedness. Regarding the positivity of solution for the
system (4), we introduce the following proposition:

Proposition 2. Any smooth solution of (4), defined on the maximal interval [0, T [,
with positive initial conditions (6), remain positive for all t ∈ [0, T [.

Proof. From the system (7), it follows that x = 0 ⇒ dx

dt
= 0 and y = 0 ⇒ dy

dt
= 0

thus, x = 0 and y = 0 are invariant sets showing that x(t) ≥ 0 and y(t) ≥ 0
whenever x(0) > 0 and y(0) > 0.

From the second equation of (7), we deduce that for all t ∈ [0, T [:

py(t)− c 6= 0. (8)

Suppose that there exist t∗ ∈ [0, T [ such that E(t∗) < 0, it follows that py(t∗)−c < 0
then, by applying the intermediate value theorem to the continuous function py(t)−c
on the interval [0, t∗], we deduce the existence of t̃ ∈]0, t∗[ such that py(t̃) − c = 0
which contradict with (8), thus, E(t) ≥ 0 for all t ∈ [0, T [.

In the predator-prey ecosystem, the impulse process of the ecosystem is typi-
cally related to the accelerated development of the species population. If this trend
persists for a period of time, the biomass of population will be outside of the envi-
ronment carrying capacity and the predator-prey ecosystem will be out of control,
which is catastrophic for the ecosystem.

Clearly, when the predator biomass y approaches to the critical value yc =
c

p
,

the fishing effort E will be unbounded which is not realistic.
To answer the boundedness of the solution for the system (4), we impose a

realistic ecological constraint in the context that the economic policy requires a
minimum level ymin > 0 for the resource given by:

y(t) ≥ ymin >
c

p
,∀t ≥ 0. (9)
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This constraint will affect the fishing effort E that will be constrained by a fixed
production capacity (capital and labor involved in the production process remain
constant). We denote this limit capacity Emax, then

0 < E(t) ≤ Emax =
v

pymin − c
,∀t ≥ 0. (10)

Proposition 3. All solutions of the system (4) subject to the initial conditions
(6) and constraint (10) are bounded in R3

+, with ultimate bound.

Proof. Suppose that E(t) is subject to the constraint (10). Defining a function
ψ(t) = bx(t) + ay(t), then its time derivative along the solutions of the system (4)
is given by:

dψ

dt
= b

dx

dt
+ a

dy

dt
,

= rbx
(

1− x

K

)
+ asy

(
1− y

N

)
− aEy.

Hence for each µ > 0, we have

dψ

dt
+ µψ = rbx

(
1− x

K

)
+ asy

(
1− y

N

)
− aEy + µbx+ µay,

=

(
rbx− rb

K
x2 + µbx

)
+
(
asy − as

N
y2 − aEy + µay

)
,

= bx
[
(r + µ)− r

K
x
]

+ ay
[
(s+ µ− E)− s

N
y
]
,

≤ bx
[
(r + µ)− r

K
x
]

+ ay
[
(s+ µ)− s

N
y
]
,

≤ bK(r + µ)2

4r
+
aN(s+ µ)2

4s
:= η.

By using the theory of differential inequality [3], we obtain

0 ≤ ψ(t) ≤ η

µ
(1− e−µt) + ψ(0)e−µt ≤ max

(
ψ(0),

η

µ

)
.

Taking limit t→∞, we have

lim
t→∞

ψ(t) ≤ η

µ
.

Hence all the solutions of the system (4) subject to initial conditions (6) and con-
straint (10) are confined in the region

H =

{
(x, y, E)T ∈ R3

+ : 0 < E ≤ Emax, 0 ≤ ψ = bx+ ay ≤ η

µ
+ ε, for ε > 0

}
.

4. Existence and number of positive equilibrium. Our objective in this sec-
tion is to inspect the existence of the positive equilibrium points and to study their
stabilities.

An equilibrium point of the system (4) is a solution of the following equations: f1(v,X) = 0,
f2(v,X) = 0,
g(v,X) = 0.

(11)

By the analysis of the roots for (11), it follows that
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(i) If v = 0, then there exist at least three boundary equilibrium points Xe1 =
(0, 0, 0), Xe2 = (K, 0, 0), Xe3 = (0, N, 0), and at most five other boundary
equilibrium Xei = (x∗i , y

∗
i , 0), i = 1, 2, ..., 5, where x∗i are the roots of the

equation

r
(

1− x

K

) d+ x2

ax
−N

(
1 +

bx2

s(d+ x2)

)
= 0,

or equivalently the fifth degree equation

x5−Kx4 + (2d+NabK/(rs) +NaK/r)x3− 2dKx2 + (d2 +NadK/r)x− d2K = 0,

satisfying 0 < x∗i < K, and

y∗i =
r

Kax∗i
(K − x∗i )(d+ (x∗i )

2), i = 1, 2, ..., 5.

(ii) If v > 0, then there exist at most two boundary equilibrium points Xei =

(0, y∗i ,
v

py∗i − c
), i = 1, 2, where y∗i are the roots of the quadratic equation

psy2 − s(Np+ c)y +N(cs+ v) = 0,

satisfying y∗i >
c
p , and at most eight interior equilibrium points Xei = (x̄i,

ȳi,
v

pȳi−c ), i = 1, 2, ..., 8, where ȳi = r
Kax̄i

(K − x̄i)(d + x̄2
i ) >

c
p and x̄i is a

solution of the equation

s

(
1− r

(
1− x

K

) d+ x2

Nax

)
+

bx2

d+ x2
− v

p(r(1− x
K )d+x2

ax )− c
= 0,

or equivalently 
P (x) =

8∑
i=0

pix
i = 0,

Q(x) =
3∑
i=0

qix
i > 0,

(12)

where pi, i = 0, 1, 2, ..., 8 are given by

p0 = d3K2pr2s,

p1 = −(acd2K2rs+ ad2K2Nprs+ 2d3Kpr2s),

p2 = a2cdK2Ns+ acd2Krs+ ad2KNprs+ d3pr2s+ 3d2K2pr2s+ a2dK2Nv,

p3 = −(abdK2Npr + 2acdK2rs+ 2adK2Nprs+ 6d2Kpr2s),

p4 = a2bcK2N + abdKNpr + a2cK2Ns+ 2acdKrs+ 2adKNprs+ 3d2pr2s

+3dK2pr2s+ a2K2Nv,

p5 = −(abK2Npr + acK2rs+ aK2Nprs+ 6dKpr2s),

p6 = abKNpr + acKrs+ aKNprs+ 3dpr2s+K2pr2s,

p7 = −2Kpr2s,

p8 = pr2s,

and qi, i = 0, 1, 2, 3 are given by

q0 = dKpr,

q1 = −(acK + dpr),

q2 = Kpr,

q3 = −pr.
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Since there are three sign changes in the sequence of coefficients qi, i = 0, 1, 2, 3,
then, by Descartes’ rule of signs [9], there are either one positive root x̄1 or three
positive roots x̄1 ≤ x̄2 ≤ x̄3 of Q(x).

Let P0, P1, ..., Pl be the sequence of polynomials generated by the Euclidean
algorithm [9] started with P0 = P, P1 = P ′. The exact number of the interior
equilibrium of (4) is given in the following proposition:

Proposition 4. The number of the interior equilibrium of (4) is exactly m, where

m = µ(0)− µ(x̄1), if Q(x) has one root, (13)

or

m = µ(0)− µ(x̄1) + µ(x̄2)− µ(x̄3), if Q(x) has three roots, (14)

where µ(x) denotes the number of changes of sign in the sequence {Pi(x)}.

Proof. The number of the interior equilibrium of (4) is equal to the number of the
positive solutions of (12). Thus we have

• If Q(x) has one root, then for all x > 0, we have Q(x) > 0 ⇔ x ∈]0, x̄1[,
by theorem 6.3d in [9] P (x) = 0 has exactly µ(0) − µ(x̄1) solutions in the
interval ]0, x̄1[. Thus P (x) = 0 has exactly m = µ(0)−µ(x̄1) positive solutions
satisfying Q(x) > 0.

• If Q(x) has three roots, then for all x > 0, we have Q(x) > 0 ⇔ x ∈
]0, x̄1[∪]x̄2, x̄3[, it follows that P (x) = 0 has exactly µ(0)− µ(x̄1) solutions in
the interval ]0, x̄1[, and exactly µ(x̄2)−µ(x̄3) solutions in the interval ]x̄2, x̄3[.
Thus P (x) = 0 has exactly

m = µ(0)− µ(x̄1) + µ(x̄2)− µ(x̄3),

positive solutions satisfying Q(x) > 0.

5. Dynamic analysis near the coexistence equilibria. In this section we study
the stability of an interior equilibrium Xe and analyse the bifurcation through it
using the bifurcation theory and the normal form theory.

5.1. Local stability analysis. For the analysis of the local stability of Xe, we let
X = QX , here

X = (x, y, E)T , Q =


1 0 0
0 1 0

0 − Eep

pye − c
1

 ,

then we get DXg(Xe)Q = (0, 0, pye − c), and

x = x, y = y, E = E +
Eepy

pye − c
.

Then, the system can be expressed as follows:

ẋ = x

(
r
(

1− x

K

)
− axy

d+ x2

)
,

ẏ = y

(
s
(

1− y

N

)
+

bx2

d+ x2
− E +

Eepy

pye − c

)
,

0 =

(
E − Eepy

pye − c

)
(py − c)− v.

(15)
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We denote also by

f(v,X) =

(
f1(v,X)

f2(v,X)

)
=

 x

(
r
(

1− x

K

)
− axy

d+ x2

)
y

(
s
(

1− y

N

)
+

bx2

d+ x2
− E +

Eepy

pye − c

)
 ,

g(v,X) =

(
E − Eepy

pye − c

)
(py − c)− v, X = (x, y, E)T ,

and we can conclude that the system (15) has a positive equilibrium point

Xe = (xe, ye, Ee)
T =

(
xe, ye, Ee +

Eepy

pye − c

)T
,

and DXg(Xe)Q = (0, 0, pye − c).
For the system (15), we consider the following local parametrization:

X = ϕ(v, Y ) = Xe + U0Y + V0h(v, Y ), g(v, ϕ(v, Y )) = 0.

Here Y = (y1, y2), U0 =

 1 0
0 1
0 0

 , V0 =

 0
0
1

, and h : R2 → R is a smooth

mapping. More information about the local parametrization can be found in [4, 7].
Then, we can deduce that the parametric system of (15) takes the form{

ẏ1 = f1(v, ϕ(v, Y )),
ẏ2 = f2(v, ϕ(v, Y )).

(16)

Consequently, the Jacobian matrix A(v) of the parametric system (16) at Y = 0
takes the form

A(v) =

(
Dy1f1(v, ϕ(v, Y )) Dy2f1(v, ϕ(v, Y ))
Dy1f2(v, ϕ(v, Y )) Dy2f2(v, ϕ(v, Y ))

)
,

=

(
DXf1(v,Xe)

DXf2(v,Xe)

)(
DXg(v,Xe)

UT0

)−1(
0
I2

)
,

=

(
Dxf1(v,Xe(v)) Dyf1(v,Xe(v))

Dxf2(v,Xe(v)) Dyf2(v,Xe(v)

)
,

=

 xe

(
− r

K
+
aye(x

2
e − d)

(x2
e + d)2

)
− ax2

e

x2
e + d

2bdxeye
(x2
e + d)2

ye

(
− s

N
+

pEe
pye − c

)
 .

Therefore, the characteristic equation of the matrix A(v) can be expressed as

λ2 + a1(v)λ+ a2(v) = 0, (17)

where

a1(v) = xe

(
r

K
− aye(x

2
e − d)

(x2
e + d)2

)
+ ye

(
s

N
− pEe
pye − c

)
,

a2(v) = xeye

(
− r

K
+
aye(x

2
e − d)

(x2
e + d)2

)(
− s

N
+

pEe
pye − c

)
+

2abdx3
eye

(x2
e + d)3

.

Result 1. For the positive equilibrium point Xe of the system (15), we have
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(i) If a2
1(v) ≥ 4a2(v) and a2(v) > 0, then, when a1(v) > 0, Xe is locally asymp-

totically stable node. When a1(v) < 0, Xe is unstable node.
(ii) If a2(v) < 0, then, Xe is an unstable saddle point.

(iii) If a2
1(v) < 4a2(v), then, when a1(v) > 0, Xe is locally asymptotically stable

focus. When a1(v) < 0, Xe is unstable focus.

Remark 1. The positive equilibrium point Xe of the system (15) corresponds to
the equilibrium point Y = 0 of the system (16).

5.2. Hopf bifurcation analysis. The Hopf bifurcation is a very interesting type
of bifurcations of systems. It refers to the local birth or death of a periodic solution
from an equilibrium point as a parameter crosses a critical value named bifurcation
value.

In this fragment, we discuss the Hopf bifurcation in the system (15) from the
equilibrium point Xe by considering the economic profit v as a bifurcation value.
If we let a2

1(v) ≤ 4a2(v), then the equation (17) has a pair of conjugate complex
roots:

λ1,2 = −1

2
a1(v)± i

√
a2(v)− a2

1(v)

4
,

:= α(v)± iω(v).

Let a1(v) = 0, we get the bifurcation value v∗ that satisfies

v∗ =
(pye(v

∗)− c)2

pye(v∗)

(
s

N
ye(v

∗) + xe(v
∗)

(
r

K
− aye(v

∗)((xe(v
∗))2 − d)

((xe(v∗))2 + d)2

))
,

if
r

K
=
aye(v

∗)((xe(v
∗))2 − d)

((xe(v∗))2 + d)2
, (18)

then

v∗ =
s(pye(v

∗)− c)2

pN
. (19)

Moreover

α(v∗) = 0, ω(v∗) =

√
2abdye(v

∗)(xe(v
∗))3

((xe(v∗))2 + d)3
> 0,

which implies that if α
′
(v∗) =

d

dv

(
Npvye(v)− sye(v)(pye(v)− c)2

N(pye(v)− c)2

)
v=v∗

6= 0,

then, Hopf bifurcation occurs at the value v∗. The signal of the number σ given by

σ =
1

8

[
3a3x5

e

(
d− x2

e

)
(d+ x2

e)
6

(
−ye(3d− x2

e) + 4d
)

+
spω∗

2

N (pye − c)
+

3p2cEeω
∗2

(pye − c)3

]
, (20)

which determines the direction of the Hopf bifurcation through the interior equilib-
rium Xe(v) of the system (4) as stated in the following theorem.

Theorem 5.1. For the system (4), there exist a positive constant ε and two small
neighborhoods of the positive equilibrium point Xe(v): Z1 and Z2, where 0 < ε� 1
and Z1 ⊂ Z2.

Case 1.: If σ > 0, then
(i) When v∗ < v < v∗+ε, Xe(v) rejects all the points in Z2, so it is unstable.
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(ii) When v∗ − ε < v < v∗, the system (4) has at least a periodic solution
located in Z1 (the closure of Z1), one of them rejects all the points in
Z1 \Xe(v), at the same time another periodic solution (may be the same
one) rejects all the point in Z2 \ Z1, and Xe(v) is locally asymptotic
stable.

Case 2.: If σ < 0, then

(i) When v∗ − ε < v < v∗, Xe(v) attracts all the points in Z2, and Xe(v) is
locally asymptotic stable.

(ii) When v∗ < v < v∗ + ε, the system (4) has at least a periodic solution
located in Z1, one of them attracts all the points in Z1 \ Xe(v), at the
same time another periodic solution (may be the same one) attracts all
the point in Z2 \ Z1, then Xe(v) is unstable.

Proof. The proof of Theorem 5.1 is detailed in Appendix A.

6. Numerical simulations. Now the computer simulation modelling using MAT-
LAB software will be carried out to illustrate the analytical results that we have
established in the previous sections. The next numerical example shows the dif-
ferent dynamical behaviours when the economic profit increases through a certain
value v∗. Let consider the following parameter values:

r = 0.728025, a = 1, b = 0.72, c = 0.28, d = 0.3, p = 3, s = 0.75, K = 4, N = 0.8.
(21)

6.1. Number of the interior equilibria. For the set of parameter values (21),
we calculate the coefficients pi, i = 0, ..., 8 and qi, i = 0, 1, 2, 3 of P (x) and Q(x)
respectively, defined in (12) as shown in table 1.

The polynomial Q(x) has a unique positive root x̄1 ≈ 3.8701. Thus, by proposi-
tion .4, the exact number of the interior equilibria of (4) is m = µ(0) − µ(x̄1). A
Matlab code based on the Euclidean algorithm is developed to calculate this num-
ber, for 0 < v ≤ 5, and the results are depicted in figure (1). We observe that for
0 < v < vc ≈ 1.436, there are two interior equilibria, and for vc < v ≤ 5, there are
no interior equilibria. Figure (2) illustrates the biological coordinates of the two
interior equilibria Xe1 and Xe2 versus the economic profit v, showing that the two
equilibria coincides when v = vc ≈ 1.436, while they collapse for v > vc.

6.2. Local stability of the interior equilibria. We analyse the local stability
of the two equilibria Xe1 and Xe2 in the existence interval Iv =]0, vc[. We calculate
the trace Tr and the determinant Det of the Jacobian matrix A at the two interior
equilibria, as shown in figure (3).

• For the second equilibrium Xe2, we observe that Tr(A(Xe2)) ≥ 0 and
Det(A(Xe2)) ≤ 0 for all v ∈ Iv, indicating that Xe2 is always an unstable
saddle point.

• For the first equilibrium Xe1, we observe that Tr(A(Xe1)) change its sign
and Det(A(Xe1)) > 0 and ∆Xe1

< 0 for all v ∈ Iv indicating that Xe1 is
always a focus point and changes its stability property. Figure (4) illustrates
Tr(A(Xe1)) versus the economic profit v showing that Xe1 is a locally stable
focus for 0 < v < v∗1 ≈ 0.9596 or 1.4147 ≈ v∗2 < v < vc and unstable focus for
v∗1 < v < v∗2 .
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Table 1. Evaluation of the coefficients pi and qi of P (x) and Q(x) respectively.

Coefficients pi Coefficients qi

p0 0.51518 q0 2.62089

p1 −2.36479 q1 −1.77522

p2 6.5172 + 3.84v q2 8.7363

p3 −22.6624 q3 −2.18408

p4 27.7848 + 12.8v

p5 −52.1281

p6 31.0395

p7 −9.54038

p8 1.19255
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Figure 1. Number of the interior equilibria of system (4) versus
the economic profit v, for 0 < v ≤ 5.

6.3. Hopf bifurcation through the interior equilibria. Since Det(A(Xe2)) ≤
0 for all v ∈ Iv, the Hopf bifurcation is not expected through the second interior
equilibrium, thus we investigate the Hopf bifurcation only through the first inte-
rior equilibrium Xe1 . From the local stability study, there are two possible Hopf
bifurcation at v = v∗1 and v = v∗2 . We focused on the Hopf bifurcation at v = v∗1 .

In order to determine a high precision Hopf bifurcation values v∗1 through Xe1,
we solve numerically the equation (19). First, we define the function

h(v) =
s(pye(v)− c)2

pN
− v,

then (19) can be written as

h(v) = 0, (22)
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Figure 2. The biological coordinates xe, ye of the two interior
equilibria Xe1 and Xe2 versus the economic profit v.
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Figure 3. Representation of the trace Tr and the determinant
Det of the Jacobian matrix A at the two interior equilibria Xe1

and Xe2 for v ∈ Iv.

to approximate its solution we develop a Matlab code based on the bisection method
applied to the interval I0 = [0.9, 1].

We have h(0.9).h(1) ≈ −6.6 × 10−4 < 0, it follow that (22) has at least one
solution in I0. We choose a maximum error ε = 10−13, then, we obtain v∗1 ≈
0.959607613852853. Substituting in (36) we get σ ≈ 0.0232833778979292 > 0 which
satisfies Case 1 of theorem 5.1. Then, the system (4) undergoes a sub-critical Hopf
bifurcation through Xe1 at v = v∗1 , where Xe1 is locally asymptotic stable for v
close to v∗1 with v < v∗1 and it is surrounded by a bifurcating unstable limit cycle
as illustrated in figure 5. Xe1 becomes a center for v = v∗1 as shown in figure 6.



HOPF BIFURCATION OF A BIO-ECONOMIC SYSTEM 1653

0 0.5 1 1.5v
-1

-0.5

0

X
e1

0.2 0.4 0.6 0.8 1 1.2 1.4

v

0

50

X
e2

0 0.5 1 1.5v

-1
-0.5

0
0.5

T
r(

A
(X

e1
))

=
-a

1

v  1.4147v  0.9596

Figure 4. Representation of the discriminants of Xe1 and Xe2 and
the trace Tr(A(Xe1)) versus the economic profit v.

Finally Xe1 is an unstable focus for v close to v∗1 with v > v∗1 as depicted in figure
7.

Figure 5. Time evolution of prey x, and the phase trajectory of
the system (4) for v = 0.955 < v∗1 , showing stable behaviour of the
first positive equilibrium point Xe1(v) with the initial conditions
x0 = xe + 0.22, y0 = ye, E0 = Ee, surrounded by the bifurcating
unstable limit cycle γ and an unstable behaviour in the exterior of
γ.

Remark 2. Compared with the systems proposed in [14, 15, 17] in which logistic
growth for prey or predator species and Holing type II or Beddington-DeAngelis
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Figure 6. Time evolution of species x, y, the harvest effort E
and phase portrait of the system (4), for v ≈ v∗1 , indicating that
Xe1(v∗1) is a center surrounded by a band of continues cycles.

Figure 7. Time evolution of species x, y, the harvest effort E and
the phase trajectory of the system (4) depicting unstable behaviour
of the positive equilibrium point Xe1(v) for v = 0.961 > v∗1 with
initial conditions x0 = xe + 0.02, y0 = ye, E0 = Ee.

functional response are considered, our model consider logistic growth for both prey
and predator species and Holing type III functional response, which make our model
more realistic, moreover it focuses on economic interest of commercial harvest effort
on predator. Another advantage is that the proposed model has multiple interior
equilibria which gives more opportunities for fishermen in control theory to stabilize
the ecosystem at the interior equilibrium point that represents its ideal performance.
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7. Conclusion. This paper has deal with a differential-algebraic biological eco-
nomic system.We have taken predator functional response to prey in a form that
approaches to a constant even when the prey population increases. We consider
the dynamical behaviour of the system when only the predator is subjected to har-
vesting. From the biological perspective, we are only interested on the positive
equilibrium points. The number of positive equilibria is investigated by means of
Descartes’ rule of signs and is calculated numerically using a Matlab code which
has been developed based on the Euclidean algorithm. The obtained results have
shown that the proposed system has an even number of positive equilibria between
0 and 8. This gives special importance to the proposed system because the diver-
sity of positive equilibria gives more opportunities in control theory to choose the
point that represents the ideal performance of the ecosystem. The local stability of
the interior equilibria is curried out by analysing their corresponding characteristic
equation and the proposed numerical example has shown that the system has two
interior equilibria one of them is unstable saddle point and the other one is a fo-
cus point that changes its stability property when varying the economic revenue v.
Moreover, one parameter bifurcation analysis is done with respect to the economic
revenue. It has been assumed that the positive economic revenue is responsible for
the stability of the proposed model. The stability analysis has revealed that when
the economic profit v is less than a bifurcation value v∗1 both species converge to
their steady states and they will coexist over the time. Moreover, it is shown that
when the economic profit is larger than the bifurcation value, then the state of prey
population, predator population and, the harvest effort will be unstable which can
result in serious imbalance of the ecosystem. The proposed study allows us to point
out that it is important for the government to adjust revenue and draw up beneficial
strategies to support, encourage, and improve fishery or mitigate emissions so that
the community can be driven to steady states that will lead to the survival and
sustainable growth of the predator-prey ecosystem. We’ll improve our model in the
forthcoming papers by introducing several aspects such as time delays that would
make the model more realistic. We should incorporate the stage structure of the
model where the predator population can be separated into adolescents and adults
and only the adults can be captured by fishermen which is economically feasible.
Furthermore, some other types of bifurcations such as transcritical bifurcation and
singularity induced bifurcation will be investigated in future work.

Acknowledgments. This research was supported by the Algerian General Direc-
torate for Scientific Research and Technological Development (DGRSDT).

Appendix A. Proof of Theorem 5.1. In order to explore the direction of the
Hopf bifurcation in the system (15) according to [4, 7] when v = v∗, X = Xe we
need to lead the normal form of this system as follows:

ẏ1 = ω∗y2 + 1
2a

1
11y

2
1 + a1

12y1y2 + 1
2a

1
22y

2
2 + 1

6a
1
111y

3
1

+ 1
2a

1
112y

2
1y2 + 1

2a
1
122y1y

2
2 + 1

6a
1
222y

3
2 +O(| Y |4),

ẏ2 = −ω∗y1 + 1
2a

2
11y

2
1 + a2

12y1y2 + 1
2a

2
22y

2
2 + 1

6a
2
111y

3
1

+ 1
2a

2
112y

2
1y2 + 1

2a
2
122y1y

2
2 + 1

6a
2
222y

3
2 +O(| Y |4).

(23)
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where ω∗ := ω(v∗) =

√
2abdyex

3
e

(x2
e + d)3

.

It can be proved that the system (16) with v = v∗, X = Xe takes the form

ẏ1 = f1y1(v∗, Xe)y1 + f1y2(v∗, Xe)y2 + 1
2f1y1y1(v∗, Xe)y

2
1

+f1y1y2(v∗, Xe)y1y2 + 1
2f1y2y2(v∗, Xe)y

2
2 + 1

6f1y1y1y1(v∗, Xe)y
3
1

+ 1
2f1y1y1y2(v∗, Xe)y

2
1y2 + 1

2f1y1y2y2(v∗, Xe)y1y
2
2

+ 1
6f1y2y2y2(v∗, Xe)y

3
2 +O(| Y |4),

ẏ2 = f2y1(v∗, Xe)y1 + f2y2(v∗, Xe)y2 + 1
2f2y1y1(v∗, Xe)y

2
1

+f2y1y2(v∗, Xe)y1y2 + 1
2f2y2y2(v∗, Xe)y

2
2 + 1

6f2y1y1y1(v∗, Xe)y
3
1

+ 1
2f2y1y1y2(v∗, Xe)y

2
1y2 + 1

2f2y1y2y2(v∗, Xe)y1y
2
2

+ 1
6f2y2y2y2(v∗, Xe)y

3
2 +O(| Y |4).

(24)

In the following, we shall calculate the coefficients of the parametric system (24).
We derive

DXf1(v,X) =

(
r
(

1− x

K

)
− axy

x2 + d
+ x

(
− r

K
+
ay(x2 − d)

(x2 + d)2

)
,− ax2

x2 + d
, 0

)
,

DXf2(v,X) =

(
2bdxy

(x2 + d)2
, s
(

1− y

N

)
+

bx2

x2 + d
+

pEey

pye − c
− E

+y

(
− s

N
+

pEe
pye − c

)
,−y

)
,

DXg(v,X) =

(
0, Ep− 2p2Eey

pye − c
+

pEec

pye − c
, py − c

)
,

Dϕ(v, Y ) = (Dy1ϕ(v, Y ), Dy2ϕ(v, Y )) ,

=

 DXg(v,X)

UT0

−1(
0

I2

)
,

=


1 0

0 1

0 1
py−c

(
−Ep+ 2p2Eey

pye−c −
pEec
pye−c

)
 . (25)

Therefore

f1y1(v,X) = DXf1(v,X)Dy1ϕ(v, Y ) = r
(

1− x

K

)
− axy

x2 + d

+ x

(
− r

K
+
ay(x2 − d)

(x2 + d)2

)
,

f1y2(v,X) = DXf1(v,X)Dy2ϕ(v, Y ) = − ax2

x2 + d
,

f2y1(v,X) = DXf2(v,X)Dy1ϕ(v, Y ) =
2bdxy

(x2 + d)2
,
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f2y2(v,X) = DXf2(v,X)Dy2ϕ(v, Y ) = s
(

1− y

N

)
+

bx2

x2 + d
+

pEey

pye − c
− E

+ y

(
− s

N
+

pEe
pye − c

)
− y

py − c

(
−Ep+

2p2Eey

pye − c
− pEec

pye − c

)
. (26)

Substituting v∗ and Xe into equations (26), we get

f1y1(v∗, Xe) = 0, f2y2(v∗, Xe) = 0, f1y2(v∗, Xe) = − ax2
e

x2
e + d

,

f2y1(v∗, Xe) =
2bdxeye

(x2
e + d)2

. (27)

In view of equations (26), we can deduce that

DXf1y1(v,X) =

(
2

(
− r

K
+
ay(x2 − d)

(x2 + d)2

)
+

2ayx2(3d− x2)

(x2 + d)3
,− 2axd

(x2 + d)2
, 0

)
,

DXf1y2(v,X) =

(
− 2axd

(x2 + d)2
, 0, 0

)
,

DXf2y1(v,X) =

(
2bdy(d− 3x2)

(x2 + d)3
,

2bdx

(x2 + d)2
, 0

)
,

DXf2y2(v,X) =

(
2bdx

(x2 + d)2
,−2s

N
− Epc

(py − c)2
+

pEec
2

(py − c)2(pye − c)
,

py

py − c
− 1

)
.

(28)

From equations (25) and (28), we get

f1y1y1(v,X) = DXf1y1(v,X)Dy1ϕ(v, Y ) = 2

(
− r

K
+

ay(x2 − d)

(x2 + d)2

)
+

2ayx2(3d− x2)

(x2 + d)3
,

f1y1y2(v,X) = DXf1y1(v,X)Dy2ϕ(v, Y ) = − 2axd

(x2 + d)2
,

f1y2y1(v,X) = DXf1y2(v,X)Dy1ϕ(v, Y ) = − 2axd

(x2 + d)2
,

f1y2y2(v,X) = DXf1y2(v,X)Dy2ϕ(v, Y ) = 0,

f2y1y1(v,X) = DXf2y1(v,X)Dy1ϕ(v, Y ) =
2bdy(d− 3x2)

(x2 + d)3
,

f2y1y2(v,X) = DXf2y1(v,X)Dy2ϕ(v, Y ) =
2bdx

(x2 + d)2
,

f2y2y1(v,X) = DXf2y2(v,X)Dy1ϕ(v, Y ) =
2bdx

(x2 + d)2
,

f2y2y2(v,X) = DXf2y2(v,X)Dy2ϕ(v, Y ) = −2s

N
− 2pcE

(py − c)2
+

2p2Eecy

(py − c)2(pye − c)
. (29)

substituting v∗ and Xe into equations (29), yield

f1y1y1(v∗, Xe) =
2ayex

2
e(3d− x2

e)

(x2
e + d)3

,

f1y1y2(v∗, Xe) = f1y2y1(v∗, Xe) = − 2adxe
(x2
e + d)2

,

f2y1y2(v∗, Xe) = f2y2y1(v∗, Xe) =
2bdxe

(x2
e + d)2

,
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f2y1y1(v∗, Xe) =
2bdye(d− 3x2

e)

(x2
e + d)3

,

f2y2y2(v∗, Xe) = − 2spye
N(pye − c)

,

f1y2y2(v∗, Xe) = 0. (30)

By equations (29), we get

DXf1y1y1(v,X) =

(
24adyx(d− x2)

(x2 + d)4
,

2ad(3x2 − d)

(x2 + d)3
, 0

)
,

DXf1y1y2(v,X) = DXf1y2y1(v,X) =

(
2ad(3x2 − d)

(x2 + d)3
, 0, 0

)
,

DXf1y2y2(v,X) = (0, 0, 0) ,

DXf2y1y1(v,X) =

(
24bdyx(x2 − d)

(x2 + d)4
,

2bd(d− 3x2)

(x2 + d)3
, 0

)
,

DXf2y1y2(v,X) = DXf2y2y1(v,X) =

(
2bd(d− 3x2)

(x2 + d)3
, 0, 0

)
,

DXf2y2y2(v,X) =

(
0,

4p2cE

(py − c)3
+

2p2cEe
(py − c)2(pye − c)

,− 2pc

(py − c)2

)
. (31)

Substituting v∗, Xe into equations (25) and (31), we obtain

DXf1y1y1(v
∗, Xe) =

(
24adyexe(d− x2

e)

(x2
e + d)4

,
2ad(3x2

e − d)

(x2
e + d)3

, 0

)
,

DXf1y1y2(v
∗, Xe) = DXf1y2y1(v

∗, Xe) =

(
2ad(3x2

e − d)

(x2
e + d)3

, 0, 0

)
,

DXf1y2y2(v
∗, Xe) = (0, 0, 0) ,

DXf2y1y1(v
∗, Xe) =

(
24bdyexe(x

2
e − d)

(x2
e + d)4

,
2bd(d− 3x2

e)

(x2
e + d)3

, 0

)
,

DXf2y1y2(v
∗, Xe) = DXf2y2y1(v

∗, Xe) =

(
2bd(d− 3x2

e)

(x2
e + d)3

, 0, 0

)
,

DXf2y2y2(v
∗, Xe) =

(
0,

6p2cEe

(pye − c)3
,− 2pc

(pye − c)2

)
,

Dϕ(v∗, 0) = (Dy1ϕ(v
∗, 0), Dy2ϕ(v

∗, 0)) =

 1 0

0 1

0 0

 . (32)

From equations (32), we have

f1y1y1y1(v
∗, Xe) =

24adyexe(d− x2
e)

(x2
e + d)4

,

f2y1y1y1(v
∗, Xe) =

24bdyexe(x
2
e − d)

(x2
e + d)4

,

f2y2y2y2(v
∗, Xe) =

6p2cEe

(pye − c)3
,

f1y1y2y1(v
∗, Xe) = f1y2y1y1(v

∗, Xe) = f1y1y1y2(v
∗, Xe) =

2ad(3x2
e − d)

(x2
e + d)3

,
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f2y1y1y2(v
∗, Xe) = f2y1y2y1(v

∗, Xe) = f2y2y1y1(v
∗, Xe) =

2ad(d− 3x2
e)

(x2
e + d)3

,

f1y2y2y1(v
∗, Xe) = f1y2y2y2(v

∗, Xe) = f1y1y2y2(v
∗, Xe) = f1y2y1y2(v

∗, Xe) = 0,

f2y1y2y2(v
∗, Xe) = f2y2y1y2(v

∗, Xe) = f2y2y2y1(v
∗, Xe) = 0. (33)

According to equations (24), (27), (30) and (33), the parametric system of the
system (16) with v = v∗, X = Xe can be written as

ẏ1 = − ax2
e

d+ x2
e

y2 +
ayex

2
e(3d− x2

e)

(d+ x2
e)3

y2
1 −

2axed

(d+ x2
e)2

y1y2 +
4adxeye(d− x2

e)

(d+ x2
e)4

y3
1

+
ad(3x2

e − d)

(d+ x2
e)3

y2
1y2 +O(| Y |4),

ẏ2 =
2bdxeye
(d+ x2

e)2
y1 +

bdye(d− 3x2
e)

(d+ x2
e)3

y2
1 +

2bdxe

(d+ x2
e)2

y1y2 −
spye

N(pye − c)
y2
2

+
4bdxeye(x

2
e − d)

(d+ x2
e)4

y3
1 +

bd(d− 3x2
e)

(d+ x2
e)3

y2
1y2 +

p2cEe

(pye − c)3
y3
2 +O(| Y |4).

(34)

Compared with the normal form (24), we should normalize the parametric system
(34) with the following nonsingular linear transformation:(

y1

y2

)
= P

(
u1

u2

)
,

where P =

 ax2
e

x2
e + d

0

0 −ω∗

 , U = (u1, u2)
T

. For convenience, we use Y instead

of U . Thus, the normal form of the system (15) with v = v∗ and X = Xe takes the
form

ẏ1 = ω∗y2 +
a2x4

eye(3d− x2
e)

(d+ x2
e)

4
y2

1 +
2adxeω

∗

(d+ x2
e)

2
y1y2

+
4da3x5

e(d− x2
e)

(d+ x2
e)

6
y3

1 −
a2dω∗x2

e(3x
2
e − d)

(d+ x2
e)

4
y2

1y2 +O(| Y |4),

ẏ2 = −ω∗y1 −
axeω

∗(d− 3x2
e)

2(d+ x2
e)

2
y2

1 +
ω∗

2

ye
y1y2 +

spyeω
∗

N(pye − c)
y2

2

−2a2x4
eω
∗(x2

e − d)

(d+ x2
e)

4
y3

1 +
axeω

∗2(d− 3x2
e)

2(d+ x2
e)

2
y2

1y2 +
p2cEeω

∗2

(pye − c)3
y3

2

+O(| Y |4).

(35)

According to the Hopf bifurcation theory [7], the direction of the Hopf bifurcation
is determined by the signal of σ given by

16σ = 1
ω∗

{
a1

11

(
a2

11 − a1
12

)
+ a2

22

(
a2

12 − a1
22

)
+
(
a2

11a
2
12 − a1

12a
1
22

)}
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+
(
a1

111 + a1
122 + a2

112 + a2
222

)
,

=
6a3x5

e(d−x
2
e)

(d+x2
e)6

(
−ye(3d− x2

e) + 4d
)

+ 2spω∗
2

N(pye−c) + 6p2cEeω
∗2

(pye−c)3
. (36)
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