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Branislav Ivanov1, Haifeng Ma2 and Dijana Mosić3
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Abstract. The paper surveys, classifies and investigates theoretically and nu-

merically main classes of line search methods for unconstrained optimization.
Quasi-Newton (QN) and conjugate gradient (CG) methods are considered as

representative classes of effective numerical methods for solving large-scale un-

constrained optimization problems. In this paper, we investigate, classify and
compare main QN and CG methods to present a global overview of scien-

tific advances in this field. Some of the most recent trends in this field are

presented. A number of numerical experiments is performed with the aim to
give an experimental and natural answer regarding the numerical one another

comparison of different QN and CG methods.

1. Introduction and preliminaries. In this survey, we focus on solving the un-
constrained nonlinear optimization problem

min f(x), x ∈ Rn, (1.1)

where the function f : Rn → R is continuously differentiable and bounded from be-
low. The general iterative rule for solving (1.1) starts from an initial approximation
x0 ∈ Rn and generates a sequence {xk, k ≥ 0} using the general iterative scheme

xk+1 =xk + αkdk, k ≥ 0, (1.2)

where the step-size αk is a positive real parameter determined after the exact or
inexact line search, xk is the last generated iterative point, xk+1 is the current iter-
ative point, and dk is an appropriate search direction. General class of algorithms
of the form (1.2) is known as the line search algorithms. These algorithms require
only the search direction dk ∈ Rn and the step-size αk ∈ R.

The following notations will be used, as usual:

g(x) = ∇f(x), G(x) = ∇2f(x), gk = ∇f(xk), Gk = ∇2f(xk),
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where ∇f(x) denotes the gradient and ∇2f(x) denotes the Hessian of f . For the
sake of simplicity, the notation fk will point to f(xk). Further, xT denotes the
transpose of x ∈ Rn. Taylor’s approximation of the function f at the point xk+1 =
xk + αkdk is defined by

f(xk+1) ≈ f(xk) + αkg
T
k dk. (1.3)

Therefore, an appropriate descent search direction dk must be determined on the
basis of the descent condition

gT
k dk < 0, for all k. (1.4)

Primary choice for descent direction is dk = −gk, which reduces the general line
search iterations (1.2) into the gradient descent (GD) iterative scheme

xk+1 = xk − αkgk. (1.5)

In this paper, we survey gradient methods satisfying the descent condition (1.4).
If there exists a constant c > 0 such that

gT
k dk < −c‖gk‖2, for all k, (1.6)

where c is a positive constant independent of k, then it is said that the vector dk
satisfies the sufficient descent condition.

As for the choice of search direction, one of the possible choices for the search
direction in unconditional optimization is to move from the current point along the
negative gradient in each iteration, which correspond to dk = −gk. This choice
of search direction leads us to a class of methods known as gradient descent meth-
ods. One negative feature of gradient methods is relatively frequent occurrence of,
so called, zig-zagging phenomenon, which initiates very slow convergence of GD
algorithms to the optimal point, or even divergence [90].

Advantages and disadvantages of GD methods can be summarized as follows.

1. GD methods are globally convergent, i.e., converge to a local minimizer re-
gardless of the starting point.

2. Many optimization methods switch to GD rule when they do not make suffi-
cient progress to the convergence.

3. The convergence is linear and usually very slow.
4. Numerically, GD methods are often not convergent.

Another important direction of the search is the Newton’s direction dk = −G−1
k gk,

obtained from the second-order Taylor-development, assuming that Hessian Gk is
positive-definite. The pure Newton method (without line search) for minimization
of a function f : Rn → R is defined using a quadratic approximation of f(xk+1):

Φ(d) := f(xk + d) ≈ f(xk) + gT
k d +

1

2
dTGkd. (1.7)

The solution dk = mind(Φ(d)) is given by

dk = −G−1
k gk.

So, the pure Newton method is defined by

xk+1 = xk −G−1
k gk. (1.8)

The Newton method with line search uses an appropriate step-size αk in (1.8)
with the aim to ensure global stability. The resulting iterations are of the form

xk+1 = xk − αkG−1
k gk, (1.9)
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wherein the step-size αk is computed performing a line search.
The Newton method exhibits three major drawbacks in practical applications.

1. The descent (and convergence) may not be achieved if the iterations (1.8) are
started far away from the local minimizer.

2. Another drawback is numerically expensive and tedious necessity to com-
pute the second derivative matrix (Hessian) and its inverse in every iteration.
Moreover, the second derivatives may be sometimes unavailable.

3. The main disadvantages of the Newton method are the possibility that the
Hessian Gk is not positive definite.

Due to that, numerous modifications of it were created, which can be globally
divided into two large groups: modified Newton’s methods and quasi-Newton (QN)
methods. The QN methods are aimed to address all the above difficulties of the
Newton method. The first drawback is overcome by taking an appropriately defined
positive definite matrix Bk that approximates the Hessian Gk or an appropriately
defined positive definite matrix Hk that approximates the true Hessian inverse G−1

k

and then performing a line search at each iteration. For a given initial point x0 ∈ Rn
and a symmetric positive definite matrix H0, the search direction in the kth iteration
of the quasi-Newton method is defined by dk = −Hkgk, where Hk is a symmetric
and positive-definite matrix.

QN methods and modified Newton methods belong to most powerful methods for
solving unconditional optimization and applicable in many nonlinear optimization
problems. A survey of QN methods for solving nonlinear least-squares problems was
considered in [86]. The optimization methods have found a number of applications
in fluid mechanics [44], free surface flow and solid body contact [13], finding the op-
timal trajectory for an aircraft or a robot arm, designing a portfolio of investments,
controlling a chemical process, computing the optimal shape of an automobile. See
[90] for more details. A modification of the quasi-Newton method in defining the
two-phase approximate greatest descent was used in [71]. Several variants of multi-
step spectral gradient methods for solving large scale unconstrained optimization
problems were proposed in [111]. Usage of an optimization algorithm in artificial
neural networks was considered in [75]. Properties of Hessian matrix which appear
in distributed gradient-based multi-agent control systems was considered in [117].
A survey of derivative-free optimization methods was given in [127]. An application
of unconstrained optimization in solving the risk probability was presented in [76].

The study of conjugate gradient (CG) methods was started by Hestenes and
Stiefel in 1952 in [60], and the development of CG methods for solving large-scale
unconstrained optimization problems is still ongoing. After all these years, there
is still a need to find a more efficient CG method that will solve unconstrained
optimization problems with thousands of variables in the shortest possible time
interval as well as with a minimal number of iterations and function evaluations.

CG methods construct a sequence of approximations xk by the line search rule
(1.2), such that the search directions dk are generated by

dk := dk := d(βk,gk,dk−1)=

{
−g0, k=0,
−gk + βkdk−1, k ≥ 1,

(1.10)

where βk is the real value which is known as the conjugate gradient update parame-
ter (CGUP). More precisely, the search direction dk of the CG method is defined as
a proper linear combination of the gradient descent direction and a positive multiple
of the direction used in the previously finished iteration. From (1.10) and (1.2), it
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clearly follows that the CG methods are defined simply only by the gradient direc-
tion gk and by the CGUP βk. Different CG methods arise from proper choices of
the scalar βk. According to the common agreement, βMk denotes the parameter βk
of the CG method M. It is important to mention that some researchers propose
usage of βM+

k = max{βMk , 0}. So, it is possible to use βM+
k instead of βMk and

generate corresponding dual method.
Popularity of CG methods is confirmed by a number of recent surveys and book

chapters [42, 57, 85, 87, 88]. In addition to this basic information on the chronologi-
cal development of the CG methods, it is also important to mention its applications.
In general, CG methods are important in solving large-scale optimization problems.
CG methods iterates are characterized by low memory allocation and strong local
and global convergence properties. Based on this fact, these methods become useful
in all areas where optimization problems of any kind are involved. The CG meth-
ods have wide use in solving systems of equations and image restoration problem
[12, 16, 70, 78, 128, 135, 136, 140], the linear response eigenvalue problem [74], in
regression analysis [108, 143]. On that way, CG methods have the influence on
the development of an artificial neural networks learning algorithms [46, 75]. A
unique approach to the ABS type CG methods was proposed in [1]. Application of
CG methods in solving very large symmetric positive semi definite linear systems
that appear in optimal surface parameterizations are described in [64]. Also, it is
possible to mention application in data analysis [110]. A variant of the projected
preconditioned conjugate gradient method and its application in solving the linear
response eigenvalue problem was investigated in [74].

Main goals leading current research paper can be highlighted as follows.

(1) A survey and specific classifications of CG and QN methods for nonlinear
unconstrained optimization is presented.

(2) Convergence properties of CG methods are investigated.

(3) Specific numerical testings are performed on both the CG and QN methods.
Numerical testing on some classes of CG methods and hybrid CG methods as
well as on some QN methods is presented. A numerical experiment about the
influence of the scalar t in Dai-Liao CG methods is performed and analysed.
Also, gradient descent methods defined by appropriate acceleration parameter
are tested and compared.

The overall structure of the paper based on contents of each section is described
as follows. Section 1 describes basic notation, introductory notions, preliminaries
and motivation. Global algorithms and various line search variants are presented
in Section 2. Overview of QN methods and their classification are considered in
Section 3. Section 4 gives a specific overview of CG methods. Convergence prop-
erties of considered CG methods are investigated in Section 5. According to the
presented taxonomy of basic CG methods, properties of CG methods with yTk−1gk
in the numerator of βk are considered in Subsection 5.1, properties of CG meth-
ods involving ‖gk‖2 in the numerator of βk are given in Subsection 5.2, while the
convergence properties of DL methods are presented in Subsection 5.3. Numer-
ical experiments are performed in Section 6. In details, Subsection 6.1 arranges
numerical results on QN methods with constant diagonal Hessian approximation,
Subsection 6.2 compares numerically basic CG methods involving yTk−1gk in the

numerator of βk, Subsection 6.3 compares basic CG methods with ‖gk‖2 in the
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numerator of βk, while numerical experiments on the hybrid CG methods are pre-
sented in Subsection 6.4. Finally, Subsection 6.5 describes numerical experiments
on the modified Dai-Liao methods. Concluding remarks are given in Section 7.

2. Global algorithms and line search variants. First, we present an algorithm
that describes the general scheme of line search methods

Algorithm 1 Gloab line search algorithm

Require: Objective f(x), initial point x0 ∈ Rn and the tolerance 0 < ε� 1.
1: k := 0.
2: while ‖gk‖ > ε do
3: Determine the vector dk which represents the search direction.
4: Compute the step length αk
5: Compute the new approximation of the minimum xk+1 := xk + αkdk
6: k := k + 1
7: end while

Ensure: xk+1, f(xk+1)

2.1. Line search procedures. To achieve the global convergence of iterative
methods, an appropriate step-size αk is required. The most promising at first
glance is the exact line search (ELS), which assumes the unidimensional function

Φ(α) := f(xk + αdk) (2.1)

and the step-size is defined after the unidimensional optimization of the form

f(xk + αkdk) = min
α>0

Φ(α). (2.2)

The ELS rule may give the most precise minimum. However, ELS is too expensive in
practice or even impossible to implement, especially in situations where the iteration
is far from the exact solution.

Applying the iterative procedure (1.2), it is most logical to choose a new point
so that the step length αk reduces the value of the goal function:

Φ(αk) = f(xk+1) < Φ(0) = f(xk). (2.3)

Methods that in each iterative step require the fulfillment of conditions (2.3), that is,
the reduction of the value of the objective function, define iterations that in each step
approach the minimum of the given function. The methods conceived in this way
belong to the class of methods of monotone line search. Many variants of inexact line
search (ILS) rules are proposed and dominant in the nonlinear optimization. The
most commonly used ILS techniques are Armijo, Goldstein, Wolfe, Powel, Fletcher
and other [4, 8, 19, 50, 55, 56, 109, 126]. In most conjugate gradient methods, one of
the next ILS procedures methods is used to calculate the step length αk: Wolfe line
search developed in [55, 56], strong Wolfe line search, or backtracking line search
from [4].

In contrast to the monotonic line search, the non-monotonic line search is also
known in the literature, where it is not necessary to reduce the value of the objec-
tive function in each iteration [51, 52, 53]. Although non-monotone techniques do
not provide a minimum approach to the function in each iteration, they are very
common in practical applications and have very good convergence properties. A
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number of nonmonotonic linear search methods have been proposed recently (see,
for example, [119, 120]).

2.1.1. Backtracking line search. A backtracking line search scheme based on the
Armijo condition, is aimed to determining the maximal value during the moving
along a given search vector. It starts with a relatively large step-size estimate and
iteratively reduces the step-size value until a decrease in the value of the objective
function is observed, according to the local gradient of the goal function. Let
β ∈ (0, 1), ϕ ∈ (0, 1) and α > 0 be given. Then there exists a smallest nonnegative
integer mk satisfying

f(xk + βmktdk) ≤ f(xk) + ϕβmktgTk dk, t > 0. (2.4)

The procedure for backtracking line search proposed in [4] starts from the initial
value α= 1 and its output values are defined such that it decreases the goal func-
tion. Consequently, Algorithm 2 from [112] is used in numerical experiments as the
implementation of the ILS which defines the principal step-size αk.

Algorithm 2 The backtracking line search.

Require: Nonlinear multivariate function f(x), the vector dk, previous approxi-
mation xk, and the real numbers 0 < ω < 0.5 and ϕ ∈ (0, 1).

1: α = 1.
2: While f(xk + αdk) > f(xk) + ωαgT

k dk, take α := αϕ.
3: Return αk = α.

2.1.2. Goldstein line search. In order to ensure a sufficient decrease of the objective
function, Goldstein rule for ILS requires the following conditions:

f(xk + αdk) ≤ f(xk) + ρtgTk dk (2.5)

and

f(xk + αdk) ≥ f(xk) + (1− ρ)tgTk dk, (2.6)

where 0 < ρ < 1
2 and t > 0. Conditions (2.5) and (2.6) define the Goldstein rule for

inexact line search.

2.1.3. Wolfe line search. Wolfe line search conditions are well-known and these are
given by

f(xk + αkdk) ≤ f(xk) + ηαkg
T
k dk, (2.7)

g(xk + αkdk)Tdk ≥ σ1g
T
k dk, (2.8)

where 0 < η < σ1 < 1. In addition, for conjugate gradient methods, the generalized
strong Wolfe conditions, which are a conjunction of (2.7) and

− σ2g
T
k dk ≥ g(xk + αkdk)Tdk ≥ σ1g

T
k dk (2.9)

are often used, where σ1 > 0. In the case σ1 = σ2, the generalized strong Wolfe
conditions reduce to the strong Wolfe conditions, which are a conjunction of (2.7)
and

|g(xk + αkdk)Tdk| ≤ −σ1g
T
k dk. (2.10)

The condition (2.7) of the Wolfe conditions is called the Armijo condition, which is
often used apart or in the form of its variants.
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3. Quasi-Newton methods and their classification. The most general itera-
tive rule of QN type with line search is of the form

xk+1 = xk − αkHk gk, (3.1)

such that Hk is an approximation of the inverse Hesiian G−1
k . Further, it is assumed

that Bk is an appropriately generated symmetric positive definite approximation of
Gk [118]. The following notations in defining an appropriate updating formula

sk = xk+1 − xk, yk = gk+1 − gk (3.2)

are typical. The update Bk+1 of Bk is defined using the rule

Bk+1 = Bk + Ek, (3.3)

where Ek is defined on the basis of the quasi-Newton property (secant condition)

Bk+1sk = yk. (3.4)

The quasi-Newton condition for the matrix Hk is given by

Hk+1yk = sk. (3.5)

Methods that require the calculation or approximation of the Hessian matrix and
its inverse belong to the class of QN methods as well as its numerous modifications.
The pure Newton method requires calculation of second derivatives matrix, which is
avoided in QN methods. As a consequence, the Newton method is computationally
expensive and exhibits slow computation, while QN methods are computationally
cheap and of faster computation. On the other hand, the Newton method requires
lesser number of iterative steps and generates more precise convergence path than
QN methods.

3.1. Symmetric Rank-One update. The Symmetric Rank-One update (SR1)
assumes the matrix Hk+1in the form

Hk+1 = Hk + Ek,

where Ek is assumed to be a symmetric rank-one matrix. Therefore,

Hk+1 = Hk + ukv
T
k , (3.6)

where

uk,vk ∈ Rn.
The quasi-Newton condition (3.5) initiates

Hk+1yk = (Hk + ukv
T
k )yk = sk,

that is

(vTk yk)uk = sk −Hkyk. (3.7)

The conclusion is that uk must be in the direction sk −Hkyk. Suppose that

sk −Hkyk 6= 0,

(otherwise Hk would satisfy the quasi-Newton equation) and the vector vk satisfies
vTk yk 6= 0. Then, on the basis of (3.6) and (3.7), it follows that

Hk+1 = Hk +
1

vTk yk
(sk −Hkyk)vTk . (3.8)
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The condition that the approximation Hk+1 of the Hessian inverse is symmetric
requires us to take vk = sk −Hkyk, so it was obtained

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)Tyk
, (3.9)

which is the Symmetric Rank One (SR1) update.
For general functions, Conn, Gould and Toint in [20] proved that the sequence of

SR1 Hessian approximations converges to the true Hessian provided that the steps
are uniformly linearly independent.

3.2. DFP update. The Hessian update Bk+1 is defined as the solution to the
problem

min
B
‖B −Bk‖, s.t. B = BT, Bsk = yk. (3.10)

The solution to (3.10) is equal to

BDFP
k+1 = (I − ρkyksT

k )BDFP
k (I − ρkskyT

k ) + ρkyky
T
k , %k =

1

yT
k sk

.

The inverse Hessian update can be generated using the Sherman - Morrison - Wood-
bury.

Moreover, the DFP update is known as a method of updating, of rank 2, that
is, Hk+1 is formed by adding the matrix Hk with two symmetric matrices, each of
which is rank 1:

Hk+1 = Hk + auku
T
k + bvkv

T
k ,

where uk,vk ∈ Rn, and a, b are scalars. From the quasi-Newton condition (3.5) it
follows that

Hk yk + auku
T
k yk + bvkv

T
k yk = sk. (3.11)

The vectors uk and vk are not unique, but they can obviously be determined in the
following way

uk = sk, vk = Hkyk.

Now, (3.11) implies

a =
1

uTk yk
=

1

sTk yk
, b = − 1

vTk yk
= − 1

yTkHkyk
.

So we get

HDFP
k+1 = Hk +

sks
T
k

sTk yk
− Hkyky

T
kHk

yTkHkyk
. (3.12)

Formula (3.12) was proposed by Davidon and later was developed by Fletcher and
Powell, so that it is called DFP update.

3.3. BFGS update. One famous broadly used updating formula is the Broyden-
Fletcher-Goldfarb–Shanno (BFGS) rule. The inverse Hessian update Hk+1 is de-
fined as the solution to

min
H
‖H −Hk‖, s.t. H = HT, Hyk = sk. (3.13)

Certainly, the BFGS update is overtly known as

HBFGS
k+1 = (I − ρkskyT

k )HBFGS
k (I − ρkyksT

k ) + ρksks
T
k , ρk =

1

yT
k sk

=HBFGS
k − Hkyks

T
k + sky

T
kHk

sT
k yk

+

(
1 +

yT
kHkyk
sT
k yk

)
sks

T
k

sT
k yk

,

(3.14)
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where sk and yk are defined in (3.2).
The update BFGS formula for the Hessian matrix can be generated using the

Sherman-Morrison-Woodbury formula. A rank-one-modification (or perturbation)
M = A + bc∗ of a matrix A ∈ Cm×n uses two vectors b ∈ Cm×1 and c ∈ Cn×1.
The Sherman-Morrison formula establishes a relationship between M−1 and A−1

as follows [45]:

M−1 = A−1 −
(
1 + c∗A−1b

)−1
A−1bc∗A−1. (3.15)

As a result, the following update for Bk is obtained:

BBFGS
k+1 =BBFGS

k − Bksks
T
kBk

sT
kBksk

+
yky

T
k

sT
k yk

. (3.16)

3.4. Broyden family of methods. The weighted combinations of DFP and BFGS
updates give the whole update class, which is known as the Broyden class. This
class of update is defined by

Hφ
k+1 = (1− φ)HDFP

k+1 + φHBFGS
k+1 , (3.17)

where φ is a real parameter. If φ ∈ [0, 1], then (3.17) is called the Broadden convex
update class. It is obvious that Broyden’s class (3.17) satisfies the quasi-Newton
equation (3.4). Also, the expression (3.17) can be rewritten in the following form

Hφ
k+1 = HDFP

k+1 + φυkυ
T
k

= HBFGS
k+1 + (φ− 1)υkυ

T
k

= Hk +
sks

T
k

sTk yk
− Hkyky

T
kHk

yTkHkyk
+ φυkυ

T
k ,

(3.18)

where

υk = (yTkHkyk)1/2

[
sk

sTk yk
− Hkyk

yTkHkyk

]
. (3.19)

If we put in (3.18):

- φ = 0, then we will obtain DFP update (3.12)
- φ = 1, then we will obtain BFGS update (3.14)

- φ =
sTk yk

(sk−Hkyk)Tyk
, then we will obtain SR1 update (3.9).

The Broyden class of methods can be derived directly from the quasi-Newton equa-
tion. Consider the general formula for updating rank 2, which contains sk and
Hkyk:

Hk+1 = Hk + asks
T
k + b(Hkyks

T
k + sky

T
kHk) + cHkyk‘yT

kHk, (3.20)

where a, b, c are unknown scalars. We obtain

1 = asT
k yk + byT

kHkyk,

0 = 1 + bsT
k yk + cyT

kHkyk.
(3.21)

Here we have two equations with three unknowns, so we can introduce the replace-
ment

b = −φ/sTk yk,

where φ is a parameter. Solving system (3.21) and substituting the obtained result
in (3.20), we obtain

Hφ
k+1 = Hk +

sks
T
k

sTk yk
− Hkyky

T
kHk

yT
kHkyk

+ φυkυ
T
k = HDFP

k+1 + φυkυ
T
k ,
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where υk is defined by means of (3.19). Previous expression is identical to (3.18).

3.5. Some modifications of quasi-Newton methods. A great effort has been
invested to discover QN methods that do not merely possess convergence but it is
also better from the BFGS update in the numerical performance. Table 1 shows
some of these modifications of the quasi-Newton equations.

Table 1. Some modifications of quasi-Newton equations.

Quasi-Newton Eqs. ỹk−1 Ref.

Bksk−1 = ỹk−1 ỹk−1 =ϕk−1yk−1 + (1− ϕk−1)Bk−1sk−1 [104]

Bksk−1 = ỹk−1 ỹk−1 =yk−1 + tk−1sk−1, tk−1 ≤ 10−6 [72]

Bksk−1 = ỹk−1 ỹk−1 =yk−1 +
2(fk−1−fk)+(gk+gk−1)Tsk−1

‖sk−1‖2
sk−1 [123]

Bksk−1 = ỹk−1 ỹk−1 =yk−1 +
max(0,2(fk−1−fk)+(gk+gk−1)Tsk−1)

‖sk−1‖2
sk−1 [133]

Bksk−1 = ỹk−1 ỹk−1 =yk−1 +
max(0,6(fk−1−fk)+3(gk+gk−1)Tsk−1)

‖sk−1‖2
sk−1 [134]

Bksk−1 = ỹk−1 ỹk−1 = 1
2
yk−1 +

(fk−1−fk)− 1
2
gT
k sk−1

sT
k−1

yk−1
yk−1 [59]

Also, it is important to state spectral gradient method. Therein the updating of
the formula for Bk+1 is done in the following way [111]

Bk+1 = diag(r
(i)
k ) (3.22)

with

r
(i)
k =

1

1 +
∑n

i=1(ŝ
(i)
k )2−

∑n
i=1(ŝ

(i)
k )(ŷ

(i)
k )∑n

i=1(ŝ
(i)
k )4

(ŝ
(i)
k )2

, ŝk = sk −
7

11
sk−1 +

2

11
sk−2,

ŷk = yk −
7

11
yk−1 +

2

11
yk−2.

The general framework of the QN algorithm is given in Algorithm 3.

Algorithm 3 General framework of the quasi-Newton algorithm

Require: Objective f(x), initial point x0 ∈ Rn, initial inverse Hessian approxima-
tion H0 ∈ Rn×n, and the tolerance 0 < ε� 1.

1: k := 0.
2: while ‖gk‖ > ε do
3: Compute

dk = −Hkgk. (3.23)

4: Compute αk > 0 using exact or inexact line search.
5: Compute xk+1 := xk + αkdk.
6: Update Hk into Hk+1, such that (3.5) holds.
7: k := k + 1.
8: end while

Ensure: xk+1, f(xk+1).
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3.6. QN methods based on constant diagonal matrix approximation. The
general QN iterative rule with line search

xk+1 = xk − αkHk gk (3.24)

assumes that Bk (resp. Hk = B−1
k ) is a positive definite approximation of Gk (resp.

of G−1
k ) [118]. The update Bk+1 of Bk is defined on the basis of the quasi-Newton

property (3.4) or (3.5).
According to Brezinski’s classification in [15], the structure of updating Bk can

be divided into three categories: scalar matrix Bk = λkI, diagonal matrix Bk =
diag (λ1, . . . , λn) and an appropriate full matrix Bk. Optimization methods included
in this class of iterations are based on simplest approximation of the Hessian and
its inverse as

Bk = γkI ≈ Gk, γk > 0, (3.25)

where I is a proper n × n identity matrix and and γk > 0 is a parameter. Such
choice leads to the iterative rule

xk+1 = xk − γ−1
k αkgk. (3.26)

Usually, the parameter αk is defined using an available ILS, and γk is defined ac-
cording to the Taylor’s development of f(x). The iterations (3.26) are termed as
improved gradient descent (IGD) methods in [63].

Andrei in [4, 6] defined iterations

xk+1 = xk − θkαkgk. (3.27)

Usage of random values of θk was proposed in [6]. Later, Andrei in [4] proposed
appropriate algorithm for defining θk in (3.27). The iterative rule (3.27) was called
in [4] as Accelerated Gradient Descent (AGD):

xAGD
k+1 = xAGD

k − θAGD
k αkg

AGD
k . (3.28)

A few modifications of the scheme (3.26) were promoted in [94, 96, 97, 112, 114].
The iterations defined in [112] are of the form (3.26), in which γkI is the Hessian
approximation, where γk = γ(xk,xk−1) > 0 is the parameter. The SM method
from [112] was defined by the iterations

xSM
k+1 = xSM

k − αk
(
γSM
k

)−1
gSM
k , (3.29)

where γSM
k > 0 is the acceleration parameter defined using the Taylor’s development

of the objective f at the point xSM
k+1, as follows:

γSM
k+1 = 2γSM

k

γSM
k

[
f(xSM

k+1)− f(xSM
k )

]
+ αk‖gSM

k ‖2

α2
k‖gSM

k ‖2
. (3.30)

The Double direction and double step-size accelerated methods, termed as ADSS
and ADD, respectively, were originated in [94, 96].

The next iterations are known as Accelerated double step-size (ADSS) iterations
[94]:

xADSS
k+1 = xADSS

k −
(
αk(γADSS

k )−1 + lk
)
gADSS
k , (3.31)

where αk and lk are step-sizes, derived by two independent backtracking procedures.
The TADSS method from [114] is proposed using the assumption αk+ lk = 1, which
gives

xTADSS
k+1 = xTADSS

k − ψk gTADSS
k ,

where ψk = αk
(
(γTADSS
k )−1 − 1

)
+ 1. An application of the TADSS iterations in

aviation industry was investigated in [68].
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The particular choice γk = 1 transforms the IGD iterations (3.26) into the GD
iterative rule (1.5). Further, the IGD iterations (3.26) in the case αk = 1 can be
viewed as the GD iterations

xk+1 = xk − γ−1
k gk, (3.32)

where γk becomes the primary step length which should be appropriately defined.
Barzilai and Borwein in [11] originated two well known variants of the GD method,
known as BB method, with the step length γBBk := γ−1

k in (3.32). The step length
γBB
k in the first case is defined by the vector minimization minγ ‖sk−1 − γyk−1‖2,

which yields

γBB
k =

sT
k−1yk−1

yT
k−1yk−1

. (3.33)

The symmetric case assumes the minimization ‖γsk−1 − yk−1‖2, which produces

γBB
k =

sT
k−1sk−1

sT
k−1yk−1

. (3.34)

The BB iterations are defined using γBB
k as follows:

xBB
k+1 = xBB

k − γBB
k gBB

k .

The BB method was improved in a number of research articles, main of which are
[22, 24, 34, 35, 36, 37, 106, 107, 122, 137].

Another member of the IGD iterates is the Scalar Correction (SC) method [84],
defined in (3.32) by the rule

γSC
k+1 =

{
sTk rk
yT
k rk

, yT
k rk > 0,

‖sk‖
‖yk‖ , yT

k rk ≤ 0,
rk = sk − γkyk. (3.35)

Accordingly, the SC iterations are defined by the relation

xSC
k+1 = xSC

k − γSC
k gSC

k .

Relaxed BB method by an additional step θk ∈ (0, 2) is proposed in [105].

A modification of GD method (1.5) was proposed in [63]. It is defined by MGD =
M(GD) with

xk+1 =M(GD)(xk) = xk −
(
αk + α2

k − α3
k

)
gk. (3.36)

Further, the next scheme was proposed as the modified SM (MSM) method in [63]:

xMSM
k+1 = xMSM

k − (αk + α2
k − α3

k)(γMSM
k )−1gMSM

k . (3.37)

The leading principle used in defining the iterations (3.37) is the replacement of αk
in the GD methods (1.5) by the slightly longer step αMSM

k = αk + α2
k − α3

k. The
underlying idea in defining αMSM

k is the observation αMSM
k > αk, which means that

MSM method proposes a slightly longer step with the aim to additionally accelerate
the method. As before, αk ∈ (0, 1) is defined by Algorithm 2. The rationale of this
modification lies in the inequalities

αk ≤ αk + α2
k − α3

k ≤ αk + α2
k.

So, (3.37) is based on a small increase of αk inside the interval [αk, αk + α2
k].
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The acceleration parameter γk+1 in ADD, ADSS, TADSS and MSM methods are
defined, respectively, as:

γADD
k+1 =2

f(xADD
k+1 )−f(xADD

k )−αk(gADD
k )T(αkd

ADD
k −(γADD

k )−1gADD
k )

(αkdADD
k −(γADD

k )−1gADD
k )

T
(αkdADD

k −(γADD
k )−1gADD

k )
, (ADD method [96])

γADSS
k+1 =2

f(xADSS
k+1 )−f(xADSS

k )+(αk(γADSS
k )−1+lk)‖gADSS

k ‖2

(αk(γADSS
k )−1+lk)

2‖gADSS
k ‖2

, (ADSS method [94])

γTADSS
k+1 =2

f(xTADSS
k+1 )−f(xTADSS

k )+ψk‖gTADSS
k ‖2

ψ2
k‖g

TADSS
k ‖2 ,

ψk=αk
(
(γTADSS
k )−1 − 1

)
+ 1, (TADSS method [114])

γMSM
k+1 =2γMSM

k

γMSM
k [f(xMSM

k+1 )−f(xMSM
k )]+(αk+α2

k−α
3
k)‖gMSM

k ‖2

(αk+α2
k−α

3
k)2‖gMSM

k ‖2 , (MSM method [63]).

The efficiency of IGD methods was numerically tested in [98].
The author of [41] proposed two Relaxed Gradient Descent Quasi Newton

(RGDQN and RGDQN1) iteration rules

xk+1 = xk − ξkαk γ−1
k gk, (3.38)

such that ξk is a proper real value. The RGDQN iterations are defined with ran-
domly generated ξk ∈ (0, 1), while the RGDQN1 algorithm exploits

ξk =
γk

αk γk+1
.

The following algorithm is known as the SM method and introduced in [112].

Algorithm 4 The SM method.

Require: Objective function f(x) and chosen initial point x0 ∈ dom(f).
1: Set k = 0 and compute f(x0), g0 = ∇f(x0) and take γ0 = 1.
2: If stopping criteria are satisfied, then STOP; otherwise, go to the next step.
3: Find the step-size αk ∈ (0, 1] using Algorithm 2 with dk = −γ−1

k gk.

4: Compute xk+1 = xk − αkγ−1
k gk, f(xk+1) and gk+1 = ∇f(xk+1).

5: Define γk+1using (3.30).
6: If γk+1 < 0, then put γk+1 = 1.
7: Set k := k + 1, go to the Step 2.
8: Return xk+1 and f(xk+1).

3.7. Gradient methods accelerated by Picard-Mann hybrid iterative pro-
cess. An application of the Picard-Mann hybrid iterative process from [66] is an-
other possibility to accelerate iterations for solving nonlinear optimization problems.
The function T : C→ C in (3.40) is defined on a convex subset C of a normed space
E. The hybrid iterations define two sequences xk, yk by the rules: x1 = x ∈ C,

xk+1 = Tyk,
yk = (1−Υk)xk + ΥkTxk, k ∈ N.

(3.39)

The real number Υk ∈ (0, 1) from (3.39) is termed as the correction parameter
in [97]. Instead of (3.39), it suffices to use an equivalent iteration given by

xk+1 = H(T )(xk) = T [(1−Υk)xk + ΥkTxk], k ∈ N. (3.40)
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The iterates (3.40) are denoted by H(T,xk) = H(T )(xk).
In [66] it was proposed a set of constant values α = Υk ∈ (0, 1),∀k in numerical

experiments and concluded that the process (3.40) converges faster than the Picard,
Mann and Ishikawa iterations from [62, 83, 101]. Further, (3.40) was applied in [97]
for a hybridization of the SM method, known as HSM. Using the mapping T in
(3.39) or (3.40) to coincide with the SM rule (3.29):

T (xk) := xSM
k −

(
γSM
k

)−1
αkg

SM
k ,

the iterations (3.40) become the so called HSM iterative rule given as

xHSM
k+1 := H(SM)(xk) = xHSM

k − (Υk + 1)
(
γHSM
k

)−1
αkg

HSM
k , (3.41)

where γHSM
k > 0 is the acceleration defined by

γHSM
k+1 = 2γHSM

k

γHSM
k

[
f(xHSM

k+1 )− f(xHSM
k )

]
+ (Υk + 1)tk‖gHSM

k ‖2

(Υk + 1)2 t2k ‖gHSM
k ‖2

.

A modified HSM (MHSM) method is defined in [92] by proposing an appropriate
initial value in the backtracking procedure.

A hybridization of the ADD method was considered in [99] in the form

xHADD
k+1 =xHADD

k −(Υk + 1)tk(γHADD
k )−1gHADD

k +(Υk + 1)t2kdk,

wherein

γHADD
k+1 =2

f(xHADD
k+1 )−f(xHADD

k )−(Υk+1)(gHADD
k )T

(
t2kdk−tk(γHADD

k )−1gHADD
k

)
(Υk + 1)2t2k

(
tkdk − (γHADD

k )−1gHADD
k

)T (
tkdk − (γHADD

k )−1gHADD
k

) .

Recently, the hybridization HTADSS ≡ H(TADSS) was proposed, investigated
and tested in [95].

4. Overview of conjugate gradients methods. Nonlinear conjugate gradient
(CG) methods form a class of important methods for solving unconstrained nonlin-
ear optimization and solving system of nonlinear equations. Nonlinear CG methods
are defined by the line search iterates (1.2) where the search direction dk is defined
by (1.10) and the CGUP βk is given using one of many available rules.

In this article, a review on CG methods for unconstrained optimization is given.
Main convergence theorems are provided for the conjugate gradient method assum-
ing the descent property of each search direction. Some research issues on conjugate
gradient methods are mentioned.

In [21], the nonlinear CG methods are divided into three classes: early conjugate
gradient methods, descent conjugate gradient methods, and sufficient descent conju-
gate gradient methods. Andrei classified the CG methods in three classes: classical
CG methods, scaled CG methods, and hybrid and parameterized CG methods.

The classification presented in this paper divides CG methods into the follow-
ing categories: basic conjugate gradients methods, considered in Subsection 4.1,
Dai-Liao class of methods, presented in Subsection 4.2, hybrid conjugate gradi-
ent methods, described in Subsection 4.3, and combined BFGS-CG iterations, in
Subsection 4.4.
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Table 2. Some modifications of quasi-Newton equations.

βk Title Year Reference

βHS
k =

yT
k−1gk

yT
k−1dk−1

Hestenses–Stiefel 1952 [60]

βFR
k =

‖gk‖2

‖gk−1‖2
Fletcher–Reeves 1964 [48]

βD
k =

gT
k Gk−1dk−1

dT
k−1Gk−1dk−1

1967 [38]

βPRP
k =

yT
k−1gk

‖gk−1‖2
Polak–Ribiere–Polyak 1969 [102, 103]

βCD
k =− ‖gk‖2

gT
k−1dk−1

Conjugate Descent 1987 [47]

βLS
k =−

yT
k−1gk

gT
k−1dk−1

Liu–Storey 1991 [79]

βDY
k =

‖gk‖2

yT
k−1dk−1

Dai–Yuan 1999 [30]

4.1. Basic conjugate gradients methods. The CG methods included in Table
2 are known as early or classical conjugate gradient methods.

where yk−1 =gk − gk−1, sk−1 =xk − xk−1, Gk−1 = ∆2f(xk−1) and ‖ · ‖ stands
for the Euclidean vector norm.

In the listed CG methods, the numerator of the update parameter βk is either
‖gk‖2 or yT

k−1gk and the denominator is either ‖gk−1‖2 or yT
k−1dk−1 or −gT

k−1dk−1.
Two possible choices for the numerator and the 3 possible choices for the denomi-
nator lead to 6 different choices for βk.

Table 3. Classification of CG methods.

Denominator

Numerator ‖gk−1‖2 yT
k−1dk−1 −gT

k−1dk−1

‖gk‖2 FR DY CD

yT
k−1gk PRP HS LS

Define the following functions

n1 :=‖gk‖2, n2 =yT
k−1gk, d1 :=‖gk−1‖2, d2 =yT

k−1dk−1, d3 =−gT
k−1dk−1.

Then

βFR
k =

n1

d1
, βPRP

k =
n2

d1
, βDY

k =
n1

d2
, βHS

k =
n2

d2
, βCD

k =
n1

d3
, βLS

k =
n2

d3
.

But, there exist exceptions to these rules. One example is given in [38]

βD
k =

gT
kGk−1dk−1

dT
k−1Gk−1dk−1

(1967).

From the presented chronological development of the CGUP, we can see that the
βDk choice of the CG parameter differs structurally from the other choices.

For a large-scale unconstrained nonlinear optimization problem, in practice,
choices for updating a CG parameter that do not require computation or approxima-
tion of the Hessian and its inverse are preferred over methods that require Hessian
or its approximation in each iteration.
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Wei et al. [124] gave a variant of the PRP method which we call the VPRP
method, with the parameter βk

βVPRP
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖g

T
k gk−1

‖gk−1‖2
.

The VPRP method was extended to a variant of the HS method by Yao et al. in
[132],

βVHS
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖g

T
k gk−1

dT
k−1yk−1

.

Zhang [138] took a little modification to the VPRP method and constructed the
NPRP method as follows,

βNPRP
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
‖gk−1‖2

.

Moreover, Zhang [138] extended this result to the HS method and proposed the
NHS method as follows,

βNHS
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
dT
k−1yk−1

.

Recently, Wei et al. [125] proposed a variation of the FR method which we call
the VFR method. the parameter βk in the VFR method is given by

βVFR
k =

µ1‖gk‖2

µ2|gT
k dk−1|+ µ3‖gk−1‖2

,

where µ1 ∈ (0,+∞), µ2 ∈ (µ1 + ε1,+∞), µ3 ∈ (0,+∞) and ε1 is an any given
positive constant. Motivated by these modifications, in [29] the authors defined the
modified PRP method as

βDPRP
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
µ|gT

k dk−1|+ ‖gk−1‖2
, µ > 1.

Recently, Wei et al. [18] gave a variant of the PRP method which we call the WYL
method, that is,

βWYL
k =

gT
k

(
gk − ‖gk‖

‖gk−1‖gk−1

)
‖gk−1‖2

.

The WYL method was extended to a variant of the LS method by Yao et al. [132],
that is,

βMLS
k =

gT
k

(
gk − ‖gk‖

‖gk−1‖gk−1

)
−gT

k dk−1
.

Also, the following function will be useful:

N1 = gT
k

(
gk −

‖gk‖
‖gk−1‖

gk−1

)
= n1 −

‖gk‖
‖gk−1‖

gT
k gk−1 = gT

k ŷk−1

N2 = n1 −
‖gk‖
‖gk−1‖

|gT
k gk−1|.
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Then

βWYL
k =

N1

d1
, βVPRP

k =
N1

d1
, βVHS

k =
N1

d2

βNPRP
k =

N2

d1
, βNHS

k =
N2

d2
.

Some particular CG variants are βDHS
k [29] and βDLS

k [139], defined by

βDHS
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣+ dT
k−1yk−1

(2012)

βDLS
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣− dT
k−1gk−1

, µ > 1 (2017).

(4.1)

If the functions

D1(µ) = µ
∣∣gT
k dk−1

∣∣+ dT
k−1yk−1, D2(µ) = µ

∣∣gT
k dk−1

∣∣− dT
k−1gk−1

are defined, then

βDHS
k =

N2

D1(µ)
, βDLS

k =
N2

D2(µ)
.

4.2. Dai-Liao method and its variants. An extension of the conjugacy condi-
tion

dT
k yk−1 = 0 (4.2)

was studied by Perry [93]. Perry tried to incorporate the second-order information
of the objective function into the CG method to accelerate it. Specifically, by
using the secant condition and the search direction of the QN methods, which are
respectively defined by

Bksk−1 = yk−1 and Bkdk = −gk, (4.3)

the following relation is obtained:

dT
k yk−1 = dT

k (Bksk−1) = (Bkdk)Tsk−1 = −gT
k sk−1, (4.4)

where Bk is a symmetric approximation to the Hessian matrix Gk. Then Perry
accordingly replaced the conjugacy condition (4.2) by the following condition

dT
k yk−1 = −gT

k sk−1. (4.5)

Furthermore, Dai and Liao [26] included a nonnegative parameter t into Perry’s
condition and gave

dT
k yk−1 = −tgT

k sk−1. (4.6)

In order to find the search direction dk in (1.10) which satisfies the conjugacy
condition (4.6), it suffices to multiply (1.10) by yk−1 and use (4.6), yielding

βDL
k =

gT
k yk−1

dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

=
gT
k (yk−1 − tsk−1)

dT
k−1yk−1

, t > 0. (4.7)

Expression (4.7) for defining βk characterizes the Dai and Liao (DL) CG method.
Later, motivated by the DL method, researchers in papers [18, 80, 100, 129, 131,
139, 141], suggested modified variants of the DL method. Some well-known formulas
for βk were created modifying the CG parameter βDL

k [18, 26, 80, 100, 129, 131,
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139, 141]. Main of them are βDL
k [26], βDHSDL

k [139], βDLSDL
k [139], βMHSDL

k [131],
defined as

βDL
k =

yT
k−1gk

yT
k−1dk−1

− t gT
k sk−1

dT
k−1yk−1

= βHS
k − t

gT
k sk−1

dT
k−1yk−1

, (2001) (4.8)

βDHSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣+ dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

= βDHS
k − t gT

k sk−1

dT
k−1yk−1

, (2017) (4.9)

βDLSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1 ‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣− dT
k−1gk−1

− t gT
k sk−1

dT
k−1yk−1

= βDLS
k − t gT

k sk−1

dT
k−1yk−1

, (2017) (4.10)

βMHSDL
k =

‖gk‖2− ‖gk ‖
‖gk−1 ‖g

T
k gk−1

dT
k−1yk−1

−t gT
k sk−1

dT
k−1yk−1

=
gT
k ŷk−1

dT
k−1yk−1

−t gT
k sk−1

dT
k−1yk−1

, (2013) (4.11)

where t > 0 is a scalar and ŷk−1 =gk − ‖gk‖
‖gk−1‖gk−1.

Clearly βDL
k with t > 0 defines a class of nonlinear CG methods. Moreover, in

the case of the exact line search, i.e., gT
k sk−1 = 0, then βDL

k = βHS
k .

Some additional CG methods from the DL class are βMLSDL
k [18] and βZZDL

k

[141], defined as follows:

βMLSDL
k =

gT
k ŷk−1

−dT
k−1gk−1

− t gT
k sk−1

dT
k−1yk−1

(4.12)

βZZDL
k =

gT
k zk−1

zT
k−1dk−1

− t gT
k sk−1

dT
k−1zk−1

, (4.13)

where t > 0 is a scalar, zk−1 =yk−1 + C‖gk−1‖rsk−1 and ŷk−1 =gk− ‖gk‖
‖gk−1‖gk−1.

In order to characterize this family of CG methods, define the mapping

F
(
βMk , t

)
= βMk − t

gT
k sk−1

dT
k−1yk−1

.

Then

βDL
k = F

(
βHS
k , t

)
, βDHSDL

k = F
(
βDHS
k , t

)
,

βDLSDL
k = F

(
βDLS
k , t

)
, βMHSDL

k = F
(
βDHS
k , t

)
.

The research for the best values of the parameter t was divided into two direc-
tions. One direction was to find the best fixed value for t and the other the best
approximation for t in each iteration. Analyzing the results from [18, 26, 131, 139],
we conclude that the scalar t was defined by a fixed value of 0.1 in numerical exper-
iments. Also, numerical experience related to the fixed valued t = 1 was reported
in [26]. Common numerical experience is that different choices of t initiate totally
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different numerical experience. This was the reason for further research to focus
on the values of t that change through iterations. The value of t in arbitrary kth
iteration will be denoted by tk. Hager and Zhang in [55] defined tk by the rule

tk = 2
‖yk−1‖2

yT
k−1sk−1

.

Babaie-Kafaki and Ghanbari [9] presented two appropriate choices of the parameter
t in (4.7):

tk =
sT
k−1yk−1

‖sk−1‖2
+
‖yk−1‖
‖sk−1‖

and

tk =
‖yk−1‖
‖sk−1‖

.

Andrei in [5] suggested the following value for t in (4.7) which becomes a variant of
the DL method, denoted by DLE:

tk =
sTk−1yk−1

‖sk−1‖2
. (4.14)

Lotfi and Hosseini in [81] discovered the most recent approximations of the pa-
rameter tk.

4.3. Hybrid conjugate gradient methods. In the subsequent sections, we will
survey recent advances in CG methods. Two main research streams can be observed:
the algorithms which improve the scalar parameter t and the algorithms which
improve the CG parameter βk.

Hybrid CG methods can be segmented into two classes: mixed methods as well
as methods combined together by introducing one or more parameters.

The following hybrid CG method was suggested in [121]:

βk=

{
βPRP
k , if 0 ≤ βPRP

k ≤ βFR
k ,

βFR
k , otherwise.

(4.15)

When a jam in iterations occurs again, the PRP update parameter is used. Hu and
Storey in [61] had a similar motivation and suggested the following rule

βk = max{0,min{βPRP
k , βFR

k }}. (4.16)

In [49] it is pointed out that βPRP
k can be negative, even for strongly convex

functions. In an effort to extend the allowed choices for the PRP update parameter,
while retaining global convergence, Nocedal and Gilbert [49] suggested the choice

βk = max{−βFR
k ,min{βPRP

k , βFR
k }}. (4.17)

Dai and Yuan [31] combined the DY method with other CG methods, which
leads to the following CGUP parameters:

βk = max{0,min{βHS
k , βDY

k }} (4.18)

and

βk = max{−c βDY
k ,min{βHS

k , βDY
k }}, c =

1− σ
1 + σ

. (4.19)

In [28], they tested different CG methods for large-scale unconstrained optimization
problems and concluded that the hybrid CG method (4.18) gave the best results.
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Next hybrid CG method, proposed by Dai in [23], employs either the DY scheme
or the CD scheme:

βk =
‖gk‖2

max{dT
k−1yk−1,−gT

k−1dk−1}
. (4.20)

A modified CG method defined as the hybridization of known LS and CD con-
jugate gradient methods is presented and analyzed in [130] by the rule

βLSCD
k =max{0,min{βLS

k , βCD
k }}. (4.21)

CG methods can be combined together by introducing one or more parameters.
In [32, 33], Dai and Yuan proposed a one-parameter family of CG methods with

βk =
‖gk‖2

θk‖gk−1‖2 + (1− θk)dT
k−1yk−1

, (4.22)

where θk ∈ [0, 1] is a parameter. Note that βk = βFR
k in the case θk = 1, and

βk = βDY
k if θk = 0.

Another hybrid method, proposed by Delladji, Belloufi and Sellami in [39], ex-
ploits either the PRP scheme or the HZ scheme, as

βhPRPHZ
k =θkβ

PRP
k + (1− θk)βHZ

k

=θk
yT
k−1gk

‖gk−1‖2
+ (1− θk)

1

dT
k−1yk−1

(
yk−1 − 2dk−1

‖yk−1‖2

dT
k−1yk−1

)T

gk,

(4.23)
in which θk ∈ [0, 1] is called the hybridization parameter. Note that if θk = 1 then
βhPRPHZ
k = βPRP

k , and if θk = 0 then βhPRPHZ
k = βHZ

k .
Nazareth in [89] proposed a two-parameter family of CGUP parameters using

convex combinations of numerators and denominators, as

βk =
νk‖gk‖2 + (1− νk)gT

k yk−1

θk‖gk−1‖2 + (1− θk)dT
k−1yk−1

, (4.24)

where νk, θk ∈ [0, 1]. This two-parameter family includes FR, DY, PRP, and HS
methods as extreme cases.

In [113], the authors proposed hybrid CG methods where the search direction
dk := dk, k ≥ 1, is improved using one of the rules

dk := D(βk,gk,dk−1)=−
(

1 + βk
gT
k dk−1

‖gk‖2

)
gk + βkdk−1, (4.25)

dk := D1(βk,gk,dk−1)=−Bkgk + D(βk,gk,dk−1), (4.26)

and βk is determined using appropriate combinations of βk used in Table 2 and/or
previously defined hybridizations. In [113], the authors defined a modification of
LSCD method, defined in [130] by

βLSCD
k =max{0,min{βLS

k , βCD
k }},

dk=d(βLSCD
k ,gk,dk−1).

(4.27)

The resulting method is known as the MLSCD method with the search direction

dk :=D(βLSCD
k ,gk,dk−1). (4.28)

In general, the idea is based on the replacement of dk = dk(βLSCD
k ,gk,dk−1) from

[130] by dk=D(βLSCD
k ,gk,dk−1).

Now we give the general framework of the CG class of methods.
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Algorithm 5 Algorithm of CG methods.

Require: A starting point x0, and real quantities 0 < ε < 1, 0 < δ < 1.

1: Put k=0 and compute d0 =−g0.

2: If

‖gk‖ ≤ ε and
|f(xk+1)− f(xk)|

1 + |f(xk)|
≤ δ,

STOP; else go to Step 3.

3: Compute αk ∈ (0, 1] using Algorithm 2.
4: Compute xk+1 =xk + αkdk.

5: Calculate gk+1, yk=gk+1 − gk and go to Step 6.

6: Calculate βk+1.
7: Compute the search direction dk+1 = d(βk+1,gk+1,dk) or dk+1 =

D(βk+1,gk+1,dk).
8: Put k :=k + 1, and go to Step 2.

The first iteration in CG methods is a gradient step. Also, it is common to
restart the algorithm periodically by taking the gradient step.

4.4. Broyden-Fletcher-Goldfarb-Shanno conjugate gradient methods.
Known fact is that CG iterates are better than QN methods in terms of the CPU
time. Moreover, BFGS updates require greater memory space usage than CG. On
the other hand, the QN methods require lesser number of iterations as well as the
number of function evaluations. For this purpose, one of the modern trends in defin-
ing new CG methods is usage of the BFGS update in defining new rules for defining
βk. A hybrid method which solves the system of nonlinear equations combining the
QN method with chaos optimization was discovered in [82]. In [58], the authors
defined a combination of a QN and the Cauchy descent method for solving uncon-
strained optimization problems, which is known as the quasi-Newton SD method.
A hybrid direction defined as a combination of the BFGS update of Bk and the
CGUP βk was considered in [10, 67]. The DFP-CG method was originated in [91].
A three-term hybrid BFGS-CG method (termed as H-BFGS-CG1) was proposed in
[113] by the search direction

dk :=

{
−Bkgk, k=0,

D1(βLSCD
k ,gk,dk−1), k ≥ 1.

In [113], the authors investigated hybrid CG algorithms based on the modified
search direction which is defined using one of the following two hybridizations:

dk := D(βk,gk,dk−1)=−
(

1 + βk
gT
k dk−1

‖gk‖2

)
gk + βkdk−1, (4.29)

dk := D1(βk,gk,dk−1)=−Bkgk + D(βk,gk,dk−1), (4.30)

as well as on the usage of βk defined using convenient combinations of the parameters
βk involved in Table 2 and previously defined hybridizations. The matrix Bk in
(4.30) is defined as an appropriate Hessian approximation by the BFGS update. A
three-term BFGS-CG method, known as H-BFGS-CG1, was defined in [113] using

dk :=

{
−Bkgk, k=0,

D1(βLSCD
k ,gk,dk−1), k ≥ 1.
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5. Convergence properties of CG methods. Below we give some assumptions
related to line search procedures.

Assumption 5.1. (1) The level set S={x ∈ Rn| f(x) ≤ f(x0)} is bounded, where
x0 is an initial point of the iterative method (1.2).

(2) The objective function f is continuous and differentiable in a neighborhood N
of S, and its gradient g is Lipschitz continuous. So, there exists a positive constant
L > 0, satisfying

‖g(u)− g(v)‖ ≤ L‖u− v‖, ∀u, v ∈ N . (5.1)

Assumption 5.1 initiates the existence of a positive constants D and γ satisfying

‖u− v‖ ≤ D, ∀ u,v ∈ N (5.2)

and

‖g(u)‖ ≤ γ, ∀ u ∈ N . (5.3)

The proof of Lemma 5.1 is given in [142] and known as the Zoutendijk condition.

Lemma 5.1. [17, 142] Let Assumption 5.1 be accomplished and the points {xk} be
generated by the method (1.2) and (1.10). Then it holds

∞∑
k=0

‖gk‖4

‖dk‖2
< +∞. (5.4)

5.1. Properties of CG methods with yTk−1gk in the numerator of βk. In this
subsection, we recall properties of the HS, PRP and LS methods. If we look at the
chronological development presented in Table 2, a clear observation is that HS, PRP
and LS methods involve the expression yT

k−1gk in the numerator of the parameter
βk. We first mention the Property (*) for βk given by Gilbert and Nocedal [49].
The Property (*) implies that βk is bounded and small when the step sk−1 is small.

Property (*) [49] Let a method defined by (1.2) and (1.10) satisfies

0 < γ ≤ ‖gk‖ ≤ γ̄, (5.5)

for all k ≥ 0. Under this assumption we say that the method possesses the Property
(*) if there exist constants b > 1 and λ > 0 such that for all k:

|βk| ≤ b, (5.6)

and

‖sk−1‖ ≤ λ⇒ |βk| ≤
1

2b
. (5.7)

In order to prove that conjugate gradient methods have Property (*), it suffices
to show that there exists a constant c > 0 such that

|βk| ≤ c‖sk−1‖ for all k, (5.8)

under the assumption (5.5). Then, by putting λ = 1
2bc , we have |βk| ≤ max{1, 2bc}

≡ b and

‖sk−1‖ ≤ λ⇒ |βk| ≤
1

2b
, (5.9)

which confirms the Property (*). It is easily shown that (5.8) holds for the HS,
PRP and LS methods, and thus these methods have Property (*).

Next, we give the global convergence theorem of CG methods satisfying Property
(*). The proof of Theorem 5.2 is given in [49].
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Theorem 5.2. Consider any conjugate gradient method (1.2), (1.10) that satisfies
the following conditions:
(a) βk ≥ 0.
(b) The search directions satisfy the sufficient descent condition (1.6)
(c) The Zoutendijk condition holds.
(d) The Property (*) holds.
If the Lipschitz and Boundedness Assumptions hold, then the iterates are globally
convergent.

5.2. Properties of CG methods involving ‖gk‖2 in the numerator of βk.
In this section, we recall properties of the FR, CD and DY methods. If we look at
the chronological development presented in Table 2, it is observable that FR, CD
and DY methods involve the value ‖gk‖2 in the numerator of the parameter βk.
If the step-size αk satisfies the generalized strong Wolfe conditions (2.7) and (2.9),
the following properties are obtained.

Proposition 1. The following statements hold:
(a) For the FR method, if αk satisfies the generalized strong Wolfe conditions (2.7)
and (2.9) with σ1 + σ2 < 1, then

− 1

1− σ1
≤ gTk dk
‖gk‖2

≤ −1 +
σ2

1− σ1
. (5.10)

(b) For the DY method, if αk satisfies the generalized strong Wolfe conditions (2.7)
and (2.9), then

− 1

1− σ1
≤ gTk dk
‖gk‖2

≤ − 1

1 + σ2
. (5.11)

(c) For the CD method, if αk satisfies the generalized strong Wolfe conditions (2.7)
and (2.9) with σ2 < 1, then

− 1− σ1 ≤
gTk dk
‖gk‖2

≤ −1 + σ2. (5.12)

Proposition 1 implies that the FR, CD and DY methods satisfy the sufficient
descent condition (1.6), dependent on line searches.

We now give the global convergence properties of the FR and DY methods, which
were proven in [2] and [30], respectively.

Theorem 5.3. Suppose that Assumption 5.1 holds. Let the sequence {xk} be gen-
erated by the conjugate gradient method of the form (1.2)-(1.10).
(a) If βk = βFR

k and αk satisfies the generalized strong Wolfe conditions (2.7) and
(2.9) with σ1 + σ2 < 1, then {xk} converges globally with the limit

lim inf
k→∞

‖gk‖ = 0. (5.13)

(b) If βk = βDY
k and αk satisfies the Wolfe conditions (2.7) and (2.8), then {dk}

satisfies the descent condition (1.4) and {xk} converges globally in the sense that
(5.13) holds.

Methods surveyed in Subsection 5.2 exhibit strong convergence properties, but
they may not be efficient in practice due to appearance of jamming. On the other
hand however, methods given in Subsection 5.1 may not be convergent in general,
they often perform better than the methods restated in Subsection 5.2. Details
about this fact are given in [65]. This clearly implies that combinations of these
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methods have been proposed with the aim of exploiting attractive features of each
family of methods.

5.3. Convergence of DL methods. The following assumptions will be com-
monly used in the subsequent convergence analysis of DHSDL, DLSDL, MHSDL
and MLSDL methods.

It is supposed that the conditions in Assumption 5.1 hold. Assumption 5.1
initiates the existence of positive constants D and γ satisfying (5.2) and (5.3).

By the uniform convexity of f , there exists a constant θ > 0 such that

(g(u)− g(v))T(u− v) ≥ θ‖u− v‖2, for all u,v ∈ S, (5.14)

or equivalently,

f(u) ≥ f(v) + g(v)T(u− v) +
θ

2
‖u− v‖2, for all u,v ∈ S. (5.15)

It follows from (5.14) and (5.15) that

sT
k−1yk−1 ≥ θ‖sk−1‖2 (5.16)

and

fk−1 − fk ≥ −gTk sk−1 +
θ

2
‖sk−1‖2. (5.17)

By (5.1) and (5.16), we have

θ‖sk−1‖2 ≤ sT
k−1yk−1 ≤ L‖sk−1‖2, (5.18)

where the inequalities imply θ ≤ L.
Further, (5.18) implies

sT
k−1yk−1 = αk−1d

T
k−1yk−1 > 0. (5.19)

From αk−1 > 0 and (5.19), it follows that

dT
k−1yk−1 > 0. (5.20)

In order to improve presentation, an arbitrary method defined by (1.2) and (1.10)
will be denoted byM(αk, βk). In our current investigation, it will be assumed βk ∈{
βDHSDL
k , βDLSDL

k , βMHSDL
k , βMLSDL

k

}
. It is assumed that αk satisfies the backtrack-

ing condition. Further, we will use the notation β′k ∈
{
βDHS
k , βDLS

k , βMHS
k , βMLS

k

}
.

Clearly,

βk=β′k − t
gT
k sk−1

dT
k−1yk−1

. (5.21)

Lemma 5.4. [17, 142] Let Assumption 5.1 be accomplished and the points {xk} be
generated by the method M(αk, βk). Then (5.4) holds

Lemma 5.5. The parameters β′k in M(αk, βk) satisfy

0 ≤ β′k ≤
‖gk‖2

λ|gT
k dk−1|

, λ ≥ 1 (5.22)

in each iterative step k.

Proof. In the case β′k ∈
{
βDHS
k , βDLS

k

}
the inequalities

0≤βDHS
k , βDLS

k ≤ ‖gk‖2

µ|gT
k dk−1|

are known from [29].



A SURVEY OF GRADIENT METHODS FOR NONLINEAR OPTIMIZATION 1597

For β′k ≡ βMHS
k , it is possible to verify

0 ≤ βMHS
k =

‖gk‖2 − ‖gk ‖
‖gk−1‖

∣∣gT
k gk−1

∣∣
dT
k−1yk−1

≤ ‖gk‖2

|gT
k dk−1|

.

For β′k ≡ βMLS
k , we have

0 ≤ βMLS
k =

‖gk‖2 − ‖gk ‖
‖gk−1‖

∣∣gT
k gk−1

∣∣
−dT

k−1gk−1
≤ ‖gk‖2

|gT
k dk−1|

.

Since µ > 1 the proof is completed.

Lemma 5.6. The iterations M(αk, βk) satisfy

gT
k dk≤−c‖gk‖2 (5.23)

for some 0 ≤ c ≤ 1, all k ≥ 0 and arbitrary βk.

Proof. The inequality (5.23) will be verified by induction. In the initial situation
k = 0, one obtains gT

0 d0 =−‖g0‖2. Since c ≤ 1, obviously (5.23) is satisfied in the
basic case. Suppose that (5.23) is valid for some k ≥ 1. By taking the inner product
of the left and right hand side in (1.10) with the vector gT

k , it can be obtained

gT
k dk=−‖gk‖2 + βkg

T
k dk−1. (5.24)

An application of (5.21) and sk−1 =αk−1dk−1 leads to further conclusions:

gT
k dk=−‖gk‖2 +

(
β′k − t

gT
k sk−1

dT
k−1yk−1

)
gT
k dk−1

=−‖gk‖2 + β′kg
T
k dk−1 − t

αk−1g
T
k dk−1

dT
k−1yk−1

gT
k dk−1

=−‖gk‖2 + β′kg
T
k dk−1 − t

αk−1(gT
k dk−1)2

dT
k−1yk−1

.

From (5.20), t > 0 and αk−1 > 0, one obtains

t
αk−1(gT

k dk−1)2

dT
k−1yk−1

> 0. (5.25)

Now (5.25) in conjunction with (5.22) implies

gT
k dk≤−‖gk‖2 + β′kg

T
k dk−1

≤−‖gk‖2 +
‖gk‖2

λ|gT
k dk−1|

|gT
k dk−1|

≤−‖gk‖2 +
‖gk‖2

λ

=−
(

1− 1

λ

)
‖gk‖2.

In view of λ ≥ 1, the inequality (5.23) is satisfied for c =
(
1− 1

λ

)
and arbitrary

k ≥ 0.

Lemma 5.7. The parameter βk ∈
{
βDHSDL
k , βDLSDL

k , βMHSDL
k

}
satisfies

βk ≤
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

. (5.26)
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Proof. For βk ≡ βDHSDL
k , in view of (5.20), it follows that

βDHSDL
k =

‖gk‖2 − ‖gk‖
‖gk−1‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣+ dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

≤
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣
dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

=
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

.

(5.27)

As µ > 1 we conclude

dT
k−1yk−1 =dT

k−1(gk − gk−1)

=dT
k−1gk − dT

k−1gk−1

≤
∣∣dT
k−1gk

∣∣− dT
k−1gk−1

≤µ
∣∣dT
k−1gk

∣∣− dT
k−1gk−1.

(5.28)

Using inequalities (5.20) and (5.28) in βk ≡ βDLSDL
k one obtains

βDLSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1‖

∣∣gT
k gk−1

∣∣
µ
∣∣gT
k dk−1

∣∣− dT
k−1gk−1

− t gT
k sk−1

dT
k−1yk−1

≤
‖gk‖2 − ‖gk ‖

‖gk−1‖
∣∣gT
k gk−1

∣∣
dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

=
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

.

(5.29)

The following conclusion is valid in the case βk ≡ βMHSDL
k :

βMHSDL
k =

‖gk‖2 − ‖gk ‖
‖gk−1‖

∣∣gT
k gk−1

∣∣
dT
k−1yk−1

− t gT
k sk−1

dT
k−1yk−1

=
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

.

(5.30)

Therefore, the inequality (5.26) follows from (5.27), (5.29) and (5.30).

The global convergence of the proposed methods is confirmed by Theorem 5.8.

Theorem 5.8. Assume that Assumption 5.1 is true and f is a uniformly convex
function. Then the sequence {xk} generated by the M(αk, βk) method fulfils

lim inf
k→∞

‖gk‖=0. (5.31)

Proof. Assume that (5.31) is not true. This implies the existence of a constant
c1 > 0 such that

‖gk‖ ≥ c1, for all k. (5.32)

Squaring both sides of (1.10) implies

‖dk‖2 =‖gk‖2 − 2βkg
T
k dk−1 + (βk)2‖dk−1‖2. (5.33)
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Taking into account (5.22), one can obtain

−2βk gT
k dk−1 =−2

(
β′k − t

gT
k sk−1

dT
k−1yk−1

)
gT
k dk−1

=−2

(
β′kg

T
k dk−1 − t

αk(gT
k dk−1)2

dT
k−1yk−1

)
.

(5.34)

Now from (5.25), with respect to t
αk−1(gT

k dk−1)2

dT
k−1yk−1

> 0, the following inequalities

hold:
−2βkg

T
k dk−1≤2|β′k||gT

k dk−1|

≤2
‖gk‖2

λ|gT
k dk−1|

|gT
k dk−1|

≤2
‖gk‖2

λ
.

(5.35)

Case 1. In the cases βk ∈
{
βDHSDL
k , βDLSDL

k , βMHSDL
k

}
from Lemma 5.7, we con-

clude

βk ≤
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

≤

∣∣∣∣∣∣
gTk gk − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣− tgT
k sk−1

dT
k−1yk−1

∣∣∣∣∣∣
≤

∣∣∣gTk (gk − ‖gk‖
‖gk−1‖gk−1 − tsk−1

)∣∣∣
θαk−1‖dk−1‖2

=

∣∣∣gTk (gk − gk−1 + gk−1 − ‖gk‖
‖gk−1‖gk−1 − tsk−1

)∣∣∣
θαk−1‖dk−1‖2

≤
‖gk‖

(
‖gk − gk−1‖+

∥∥∥gk−1

(
1− ‖gk‖

‖gk−1‖

)∥∥∥+ t ‖sk−1‖
)

θαk−1‖dk−1‖2

≤
‖gk‖

(
‖gk − gk−1‖+

∣∣∣1− ‖gk‖
‖gk−1‖

∣∣∣ ‖gk−1‖+ t ‖sk−1‖
)

θαk−1‖dk−1‖2

≤ ‖gk‖ (‖gk − gk−1‖+ |‖gk−1‖ − ‖gk‖|+ t ‖sk−1‖)
θαk−1‖dk−1‖2

≤ ‖gk‖ (‖gk − gk−1‖+ ‖gk−1 − gk‖+ t ‖sk−1‖)
θαk−1‖dk−1‖2

(5.36)

So,

βk ≤
‖gk‖ (2 ‖gk − gk−1‖+ t ‖sk−1‖)

θαk−1‖dk−1‖2

≤ ‖gk‖ (2L ‖sk−1‖+ t ‖sk−1‖)
θαk−1‖dk−1‖2

≤ (2L+ t) ‖gk‖ ‖sk−1‖
θαk−1‖dk−1‖2

(5.37)
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=
(2L+ t) ‖gk‖αk−1 ‖dk−1‖

θαk−1‖dk−1‖2

=
(2L+ t) ‖gk‖
θ ‖dk−1‖

.

Using (5.35) and (5.37) in (5.33), we obtain

‖dk‖2≤‖gk‖2 + 2
‖gk‖2

λ
+

(2L+ t)
2 ‖gk‖2

θ2‖dk−1‖2
‖dk−1‖2

≤‖gk‖2 + 2
‖gk‖2

λ
+

(2L+ t)
2

θ2
‖gk‖2

≤

(
1 +

2

λ
+

(2L+ t)
2

θ2

)
‖gk‖2

≤

(
λ+ 2

λ
+

(2L+ t)
2

θ2

)
‖gk‖2

≤ (λ+ 2)θ2 + λ (2L+ t)
2

λθ2
‖gk‖2.

(5.38)

Next, dividing both sides of (5.38) by ‖gk‖4 and using (5.32), it can be concluded

‖dk‖2

‖gk‖4
≤ (λ+ 2)θ2 + λ (2L+ t)

2

λθ2
· 1

c21
‖gk‖4

‖dk‖2
≥ λθ2 · c21

(λ+ 2)θ2 + λ (2L+ t)
2 .

(5.39)

The inequalities in (5.39) imply

∞∑
k=0

‖gk‖4

‖dk‖2
≥
∞∑
k=0

λθ2 · c21
(λ+ 2)θ2 + λ (2L+ t)

2 =∞. (5.40)

Therefore, ‖gk‖ ≥ c1 causes a contradiction to (5.4). Consequently, (5.31) is con-
firmed for Case 1.

Case 2. In the cases βk ≡ βMLSDL
k , applying Lemma 5.6 and Assumption 5.1, we

have

βMLSDL
k ≤

∣∣∣∣∣∣
‖gk‖2 − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣
−dT

k−1gk−1
− t gT

k sk−1

dT
k−1yk−1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
gTk gk − ‖gk‖

‖gk−1‖
∣∣gT
k gk−1

∣∣
−dT

k−1gk−1

∣∣∣∣∣∣+ t

∣∣gT
k sk−1

∣∣∣∣dT
k−1yk−1

∣∣
≤

∣∣∣gTk (gk − ‖gk‖
‖gk−1‖gk−1

)∣∣∣∣∣−dT
k−1gk−1

∣∣ + t

∣∣gT
k sk−1

∣∣∣∣dT
k−1yk−1

∣∣
=

∣∣∣gTk (gk − gk−1 + gk−1 − ‖gk‖
‖gk−1‖gk−1

)∣∣∣∣∣−dT
k−1gk−1

∣∣ + t

∣∣gT
k sk−1

∣∣∣∣dT
k−1yk−1

∣∣
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≤
‖gk‖

(
‖gk − gk−1‖+

∥∥∥gk−1 − ‖gk‖
‖gk−1‖gk−1

∥∥∥)∣∣−dT
k−1gk−1

∣∣ + t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤
‖gk‖

(
‖gk − gk−1‖+

∥∥∥gk−1(1− ‖gk‖
‖gk−1‖ )

∥∥∥)∣∣−dT
k−1gk−1

∣∣ + t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤
‖gk‖

(
‖gk − gk−1‖+

∣∣∣1− ‖gk‖
‖gk−1‖

∣∣∣ ‖gk−1‖
)

∣∣−dT
k−1gk−1

∣∣ + t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤ ‖gk‖ (‖gk − gk−1‖+ |‖gk−1‖ − ‖gk‖|)∣∣−dT

k−1gk−1

∣∣ + t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤ ‖gk‖ (‖gk − gk−1‖+ ‖gk − gk−1‖)∣∣−dT

k−1gk−1

∣∣ + t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤ 2 · ‖gk‖ ‖gk − gk−1‖

c‖gk−1‖2
+ t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣
≤ 2L · ‖gk‖ ‖sk−1‖

c‖gk−1‖2
+ t
‖gk‖ ‖sk−1‖∣∣dT

k−1yk−1

∣∣ .

(5.41)

From (5.18), (5.19) and (5.41), we conclude

βMLSDL
k ≤ 2L · ‖gk‖ ‖sk−1‖

c‖gk−1‖2
+ t
‖gk‖ ‖sk−1‖
θ‖sk−1‖2

=
2L · ‖gk‖ ‖sk−1‖

c‖gk−1‖2
+

t ‖gk‖
θ ‖sk−1‖

≤ 2L · ‖gk‖ ‖sk−1‖
c · c21

+
t ‖gk‖
θ ‖sk−1‖

≤ 2Lθ · ‖gk‖ ‖sk−1‖2 + c · c21 · t ‖gk‖
c · c21 · θ ‖sk−1‖

≤
(
2Lθ ·D2 + c · c21 · t

)
‖gk‖

c · c21 · θ · αk−1 ‖dk−1‖
.

(5.42)

Replacement of (5.35) and (5.42) in (5.33) leads to

‖dk‖2≤‖gk‖2 + 2
‖gk‖2

λ
+

(
2Lθ ·D2 + c · c21 · t

)2 ‖gk‖2
(c · c21 · θ · αk−1)

2 ‖dk−1‖2
‖dk−1‖2

=‖gk‖2 + 2
‖gk‖2

λ
+

(
2Lθ ·D2 + c · c21 · t

)2
(c · c21 · θ · αk−1)

2 ‖gk‖2

=

(
1 +

2

λ
+

(
2Lθ ·D2 + c · c21 · t

)2
(c · c21 · θ · αk−1)

2

)
‖gk‖2

=

(
λ+ 2

λ
+

(
2Lθ ·D2 + c · c21 · t

)2
(c · c21 · θ · αk−1)

2

)
‖gk‖2

=
(λ+ 2)

(
c · c21 · θ · αk−1

)2
+ λ

(
2Lθ ·D2 + c · c21 · t

)2
λ (c · c21 · θ · αk−1)

2 ‖gk‖2.

(5.43)
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Next, dividing both sides of (5.43) by ‖gk‖4 and using (5.32), it can be concluded

‖dk‖2

‖gk‖4
≤

(λ+ 2)
(
c · c21 · θ · αk−1

)2
+ λ

(
2Lθ ·D2 + c · c21 · t

)2
λ (c · c21 · θ · αk−1)

2 · 1

c21

‖gk‖4

‖dk‖2
≥

λ
(
c · c21 · θ · αk−1

)2 · c21
(λ+ 2) (c · c21 · θ · αk−1)

2
+ λ (2Lθ ·D2 + c · c21 · t)

2 .

(5.44)

The inequalities in (5.44) imply

∞∑
k=0

‖gk‖4

‖dk‖2
≥
∞∑
k=0

λ
(
c · c21 · θ · αk−1

)2 · c21
(λ+ 2) (c · c21 · θ · αk−1)

2
+ λ (2Lθ ·D2 + c · c21 · t)

2 =∞. (5.45)

Therefore, ‖gk‖ ≥ c1 causes a contradiction to (5.4). Consequently, (5.31) is con-
firmed for Case 2. The proof is complete.

6. Numerical experiments. The code used in the testing experiments is written
in the software Matlab R2017a, and executed on the personal computer Workstation
Intel Core i3 2.0 GHz, 8GB of RAM memory, and Windows 10 operating system.
Three important criteria: the number of iterations (IT), number of function evalu-
ations (FE) and CPU time (CPU) in all tested methods are analyzed.

The numerical experiments are performed on contains functions presented in [3],
where much of the problems are taken over from CUTEr collection [14]. Each test
function is tested 10 times with a gradually increasing values of the dimension by
the rule n = 10, 50, 100, 200, 300, 500, 700, 800, 1000 and 1500.

Strong Wolfe line search use the following choice of parameters for all algorithms
σ1 =0.0001 and σ2 =0.5.

We utilized the performance profile given in [43] to compare numerical results (IT,
FE and CPU) for all tested methods. The upper curve of the selected performance
profile corresponds to the method that shows the best performance.

6.1. Numerical experiments on QN methods with constant diagonal Hes-
sian approximation. BFGS, DFP, SR1 updates in QN methods with respect to
different ILS strategies are compared in [40]. The main conclusion is that the BFGS
method is superior to the others. Continuing such research, we compare the nu-
merical performances obtained from AGD, MSM and SM methods, i.e, gradient
methods with acceleration parameter. The numerical experiment contains 25 test
functions proposed in [3]. For each of tested functions, we performed 12 numerical
experiments with 100, 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 8000, 10000, and
15000 variables. Tested algorithms are based on the same implementation of the
backtracking line search (Algorithm 2), which we set ω = 0.0001 and ϕ = 0.8

The uniform stopping criteria in this numerical experiments are

‖gk‖ ≤ 10−6 and
|fk+1 − fk|

1 + |fk|
≤ 10−16.

Summary numerical data generated by AGD, MSM and SM method, tried on 25
test functions, are arranged in Table 4.

Table 4 contains numerical results corresponding to IT, FE and CPU criteria for
the AGD, MSM and SM methods. Figures 1, 2, 3 illustrate the performance profiles
corresponding to the results in Table 4 corresponding to the criterion IT, GE and
CPU, respectively.
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Table 4. Summary numerical results of the AGD, MSM and SM meth-
ods with respect to IT, FE and CPU.

IT profile FE profile CPU time

Test function AGD MSM SM AGD MSM SM AGD MSM SM

Perturbed Quadratic 353897 34828 59908 13916515 200106 337910 6756.047 116.281 185.641
Raydan 1 22620 26046 14918 431804 311260 81412 158.359 31.906 36.078
Diagonal 3 120416 7030 12827 4264718 38158 69906 5527.844 52.609 102.875
Generalized Tridiagonal 1 670 346 325 9334 1191 1094 11.344 1.469 1.203
Extended Tridiagonal 1 3564 1370 4206 14292 10989 35621 55.891 29.047 90.281
Extended TET 443 156 156 3794 528 528 3.219 0.516 0.594
Diagonal 4 120 96 96 1332 636 636 0.781 0.203 0.141
Extended Himmelblau 396 260 196 6897 976 668 1.953 0.297 0.188
Perturbed quadratic diagonal 2542050 37454 44903 94921578 341299 460028 44978.750 139.625 185.266
Quadratic QF1 366183 36169 62927 13310016 208286 352975 12602.563 81.531 138.172
Extended quadratic penalty QP1 210 369 271 2613 2196 2326 1.266 1.000 0.797
Extended quadratic penalty QP2 395887 1674 3489 9852040 11491 25905 3558.734 3.516 6.547
Quadratic QF2 100286 32727 64076 3989239 183142 353935 1582.766 73.438 132.703
Extended quadratic exponential EP1 48 100 73 990 894 661 0.750 0.688 0.438
Extended Tridiagonal 2 1657 659 543 8166 2866 2728 3.719 1.047 1.031
ARWHEAD (CUTE) 5667 430 270 214284 5322 3919 95.641 1.969 1.359
Almost Perturbed Quadratic 356094 33652 60789 14003318 194876 338797 13337.125 73.047 133.516
LIARWHD (CUTE) 1054019 3029 18691 47476667 27974 180457 27221.516 9.250 82.016
ENGVAL1 (CUTE) 743 461 375 6882 2285 2702 3.906 1.047 1.188
QUARTC (CUTE) 171 217 290 402 494 640 2.469 1.844 2.313
Generalized Quartic 187 181 189 849 493 507 0.797 0.281 0.188
Diagonal 7 72 147 108 333 504 335 0.625 0.547 0.375
Diagonal 8 60 120 118 304 383 711 0.438 0.469 0.797
Full Hessian FH3 45 63 63 1352 566 631 1.438 0.391 0.391
Diagonal 9 329768 10540 13619 13144711 68189 89287 6353.172 43.609 38.672

From Table 4, we conclude that the AGD, MSM and SM methods have success-
fully solved all test functions.

Figure 1 presents the performance profiles of the IT of the AGD, MSM and SM
methods. In this figure, it is observable that MSM method is best in 52.00% of the
test functions compared with: AGD (24.00%) and SM (32.00%).
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Figure 1. IT performance profile for AGD, MSM and SM methods.

From Figure 1, it is observable that the graph of the MSM method comes first
to the top, which means that the MSM is superior compared to other considered
methods with respect to the IT profile.

Figure 2 presents the performance profiles of the FE of the AGD, MSM and SM
methods. It is observable that MSM method is best in 64.00% of tested functions
compared with: AGD (12.00%) and SM (32.00%). In view of Figure 2, the MSM
graph first comes to the top, which means that the MSM is winer with respect to
the FE profile.
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Figure 2. FE performance profile for AGD, MSM and SM methods.

Figure 3 presents the performance profiles of the CPU of the AGD, MSM and
SM methods. It is obvious that MSM is winer in 56.00% of the test functions with
respect to: AGD (4.00%) and SM (44.00%). Figure 3 demonstrates that the graph
of the MSM method first comes to the highest level, which signifies that the MSM
is winer with respect to the CPU.
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Figure 3. CPU time performance profile for AGD, MSM and SM methods.

From the previous analysis of the results shown in Table 4 and Figures 1-3, we
can conclude that the MSM iterates are most efficient in terms of all three basic
metrics: IT, FE and CPU. The MSM method has the smallest IT, FE and the CPU
time compared to the other two methods on the most test functions.

6.2. Numerical experiments on the CG methods with yTk−1gk in the nu-
merator of βk. The uniform stopping criterion during testing CG methods is

‖gk‖ ≤ ε,

where ε = 10−6 or when the number of function evaluations becomes greater than
1000000.
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In this subsection, we compare the numerical results obtained from HS, PRP
and LS methods, i.e., methods with yT

k−1gk in the numerator of βk. The numerical
experiment is based on 26 test functions. Summary numerical results for HS, PRP
and LS method, tried on 26 test functions, are presented in Table 5.

Table 5 shows the numerical results (IT, FE and CPU) for the HS, PRP and LS
methods.

Table 5. Summary numerical results of the HS, PRP and LS methods
with respect to the IT, FE and CPU.

IT profile FE profile CPU time

Test function HS PRP LS HS PRP LS HS PRP LS

Perturbed Quadratic 1157 1157 6662 3481 3481 19996 0.234 0.719 1.438
Raydan 2 NaN 174 40 NaN 373 120 NaN 0.094 0.078
Diagonal 2 NaN 1721 5007 NaN 6594 15498 NaN 1.313 2.891
Extended Tridiagonal 1 NaN 170 17079 NaN 560 54812 NaN 0.422 13.641
Diagonal 4 NaN 70 1927 NaN 180 5739 NaN 0.078 0.391
Diagonal 5 NaN 154 30 NaN 338 90 NaN 0.172 0.078
Extended Himmelblau 160 120 241 820 600 1043 0.172 0.125 0.172
Full Hessian FH2 5096 5686 348414 15294 17065 1045123 83.891 80.625 5081.875
Perturbed quadratic diagonal 1472 1120 21667 4419 3363 65057 0.438 0.391 2.547
Quadratic QF1 1158 1158 5612 3484 3484 16813 0.281 0.313 1.047
Extended quadratic penalty QP2 NaN 533 NaN NaN 5395 NaN NaN 0.781 NaN
Quadratic QF2 2056 2311 NaN 9168 9862 NaN 0.969 0.859 NaN
Extended quadratic exponential EP1 NaN NaN 70 NaN NaN 350 NaN NaN 0.141
TRIDIA (CUTE) 6835 6744 NaN 20521 20248 NaN 1.438 1.094 NaN
Almost Perturbed Quadratic 1158 1158 5996 3484 3484 17998 0.281 0.328 1.063
LIARWHD (CUTE) NaN 408 11498 NaN 4571 50814 NaN 0.438 2.969
POWER (CUTE) 7781 7789 190882 23353 23377 572656 1.422 1.219 14.609
NONSCOMP (CUTE) 4545 3647 NaN 15128 12433 NaN 0.875 0.656 NaN
QUARTC (CUTE) NaN 165 155 NaN 1347 1466 NaN 0.781 0.766
Diagonal 6 NaN 174 137 NaN 373 442 NaN 0.109 0.125
DIXON3DQ (CUTE) NaN 12595 12039 NaN 37714 36091 NaN 1.641 2.859
BIGGSB1 (CUTE) NaN 11454 11517 NaN 34293 34530 NaN 1.969 2.141
Generalized Quartic NaN 134 139 NaN 458 445 NaN 0.125 0.094
Diagonal 7 NaN 51 80 NaN 142 240 NaN 0.063 0.109
Diagonal 8 NaN 70 80 NaN 180 180 NaN 0.063 0.125
FLETCHCR (CUTE) 18292 19084 20354 178305 170266 171992 8.859 6.203 7.484

Figures 4, 5 and 6 plot the performance profiles for the results in Table 5 with
respect to IT, FE and CPU criterion, respectively.

Figure 4 presents the performance profiles of the IT correspondig to the HS, PRP
and LS methods. In this figure, it is observable that PRP method is best in 61.54%
of the test functions compared with: HS (26.92%) and LS (23.08%). From Figure 4,
it is observable that the graph of the PRP method comes first to the top, which
signifies that the PRP outperforms other considered methods with respect to the
IT criterion.

Figure 5 presents the performance profiles of the FE of the HS, PRP and LS
methods. It is observable that PRP method is best in 69.23% of the test functions
compared with: HS (23.08%) and LS (23.08%). From Figure 5, it is observed that
the PRP graph first comes to the top, which signifies that the PRP is the best with
respect to the FE.

Figure 6 presents the performance profiles of the CPU of the HS, PRP and LS
methods. It is obvious that PRP is best in 69.23% of the test functions compared
with: HS (11.54%) and LS (19.23%). Figure 6 demonstrates that the graph of the
PRP method first comes to the top, which signifies that the PRP is the best with
respect to the CPU.

From the previous analysis of the results shown in Table 5 and Figures 4-6, we
can conclude that the PRP method achieved the best and most efficient results in
terms of all three basic metrics: IT, FE and CPU.
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Figure 4. IT performance profile for HS, PRP and LS methods.
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Figure 5. FE performance profile for HS, PRP and LS methods.
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Figure 6. CPU time performance profile for HS, PRP and LS methods.
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6.3. Numerical experiments on CG methods with ‖gk‖2 in the numerator
of βk. In this subsection, we compare the numerical results obtained from DY, FR
and CD methods, i.e, methods with ‖gk‖2 in the numerator of βk. The numerical
experiment contains 25 test functions. Summary numerical results for DY, FR and
CD method, tried on 25 test functions, are presented in Table 6.

Table 6 contains numerical results (IT, FE and CPU) for the DY, FR and CD
methods. Figures 7, 8 and 9 plot the performance profiles for the results in Table 6
with respect to profiles IT, FE and CPU, respectively.

Table 6. Summary numerical results of the DY, FR and CD methods
with respect to IT, FE and CPU.

IT profile FE profile CPU time

Test function DY FR CD DY FR CD DY FR CD

Perturbed Quadratic 1157 1157 1157 3481 3481 3481 0.469 0.609 0.531
Raydan 2 86 40 40 192 100 100 0.063 0.016 0.016
Diagonal 2 1636 3440 2058 4774 7982 8063 0.922 1.563 1.297
Extended Tridiagonal 1 2081 690 1140 4639 2022 2984 1.703 1.141 1.578
Diagonal 4 70 70 70 200 200 200 0.047 0.031 0.016
Diagonal 5 40 124 155 100 258 320 0.109 0.141 0.125
Extended Himmelblau 383 339 207 1669 1467 961 0.219 0.172 0.172
Full Hessian FH2 4682 4868 4794 14054 14610 14390 65.938 66.469 65.922
Perturbed quadratic diagonal 1036 1084 1276 3114 3258 3834 0.406 0.422 0.422
Quadratic QF1 1158 1158 1158 3484 3484 3484 0.297 0.297 0.328
Quadratic QF2 NaN NaN 2349 NaN NaN 10073 NaN NaN 1.531
Extended quadratic exponential EP1 NaN 60 60 NaN 310 310 NaN 0.109 0.125
Almost Perturbed Quadratic 1158 1158 1158 3484 3484 3484 0.422 0.453 0.391
LIARWHD (CUTE) 2812 1202 1255 12366 7834 7379 0.938 1.000 1.109
POWER (CUTE) 7779 7781 7782 23347 23353 23356 1.078 1.500 1.328
NONSCOMP (CUTE) 2558 13483 10901 49960 43268 33413 1.203 1.406 1.422
QUARTC (CUTE) 134 94 95 1132 901 916 0.688 0.672 0.563
Diagonal 6 86 40 40 192 100 100 0.047 0.063 0.063
DIXON3DQ (CUTE) 16047 18776 19376 48172 56369 58176 2.266 2.516 2.734
BIGGSB1 (CUTE) 15274 17835 18374 45853 53546 55170 2.875 2.922 2.484
Generalized Quartic 142 214 173 497 712 589 0.078 0.172 0.109
Diagonal 7 50 50 50 160 160 160 0.063 0.047 0.094
Diagonal 8 50 40 40 160 130 130 0.109 0.125 0.063
Full Hessian FH3 43 43 43 139 139 139 0.063 0.109 0.109
FLETCHCR (CUTE) NaN NaN 26793 NaN NaN 240237 NaN NaN 10.203

From Figure 7, it is observable that the graph of the CD method comes first to
the top, which signifies that the CD outperforms other considered methods with
respect to the IT.

Figure 8 presents the performance profiles of the FE of the DY, FR and CD
methods. From Figure 8, it is observed that the CD graph first comes to the
highest level, which means that the CD possesses best performances with respect
to the criterion FE.

Figure 9 presents the performance profiles of the CPU of the DY, FR and CD
methods. Figure 9 demonstrates that the graph of the CD method first achieves
the top level,so that the CD is winer with respect to the CPU.

From the previous analysis of the results shown in Table 6 and Figures 7-9, it is
clear that the CD method achieved most efficient results in terms of all three basic
metrics: IT, FE and CPU.

6.4. Numerical experiments on the hybrid conjugate gradient methods.
This subsection analyses numerical results obtained by running a MATLAB imple-
mentation with predefined conditions given at the beginning section. The following
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Figure 7. IT performance profile for DY, FR and CD methods.
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Figure 8. FE performance profile for DY, FR and CD methods.

ten hybrid CG methods in the form of (1.2) and (1.10), which differ only in the
choice of the CG parameter βk, are tested:

- HCG1: The CG method with βk defined by (4.15).
- HCG2: The CG method with βk defined by (4.16).
- HCG3: The CG method with βk defined by (4.17).
- HCG4: The CG method with βk defined by (4.18).
- HCG5: The CG method with βk defined by (4.19) in which c = 1−σ

1+σ .

- HCG6: The CG method with βk defined by (4.20).
- HCG7: The CG method with the parameter βk defined by (4.27).
- HCG8: The CG method with the parameter βk defined by (4.22) in which

θk ∈ [0, 1].
- HCG9: The CG method with the parameter βk defined by (4.23) in which

θk ∈ [0, 1].
- HCG10: The CG method with the parameter βk defined by (4.24) in which

νk, θk ∈ [0, 1].

The numerical experiment contains 25 test functions.
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Figure 9. CPU time performance profile for DY, FR and CD methods.

Summary numerical results for hybrid CG methods, tried on 25 test functions,
with respect to IT, FE and CPU profiles are presented in Table 7.

Table 7. Summary numerical results of the hybrid CG methods
HCG1–HCG10 with respect to IT.

Test function HCG1 HCG2 HCG3 HCG4 HCG5 HCG6 HCG7 HCG8 HCG9 HCG10

Perturbed Quadratic 1157 1157 1157 1157 1157 1157 1157 1157 1157 1157
Raydan 2 40 40 40 57 78 81 40 69 NaN 126
Diagonal 2 1584 1581 1542 1488 1500 2110 2193 1843 1475 1453
Extended Tridiagonal 1 805 623 754 2110 2160 10129 1167 966 NaN 270
Diagonal 4 60 60 70 60 70 70 60 70 NaN 113
Diagonal 5 124 39 98 39 120 109 39 141 154 130
Extended Himmelblau 145 139 111 161 181 207 159 381 109 108
Full Hessian FH2 5036 5036 5036 4820 4820 4800 4994 4789 5163 5705
Perturbed quadratic diagonal 1228 1214 1266 934 1093 987 996 1016 NaN 2679
Quadratic QF1 1158 1158 1158 1158 1158 1158 1158 1158 NaN 1158
Quadratic QF2 2125 2098 2174 1995 1991 2425 2378 NaN 2204 2034
TRIDIA (CUTE) NaN NaN NaN 6210 6210 5594 NaN NaN 6748 7345
Almost Perturbed Quadratic 1158 1158 1158 1158 1158 1158 1158 1158 1158 1158
LIARWHD (CUTE) 1367 817 1592 1024 1831 1774 531 2152 NaN 573
POWER (CUTE) 7782 7782 7782 7779 7779 7802 7781 7780 NaN 7781
NONSCOMP (CUTE) 10092 10746 8896 10466 9972 13390 11029 3520 3988 11411
QUARTC (CUTE) 94 160 145 150 126 95 160 114 165 154
Diagonal 6 40 40 40 57 78 81 40 69 NaN 126
DIXON3DQ (CUTE) 12182 5160 11257 5160 11977 14302 5160 17080 NaN 12264
BIGGSB1 (CUTE) 10664 5160 10479 5160 11082 13600 5160 16192 NaN 11151
Generalized Quartic 129 107 110 107 142 153 107 123 131 145
Diagonal 7 50 NaN 40 NaN 40 50 NaN 50 51 40
Diagonal 8 40 40 40 50 NaN 50 40 NaN NaN 40
Full Hessian FH3 43 42 42 42 42 43 42 43 NaN NaN
FLETCHCR (CUTE) 17821 17632 18568 17272 17446 26794 24865 NaN 17315 20813

Figure 10 plot corresponding performance profiles IT for the results included in
Table 7, in three columns denoted by IT.

From Figure 10, it is observable that the graph of the HCG6 method comes first
to the top, which signifies that the HCG6 outperforms other considered methods
with respect to the IT. However, if we look in more detail Figure 10, we can see
that the HCG6 method does not have the best results, it has the best results in
only (16%), while the HCG7 method has the best results in (52%) on the number
of functions tested. The reason for such behavior lies in the fact that the HCG6
method is the only one that has successfully solved all the test problems.

The numerical results of the hybrid CG methods with respect to the FE are
arranged in Table 8.
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Figure 10. IT performance profile for hybrid CG methods HCG1–HCG10.

Table 8. Summary numerical results of the hybrid CG methods
HCG1–HCG10 with respect to FE.

Test function HCG1 HCG2 HCG3 HCG4 HCG5 HCG6 HCG7 HCG8 HCG9 HCG10

Perturbed Quadratic 3481 3481 3481 3481 3481 3481 3481 3481 3481 3481
Raydan 2 100 100 100 134 176 182 100 158 NaN 282
Diagonal 2 6136 6217 6006 5923 5944 8281 8594 4822 5711 5636
Extended Tridiagonal 1 2369 1991 2275 4678 4924 22418 3119 2661 NaN 869
Diagonal 4 170 170 200 170 200 200 170 200 NaN 339
Diagonal 5 258 88 206 88 270 228 88 292 338 270
Extended Himmelblau 855 687 583 763 813 961 757 1613 567 594
Full Hessian FH2 15115 15115 15115 14467 14467 14407 14989 14374 15495 17122
Perturbed quadratic diagonal 3686 3647 3805 2805 3282 2967 2993 3053 NaN 8044
Quadratic QF1 3484 3484 3484 3484 3484 3484 3484 3484 NaN 3484
Quadratic QF2 9455 9202 9501 9016 9054 10229 10086 NaN 9531 9085
TRIDIA (CUTE) NaN NaN NaN 18640 18640 16792 NaN NaN 20260 22051
Almost Perturbed Quadratic 3484 3484 3484 3484 3484 3484 3484 3484 3484 3484
LIARWHD (CUTE) 7712 5931 8275 6165 8113 9395 5854 10305 NaN 4848
POWER (CUTE) 23356 23356 23356 23347 23347 23416 23353 23350 NaN 23353
NONSCOMP (CUTE) 31355 33211 27801 32705 31458 40807 34013 23411 13367 35106
QUARTC (CUTE) 901 1254 1261 1224 1224 916 1254 1041 1347 1305
Diagonal 6 100 100 100 134 176 182 100 158 NaN 282
DIXON3DQ (CUTE) 36508 15534 33759 15534 35926 42952 15534 51284 NaN 36796
BIGGSB1 (CUTE) 31960 15534 31427 15534 33247 40846 15534 48620 NaN 33469
Generalized Quartic 457 371 370 371 481 529 371 439 446 467
Diagonal 7 160 NaN 130 NaN 130 160 NaN 160 142 13
Diagonal 8 130 130 130 160 NaN 160 130 NaN NaN 130
Full Hessian FH3 139 136 136 136 136 139 136 139 NaN NaN
FLETCHCR (CUTE) 166463 165774 168739 175309 175845 240240 184939 NaN 174406 215687

Figure 11 plots the performance profiles for the results in Table 8, in three
columns denoted by FE.

From Figure 11, it is observable that the graph of the HCG6 method comes first
to the top, which signifies that the HCG6 outperforms other considered methods
with respect to the FE. However, if we look in more detail Figure 11, we can see an
identical situation as in Figure 10 that the HCG6 method does not have the best
results, it has the best results in only (16%), while the HCG2 method has the best
results in (48%) on the number of functions tested.

Table 9 contains numerical results of the hybrid CG methods with respect to the
CPU.

Figure 12 plots the performance profiles for the results in Tables 9.
From Figure 12, it is observable that the graph of the HCG6 method comes first

to the top, which signifies that the HCG6 outperforms other considered methods
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Figure 11. FE performance profile for hybrid CG methods HCG1–HCG10).

Table 9. Summary numerical results of the hybrid CG methods
HCG1–HCG10 with respect to the CPU (sec).

Test function HCG1 HCG2 HCG3 HCG4 HCG5 HCG6 HCG7 HCG8 HCG9 HCG10

Perturbed Quadratic 0.656 0.516 0.781 0.719 0.594 0.438 0.719 0.688 0.844 0.688
Raydan 2 0.031 0.063 0.078 0.078 0.078 0.078 0.078 0.078 NaN 0.078
Diagonal 2 1.453 1.328 1.656 1.172 1.438 1.797 1.813 1.266 1.250 1.141
Extended Tridiagonal 1 1.016 1.125 1.359 2.250 2.375 7.578 1.672 1.375 NaN 0.922
Diagonal 4 0.031 0.031 0.031 0.078 0.078 0.047 0.109 0.094 NaN 0.094
Diagonal 5 0.141 0.063 0.156 0.094 0.094 0.125 0.109 0.078 0.219 0.156
Extended Himmelblau 0.172 0.172 0.109 0.141 0.172 0.141 0.125 0.141 0.172 0.125
Full Hessian FH2 83.125 91.938 86.984 85.766 94.484 78.281 77.141 74.500 80.969 82.469
Perturbed quadratic diagonal 0.406 0.609 0.641 0.375 0.563 0.359 0.328 0.344 NaN 0.734
Quadratic QF1 0.359 0.438 0.422 0.422 0.406 0.391 0.484 0.422 NaN 0.281
Quadratic QF2 1.047 1.313 1.203 1.156 1.063 1.156 1.000 NaN 1.094 1.047
TRIDIA (CUTE) NaN NaN NaN 1.688 1.391 1.859 NaN NaN 1.875 1.391
Almost Perturbed Quadratic 0.406 0.438 0.516 0.594 0.250 0.359 0.406 0.578 0.641 0.422
LIARWHD (CUTE) 0.938 0.828 1.203 0.797 1.125 1.172 0.938 1.203 NaN 0.594
POWER (CUTE) 1.563 1.672 1.750 1.609 1.625 1.578 1.625 1.188 NaN 1.453
NONSCOMP (CUTE) 1.547 1.484 1.063 1.766 1.422 1.719 1.516 1.063 1.203 1.703
QUARTC (CUTE) 0.750 1.000 0.969 0.969 0.875 0.797 0.938 0.703 1.266 0.93
Diagonal 6 0.078 0.078 0.078 0.094 0.063 0.016 0.016 0.125 NaN 0.109
DIXON3DQ (CUTE) 2.047 1.453 2.016 1.484 2.359 2.234 1.406 2.297 NaN 2.078
BIGGSB1 (CUTE) 1.875 2.047 2.359 1.750 2.250 2.391 1.422 2.672 NaN 2.422
Generalized Quartic 0.063 0.125 0.141 0.156 0.125 0.094 0.078 0.109 0.172 0.109
Diagonal 7 0.063 NaN 0.016 NaN 0.109 0.063 NaN 0.063 0.063 0.063
Diagonal 8 0.078 0.125 0.078 0.031 NaN 0.063 0.109 NaN NaN 0.078
Full Hessian FH3 0.063 0.047 0.109 0.047 0.031 0.063 0.047 0.109 NaN NaN
FLETCHCR (CUTE) 5.656 6.750 7.922 9.484 6.484 8.766 7.281 NaN 6.906 7.547

with respect to the CPU. However, if we look in more detail Figure 12, we can see
an identical situation as in the figures 10 and 11 that the HCG6 method does not
have the best results, it has the best results in only (8%), while the HCG7 and
HCG10 methods has the best results in (20%) on the number of functions tested.

6.5. Numerical experiments on the modified Dai-Liao methods. The nu-
merical experiments presented in this subsection investigate the influence of the
scalar size in the modified Dai-Liao methods. The previously mentioned variants of
the DL method use a fixed value of the parameter t. It can also be seen that the
scalar t in all the above papers are greater than 0 and is less than 1. Analyzing the
results from [18, 26, 131, 139], we conclude that the scalar t was defined by a fixed
value of 0.1 in numerical experiments. Also, numerical experience related the fixed



1612 P. S. STANIMIROVIĆ, B. IVANOV, H. MA AND D. MOSIĆ
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Figure 12. CPU time performance profile for hybrid CG methods
HCG1–HCG10.

valued t = 1 was reported in [26]. Common numerical experience is that different
choice of t initiate totally different numerical experience.

That is why we come to the next question. What is the ‘best’ value of t ∈
(0, 1) from the computational point of view? Because of that, our intention is to
investigate numerically and theoretically behavior of different variants of the DL
conjugate gradient framework with respect to various values t. For this reason, we
started this research with the aim to find answer to the aforementioned question.
Our strategy is to select several values of the parameter t within the interval (0, 1)
and to compare the obtained results based on different criteria. In that way, we will
get the answer to the question: whether it is better to take values closer to zero or
closer to one.

6.5.1. Motivations and the corresponding algorithm. As we have already indicated
in the previous section, the aim of this subsection is to answer to the question: what
is the ‘best’ value of t ∈ (0, 1) in DL CG computational scheme? Our plan is to
examine numerically the influence of the scalar t in the DL class of iterations and
determine some rules for its appropriate choice and, if possible, find the best value.
The detailed research plan is to find the answer to two challenging questions:

- Does and how much the values of the scalar t affect each of the methods DHSDL,
DLSDL, MHSDL and MLSDL, which are observed individually, with respect to IT,
FE and the CPU time (CPU)?

- Does the choice of t favor one (or some) of the considered methods?

To give an answer to these questions, we would have to test all the methods under
the same conditions. During testing, we will compare all the considered methods
with the same values of required scalars. The Algorithm 2, i.e. the backtracking
line search, determines the step-size αk in (1.2).

Algorithm 6 gives the corresponding general framework for DHSDL, DLSDL,
MHSDL and MLSDL methods.

Values of t used during the testing of the observed methods are given in the
Table 10. Each particular value of the scalar t is marked with one of the labels
T1 to T6, corresponding to a joined value of t. Five of the six given values are
fixed during testing of the observed methods. Only the value of t labeled by T1
is variable during the iterations, where the value in kth iteration is denoted by tk.
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Algorithm 6 Modified Dai-Liao conjugate gradient methods.

Require: A starting point x0, real numbers 0 < ε < 1, 0 < δ < 1, µ > 1 and t > 0.

1: Set k=0 and compute d0 =−g0.

2: If

‖gk‖ ≤ ε and
|fk+1 − fk|

1 + |fk|
≤ δ

STOP;
else perform Step 3.

3: Determine αk ∈ (0, 1) using backtracking in Algorithm 2.
4: Compute xk+1 =xk + αkdk.

5: Calculate gk+1, yk=gk+1 − gk, sk=xk+1 − xk.

6: Calculate βk by (4.9) or (4.10) or (4.11) or (4.12).
7: Compute dk=−gk + βkdk−1.
8: k :=k + 1, and go to Step 2.

In this case, the value tk is obtained from backtracking line search, i.e., tk = αk
inherits a new value obtained from Algorithm 2 in each iteration.

The reason why we decided to define values tk from the backtracking line search
algorithm is:

- tk ∈ (0, 1);
- tk also affects the iterative steps when computing the next value for xk.

Table 10. Labels and values of scalar t in the DHSDL, DLSDL,
MHSDL and MLSDL methods.

Label T1 T2 T3 T4 T5 T6

Value of the scalar t tk = αk 0.05 0.1 0.2 0.5 0.9

The convergence of the above methods has already considered in the mentioned
references. Our goal is to give a unified analysis of the convergence of proposed DL
methods. The aim of our research is to investigate the influence of the scalar t in
the DL iterates.

Each particular value of the scalar t is marked with one of the labels T1 to T6,
corresponding to a joined value of t. Five of the six given values are fixed during
testing of the observed methods. Only the value of t labeled by T1 is variable during
the iterations, where the value in kth iteration is denoted by tk. In this case, the
value tk is obtained from backtracking line search, i.e., tk = αk inherits a new value
obtained from Algorithm 2 in each iteration.

The convergence of the above methods has already considered in the mentioned
references. Our goal is to give a unified analysis of the convergence of the proposed
DL methods. The aim of our research is to investigate the influence of the scalar t
in the DL iterates.

Arranged numerical results are generated by testing and comparing DHSDL,
DLSDL, MHSDL and MLSDL methods on 6 different values t, denoted by T1-T6.
Three important criteria (IT, CPU, FE) in all tested methods are analyzed. Numer-
ical report is based on 22 test functions proposed in [3]. For each of tested functions,
we performed 10 numerical experiments with 100, 500, 1000, 3000, 5000, 7000, 8000,
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10000, 15000 and 20000 variables. Summary results for DHSDL, DLSDL, MHSDL
and MLSDL methods, tried on 22 tests, are presented.

The uniform stopping criteria are (refer to previous)

‖gk‖ ≤ 10−6 and
|fk+1 − fk|

1 + |fk|
≤ 10−16.

The backtracking parameters for all algorithms are ω=0.0001 and ϕ=0.8.
During the testing of the DHSDL and DLSDL methods, the constant parameter

µ = 1.2 was used in each iteration.

6.5.2. Numerical eexperiments on DHSDL method. Figure 13 indicates the perfor-
mance profiles of the IT criterion with respect to the DHSDL method depending on
the scalar value t. This figure exhibits that the DHSDL method successfully solved
all the problems for all values of the scalar t. Also, the DHSDL-T2 method is
finest in 45.5% of testings with respect to DHSDL-T1 (18.2%), DHSDL-T3 (9.1%),
DHSDL-T4 (4.5%), DHSDL-T5 (13.6%) and DHSDL-T6 (13.6%). It can be noticed
that the graph of DHSDL-T2 reaches the top first, which signifies that DHSDL-T2
is the best with respect to IT.
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Figure 13. Performance profiles of DHSDL (T1,T2,T3,T4,T5,T6)
method based on IT.

Figure 14 shows the performance profile given by FE of the DHSDL solver with
respect to t. Evidently, DHSDL solves all test problems for all values of the scalar
t, and the DHSDL-T2 method is winer in 50.0% of the test problems compared to
the DHSDL-T1 (18.2%), DHSDL-T3 (9.1%), DHSDL-T4 (0%), DHSDL-T5 (13.6%)
and DHSDL-T6(9.1%). From Figure 14, it is notifiable that the DHSDL-T2 is the
best with respect to FE.

Figure 15 illustrates the CPU criterion spanned by the DHSDL method depend-
ing on the metrics t. Again, the DHSDL method is able to solve all the tested
problems for all values of the scalar t. Further, the DHSDL-T6 method is supe-
rior in 40.9% of tests with respect to the DHSDL-T1 (4.5%), DHSDL-T2 (27.3%),
DHSDL-T3 (9.1%), DHSDL-T4 (4.5%) and DHSDL-T5 (13.6%). We also observed
that at the beginning, DHSDL-T2 does not perform well but as the number of
problems increases, its graph crosses other graphs and achieves the top fist, which
means that the DHSDL-T2 is dominant with respect to CPU.
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Figure 14. Performance profiles of DHSDL (T1,T2,T3,T4,T5,T6)
method based on FE.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DHSDL-T1
DHSDL-T2
DHSDL-T3
DHSDL-T4
DHSDL-T5
DHSDL-T6

Figure 15. Performance profile of DHSDL (T1,T2,T3,T4,T5,T6)
method based on CPU time.

The graphs displayed in figures 13–15 show that the DHSDL method has achieved
superior results for t ≡ T2 = 0.05.

6.5.3. Numerical experiments on DLSDL method. Figure 16 illustrates the IT cri-
terion in the DLSDL method depending on the scalar value t. It is observable that
DLSDL successfully solves all the problems for all values of the scalar t. Moreover,
the DLSDL-T2 method is winner in 36.4% of the tests compared to DLSDL-T1
(22.7%), DLSDL-T3 (13.6%), DLSDL-T4 (9.1%), DLSDL-T5 (9.1%) and DLSDL-
T6 (13.6%). Figure 16 (left) exhibits that the graph DLSDL-T2 achieves the top
first, which means that DLSDL-T2 outperforms all the other methods with respect
to IT.

Figure 17 shows the performance profiles of the criterion FE corresponding to
the DLSDL method and the scalar value t. In this Figure, it is observable that
DLSDL for all values of the scalar t successfully solves all tests, and DLSDL-T2 is
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Figure 16. Performance profiles of DLSDL (T1,T2,T3,T4,T5,T6)
method based on IT.

best in 36.4% of the test functions in comparison to DLSDL-T1 (18.2%), DLSDL-
T3 (4.5%), DLSDL-T4 (18.2%), DLSDL-T5 (13.6%) and DLSDL-T6 (9.1%). From
Figure 17, it is observed that DLSDL-T2 is the best with respect to FE.
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Figure 17. Performance profiles of DLSDL (T1,T2,T3,T4,T5,T6)
method based on FE.

Figure 18 shows the performance profiles of the CPU time of the DLSDL method
depending on t. The graphs in this figure indicate that DLSDL method solved all
the problems for all values of t, and the DLSDL-T4 method is superior in 31.8% of
the test problems compared to DLSDL-T1 (13.6%), DLSDL-T2 (22.7%), DLSDL-
T3 (18.2%), DLSDL-T5 (9.1%) and DLSDL-T6 (4.6%). We also observed that at
the beginning, DLSDL-T2 does not perform well; but as the number of problems
increases, its graph crosses other graphs and comes to the top which signifies that,
with respect to CPU, the DLSDL-T2 is the best.

Based on figures (16–18) analysis, we come to the conclusion that the DLSDL
method has achieved best responses for t ≡ T2 = 0.05.

6.5.4. Analysis of average values. In Subsection 6.5.1, we have defined two ques-
tions. Our aim in this subsection is to give answers. In order to answer properly
to the first question, in Tables 11, 12, 13 are collected average values for all three
considered criteria.
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Figure 18. Performance profile of DLSDL (T1,T2,T3,T4,T5,T6)
method based on CPU.

Table 11. Average IT values for 22 test functions tested on 10 numer-
ical experiments.

Method T1 T2 T3 T4 T5 T6

DHSDL 32980.14 31281.32 33640.45 32942.36 34448.32 33872.36

DLSDL 30694.00 28701.14 31048.32 30594.77 31926.59 31573.05

MHSDL 29289.73 27653.64 29660.00 29713.50 30491.18 30197.27

MLSDL 25398.82 22941.77 24758.27 24250.68 25722.64 25032.64

Table 12. Average values of FE for 22 test functions tested on 10
numerical experiments.

Method T1 T2 T3 T4 T5 T6

DHSDL 1228585.50 1191960.55 1252957.09 1238044.36 1271176.59 1255710.45

DLSDL 1131421.41 1083535.14 1149482.41 1134315.00 1167030.14 1158554.77

MHSDL 1089700.41 1036710.32 1089777.64 1091985.41 1105299.91 1101380.18

MLSDL 904217.14 845017.55 891669.50 879473.14 913165.68 895652.36

Table 13. Average CPU time for 22 test functions tested on 10 nu-
merical experiments.

Method T1 T2 T3 T4 T5 T6

DHSDL 902.06 894.73 917.77 930.56 911.28 870.93

DLSDL 816.08 790.63 804.69 816.28 803.84 809.67

MHSDL 770.78 751.65 728.61 749.70 712.64 720.57

MLSDL 573.14 587.41 581.50 576.32 582.62 580.96

After the numerical testing of the compared methods and the individual analysis
for each method, we can now give a global conclusion of the behavior of the observed
methods. The first conclusion is that the value of the scalar t significantly affects
on each of the DHSDL, DLSDL, MHSDL and MLSDL methods with respect to all
three criteria. Further, a common conclusion is that all the methods give the best
performance profiles for the scalar value t = 0.05. We can also give an answer to
another question. According to the previous analysis, a particular selection of the
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scalar value t can give priority to one of the observed method. All methods do not
behave identically for the same values of the scalar t. If we observe Table 11 which
contains the average number of iterations, we can notice that the difference between
the smallest and the biggest average result of the observed method is in the range
of 10.1% to 12.1% in relation to the minimum obtained value. Table 12 shows the
average results related FE. An individual comparison of considered methods leads
to the conclusion that the difference between the smallest and the biggest average
results is in the range of 6.6% to 8.9% in relation to the minimum obtained value.
This brings us to the same conclusion once again, that is, the value of the scalar
t affects the methods in a given percentage. Also, if we observe Table 13 with the
average CPU time, we can notice that the difference between the smallest and the
biggest average CPU time observed method is in the range of 2.5% to 10.6% in
relation to the minimum value.

7. Conclusion. Overview of QN methods, CG methods and their classification
are presented. Section 5 investigates convergence properties of CG methods, fol-
lowing the CG classes in accordance with the presented taxonomy of basic CG
methods. Numerical experiments compare main classes of QN and CG methods.
More precisely, main QN methods with constant diagonal Hessian approximation
are compared as well as two classes of basic CG methods, hybrid CG methods, and
finally some variants of modified Dai-Liao methods.

The problem of defining further improvements of the CGUP βk is still open.
Moreover, new CG methods could be defined using appropriate updates of the
parameter t. Another research stream includes various hybridizations of so far
proposed CG methods. On the other hand, there are open possibilities for defining
new updates of the matrices Bk and Hk, used in defining QN methods. Continuing
research on some composite definitions of βk based on CG and BFGS updates, it is
possible to discover new three-term (or even different) CG variants.

One of prospective fields for further research includes a generalization of the
discrete-time approach to continuous-time approach, considered in [69]. Another
possibility for further research is extension of gradient methods to tensor case. This
possibility was exploited in [77] on solving M-tensor equations.

Moreover, an application of low rank updates used in optimization can be trans-
ferred to appropriate numerical methods for computing generalized inverses. Ap-
plications of rank-one update formula are investigated in [115, 116].
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1622 P. S. STANIMIROVIĆ, B. IVANOV, H. MA AND D. MOSIĆ
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