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Abstract. In this paper, we show that a weak solution (u,w,b)(·, t) of the

magneto-micropolar equations, defined in [0, T ), which satisfies∇u3,∇hw,∇hb

∈ L
32
7 (0, T ; L2(R3)) or ∂3u3, ∂3w, ∂3b ∈ L∞(0, T ;L2(R3)), is regular in R3 ×

(0, T ) and can be extended as a C∞ solution beyond T .

1. Introduction. In this paper we present some regularity criteria for weak solu-
tions of the following magneto-micropolar fluid system in three space dimensions:

ut + u · ∇u + ∇(p+ 1
2 |b |

2) = (µ+ χ)∆u + b · ∇b + χ∇×w,

wt + u · ∇w = γ∆w + κ∇(∇ · w) + χ∇×u − 2χw,

bt + u · ∇b = ν∆b + b · ∇u,
∇ · u = ∇ · b = 0,

u(·, 0) = u0(·), w(·, 0) = w0(·), b(·, 0) = b0(·),

(1)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) ∈ R3 denotes the incompressible velocity
field, w(x, t) = (w1(x, t), w2(x, t), w3(x, t)) ∈ R3 denotes the micro-rotational veloc-
ity, b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) ∈ R3 the divergence free magnetic field and
p(x, t) ∈ R the hydrostatic pressure. As usual, x ∈ R3 denotes the space variable
and 0 ≤ t < T the time variable. The positive constants µ, χ, ν, κ, and γ are asso-
ciated with specific properties of the fluid; precisely, µ is the kinematic viscosity, χ
is the vortex viscosity, κ and γ are spin viscosities and, lastly, ν−1 is the magnetic
Reynolds number. The initial data for the velocity and magnetic fields, given by
u0 and b0 in (1), are divergence free, i.e., ∇ · u0 = ∇ · b0 = 0.

Let us list some recent papers which discuss regularity of weak solutions of the
magneto-micropolar equations (1) and systems that are particular cases of these
equations as, for example, the classical Navier-Stokes equations.
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In 2010, Y. Baoquan [18] established the following regularity criteria: a solution
(u,w,b)(t) of (1) can be extended smoothly beyond t = T if∫ T

0

‖u(t)‖βα dt <∞, where
3

α
+

2

β
≤ 1, 3 < α ≤ ∞,

or ∫ T

0

‖∇u(t)‖βα dt <∞, where
3

α
+

2

β
≤ 2,

3

2
< α ≤ ∞,

provided that the initial data (u0,w0,b0) belong to H1(R3) and ∇·u0 = ∇·b0 = 0.
Here (u,w,b) ∈ C([0, T );H1(R3)) ∩ C((0, T );H2(R3)) is assumed. Notice that Y.
Baoquan [18] used only the velocity field or its gradient in the regularity criteria
described above.

In 2013, Y. Wang [14] showed that a weak solution (u,w,b)(t) of (1), defined on
the interval [0, T ), can be extended smoothly beyond t = T if one assumes∫ T

0

‖∂3u(t)‖βα dt <∞ where
3

α
+

2

β
≤ 1, α ≥ 3, (2)

provided that (u0,w0,b0) ∈ H1(R3) and ∇ · u0 = ∇ · b0 = 0. Let us point out
that Y. Wang [14] established the regularity criterion given above by considering
only one component of the gradient of the velocity field (see (2)). The paper [14]
deals with an extension of a regularity criterion obtained for weak solutions of the
magneto-hydrodynamic equations (see [2]). This latter system is the special case
of(1) obtained for w = 0 and χ = 0. Further results related to the current paper
are in [2, 21].

The papers [14] and [18] (see also [3, 8, 12, 13, 15, 17, 19, 20, 22, 23, 24, 28, 29]),
raised our interest to obtain regularity criteria for weak solutions of the magneto-
micropolar system (1), which involve only one component of the velocity field u.

Note that the magneto-micropolar system (1) reduces to the classical Navier-
Stokes equations for the velocity field u and the pressure p if one assumes that
w = b = 0 and χ = 0. Regularity criteria for weak solutions of Navier-Stokes
equations, involving only one component of the velocity field, have been published
recently. We want to comment on two results.

First, Z. Zhang and X. Yang [22] present a regularity criterion for the Navier-
Stokes equations involving the gradient of one component of the velocity field. Pre-
cisely, if u(t) is a weak solution of the Navier-Stokes equations in (0, T ) and∫ T

0

‖∇u3(t)‖
32
7
2 dt <∞, (3)

then u is C∞ in R3 × (0, T ) and the solution can be extended as a C∞ function
beyond T . Here u0 ∈ L2(R3) with ∇ · u0 = 0 is assumed. In the current paper we
prove that the criterion (3) can be extended from the Navier-Stokes equations to
the magneto-micropolar system (1) under appropriate conditions on the other fields
w and b. See Theorem 1.1 below.

The second paper we cite is [23]. Z. Zhang and X. Yang [23] deal with one
component of the gradient of one component of the velocity field. More precisely,
regularity of a weak solution u(t) of the Navier-Stokes equations is obtained under
the assumption

∂3u3(t) ∈ L∞(0, T ;L2(R3)). (4)
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Theorem 1.2 below establishes an extension of criterion (4) from the Navier-Stokes
equations to the magneto-micropolar system (1).

Further regularity results for weak solutions of the Navier-Stokes equations are
established in [1, 4, 5, 6, 7, 10, 25, 26].

The main results of the current paper are:

Theorem 1.1. Let (u0,w0,b0) ∈ L2(R3) with ∇·u0,∇·b0 = 0. Let T > 0 and let

(u,w,b) ∈ C([0, T );H1(R3)) ∩ C((0, T );H2(R3)) (5)

denote a weak solution of the magneto-micropolar equations (1) in (0, T ) satisfying
the initial condition (u,w,b)(0) = (u0,w0,b0). If

∇u3,∇hw,∇hb ∈ L
32
7 (0, T ;L2(R3)), (6)

then (u,w,b) is C∞ in R3 × (0, T ) and the solution can be extended as a C∞

function beyond T .

Theorem 1.2. Let (u0,w0,b0) ∈ L2(R3) with ∇·u0,∇·b0 = 0. Let T > 0 and let

(u,w,b) ∈ C([0, T );H1(R3)) ∩ C((0, T );H2(R3)) (7)

denote a weak solution of the magneto-micropolar equations (1) in (0, T ) satisfying
the initial condition (u,w,b)(0) = (u0,w0,b0). If

∂3u3, ∂3w, ∂3b ∈ L∞(0, T ;L2(R3)), (8)

then (u,w,b) is C∞ in R3 × (0, T ) and the solution can be extended as a C∞

function beyond T .

An outline of the paper follows: There are two sections after the Introduction.
In Section 2, we list definitions and notations used throughout the paper and recall
results that play an important role in our proofs of the main results. Section 3
presents the proofs of Theorems 1.1 and 1.2.

2. Preliminaries. We introduce notations and definitions used in the paper.

• Boldface letters denote vector fields; for example,

a = a(x, t) = (a1(x, t), a2(x, t), a3(x, t)), x ∈ R3, t ≥ 0.

• The Euclidean norm of any vector a = (a1, ..., an) ∈ Rn is denoted and given

by |a| =
√∑n

i=1 a
2
i .

• The notation Lα is used for the standard Lebesgue space equipped with the
norm ‖ · ‖α, where 1 ≤ α ≤ ∞; more specifically,

‖a‖α :=

(∫
R3

|a(x)|α dx
) 1

α

, 1 ≤ α <∞,

and

‖a‖∞ := ess supx∈R3{|a(x)|},
where a : R3 → Rn (n ∈ N) is a mensurable function. We define the L2-inner
product of two vector functions by

(a,b)2 :=

∫
R3

a(x) · b(x) dx,

where c · d :=
∑n
i=1 cidi for c = (c1, ..., cn),d = (d1, ..., dn) ∈ Rn; and a,b :

R3 → Rn (n ∈ N) are mensurable functions.
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• Let ∇a = (∇a1, ...,∇an) denote the gradient of a = (a1, ..., an) ∈ Rn, where
∇aj = (∂1aj , ∂2aj , ∂3aj), with ∂i = ∂/∂xi for all i = 1, 2, 3 and j = 1, ..., n.

• The horizontal gradient is denoted by ∇ha = (∇ha1, ...,∇han), where a =
(a1, ..., an) ∈ Rn and ∇haj = (∂1aj , ∂2aj), with j = 1, ..., n.

• Here a · ∇ :=
∑3
i=1 ai∂i, where a = (a1, a2, a3) ∈ R3.

• ∇ × a denotes the curl of the vector field a = (a1, a2, a3) ∈ R3.

• Denote ∇ · a =
∑3
i=1 ∂iai, where a = (a1, a2, a3) ∈ R3.

• ∆ represents the standard Laplacian operator.
• The horizontal Laplacian is denoted by ∆ha = (∆ha1, ...,∆han), where a =

(a1, ..., an) ∈ Rn and ∆haj =
∑2
i=1 ∂

2
i aj , with j = 1, ..., n.

• Let (X, ‖ · ‖) be a Banach space and assume that 1 ≤ β ≤ ∞, c, d ∈
R, c < d. We denote by Lβ(c, d;X) the space of all measurable functions
f : (c, d)→ X with ‖f(·)‖ ∈ Lβ(c, d) endowed with the norm ‖f‖Lβ(c,d;X) :=(∫ d

c
‖f(t)‖β dt

) 1
β

, where β <∞, and also ‖f‖L∞(c,d;X) = ess supc<t<d{‖f(t)‖}.

• We define a weak solution of (1) as follows: Let T > 0 and (u0,w0,b0) ∈
L2(R3), with ∇·u0 = ∇·b0 = 0. A mensurable function (u,w,b)(t) is called
a weak solution for (1) on [0, T ) if the following conditions hold

1. (u,w,b)(t) ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));
2. the system (1) is satisfied in the sense of distributions;
3. the energy inequality holds, i.e.,

‖(u,w,b)(t)‖22 + 2(µ+ χ)

∫ t

0

‖∇u(τ)‖22 dτ + 2γ

∫ t

0

‖∇w(τ)‖22 dτ

+2ν

∫ t

0

‖∇b(τ)‖22 dτ + 2κ

∫ t

0

‖∇ ·w(τ)‖22 dτ + 2χ

∫ t

0

‖w(τ)‖22 dτ

≤ ‖(u0,w0,b0)‖22, (9)

for all 0 ≤ t < T .
• For brevity, dependencies on the variables x and t are often suppressed in our

notation. For example, the function t → ‖u(·, t)‖2 may also be written as
‖u(t)‖2 or ‖u‖2. Furthermore, as usual, the value of constants may change
line by line in the paper.

Now, we enunciate the lemmas that will be applied in the proofs of our main
results. The first one is proved in [16].

Lemma 2.1 (see [16]). Let i, j, k be a permutation of 1, 2, 3. Assume that

f, g, ∂ig, ∂jg, h, ∂jh, ∂kh ∈ L2(R3).

Then, ∫
R3

fgh dx ≤ C‖f‖2‖g‖
1
4
2 ‖∂ig‖

1
2
2 ‖∂jg‖

1
4
2 ‖h‖

1
4
2 ‖∂kh‖

1
2
2 ‖∂jh‖

1
4
2 .

The second one was established in [23].

Lemma 2.2 (see [23]). Let f ∈ L6(R3) and g ∈ L2(R3) with ∂3f ∈ L2(R3) and
∇hg ∈ L2(R3). Then,∫

R3

f2g2 dx ≤ 2
√

2‖f‖
3
2
6 ‖∂3f‖

1
2
2 ‖g‖2‖∇hg‖2.

The third one was written in [2].
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Lemma 2.3 (see [2]). Assume that θ, λ, ϑ ∈ R satisfy

1 ≤ θ, λ, ϑ <∞, 1

θ
+

2

λ
> 1, 1 +

3

ϑ
=

1

θ
+

2

λ
.

Consider that f ∈ H1(R3), ∂1f, ∂2f ∈ Lλ(R3) and ∂3f ∈ Lθ(R3). Then, there
exists a positive constant C such that

‖f‖ϑ ≤ C‖∂1f‖
1
3

λ ‖∂2f‖
1
3

λ ‖∂3f‖
1
3

θ .

In particular, if λ = 2 and f ∈ H1(R3), ∂3f ∈ Lθ(R3) (with 1 ≤ θ <∞), then there
is a positive constant C such that

‖f‖3θ ≤ C‖∂1f‖
1
3
2 ‖∂2f‖

1
3
2 ‖∂3f‖

1
3

θ .

3. Proof of the main results. In this section we prove Theorems 1.1 and 1.2.
In both results, it is necessary to consider ε ∈ (0, T ) arbitrary in order to obtain
δ ∈ (0, ε) such that (∇u,∇w,∇b)(δ) ∈ L2(R3). It is known that there is a unique
strong solution (u′,w′,b′) ∈ C([δ, T ∗);H1(R3)) ∩ L2(δ, T ∗;H2(R3)) for the system
(1) (see [9, 11] and references therein) that satisfies (u′,w′,b′)(δ) = (u,w,b)(δ),
where t = T ∗ is the maximum time of existence for this solution, and (u′,w′,b′) ∈
C∞(R3 × (0, T ∗)) (since ε > 0 is arbitrary). Therefore, if T < T ∗, one concludes
that (u,w,b)(t) is regular in R3 × (0, T ). On the other hand, assuming T ∗ ≤ T ,
we will prove below that ‖(∇u,∇w,∇b)(t)‖2 is uniformly bounded for t ∈ [δ, T ∗)
(in Theorem 1.2) and bounded as t ↗ T ∗ (in Theorem 1.1). However, this is
not possible. In fact, this boundedness would imply that (u′,w′,b′)(t) could be
extended beyond t = T ∗, which contradicts the definition of T ∗.

3.1. Proof of Theorem 1.1. First, notice that by applying the product (·,∆hu)2
to the first equation of the magneto-micropolar system (1) and using the fact that
∇ · u = 0, one gets

1

2

d

dt
‖∇hu‖22 + (µ+ χ)‖∇∇hu‖22 = (u · ∇u,∆hu)2 − (b · ∇b,∆hu)2

−χ(∇×w,∆hu)2. (10)

Similarly, from the second and third equations in (1), we obtain

1

2

d

dt
‖∇hw‖22 + γ‖∇∇hw‖22 + κ‖∇h(∇ ·w)‖22 + 2χ‖∇hw‖22 = (u · ∇w,∆hw)2

− χ(∇× u,∆hw)2 (11)

and also

1

2

d

dt
‖∇hb‖22 + ν‖∇∇hb‖22 = (u · ∇b,∆hb)2 − (b · ∇u,∆hb)2. (12)

By adding the results (10), (11) and (12) one infers

1

2

d

dt
‖(∇hu,∇hw,∇hb)‖22 + (µ+ χ)‖∇∇hu‖22 + γ‖∇∇hw‖22 + ν‖∇∇hb‖22

+κ‖∇h(∇ ·w)‖22 + 2χ‖∇hw‖22 = (u · ∇u,∆hu)2 − (b · ∇b,∆hu)2

−χ(∇×w,∆hu)2 + (u · ∇w,∆hw)2 − χ(∇× u,∆hw)2 + (u · ∇b,∆hb)2

−(b · ∇u,∆hb)2. (13)
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Let us examine the terms on the right hand side of the above equality. We have

−(b · ∇b,∆hu)2 = −
3∑

i,j=1

2∑
k=1

∫
R3

bi∂ibj∂
2
kuj dx

=

3∑
i,j=1

2∑
k=1

∫
R3

∂kbi∂ibj∂kuj dx+

3∑
i,j=1

2∑
k=1

∫
R3

bi∂k∂ibj∂kuj dx.

Similarly, we get

−(b · ∇u,∆hb)2 = −
3∑

i,j=1

2∑
k=1

∫
R3

bi∂iuj∂
2
kbj dx

=
3∑

i,j=1

2∑
k=1

∫
R3

∂kbi∂iuj∂kbj dx−
3∑

i,j=1

2∑
k=1

∫
R3

bi∂k∂ibj∂kuj dx,

where we have used that b is divergence free. Hence,

− (b · ∇b,∆hu)2 − (b · ∇u,∆hb)2 =

3∑
i,j=1

2∑
k=1

∫
R3

∂kbi∂ibj∂kuj dx

+

3∑
i,j=1

2∑
k=1

∫
R3

∂kbi∂iuj∂kbj dx ≤ C
(∫

R3

|∇hb||∇b||∇hu| dx+∫
R3

|∇hb||∇u||∇hb| dx
)
.

Furthermore,

(u · ∇w,∆hw)2 =

3∑
i,j=1

2∑
k=1

∫
R3

ui∂iwj∂
2
kwj dx

= −
3∑

i,j=1

2∑
k=1

∫
R3

∂kui∂iwj∂kwj dx−
3∑

i,j=1

2∑
k=1

∫
R3

ui∂k∂iwj∂kwj dx.

On the other hand, by analysing the last term above it is easy to prove that it is
actually null. In fact, since ∇ · u = 0, one has

−
3∑

i,j=1

2∑
k=1

∫
R3

ui∂k∂iwj∂kwj dx =

3∑
i,j=1

2∑
k=1

∫
R3

ui∂kwj∂i∂kwj dx.

Therefore,

(u · ∇w,∆hw)2 ≤ C
∫
R3

|∇hw||∇w||∇hu| dx.

Similarly, we obtain

(u · ∇b,∆hb)2 ≤ C
∫
R3

|∇hb||∇b||∇hu| dx.

Also notice that, by applying Cauchy-Schwarz’s inequality, one has

−χ(∇× u,∆hw)2 − χ(∇×w,∆hu)2 ≤ χ‖∇∇hu‖22 + χ‖∇hw‖22. (14)
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By [22], the following estimate holds:

(u · ∇u,∆hu)2 ≤ C
∫
R3

|∇u3||∇u||∇hu| dx.

Consequently, from (13), we infer

1

2

d

dt
‖(∇hu,∇hw,∇hb)‖22 + µ‖∇∇hu‖22 + γ‖∇∇hw‖22 + ν‖∇∇hb‖22

+κ‖∇h(∇ ·w)‖22 + χ‖∇hw‖22

≤ C
∫
R3

|(∇u3,∇hw,∇hb)||(∇u,∇w,∇b)||(∇hu,∇hw,∇hb)| dx.

By applying Lemma 2.1, one obtains

1

2

d

dt
‖(∇hu,∇hw,∇hb)‖22 + µ‖∇∇hu‖22 + γ‖∇∇hw‖22 + ν‖∇∇hb‖22

+ κ‖∇h(∇ ·w)‖22 + χ‖∇hw‖22 ≤

≤ C‖(∇u3,∇hw,∇hb)‖2‖(∇hu,∇hw,∇hb)‖
1
4
2 ‖(∇u,∇w,∇b)‖

1
4
2

× ‖(∇∇hu,∇∇hw,∇∇hb)‖
3
2
2 .

By using Young’s inequality, it follows that

d

dt
‖(∇hu,∇hw,∇hb)‖22 + α‖(∇∇hu,∇∇hw,∇∇hb)‖22

+ 2κ‖∇h(∇ ·w)‖22 + 2χ‖∇hw‖22 ≤ C‖(∇u3,∇hw,∇hb)‖42‖(∇hu,∇hw,∇hb)‖2
× ‖(∇u,∇w,∇b)‖2,

where α = min{µ, ν, γ}. Now, by integrating over [T ∗− τ, t] the inequality above (τ
will be chosen a posteriori), we obtain

‖(∇hu,∇hw,∇hb)(t)‖22 + α

∫ t

T∗−τ
‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22 ds

≤ C + C

∫ t

T∗−τ
‖(∇u3,∇hw,∇hb)(s)‖42‖(∇hu,∇hw,∇hb)(s)‖2

×‖(∇u,∇w,∇b)(s)‖2 ds. (15)

In order to estimate the term ‖(∇u,∇w,∇b)(t)‖2 for all t ∈ [T ∗− τ, T ∗), we define

I(t) := sup
s∈[T∗−τ,t]

{‖(∇hu,∇hw,∇hb)(s)‖2}

+

(∫ t

T∗−τ
‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22 ds

) 1
2

(16)

and

J(t) := sup
s∈[T∗−τ,t]

{‖(∇u,∇w,∇b)(s)‖2}+

(∫ t

T∗−τ
‖(∆u,∆w,∆b)(s)‖22 ds

) 1
2

, (17)

where T ∗ − τ ≤ t < T ∗. First of all, let us establish a relationship between I and
J . By (15), one has

I2(t) ≤ 2 sup
s∈[T∗−τ,t]

{‖(∇hu,∇hw,∇hb)(s)‖22}
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+ 2

∫ t

T∗−τ
‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22 ds

≤ C + CI(t)J(t)
3
4

∫ t

T∗−τ
‖(∇u3,∇hw,∇hb)(s)‖42‖(∇u,∇w,∇b)(s)‖

1
4
2 ds

≤ C + CI(t)J(t)
3
4

∫ T

0

‖(∇u3,∇hw,∇hb)(s)‖
32
7
2 ds

+ CI(t)J(t)
3
4

∫ T

0

‖(∇u,∇w,∇b)(s)‖22 ds

≤ C + CI(t)J(t)
3
4 ,

where we have applied Young’s inequality, (6) and (9). By using Young’s inequality
again, we get

I2(t) ≤ C + CJ
3
2 (t) +

1

2
I2(t),

or equivalently,

I(t) ≤ C + CJ
3
4 (t), ∀ t ∈ (T ∗ − τ, T ∗). (18)

The inequality (18) is useful to prove that ‖(∇u,∇w,∇b)(t)‖2 is bounded in the
interval [T ∗ − τ, T ∗). In order to establish this last statement, we start noting that
the system (1) lets us conclude the following:

1

2

d

dt
‖∇u‖22 + (µ+ χ)‖∆u‖22 = (u · ∇u,∆u)2 − (b · ∇b,∆u)2 − χ(∇×w,∆u)2,

1

2

d

dt
‖∇w‖22 + γ‖∆w‖22 + κ‖∇(∇ ·w)‖22 + 2χ‖∇w‖22 = (u · ∇w,∆w)2

−χ(∇× u,∆w)2

and also

1

2

d

dt
‖∇b‖22 + ν‖∆b‖22 = (u · ∇b,∆b)2 − (b · ∇u,∆b)2,

where we used the fact that ∇·u = 0. Hence, by adding the three equalities above,
one obtains

1

2

d

dt
‖(∇u,∇w,∇b)‖22 + (µ+ χ)‖∆u‖22 + γ‖∆w‖22 + ν‖∆b‖22 + κ‖∇(∇ ·w)‖22

+2χ‖∇w‖22 = (u · ∇u,∆u)2 − (b · ∇b,∆u)2 − χ(∇×w,∆u)2

+(u · ∇w,∆w)2 − χ(∇× u,∆w)2 + (u · ∇b,∆b)2 − (b · ∇u,∆b)2. (19)

Let us examine all the terms on the right hand side of the equality above. We have

(u · ∇w,∆w)2 =

3∑
i,j,k=1

∫
R3

ui∂iwj∂
2
kwj dx

=

3∑
j=1

2∑
k=1

∫
R3

u3∂3wj∂
2
kwj dx+

3∑
j,k=1

2∑
i=1

∫
R3

ui∂iwj∂
2
kwj dx

+

3∑
j=1

∫
R3

u3∂3wj∂
2
3wj dx

=: I1(t) + I2(t) + I3(t). (20)
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Here

I1(t) =

3∑
j=1

2∑
k=1

∫
R3

u3∂3wj∂
2
kwj dx

= −
3∑
j=1

2∑
k=1

∫
R3

∂ku3∂3wj∂kwj dx−
3∑
j=1

2∑
k=1

∫
R3

u3∂k∂3wj∂kwj dx

= −
3∑
j=1

2∑
k=1

∫
R3

∂ku3∂3wj∂kwj dx+
1

2

3∑
j=1

2∑
k=1

∫
R3

∂3u3(∂kwj)
2 dx

≤ C
∫
R3

|∇u||∇w||∇hw| dx+ C

∫
R3

|∇u||∇hw|2 dx.

Similarly,

I2(t) =

3∑
j,k=1

2∑
i=1

∫
R3

ui∂iwj∂
2
kwj dx

= −
3∑

j,k=1

2∑
i=1

∫
R3

∂kui∂iwj∂kwj dx−
3∑

j,k=1

2∑
i=1

∫
R3

ui∂k∂iwj∂kwj dx

= −
3∑

j,k=1

2∑
i=1

∫
R3

∂kui∂iwj∂kwj dx+
1

2

3∑
j,k=1

2∑
i=1

∫
R3

∂iui(∂kwj)
2 dx

≤ C
∫
R3

|∇u||∇hw||∇w| dx+ C

∫
R3

|∇hu||∇w|2 dx.

By using that u is divergence free, one also has

I3(t) =

3∑
j=1

∫
R3

u3∂3wj∂
2
3wj dx

= −1

2

3∑
j=1

∫
R3

∂3u3(∂3wj)
2 dx

=
1

2

3∑
j=1

2∑
k=1

∫
R3

∂kuk(∂3wj)
2 dx

≤ C
∫
R3

|∇hu||∇w|2 dx.

Therefore, using the above estimates, the equality (20) yields

(u · ∇w,∆w)2 ≤ C
∫
R3

|∇u||∇hw|2 dx+ C

∫
R3

|∇u||∇hw||∇w| dx

+C

∫
R3

|∇hu||∇w|2 dx.

Following the same process, we conclude that

(u · ∇b,∆b)2 ≤ C
∫
R3

|∇u||∇hb|2 dx+ C

∫
R3

|∇u||∇hb||∇b| dx

+C

∫
R3

|∇hu||∇b|2 dx.
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It is important to point out that the technique applied to (u · ∇w,∆w)2 may not
be useful when we consider the terms −(b · ∇b,∆u)2 and −(b · ∇u,∆b)2 (such
expressions were obtained in (19)). However, we can argue as follows.

− (b · ∇b,∆u)2 − (b · ∇u,∆b)2 = −
3∑

i,j,k=1

∫
R3

bi∂ibj∂
2
kuj dx

−
3∑

i,j,k=1

∫
R3

bi∂iuj∂
2
kbj dx =

3∑
i,j,k=1

∫
R3

∂kbi∂ibj∂kuj dx+

3∑
i,j,k=1

∫
R3

bi∂k∂ibj∂kuj dx

+

3∑
i,j,k=1

∫
R3

∂kbi∂iuj∂kbj dx+

3∑
i,j,k=1

∫
R3

bi∂k∂iuj∂kbj dx.

Consequently,

− (b · ∇b,∆u)2 − (b · ∇u,∆b)2 =

3∑
i,j,k=1

∫
R3

∂kbi∂ibj∂kuj dx

+

3∑
i,j,k=1

∫
R3

bi∂k∂ibj∂kuj dx+

3∑
i,j,k=1

∫
R3

∂kbi∂iuj∂kbj dx

−
3∑

i,j,k=1

∫
R3

bi∂k∂ibj∂kuj dx.

By using ∇ · b = 0, we have

− (b · ∇b,∆u)2 − (b · ∇u,∆b)2 =

3∑
i,j,k=1

[ ∫
R3

∂kbi∂ibj∂kuj dx

+

∫
R3

∂kbi∂iuj∂kbj dx
]

(21)

=
3∑
j=1

2∑
k=1

[∫
R3

∂kb3∂3bj∂kuj dx+

∫
R3

∂kb3∂3uj∂kbj dx

]

+

3∑
j,k=1

2∑
i=1

[∫
R3

∂kbi∂ibj∂kuj dx+

∫
R3

∂kbi∂iuj∂kbj dx

]

+

3∑
j=1

[∫
R3

∂3b3∂3bj∂3uj dx+

∫
R3

∂3b3∂3uj∂3bj dx

]
=: J1(t) + J2(t) + J3(t). (22)

Let us estimate each term Ji(t) for i = 1, 2, 3. Hence,

J1(t) =

3∑
j=1

2∑
k=1

[∫
R3

∂kb3∂3bj∂kuj dx+

∫
R3

∂kb3∂3uj∂kbj dx

]
≤ C

∫
R3

|∇hb||∇b||∇u| dx.
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Similarly, one obtains

J2(t) =

3∑
j,k=1

2∑
i=1

[∫
R3

∂kbi∂ibj∂kuj dx+

∫
R3

∂kbi∂iuj∂kbj dx

]
≤ C

∫
R3

|∇b||∇hb||∇u| dx+ C

∫
R3

|∇hu||∇b|2 dx

and, by applying ∇ · b = 0, we have

J3(t) =

3∑
j=1

[∫
R3

∂3b3∂3bj∂3uj dx+

∫
R3

∂3b3∂3uj∂3bj dx

]

= −
3∑
j=1

2∑
k=1

[∫
R3

∂kbk∂3bj∂3uj dx+

∫
R3

∂kbk∂3uj∂3bj dx

]
≤ C

∫
R3

|∇hb||∇b||∇u| dx.

Replacing, in (21), the estimates obtained for Ji(t), i = 1, 2, 3, we get

−(b · ∇b,∆u)2 − (b · ∇u,∆b)2 ≤ C
∫
R3

|∇hu||∇b|2 dx+ C

∫
R3

|∇hb||∇b||∇u| dx.

Furthermore, notice that

−χ(∇×w,∆u)2 − χ(∇× u,∆w)2 ≤ χ‖∇w‖22 + χ‖∆u‖22,

where we have applied Cauchy-Schwarz’s inequality. At last, Y. Zhou and M.
Pokorný [29] proved that

(u · ∇u,∆u)2 ≤ C
∫
R3

|∇hu||∇u|2 dx.

Therefore, (19) reads

1

2

d

dt
‖(∇u,∇w,∇b)‖22 + µ‖∆u‖22 + γ‖∆w‖22 + ν‖∆b‖22 + κ‖∇(∇ ·w)‖22

+χ‖∇w‖22 ≤ C
∫
R3

|(∇hu,∇hw,∇hb)||(∇u,∇w,∇b)|2 dx. (23)

By using Lemma 2.1, one gets

d

dt
‖(∇u,∇w,∇b)‖22 + 2α‖(∆u,∆w,∆b)‖22 + 2κ‖∇(∇ ·w)‖22 + 2χ‖∇w‖22

≤ C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖
1
2
2 ‖(∇∇hu,∇∇hw,∇∇hb)‖2

×‖(∆u,∆w,∆b)‖
1
2
2 ,

where α = min{µ, γ, ν}. Now, by integrating over [T ∗ − τ, s], s ≤ t, the inequality
above yields

‖(∇u,∇w,∇b)(s)‖22 + 2α

∫ s

T∗−τ
‖(∆u,∆w,∆b)(τ)‖22 dτ ≤ C

+CI(t)

∫ s

T∗−τ
‖(∇u,∇w,∇b)(τ)‖

1
2
2 ‖(∇∇hu,∇∇hw,∇∇hb)(τ)‖2

×‖(∆u,∆w,∆b)(τ)‖
1
2
2 dτ,
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where we applied the definition of I(t) given in (16). By Hölder’s inequality, we
have

‖(∇u,∇w,∇b)(s)‖22 + 2α

∫ s

T∗−τ
‖(∆u,∆w,∆b)(τ)‖22 dτ

≤ C + CI2(t)J
1
2 (t)

(∫ s

T∗−τ
‖(∇u,∇w,∇b)(τ)‖22 dτ

) 1
4

,

for all s ≤ t. In the inequality above the definitions of I(t) and J(t) were applied
(see (16) and (17)). It follows, by using (17), that

J2(t) ≤ C + CI2(t)J
1
2 (t)

(∫ t

T∗−τ
‖(∇u,∇w,∇b)(τ)‖22 dτ

) 1
4

.

By using Young’s inequality, we infer

J2(t) ≤ C + CI
8
3 (t)

(∫ t

T∗−τ
‖(∇u,∇w,∇b)(τ)‖22 dτ

) 1
3

+
1

2
J2(t).

Consequently, by applying (18), we obtain

J(t) ≤ C + [C + CJ(t)]

(∫ t

T∗−τ
‖(∇u,∇w,∇b)(τ)‖22 dτ

) 1
6

. (24)

From the energy inequality (9), one concludes that there exists 0 < τ � 1 such that∫ T

T∗−τ
‖(∇u,∇w,∇b)(τ)‖22 dτ ≤

1

(2C)6
.

Now, we can obtain the desired estimate for ‖(∇u,∇w,∇b)(t)‖ in [T ∗ − τ, T ∗). In
fact, by replacing the bound above in (24), we get

J(t) ≤ C, ∀ t ∈ [T ∗ − τ, T ∗).

The definition (17) establishes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2. In order to prove Theorem 1.2 let us examine all the
terms on the right hand side of (13) in an alternative way. We have

(u · ∇w,∆hw)2 =

3∑
i,j=1

2∑
k=1

∫
R3

ui∂iwj∂
2
kwj dx

= −
3∑

i,j=1

2∑
k=1

∫
R3

∂kui∂iwj∂kwj dx

=

3∑
i,j=1

2∑
k=1

∫
R3

wj∂kui∂k∂iwj dx

≤ C
∫
R3

|w||∇u||∇∇hw| dx,

since ∇ · u = 0. By arguing in the same way, one gets

(u · ∇b,∆hb)2 ≤ C
∫
R3

|b||∇u||∇∇hb| dx.
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Notice that

−(b · ∇b,∆hu)2 = −
3∑

i,j=1

2∑
k=1

∫
R3

bi∂ibj∂
2
kuj dx

≤ C
∫
R3

|b||∇b||∇∇hu| dx

and also

−(b · ∇u,∆hb)2 = −
3∑

i,j=1

2∑
k=1

∫
R3

bi∂iuj∂
2
kbj dx

≤ C
∫
R3

|b||∇u||∇∇hb| dx.

The reader might check that (14) assures the following estimate:

−χ(∇× u,∆hw)2 − χ(∇×w,∆hu)2 ≤ χ‖∇∇hu‖22 + χ‖∇hw‖22.
At last, Y. Zhou and M. Pokorný [29] proved that

(u · ∇u,∆hu)2 ≤ C
∫
R3

|u3||∇u||∇∇hu| dx.

By replacing all these last results obtained above in (13) and by using Young’s
inequality, one has

1

2

d

dt
‖(∇hu,∇hw,∇hb)‖22 + α‖(∇∇hu,∇∇hw,∇∇hb)‖22 + κ‖∇h(∇ ·w)‖22

+χ‖∇hw‖22 ≤ C
∫
R3

|(u3,w,b)|2|(∇u,∇w,∇b)|2 dx

+
α

2

∫
R3

|(∇∇hu,∇∇hw,∇∇hb)|2 dx,

where α = min{µ, γ, ν}. Hence,

d

dt
‖(∇hu,∇hw,∇hb)‖22 + α‖(∇∇hu,∇∇hw,∇∇hb)‖22 + 2κ‖∇h(∇ ·w)‖22

+2χ‖∇hw‖22 ≤ C
∫
R3

|(u3,w,b)|2|(∇u,∇w,∇b)|2 dx.

By Lemmas 2.2 and 2.3, and also by (8), we obtain

d

dt
‖(∇hu,∇hw,∇hb)‖22 + α‖(∇∇hu,∇∇hw,∇∇hb)‖22 + 2κ‖∇h(∇ ·w)‖22

+2χ‖∇hw‖22 ≤ C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖2
×‖(∇∇hu,∇∇hw,∇∇hb)‖2.

By Young’s inequality, one concludes

d

dt
‖(∇hu,∇hw,∇hb)‖22 +

α

2
‖(∇∇hu,∇∇hw,∇∇hb)‖22 + 2κ‖∇h(∇ ·w)‖22

+2χ‖∇hw‖22 ≤ C‖(∇hu,∇hw,∇hb)‖22‖(∇u,∇w,∇b)‖22.
By applying Gronwall’s inequality, we get

‖(∇hu,∇hw,∇hb)(t)‖2 ≤ ‖(∇hu,∇hw,∇hb)(δ)‖2

× exp

{
C

∫ T

δ

‖(∇u,∇w,∇b)(s)‖22 ds

}
,
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for all t ∈ [δ, T ∗). By energy inequality (9), we can guarantee the following estimate:

‖(∇hu,∇hw,∇hb)(t)‖2 ≤ C, ∀ t ∈ [δ, T ∗). (25)

In order to prove that the term ‖(∇u,∇w,∇b)(t)‖2 is bounded in [δ, T ∗), we recall
that (23) and Hölder’s inequality imply

d

dt
‖(∇u,∇w,∇b)‖22 + 2α‖(∆u,∆w,∆b)‖22 + 2κ‖∇(∇ ·w)‖22 + 2χ‖∇w‖22

≤ C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖24,
where α = min{µ, γ, ν}. By using (25) and Gagliardo-Nirenberg’s inequality, one
has

d

dt
‖(∇u,∇w,∇b)‖22 + 2α‖(∆u,∆w,∆b)‖22 + 2κ‖∇(∇ ·w)‖22 + 2χ‖∇w‖22

≤ C‖(∇u,∇w,∇b)‖
1
2
2 ‖(∆u,∆w,∆b)‖

3
2
2 ,

for all t ∈ [δ, T ∗). By Young’s inequality, we infer

d

dt
‖(∇u,∇w,∇b)‖22 + α‖(∆u,∆w,∆b)‖22 + 2κ‖∇(∇ ·w)‖22 + 2χ‖∇w‖22

≤ C‖(∇u,∇w,∇b)‖22.
By Gronwall’s inequality,

‖(∇u,∇w,∇b)(t)‖2 ≤ C‖(∇u,∇w,∇b)(δ)‖2, ∀ t ∈ [δ, T ∗).

This completes the proof of Theorem 1.2.
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[29] Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations
via one velocity component, Nonlinearity, 23 (2010), 1097–1107.

Received January 2020; 1st revision January 2020; 2nd revision April 2020.

E-mail address: lorenz@math.unm.edu

E-mail address: wilberclay@gmail.com

E-mail address: suelencristinajhs@hotmail.com

http://www.ams.org/mathscinet-getitem?mr=MR3196890&return=pdf
http://dx.doi.org/10.1016/j.na.2014.03.018
http://dx.doi.org/10.1016/j.na.2014.03.018
http://www.ams.org/mathscinet-getitem?mr=MR3041770&return=pdf
http://dx.doi.org/10.1186/1687-2770-2013-58
http://dx.doi.org/10.1186/1687-2770-2013-58
http://www.ams.org/mathscinet-getitem?mr=MR3658805&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2017.05.045
http://www.ams.org/mathscinet-getitem?mr=MR2969852&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2012.07.013
http://dx.doi.org/10.1016/j.nonrwa.2012.07.013
http://www.ams.org/mathscinet-getitem?mr=MR3990123&return=pdf
http://dx.doi.org/10.1016/j.aml.2019.07.011
http://www.ams.org/mathscinet-getitem?mr=MR2778615&return=pdf
http://dx.doi.org/10.1016/S0252-9602(10)60139-7
http://www.ams.org/mathscinet-getitem?mr=MR2972425&return=pdf
http://dx.doi.org/10.3934/cpaa.2013.12.117
http://dx.doi.org/10.3934/cpaa.2013.12.117
http://www.ams.org/mathscinet-getitem?mr=MR3377710&return=pdf
http://dx.doi.org/10.1007/s00033-015-0500-7
http://dx.doi.org/10.1007/s00033-015-0500-7
http://www.ams.org/mathscinet-getitem?mr=MR3305136&return=pdf
http://dx.doi.org/10.1016/j.na.2014.12.003
http://dx.doi.org/10.1016/j.na.2014.12.003
http://www.ams.org/mathscinet-getitem?mr=MR3371254&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2015.06.050
http://dx.doi.org/10.1016/j.jmaa.2015.06.050
http://www.ams.org/mathscinet-getitem?mr=MR3348069&return=pdf
http://dx.doi.org/10.1016/j.na.2015.04.005
http://dx.doi.org/10.1016/j.na.2015.04.005
http://www.ams.org/mathscinet-getitem?mr=MR3010223&return=pdf
http://dx.doi.org/10.1007/s10440-012-9712-4
http://dx.doi.org/10.1007/s10440-012-9712-4
http://www.ams.org/mathscinet-getitem?mr=MR3152082&return=pdf
http://dx.doi.org/10.1007/s10440-013-9834-3
http://dx.doi.org/10.1007/s10440-013-9834-3
http://www.ams.org/mathscinet-getitem?mr=MR3115843&return=pdf
http://dx.doi.org/10.1016/j.jde.2013.09.002
http://dx.doi.org/10.1016/j.jde.2013.09.002
http://www.ams.org/mathscinet-getitem?mr=MR2006605&return=pdf
http://dx.doi.org/10.4310/MAA.2002.v9.n4.a5
http://dx.doi.org/10.4310/MAA.2002.v9.n4.a5
http://www.ams.org/mathscinet-getitem?mr=MR2582610&return=pdf
http://dx.doi.org/10.1063/1.3268589
http://dx.doi.org/10.1063/1.3268589
http://www.ams.org/mathscinet-getitem?mr=MR2630092&return=pdf
http://dx.doi.org/10.1088/0951-7715/23/5/004
http://dx.doi.org/10.1088/0951-7715/23/5/004
mailto:lorenz@math.unm.edu
mailto:wilberclay@gmail.com
mailto:suelencristinajhs@hotmail.com

	1. Introduction
	2. Preliminaries
	3. Proof of the main results
	3.1. Proof of Theorem 1.1
	3.2. Proof of Theorem 1.2

	Acknowledgments
	REFERENCES

