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ABSTRACT. The paper surveys, classifies and investigates theoretically and nu-
merically main classes of line search methods for unconstrained optimization.
Quasi-Newton (QN) and conjugate gradient (CG) methods are considered as
representative classes of effective numerical methods for solving large-scale un-
constrained optimization problems. In this paper, we investigate, classify and
compare main QN and CG methods to present a global overview of scien-
tific advances in this field. Some of the most recent trends in this field are
presented. A number of numerical experiments is performed with the aim to
give an experimental and natural answer regarding the numerical one another
comparison of different QN and CG methods.

1. Introduction and preliminaries. In this survey, we focus on solving the un-
constrained nonlinear optimization problem

min f(x), x € R", (1.1)

where the function f : R™ — R is continuously differentiable and bounded from be-
low. The general iterative rule for solving (1.1) starts from an initial approximation
Xp € R™ and generates a sequence {xj, k > 0} using the general iterative scheme

Xp+1 =Xk +ardg, k>0, (1.2)

where the step-size «y is a positive real parameter determined after the exact or
inexact line search, xy, is the last generated iterative point, xx1 is the current iter-
ative point, and dj is an appropriate search direction. General class of algorithms
of the form (1.2) is known as the line search algorithms. These algorithms require
only the search direction d; € R™ and the step-size ay, € R.

The following notations will be used, as usual:

g(x) = Vf(x), G(x) = V*f(x), g = Vf(xk), Gr = V>f(xx),
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where V f(x) denotes the gradient and V2 f(x) denotes the Hessian of f. For the
sake of simplicity, the notation f; will point to f(x). Further, xT denotes the
transpose of x € R™. Taylor’s approximation of the function f at the point xx11 =
X + apdy is defined by

F(Xng1) & f(xk) + oxgp di. (1.3)

Therefore, an appropriate descent search direction di must be determined on the
basis of the descent condition

gid, <0, for all k. (1.4)

Primary choice for descent direction is dy = —gg, which reduces the general line
search iterations (1.2) into the gradient descent (GD) iterative scheme

Xk+1 = X — O 8. (15)

In this paper, we survey gradient methods satisfying the descent condition (1.4).
If there exists a constant ¢ > 0 such that

gr di < —c|lgkl®, for all k, (1.6)

where c¢ is a positive constant independent of k, then it is said that the vector dy
satisfies the sufficient descent condition.

As for the choice of search direction, one of the possible choices for the search
direction in unconditional optimization is to move from the current point along the
negative gradient in each iteration, which correspond to d = —gj. This choice
of search direction leads us to a class of methods known as gradient descent meth-
ods. One negative feature of gradient methods is relatively frequent occurrence of,
so called, zig-zagging phenomenon, which initiates very slow convergence of GD
algorithms to the optimal point, or even divergence [90].

Advantages and disadvantages of GD methods can be summarized as follows.

1. GD methods are globally convergent, i.e., converge to a local minimizer re-

gardless of the starting point.

2. Many optimization methods switch to GD rule when they do not make suffi-

cient progress to the convergence.

3. The convergence is linear and usually very slow.

4. Numerically, GD methods are often not convergent.

Another important direction of the search is the Newton’s direction dy, = —G;l Sk,
obtained from the second-order Taylor-development, assuming that Hessian Gy is
positive-definite. The pure Newton method (without line search) for minimization
of a function f:R™ — R is defined using a quadratic approximation of f(xx11):

d(d) := f(x +d) ~ f(xx) +grd+ %dTde. (1.7)
The solution dy = ming(®(d)) is given by
dy = -G} 'gy.
So, the pure Newton method is defined by
Xp+1 = X, — G, '@k (1.8)

The Newton method with line search uses an appropriate step-size ay, in (1.8)
with the aim to ensure global stability. The resulting iterations are of the form

X1 = Xk — ax Gy ' gk, (1.9)
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wherein the step-size ay, is computed performing a line search.
The Newton method exhibits three major drawbacks in practical applications.

1. The descent (and convergence) may not be achieved if the iterations (1.8) are
started far away from the local minimizer.

2. Another drawback is numerically expensive and tedious necessity to com-
pute the second derivative matrix (Hessian) and its inverse in every iteration.
Moreover, the second derivatives may be sometimes unavailable.

3. The main disadvantages of the Newton method are the possibility that the
Hessian G is not positive definite.

Due to that, numerous modifications of it were created, which can be globally
divided into two large groups: modified Newton’s methods and quasi-Newton (QN)
methods. The QN methods are aimed to address all the above difficulties of the
Newton method. The first drawback is overcome by taking an appropriately defined
positive definite matrix By that approximates the Hessian G or an appropriately
defined positive definite matrix Hj that approximates the true Hessian inverse G,;l
and then performing a line search at each iteration. For a given initial point xg € R"
and a symmetric positive definite matrix Hy, the search direction in the kth iteration
of the quasi-Newton method is defined by dy = —Hpgx, where Hy is a symmetric
and positive-definite matrix.

QN methods and modified Newton methods belong to most powerful methods for
solving unconditional optimization and applicable in many nonlinear optimization
problems. A survey of QN methods for solving nonlinear least-squares problems was
considered in [86]. The optimization methods have found a number of applications
in fluid mechanics [44], free surface flow and solid body contact [13], finding the op-
timal trajectory for an aircraft or a robot arm, designing a portfolio of investments,
controlling a chemical process, computing the optimal shape of an automobile. See
[90] for more details. A modification of the quasi-Newton method in defining the
two-phase approximate greatest descent was used in [71]. Several variants of multi-
step spectral gradient methods for solving large scale unconstrained optimization
problems were proposed in [111]. Usage of an optimization algorithm in artificial
neural networks was considered in [75]. Properties of Hessian matrix which appear
in distributed gradient-based multi-agent control systems was considered in [117].
A survey of derivative-free optimization methods was given in [127]. An application
of unconstrained optimization in solving the risk probability was presented in [76].

The study of conjugate gradient (CG) methods was started by Hestenes and
Stiefel in 1952 in [60], and the development of CG methods for solving large-scale
unconstrained optimization problems is still ongoing. After all these years, there
is still a need to find a more efficient CG method that will solve unconstrained
optimization problems with thousands of variables in the shortest possible time
interval as well as with a minimal number of iterations and function evaluations.

CG methods construct a sequence of approximations x by the line search rule
(1.2), such that the search directions dy are generated by

— 80y k:O7
dk = Dk = D(ﬂkyglmdk—l){ 80 (110)

=8k + Bedi—1, k=1,
where Sy is the real value which is known as the conjugate gradient update parame-
ter (CGUP). More precisely, the search direction dy of the CG method is defined as
a proper linear combination of the gradient descent direction and a positive multiple
of the direction used in the previously finished iteration. From (1.10) and (1.2), it
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clearly follows that the CG methods are defined simply only by the gradient direc-
tion g and by the CGUP . Different CG methods arise from proper choices of
the scalar ;. According to the common agreement, ﬂ,é\/l denotes the parameter Gy
of the CG method M. It is important to mention that some researchers propose
usage of ﬁ,?’H' = max{ﬁ/c\’l,()}. So, it is possible to use ﬁ,?/l"’ instead of ,8,?4 and
generate corresponding dual method.

Popularity of CG methods is confirmed by a number of recent surveys and book
chapters [42, 57, 85, 87, 88]. In addition to this basic information on the chronologi-
cal development of the CG methods, it is also important to mention its applications.
In general, CG methods are important in solving large-scale optimization problems.
CG methods iterates are characterized by low memory allocation and strong local
and global convergence properties. Based on this fact, these methods become useful
in all areas where optimization problems of any kind are involved. The CG meth-
ods have wide use in solving systems of equations and image restoration problem
[12, 16, 70, 78, 128, 135, 136, 140], the linear response eigenvalue problem [74], in
regression analysis [108, 143]. On that way, CG methods have the influence on
the development of an artificial neural networks learning algorithms [46, 75]. A
unique approach to the ABS type CG methods was proposed in [1]. Application of
CG methods in solving very large symmetric positive semi definite linear systems
that appear in optimal surface parameterizations are described in [64]. Also, it is
possible to mention application in data analysis [110]. A variant of the projected
preconditioned conjugate gradient method and its application in solving the linear
response eigenvalue problem was investigated in [74].

Main goals leading current research paper can be highlighted as follows.

(1) A survey and specific classifications of CG and QN methods for nonlinear
unconstrained optimization is presented.

(2) Convergence properties of CG methods are investigated.

(3) Specific numerical testings are performed on both the CG and QN methods.
Numerical testing on some classes of CG methods and hybrid CG methods as
well as on some QN methods is presented. A numerical experiment about the
influence of the scalar ¢t in Dai-Liao CG methods is performed and analysed.
Also, gradient descent methods defined by appropriate acceleration parameter
are tested and compared.

The overall structure of the paper based on contents of each section is described
as follows. Section 1 describes basic notation, introductory notions, preliminaries
and motivation. Global algorithms and various line search variants are presented
in Section 2. Overview of QN methods and their classification are considered in
Section 3. Section 4 gives a specific overview of CG methods. Convergence prop-
erties of considered CG methods are investigated in Section 5. According to the
presented taxonomy of basic CG methods, properties of CG methods with y} g
in the numerator of §; are considered in Subsection 5.1, properties of CG meth-
ods involving ||gk||? in the numerator of S are given in Subsection 5.2, while the
convergence properties of DL methods are presented in Subsection 5.3. Numer-
ical experiments are performed in Section 6. In details, Subsection 6.1 arranges
numerical results on QN methods with constant diagonal Hessian approximation,
Subsection 6.2 compares numerically basic CG methods involving y7 g in the
numerator of SBj, Subsection 6.3 compares basic CG methods with ||gx||? in the
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numerator of (i, while numerical experiments on the hybrid CG methods are pre-
sented in Subsection 6.4. Finally, Subsection 6.5 describes numerical experiments
on the modified Dai-Liao methods. Concluding remarks are given in Section 7.

2. Global algorithms and line search variants. First, we present an algorithm
that describes the general scheme of line search methods

Algorithm 1 Gloab line search algorithm

Require: Objective f(x), initial point xo € R™ and the tolerance 0 < & < 1.
1: k:=0.
2: while ||gx|| > ¢ do
Determine the vector d; which represents the search direction.
Compute the step length ay,
Compute the new approximation of the minimum xjy1 = xj + axdg
k=k+1
7: end while
Ensure: xgy1, f(Xg+1)

2.1. Line search procedures. To achieve the global convergence of iterative
methods, an appropriate step-size «j is required. The most promising at first
glance is the exact line search (ELS), which assumes the unidimensional function

(I)(Oé) = f(Xk + Oédk) (2.1)
and the step-size is defined after the unidimensional optimization of the form
fxi + Oékdk) = ran>i%1<1>(a). (2.2)

The ELS rule may give the most precise minimum. However, ELS is too expensive in
practice or even impossible to implement, especially in situations where the iteration
is far from the exact solution.

Applying the iterative procedure (1.2), it is most logical to choose a new point
so that the step length oy reduces the value of the goal function:

Bar) = flxs1) < B(0) = [(x1): (2.3)

Methods that in each iterative step require the fulfillment of conditions (2.3), that is,
the reduction of the value of the objective function, define iterations that in each step
approach the minimum of the given function. The methods conceived in this way
belong to the class of methods of monotone line search. Many variants of inezact line
search (ILS) rules are proposed and dominant in the nonlinear optimization. The
most commonly used ILS techniques are Armijo, Goldstein, Wolfe, Powel, Fletcher
and other [4, 8, 19, 50, 55, 56, 109, 126]. In most conjugate gradient methods, one of
the next ILS procedures methods is used to calculate the step length ay: Wolfe line
search developed in [55, 56|, strong Wolfe line search, or backtracking line search
from [4].

In contrast to the monotonic line search, the non-monotonic line search is also
known in the literature, where it is not necessary to reduce the value of the objec-
tive function in each iteration [51, 52, 53]. Although non-monotone techniques do
not provide a minimum approach to the function in each iteration, they are very
common in practical applications and have very good convergence properties. A
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number of nonmonotonic linear search methods have been proposed recently (see,
for example, [119, 120]).

2.1.1. Backtracking line search. A backtracking line search scheme based on the
Armijo condition, is aimed to determining the maximal value during the moving
along a given search vector. It starts with a relatively large step-size estimate and
iteratively reduces the step-size value until a decrease in the value of the objective
function is observed, according to the local gradient of the goal function. Let
B€(0,1), p € (0,1) and e > 0 be given. Then there exists a smallest nonnegative
integer my, satisfying

f(xp + B tdy) < f(xi) + o8 tgh di, t > 0. (2.4)

The procedure for backtracking line search proposed in [4] starts from the initial
value a =1 and its output values are defined such that it decreases the goal func-
tion. Consequently, Algorithm 2 from [112] is used in numerical experiments as the
implementation of the ILS which defines the principal step-size ay.

Algorithm 2 The backtracking line search.

Require: Nonlinear multivariate function f(x), the vector dy, previous approxi-
mation xy, and the real numbers 0 < w < 0.5 and ¢ € (0, 1).
1. a=1.
2: While f(xx + ady) > f(xx) + wagldy, take a := ap.
3: Return o = a.

2.1.2. Goldstein line search. In order to ensure a sufficient decrease of the objective
function, Goldstein rule for ILS requires the following conditions:

f(xk + ady) < f(x) + ptef dy, (2.5)
and
fxi 4+ ady) > f(xi) + (1 — p)tgf du, (2.6)

where 0 < p < 1 and ¢ > 0. Conditions (2.5) and (2.6) define the Goldstein rule for
inexact line search.

2.1.3. Wolfe line search. Wolfe line search conditions are well-known and these are
given by
fxk + ardy) < f(xx) + nogy di, (2.7)
g(xx + ardy)"dy > o1g) di, (2.8)
where 0 < 17 < 07 < 1. In addition, for conjugate gradient methods, the generalized
strong Wolfe conditions, which are a conjunction of (2.7) and

— oagi dy > g(xp, + agdy) T dy > orgldy, (2.9)

are often used, where o; > 0. In the case 07 = 09, the generalized strong Wolfe
conditions reduce to the strong Wolfe conditions, which are a conjunction of (2.7)
and

|g(xk + Oékdk)Tdk| < —U1g%‘dk. (2.10)
The condition (2.7) of the Wolfe conditions is called the Armijo condition, which is
often used apart or in the form of its variants.
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3. Quasi-Newton methods and their classification. The most general itera-
tive rule of QN type with line search is of the form

Xk+1 = X — o Hy g, (3.1)

such that Hj is an approximation of the inverse Hesiian G,;l. Further, it is assumed
that By is an appropriately generated symmetric positive definite approximation of
Gy [118]. The following notations in defining an appropriate updating formula

Sk = Xk+1 — Xk, Yk = 8k+1 — 8k (3-2)

are typical. The update By of By is defined using the rule

Byy1 = By + Ej, (3.3)
where Ej, is defined on the basis of the quasi-Newton property (secant condition)
Biy1Sk = Y- (3.4)
The quasi-Newton condition for the matrix Hy, is given by
Hyi1yr = sg. (3.5)

Methods that require the calculation or approximation of the Hessian matrix and
its inverse belong to the class of QN methods as well as its numerous modifications.
The pure Newton method requires calculation of second derivatives matrix, which is
avoided in QN methods. As a consequence, the Newton method is computationally
expensive and exhibits slow computation, while QN methods are computationally
cheap and of faster computation. On the other hand, the Newton method requires
lesser number of iterative steps and generates more precise convergence path than
QN methods.

3.1. Symmetric Rank-One update. The Symmetric Rank-One update (SR1)
assumes the matrix Hy,qin the form

Hy 1 = Hy + Eg,
where Ej, is assumed to be a symmetric rank-one matrix. Therefore,
Hy 1 = Hy +upvyi, (3.6)

where
Uy, Vi € R"™.

The quasi-Newton condition (3.5) initiates

Hys1yr = (Hy +wvi)yr = s,

that is
(Viyr)ux = s — Hiyp. (3.7)
The conclusion is that ug must be in the direction sy — Hpyx. Suppose that
sk — Hyyr # 0,

(otherwise Hy, would satisfy the quasi-Newton equation) and the vector vy satisfies
vIyy # 0. Then, on the basis of (3.6) and (3.7), it follows that

Hk+1 =H, + T (Sk — Hkyk)va.. (38)
Vi Yk
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The condition that the approximation Hyy; of the Hessian inverse is symmetric
requires us to take v = sp — Hryx, so it was obtained
(sk — Hiyr)(sk — Hiyr)”
(sk — Hryr) Ty
which is the Symmetric Rank One (SR1) update.

For general functions, Conn, Gould and Toint in [20] proved that the sequence of
SR1 Hessian approximations converges to the true Hessian provided that the steps
are uniformly linearly independent.

Hypr = Hy + (3.9)

3.2. DFP update. The Hessian update By, is defined as the solution to the
problem

min || B — By, st. B= BT, Bs; = y. (3.10)
The solution to (3.10) is equal to
1
BiT = (I — pryrsi)BREY (I — prsiyr) + pryryes ok = T
i

The inverse Hessian update can be generated using the Sherman - Morrison - Wood-
bury.

Moreover, the DFP update is known as a method of updating, of rank 2, that
is, Hyy1 is formed by adding the matrix Hj with two symmetric matrices, each of
which is rank 1:

Hyi 1 = H + aukug + bvkvf,

where ug, vi € R™, and a, b are scalars. From the quasi-Newton condition (3.5) it
follows that

Hiyr + aukugy;C + bvkvfyk = si. (3.11)
The vectors u; and vy are not unique, but they can obviously be determined in the
following way

up = sk, Vi = Hpys.

Now, (3.11) implies

1 L, 1 1
a = — = —/—/—— s = — = — .
ulyr  styr vy YFEHgyg

So we get

skSh B Hyyry? Hy,
SLYk YL Heyr
Formula (3.12) was proposed by Davidon and later was developed by Fletcher and
Powell, so that it is called DFP update.

HPFY = Hy +

(3.12)

3.3. BFGS update. One famous broadly used updating formula is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) rule. The inverse Hessian update Hjy; is de-
fined as the solution to

min |/ — Hy|, st. H= H™, Hyy = s (3.13)
Certainly, the BFGS update is overtly known as
1
H (TS = (I — prsiyi JHETOS (I — pryisi) + pusisi s pre = o
k

3.14
_ mras  Heyest + seyy Hy yiHiyr\ sksi (8.14)

=H,"" — T S sy vl B v

Si Yk S Yk S, Yk
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where sj, and yj, are defined in (3.2).

The update BFGS formula for the Hessian matrix can be generated using the
Sherman-Morrison-Woodbury formula. A rank-one-modification (or perturbation)
M = A+ bc* of a matrix A € C™*" uses two vectors b € C™*! and ¢ € C"*1,
The Sherman-Morrison formula establishes a relationship between M~! and A~!
as follows [45]:

M 7' =A"— (14+c"A7'b) A 'ber AL, (3.15)
As a result, the following update for By is obtained:
B TB T
BPFGS _ pBFGS _ ’“TS’;’“ L (3.16)
Sj. DSk S Yk

3.4. Broyden family of methods. The weighted combinations of DFP and BFGS
updates give the whole update class, which is known as the Broyden class. This
class of update is defined by

HY = (1— ¢)HPEY + oHPEES, (3.17)

where ¢ is a real parameter. If ¢ € [0,1], then (3.17) is called the Broadden convex
update class. It is obvious that Broyden’s class (3.17) satisfies the quasi-Newton
equation (3.4). Also, the expression (3.17) can be rewritten in the following form

=Y, = HPIY + gopof
= Hid™ + (0= Duev (318)
T T
SESg Hyyry, He T
= Hj + — + ¢pugvy, ,
St Yk YFHpyg k
where
s H
vy = (yF Hyyp)V? | e — LYk (3.19)

siyr  YiHeyrl’
If we put in (3.18):
- ¢ =0, then we will obtain DFP update (3.12)
- ¢ =1, then we will obtain BFGS update (3.14)

- o= (Sk_;{%, then we will obtain SR1 update (3.9).

The Broyden class of methods can be derived directly from the quasi-Newton equa-
tion. Consider the general formula for updating rank 2, which contains s; and

Hyyy:
Hiy1 = Hy + asysy + b(Hiygsy, + seyp Hi) + cHiyr'yp Hy, (3.20)

where a, b, ¢ are unknown scalars. We obtain
1 = asfyx + by} Hiys, 8:21)
0=1+bspye +cyg Hoyr. '

Here we have two equations with three unknowns, so we can introduce the replace-
ment
b= _¢/S;€Yka
where ¢ is a parameter. Solving system (3.21) and substituting the obtained result
in (3.20), we obtain
sksp Hypywyp Hy

HY | =Hp+ —~ + ¢upuf = HPIT + puof,
k+1 Sg}’k ngk}’k: k k+1 k
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where vy, is defined by means of (3.19). Previous expression is identical to (3.18).

3.5. Some modifications of quasi-Newton methods. A great effort has been
invested to discover QN methods that do not merely possess convergence but it is
also better from the BFGS update in the numerical performance. Table 1 shows
some of these modifications of the quasi-Newton equations.

TABLE 1. Some modifications of quasi-Newton equations.

lQuasi—Newton Eqs.[yk,l [Ref.l
Brsg—1=Yr-1 Yi-1=¢r—1Yk-1 + (1 — or—1)Br_18k-1 [104]
Brsp—1 =Yr—1 Yk 1=Yk—1+th_18k_1,tk—1 < 10°° [72]

Bisk—1=Yr-1 Ye-1=Yk-1+ 2(fk717fk)‘r;$klﬁzgk71ﬂsk” Sk—1 [123]
Bisg—1 = yr-1 Ye-1=Yk-1+ max(oz(fk*l7{:}3f£ﬁ§+gk71)1ﬂsk71>Sk_l [133]
Bisg—1 =yr-1 Ye—1=Yk—1+ max(o’ﬁ(fkfl7ﬂilt?1(|‘gf+gk’l)Ts’“l)sk_l [134]
BiSk—1=Yk-1 Ye-1=3Yk-1+ (fkflsigfl);fizskfl Yk—1 [59]

Also, it is important to state spectral gradient method. Therein the updating of
the formula for By is done in the following way [111]

By1 = diag(rl”) (3.22)
with
’I“(Z) = - L - - S, =S — —Skp_1 + —Sk_2
b L TGP, 6)E) 40y 11 11k
+ NIV (8.7)
e (87)

. 7 L2
Ye =Yk 11}’1@71 11)’1@72'

The general framework of the QN algorithm is given in Algorithm 3.

Algorithm 3 General framework of the quasi-Newton algorithm

Require: Objective f(x), initial point xo € R™, initial inverse Hessian approxima-
tion Hy € R™*" and the tolerance 0 < ¢ < 1.
1: k:=0.
2: while ||gx|| > ¢ do
3:  Compute
dk = _Hkgko (323)

Compute ay, > 0 using exact or inexact line search.
Compute xp11 1= Xg + apdy.
Update Hy, into Hy1, such that (3.5) holds.
k:=k+1.

8: end while
Ensure: xgy1, f(Xgt1)-

IR
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3.6. QN methods based on constant diagonal matrix approximation. The
general QN iterative rule with line search

Xk+1 = Xk — Ozka gk (324)

assumes that By, (resp. Hy = Bk_l) is a positive definite approximation of Gy, (resp.
of G;;') [118]. The update Byy1 of By is defined on the basis of the quasi-Newton
property (3.4) or (3.5).

According to Brezinski’s classification in [15], the structure of updating By can
be divided into three categories: scalar matrix By = A\iI, diagonal matrix By =
diag (A1, ..., A\,) and an appropriate full matrix By. Optimization methods included
in this class of iterations are based on simplest approximation of the Hessian and
its inverse as

By = ’}/kI ~ Gk, Ve > 0, (325)
where [ is a proper n X n identity matrix and and v, > 0 is a parameter. Such
choice leads to the iterative rule

Xpa1 = Xp — ’y,;lakgk. (3.26)
Usually, the parameter «y is defined using an available ILS, and - is defined ac-
cording to the Taylor’s development of f(x). The iterations (3.26) are termed as

improved gradient descent (IGD) methods in [63].
Andrei in [4, 6] defined iterations

Xp+1 = Xk — Ok 8i- (3.27)

Usage of random values of 6, was proposed in [6]. Later, Andrei in [4] proposed
appropriate algorithm for defining 0, in (3.27). The iterative rule (3.27) was called
in [4] as Accelerated Gradient Descent (AGD):

AGD _ _AGD AGD AGD

A few modifications of the scheme (3.26) were promoted in [94, 96, 97, 112, 114].
The iterations defined in [112] are of the form (3.26), in which 47 is the Hessian
approximation, where vy = v(xg,Xg—1) > 0 is the parameter. The SM method
from [112] was defined by the iterations

—1
i =M —ap (M) g, (3.29)

where fy,fM > 0 is the acceleration parameter defined using the Taylor’s development
of the objective f at the point Xgl\-s-/[p as follows:

M _ 9. SM oM [f(XE%) - f(XEM)] + o | giM||2
k

Ye+1 =
- o |lgiM|?

The Double direction and double step-size accelerated methods, termed as ADSS
and ADD, respectively, were originated in [94, 96].

The next iterations are known as Accelerated double step-size (ADSS) iterations
[94]:

(3.30)

X;?_EISS = xADSS _ (Oék('Y]?DSS)_l + lk) gADSS, (3.31)
where ay, and [, are step-sizes, derived by two independent backtracking procedures.
The TADSS method from [114] is proposed using the assumption ay +{; = 1, which
gives

X;Cfillass — xTADSS _ oTADSS,
where ¥ = oy ((’ykTADSS)_l — 1) + 1. An application of the TADSS iterations in
aviation industry was investigated in [68].
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The particular choice vy, = 1 transforms the IGD iterations (3.26) into the GD
iterative rule (1.5). Further, the IGD iterations (3.26) in the case ar = 1 can be
viewed as the GD iterations

e (3.32)

where v, becomes the primary step length which should be appropriately defined.
Barzilai and Borwein in [11] originated two well known variants of the GD method,
known as BB method, with the step length 'y,fB = 7,;1 in (3.32). The step length
BB in the first case is defined by the vector minimization min, ||sy—1 — vyx—1|%,
which yields
T
BB = hoaVEol (3.33)
Yi—1Yk-1

The symmetric case assumes the minimization ||ysy_1 — yx_1]|?, which produces

T
BB _ Sk—18k—-1

AP = k1T (3.34)
k SE_1Yk71

The BB iterations are defined using 72® as follows:

BB _ _BB BB _BB
Xgr1 =X — Tk 8Bk -

The BB method was improved in a number of research articles, main of which are
[22, 24, 34, 35, 36, 37, 106, 107, 122, 137].

Another member of the IGD iterates is the Scalar Correction (SC) method [84],
defined in (3.32) by the rule

STI‘;C T
sC { A YTk > 0,

T )
Tet1 = ﬁ’;kﬂ’f Ty =Sk — VkYk- (3.35)

llyell?

YEI'k S 07

Accordingly, the SC iterations are defined by the relation

SC _ _SC sSC_SC
Xpt1 =X — Tk 8k -

Relaxed BB method by an additional step 6y € (0,2) is proposed in [105].

A modification of GD method (1.5) was proposed in [63]. It is defined by MGD =
M(GD) with

Xkt1 = M(GD)(Xk) = X — (Olk + CK% — ai) gk (336)
Further, the next scheme was proposed as the modified SM (MSM) method in [63]:
= (4} 0PI (@)

The leading principle used in defining the iterations (3.37) is the replacement of ay
in the GD methods (1.5) by the slightly longer step oM = aj + a2 — a}. The
underlying idea in defining akMSM is the observation azASM > ag, which means that
MSM method proposes a slightly longer step with the aim to additionally accelerate
the method. As before, oy, € (0,1) is defined by Algorithm 2. The rationale of this

modification lies in the inequalities
. gak+aifaz §ak+ai.

So, (3.37) is based on a small increase of oy, inside the interval [ag, a + a2].
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The acceleration parameter 7,41 in ADD, ADSS, TADSS and MSM methods are
defined, respectively, as:

ADD _ o f R PP (PP )0 (82 °P) T (ke d it PP~ PP) i PP)

= T
k+1 (a dADD_(,YkADD)flg?DD) (akdﬁDD_(vﬁDD)flggDD)

. (ADD method [96])

KADSS xADSS) | (o, (yADSS) -1 ADSS |2
71?_1313572f( k1 )—J( )+ (o (v P5%) T 1) lg P58 , (ADSS method [94])

2
(ak(vAPSS) =141, )7 ||g P58 |2

TADSS __ 2f( TADSS) f(xTADSS)_,’_w HgTADSS”2
’yk_t,-l ¢2 HgTADSS “2 )

Yr=ay ((v¢AP%)~t —1) +1, (TADSS method [114])

MSM MSM

£ (M8 f(x MSM opta o MSM |2
MM _ g sy IS k+<ai+(ak7a21ﬁ\giﬂswiﬁ|2 e& " (MSM method [63]).

The efficiency of IGD methods was numerically tested in [98].
The author of [41] proposed two Relaxed Gradient Descent Quasi Newton
(RGDQN and RGDQN1) iteration rules

Xpi1 = Xk — ROk Ve ks (3.38)

such that & is a proper real value. The RGDQN iterations are defined with ran-
domly generated & € (0, 1), while the RGDQN1 algorithm exploits

Tk
& = .
A Vi+1

The following algorithm is known as the SM method and introduced in [112].

Algorithm 4 The SM method.

Require: Objective function f(x) and chosen initial point x¢ € dom(f).

: Set k =0 and compute f(xq), g0 = Vf(x0) and take v9 = 1.

If stopping criteria are satisfied, then STOP; otherwise, go to the next step.
Find the step-size aj € (0,1] using Algorithm 2 with dj, = —v;, 'gs.
Compute xj11 = X — akyk_lgk, f(Xk41) and gr+1 = Vf(Xk41)-

Define 74 1using (3.30).

If y44+1 < 0, then put y441 = 1.

Set k := k + 1, go to the Step 2.

Return xx41 and f(Xp41)-

7. Gradient methods accelerated by Picard-Mann hybrid iterative pro-
cess. An application of the Picard-Mann hybrid iterative process from [66] is an-
other possibility to accelerate iterations for solving nonlinear optimization problems.
The function T': € — C in (3.40) is defined on a convex subset C of a normed space
E. The hybrid iterations define two sequences X, yx by the rules:

x1=x€C,
Xk+1 = Tyx, (3.39)
vie =1 —Ti)xp + TpTxg, k€N,

The real number T, € (0,1) from (3.39) is termed as the correction parameter
in [97]. Instead of (3.39), it suffices to use an equivalent iteration given by

X1 = H(T)(Xk) = T[(l — Tk)xk + TkTXk], k € N. (340)
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The iterates (3.40) are denoted by H(T,xy) = H(T)(xx).

In [66] it was proposed a set of constant values o = Yy, € (0,1), Yk in numerical
experiments and concluded that the process (3.40) converges faster than the Picard,
Mann and Ishikawa iterations from [62, 83, 101]. Further, (3.40) was applied in [97]
for a hybridization of the SM method, known as HSM. Using the mapping T in
(3.39) or (3.40) to coincide with the SM rule (3.29):

-1
T(xy) =xg" = (") cngd™,
the iterations (3.40) become the so called HSM iterative rule given as
)= HSM) (i) = x5 = (e +1) (1) g, (3.41)
where v,ljSM > 0 is the acceleration defined by

s _ g s T [FOASYY) — OS] + (T + 1t g™
k+1 k (Tk+1)2ti HggSMHz

A modified HSM (MHSM) method is defined in [92] by proposing an appropriate
initial value in the backtracking procedure.
A hybridization of the ADD method was considered in [99] in the form

IAPP <xIAPP — (13 + 1)t (0 fAPP) gD+ (T 1)k,
wherein

wapp _ o (T D) —FOEAPP) — (T +1)(g APP) T (R de—tr (1 2P) "'l APP)

Ye+1 = T
(s + 1283 (tdi — (ffFAPP)1gfAPP) ™ (trd — (71APP) ~1g]!APP)

Recently, the hybridization HTADSS = H(TADSS) was proposed, investigated
and tested in [95].

4. Overview of conjugate gradients methods. Nonlinear conjugate gradient
(CG) methods form a class of important methods for solving unconstrained nonlin-
ear optimization and solving system of nonlinear equations. Nonlinear CG methods
are defined by the line search iterates (1.2) where the search direction dj is defined
by (1.10) and the CGUP S is given using one of many available rules.

In this article, a review on CG methods for unconstrained optimization is given.
Main convergence theorems are provided for the conjugate gradient method assum-
ing the descent property of each search direction. Some research issues on conjugate
gradient methods are mentioned.

In [21], the nonlinear CG methods are divided into three classes: early conjugate
gradient methods, descent conjugate gradient methods, and sufficient descent conju-
gate gradient methods. Andrei classified the CG methods in three classes: classical
CG methods, scaled CG methods, and hybrid and parameterized CG methods.

The classification presented in this paper divides CG methods into the follow-
ing categories: basic conjugate gradients methods, considered in Subsection 4.1,
Dai-Liao class of methods, presented in Subsection 4.2, hybrid conjugate gradi-
ent methods, described in Subsection 4.3, and combined BFGS-CG iterations, in
Subsection 4.4.
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TABLE 2. Some modifications of quasi-Newton equations.

l B [Title [Year[Referencel
T
HS — )T’k;lgk Hestenses—Stiefel 1952|[60]
Yi—1dr—1
2
PR _ ”L‘U Fletcher—Reeves 1964/ [48]
g
b 8k Gr_1dr—1
=2k ZAT TR 1967|(38
P d}  Gr_1di—1 135]
Y18k
PRP _ ﬁ Polak-Ribiere-Polyak|1969([102, 103]
k—1
BOP = — M Conjugate Descent  [1987|[47]
8r_1dk—1
T
LS Yi—18k .
= Liu-Store 199179
* 8i_1dk—1 Y o
BDY — e ” Dai-Yuan 1999][30]
Yiee1dr-1

4.1. Basic conjugate gradients methods. The CG methods included in Table
2 are known as early or classical conjugate gradient methods.

where Y1 =8k — k1, Sk—1 =Xk — X_1, Gr_1 = A?f(xx_1) and || - || stands
for the Euclidean vector norm.

In the listed CG methods, the numerator of the update parameter Sy is either
llgkl? or y§_,gr and the denominator is either ||gg—1]|% or yF_;dg—1 or —gF ;dg_1.
Two possible choices for the numerator and the 3 possible choices for the denomi-
nator lead to 6 different choices for Sy.

TABLE 3. Classification of CG methods.

l I Denominator ‘ ‘

Numerator] [ [2lyz_ids_1|—&1_1ds 1]
llgx ] FR DY CD
yi_.g |PRP |HS LS

Define the following functions

n=|grll?, ne=yr_igk, 01:=|gr-1]? Ve=yi_idk-1, Oz=—gi_1di_1.
Then
FR_ ™M ,,prp_ ™ py_ ™ ,pgs_ "2 ,cp_ M s M2

STy S AT = A= AT = Ay
But, there exist exceptions to these rules. One example is given in [38§]
TGp_1dy_
P =B AL (1967),

df |G 1di_1

From the presented chronological development of the CGUP, we can see that the
BP choice of the CG parameter differs structurally from the other choices.

For a large-scale unconstrained nonlinear optimization problem, in practice,
choices for updating a CG parameter that do not require computation or approxima-
tion of the Hessian and its inverse are preferred over methods that require Hessian
or its approximation in each iteration.
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Wei et al. [124] gave a variant of the PRP method which we call the VPRP
method, with the parameter S

2 .
VPRP _ lgell” — Hgf:l‘\\gggk_l

F llgr—11?

The VPRP method was extended to a variant of the HS method by Yao et al. in
[132],

2 .
VHS _ llgell” — ”!filﬂugggk—l

d%;1Yk—1

Zhang [138] took a little modification to the VPRP method and constructed the
NPRP method as follows,

2 legs | |oT
NPRP _ lgwkll™ — Hgk: T {gkgk—ﬂ
k - 2
lIgr—1ll

Moreover, Zhang [138] extended this result to the HS method and proposed the
NHS method as follows,

2 .
el — ey ek 8]

d%‘,l}’kfl

BriS=
Recently, Wei et al. [125] proposed a variation of the FR method which we call
the VFR method. the parameter Sy in the VFR method is given by

VER _ pllgel|®
polgr de—1| + p3llge—1?’

where py € (0,400), p2 € (p1 + €1,+00), pg € (0,+00) and € is an any given
positive constant. Motivated by these modifications, in [29] the authors defined the
modified PRP method as

2 lgr I |oT
DPRP _ lgel” — s 7 & 8n-1]

plegtde—1| + llgr-1]?

Recently, Wei et al. [18] gave a variant of the PRP method which we call the WYL
method, that is,

, p>1

ef (2 — e
lgr—1[?

The WYL method was extended to a variant of the LS method by Yao et al. [132],
that is,

WYL _
& =

e (2 — oehyein)
—grdi_1 -
Also, the following function will be useful:
k k —
N, = gg <gk . gkl gk—1> —n — gl gggk_l _ gg}%—l
llgk—1ll llgk—1ll

(=]
lgr—1ll

MLS
/81.; =

‘ﬂgznl—

|g;fgk—1|-
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Then
BWYL &) BYPRP _ &7 VHS _ Ny
01 01 02
BNPRP _ &7 NHS _ %
01 [

Some particular CG variants are 3PS [29] and PS5 [139)], defined by

2 g I T
prs_ 186l — et 7 |8k 81| (2012)
ko= T T
T + Ty s (@)
lgrl® — el |gTe, |
,E)LS_ llgr—1 |l ’ k ’7 w>1 (2017)-

CoplgFdeo ] —dl gkt

If the functions

D1(pn) = plgp dr—1| + dj_1yr—1, D2(p) = pu|gp de—1| — dj_ 8k—1

are defined, then
pHs _ I pLs _ Mo

i Dy(p) F Do(p)

4.2. Dai-Liao method and its variants. An extension of the conjugacy condi-
tion

diyr-1=0 (4.2)
was studied by Perry [93]. Perry tried to incorporate the second-order information
of the objective function into the CG method to accelerate it. Specifically, by
using the secant condition and the search direction of the QN methods, which are
respectively defined by

Bisp_1 =yx_1 and Bpdgp = —g, (4.3)
the following relation is obtained:
diyr—1 = d} (Bisk—1) = (Brdy) "sp—1 = —gp sp—1, (4.4)
where Bj is a symmetric approximation to the Hessian matrix Gy. Then Perry
accordingly replaced the conjugacy condition (4.2) by the following condition
djyr1 = —grsk 1. (4.5)

Furthermore, Dai and Liao [26] included a nonnegative parameter ¢ into Perry’s
condition and gave

dEYk—1 = ftggsk_l. (4.6)
In order to find the search direction dj in (1.10) which satisfies the conjugacy

condition (4.6), it suffices to multiply (1.10) by yx—1 and use (4.6), yielding

T T T
_ _ _1 —tsk—
I?L: %rk}’k I grksk 1 ng(ylfrl Sk 1)7 £ 0. (4.7)
di; 1 Yk—1 dy_1Yk-1 d;_1Yk-1

Expression (4.7) for defining 8, characterizes the Dai and Liao (DL) CG method.
Later, motivated by the DL method, researchers in papers [18, 80, 100, 129, 131,
139, 141], suggested modified variants of the DL method. Some well-known formulas
for By were created modifying the CG parameter BEL [18, 26, 80, 100, 129, 131,
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139, 141]. Main of them are BPL [26], PHSPL [139] BPLSDL [139) gMHSDL [131]
defined as

DL _ ykT-—1gk B gEsk_l
¥ yi o di—r di o yr—a
T
HS 8i Sk—1
_ _ ¢ BESL9001) (4.8)
F dg_l)’kfl
2 ek |l T
BPHSDL _ lell” — gy |86 811 ., 8BSkl
plgidio | +di_yimr dilyee
_ Py BESl gy 4.9
= k - 4T ) ( ) ( ’ )
k—1Yk—1
2 llgw |l T
DLSDL _ g™ — Hgk: I ’gk gk_l‘ i Sk-1
L _ _
wlgtde—1| — df_ gr—1 di_ yi—1
_pPLS _p BRSEL (g7 4.10
= k 4T ) ( ) ( : )
k—1Yk—1
2_ |ge ll ,T
BMHSDL _ L ey _ 81 Sk—1
d}_yr s P
T T
grLYk-1 8 Sk—1
- —t , (2013) (4.11
df . yr—1  dil_ye— )
where t > 0 is a scalar and y/k,\l =gr — Hgfﬂ”gk,l.

Clearly B,?L with ¢ > 0 defines a class of nonlinear CG methods. Moreover, in
the case of the exact line search, i.e., g{'sy_1 = 0, then SP¥ = BES.

Some additional CG methods from the DL class are SMISPL [18] and BZ%4PL
[141], defined as follows:

BMLSDL _ 8L Yk—1 _ 8 Sk—1 (4.12)
—dl g1 Al vk

ZZDL _ 8k Zh—1 B 8 Sk—1 (4.13)
g z)_di—1 dji_,z—1’

where ¢ > 0 is a scalar, z;,_1=yr_1 + C||gx_1||"sk_1 and yr_1 =gr — Hgffll‘ugk_l.

In order to characterize this family of CG methods, define the mapping

T
F (A1) = B 1B

dg_l}’k—l .
Then
Eng( ,?S,t), EHSDL:S( ]]CDHSJ)7
ﬁELSDL _ %( ELS t) IIQ/IHSDL _ 3( EHS t)
b) ) b M

The research for the best values of the parameter ¢t was divided into two direc-
tions. One direction was to find the best fixed value for ¢ and the other the best
approximation for ¢ in each iteration. Analyzing the results from [18, 26, 131, 139],
we conclude that the scalar ¢ was defined by a fixed value of 0.1 in numerical exper-
iments. Also, numerical experience related to the fixed valued t = 1 was reported
in [26]. Common numerical experience is that different choices of ¢ initiate totally
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different numerical experience. This was the reason for further research to focus
on the values of ¢ that change through iterations. The value of ¢ in arbitrary kth

iteration will be denoted by t;. Hager and Zhang in [55] defined ¢, by the rule
2
Y 7
Yk_lskfl

Babaie-Kafaki and Ghanbari [9] presented two appropriate choices of the parameter
tin (4.7):

t = 55_1}%—1 lye—1ll
Isk—1ll*  lIsk—1ll
and
Iyl
lIsk—1ll

Andrei in [5] suggested the following value for t in (4.7) which becomes a variant of
the DL method, denoted by DLE:

T
_ Sp_1Yk—-1

ty = —7———5.
Isk—1]?

(4.14)
Lotfi and Hosseini in [81] discovered the most recent approximations of the pa-
rameter t.

4.3. Hybrid conjugate gradient methods. In the subsequent sections, we will
survey recent advances in CG methods. Two main research streams can be observed:
the algorithms which improve the scalar parameter ¢ and the algorithms which
improve the CG parameter S.

Hybrid CG methods can be segmented into two classes: mixed methods as well
as methods combined together by introducing one or more parameters.

The following hybrid CG method was suggested in [121]:

PRP  ; PRP FR
_ k I lf O S ﬁk S Bk I

Bk—{ BER . otherwise. (4.15)
When a jam in iterations occurs again, the PRP update parameter is used. Hu and
Storey in [61] had a similar motivation and suggested the following rule

B = max{0, min{ ;""" 5T} (4.16)

In [49] it is pointed out that BFRF can be negative, even for strongly convex
functions. In an effort to extend the allowed choices for the PRP update parameter,
while retaining global convergence, Nocedal and Gilbert [49] suggested the choice

Br. = max{—p; ", min{ By, BT (4.17)

Dai and Yuan [31] combined the DY method with other CG methods, which
leads to the following CGUP parameters:

Br. = max{0, min{ B, AP }} (4.18)

and
1—
Bk :max{ch,?Y,min{ﬁgs, I?Y}}a c= 1+0' (419)
o
In [28], they tested different CG methods for large-scale unconstrained optimization
problems and concluded that the hybrid CG method (4.18) gave the best results.
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Next hybrid CG method, proposed by Dai in [23], employs either the DY scheme
or the CD scheme:
5 e |
max{d;ﬂr_l}’k—lv _gg_ldk—l}
A modified CG method defined as the hybridization of known LS and CD con-
jugate gradient methods is presented and analyzed in [130] by the rule
Br°P =max{0, min{5;%, 57 }}. (4.21)

CG methods can be combined together by introducing one or more parameters.
In [32, 33], Dai and Yuan proposed a one-parameter family of CG methods with
_ [l

Onllgre—1l* + (1 = Ox)d}_ yr—1’
where ), € [0,1] is a parameter. Note that 8, = BiY in the case 0 = 1, and
Br = BPY if 6 = 0.

Another hybrid method, proposed by Delladji, Belloufi and Sellami in [39], ex-
ploits either the PRP scheme or the HZ scheme, as

ﬂ]};PRPHZ :ekﬁlsRP 4 (1 _ ekr) }IC-IZ

(4.20)

Br

(4.22)

T
T 2
Yk—18k [ye—1]
=+ (1= O0) | Vo1 —2dp15—— | 8k

lei? T Yy ( T yen
(4.23)
in which 6 € [0,1] is called the hybridization parameter. Note that if 6, = 1 then

BPRPHZ _ GPRP “and if §, = 0 then SXPRPHZ — gHZ,

Nazareth in [89] proposed a two-parameter family of CGUP parameters using
convex combinations of numerators and denominators, as
2 1— T _
Vk||ng2 +( Vk)ngYk L (4.24)
Orllgr—1l* + (1 = Ok)dg_ 1 yr—1
where v, 0 € [0,1]. This two-parameter family includes FR, DY, PRP, and HS
methods as extreme cases.

In [113], the authors proposed hybrid CG methods where the search direction
dy := 0, k > 1, is improved using one of the rules
gidi_1

@(ﬂkagk,dk—l):* (1 + B ||gk||2 ) gr + Brdr_1, (4.25)
dr = D:1(Bk, 8k, di—1)=—Birgr + 9Bk, k. dr—1), (4.26)

and [ is determined using appropriate combinations of 8 used in Table 2 and/or
previously defined hybridizations. In [113], the authors defined a modification of
LSCD method, defined in [130] by
BESCD —max{0, min{BL3, BLP 1Y,
dk:b( IICJSCDvgk,dk—l)'
The resulting method is known as the MLSCD method with the search direction
dy. =D (8P, gr, di—1). (4.28)

In general, the idea is based on the replacement of dj =0g( {;SCD,gk,dk,l) from

[130] by dk :@( ,I;SCD, gk, dkfl).
Now we give the general framework of the CG class of methods.

Br =

dy.

(4.27)
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Algorithm 5 Algorithm of CG methods.

Require: A starting point zg, and real quantities 0 < e < 1,0 < d < 1.
1: Put k=0 and compute dy=—go.
2: If

[fGe1) = Fxu)l .

<e and
||ng > 11 |f(xp)] <

STOP; else go to Step 3.

Compute ay, € (0, 1] using Algorithm 2.

Compute xp41 =X + ardg.

Calculate gr11, Yr =8r+1 — 8 and go to Step 6.

Calculate SBg11.

Compute the search direction dxir1 = 0(Brt1,8r+1,di) or drr1 =

D(Br+1:8k+1,dk).
8: Put k =k + 1, and go to Step 2.

NP kW

The first iteration in CG methods is a gradient step. Also, it is common to
restart the algorithm periodically by taking the gradient step.

4.4. Broyden-Fletcher-Goldfarb-Shanno conjugate gradient methods.
Known fact is that CG iterates are better than QN methods in terms of the CPU
time. Moreover, BFGS updates require greater memory space usage than CG. On
the other hand, the QN methods require lesser number of iterations as well as the
number of function evaluations. For this purpose, one of the modern trends in defin-
ing new CG methods is usage of the BFGS update in defining new rules for defining
Bik- A hybrid method which solves the system of nonlinear equations combining the
QN method with chaos optimization was discovered in [82]. In [58], the authors
defined a combination of a QN and the Cauchy descent method for solving uncon-
strained optimization problems, which is known as the quasi-Newton SD method.
A hybrid direction defined as a combination of the BFGS update of By and the
CGUP By, was considered in [10, 67]. The DFP-CG method was originated in [91].
A three-term hybrid BFGS-CG method (termed as H-BFGS-CG1) was proposed in
[113] by the search direction

d, . ) ~Br8k, k=0,
k_:
D1(B55°P, gr, di—1), k> 1.

In [113], the authors investigated hybrid CG algorithms based on the modified
search direction which is defined using one of the following two hybridizations:

Idy
di, = D(Bk, gk dk—1)=— (1 + Bk g|,|€glj|21) 8k + Brdr—1, (4.29)

dk = Ql(ﬁk,gk,dkfl):_Bkgk+©(ﬂk7gk7dk71)u (430)

as well as on the usage of By defined using convenient combinations of the parameters
Bk involved in Table 2 and previously defined hybridizations. The matrix By in
(4.30) is defined as an appropriate Hessian approximation by the BFGS update. A
three-term BFGS-CG method, known as H-BFGS-CG1, was defined in [113] using

k= LS
1( k ¢ 7gk7dk7 )7 k> .
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5. Convergence properties of CG methods. Below we give some assumptions
related to line search procedures.

Assumption 5.1. (1) The level set S={x € R"| f(x) < f(x0)} is bounded, where
Xo @s an initial point of the iterative method (1.2).

(2) The objective function f is continuous and differentiable in a neighborhood N
of S, and its gradient g is Lipschitz continuous. So, there exists a positive constant
L > 0, satisfying

Ig(n) —g(v)l < Lu—v|, Vu,v € N. (5.1)
Assumption 5.1 initiates the existence of a positive constants D and ~y satisfying
lu—v|[| <D, VuveN (5.2)

and
lg()| <7, VueN. (5.3)

The proof of Lemma 5.1 is given in [142] and known as the Zoutendijk condition.

Lemma 5.1. [17, 142] Let Assumption 5.1 be accomplished and the points {xy} be
generated by the method (1.2) and (1.10). Then it holds

Ak

E < +o0. (5.4)
([ d?

k=0

5.1. Properties of CG methods with y%ﬁlgk in the numerator of §;. In this
subsection, we recall properties of the HS, PRP and LS methods. If we look at the
chronological development presented in Table 2, a clear observation is that HS, PRP
and LS methods involve the expression y} ;g in the numerator of the parameter
Br. We first mention the Property (*) for i given by Gilbert and Nocedal [49].
The Property (*) implies that 8 is bounded and small when the step s,_1 is small.

Property (*) [49] Let a method defined by (1.2) and (1.10) satisfies

0<vy<llgkll <7 (5.5)

for all £ > 0. Under this assumption we say that the method possesses the Property
(*) if there exist constants b > 1 and A > 0 such that for all k:

Bl <0, (5.6)
and

1
-1l <X = 16k] < 5. (5.7)

In order to prove that conjugate gradient methods have Property (*), it suffices
to show that there exists a constant ¢ > 0 such that

14| < cllsk_ || for all k, (5.8)
under the assumption (5.5). Then, by putting A = ﬁ, we have |Bx| < max{1, 2bc}
=band )

Isr—rll < A= 18k < 5, (5.9)

which confirms the Property (*). It is easily shown that (5.8) holds for the HS,
PRP and LS methods, and thus these methods have Property (*).

Next, we give the global convergence theorem of CG methods satisfying Property
(*). The proof of Theorem 5.2 is given in [49].
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Theorem 5.2. Consider any conjugate gradient method (1.2), (1.10) that satisfies
the following conditions:

(a) Bk > 0.

(b) The search directions satisfy the sufficient descent condition (1.6)

(¢) The Zoutendijk condition holds.

(d) The Property (*) holds.

If the Lipschitz and Boundedness Assumptions hold, then the iterates are globally
convergent.

5.2. Properties of CG methods involving |/gx||? in the numerator of 3.
In this section, we recall properties of the FR, CD and DY methods. If we look at
the chronological development presented in Table 2, it is observable that FR, CD
and DY methods involve the value ||gx||? in the numerator of the parameter S.
If the step-size «y, satisfies the generalized strong Wolfe conditions (2.7) and (2.9),
the following properties are obtained.

Proposition 1. The following statements hold:
(a) For the FR method, if oy, satisfies the generalized strong Wolfe conditions (2.7)
and (2.9) with o1 + 09 < 1, then
1 gidy 02
— < <14 —. 5.10
L—o1 ™ [lgxll? 1—o01 (5.10)

(b) For the DY method, if oy, satisfies the generalized strong Wolfe conditions (2.7)
and (2.9), then

_ 1 ggdk . 1
l—o1 = lgull> = 1402
(¢) For the CD method, if ay, satisfies the generalized strong Wolfe conditions (2.7)
and (2.9) with o9 < 1, then

(5.11)

T
g, di <
< —1+4o09. (5.12)

llgwll*

Proposition 1 implies that the FR, CD and DY methods satisfy the sufficient
descent condition (1.6), dependent on line searches.

We now give the global convergence properties of the FR and DY methods, which
were proven in [2] and [30], respectively.

—1—0’1<

Theorem 5.3. Suppose that Assumption 5.1 holds. Let the sequence {xy} be gen-
erated by the conjugate gradient method of the form (1.2)-(1.10).

(a) If Br, = BER and ay, satisfies the generalized strong Wolfe conditions (2.7) and
(2.9) with o1 4+ 02 < 1, then {xi} converges globally with the limit

liminf ||gx|| = 0. (5.13)
k—o00

(b) If Br = BPY and oy, satisfies the Wolfe conditions (2.7) and (2.8), then {d}
satisfies the descent condition (1.4) and {x} converges globally in the sense that
(5.13) holds.

Methods surveyed in Subsection 5.2 exhibit strong convergence properties, but
they may not be efficient in practice due to appearance of jamming. On the other
hand however, methods given in Subsection 5.1 may not be convergent in general,
they often perform better than the methods restated in Subsection 5.2. Details
about this fact are given in [65]. This clearly implies that combinations of these
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methods have been proposed with the aim of exploiting attractive features of each
family of methods.

5.3. Convergence of DL methods. The following assumptions will be com-
monly used in the subsequent convergence analysis of DHSDL, DLSDL, MHSDL
and MLSDL methods.

It is supposed that the conditions in Assumption 5.1 hold. Assumption 5.1
initiates the existence of positive constants D and « satisfying (5.2) and (5.3).

By the uniform convexity of f, there exists a constant # > 0 such that

(g(u) —g(v)T(u—=v)>0lu—v|? forallu,ves, (5.14)

or equivalently,

fa)> f(v)+gv) T (u-v)+ gHu —v||?, forall u,v € S. (5.15)
It follows from (5.14) and (5.15) that
St_1yh-1 > 0si_1] (5.16)
and
feo1— fx > —gisi_ 1+*H5k 112 (5.17)
By (5.1) and (5.16), we have
Ollsk—1” < si_1yr—1 < Llisi—a |, (5.18)

where the inequalities imply 6 < L.
Further, (5.18) implies

55—1}%—1 = Oék—ld;f_lm—l > 0. (5.19)
From a1 > 0 and (5.19), it follows that
dj_yk-1>0. (5.20)

In order to improve presentation, an arbitrary method defined by (1.2) and (1.10)
will be denoted by M(ay, Bx). In our current investigation, it will be assumed Sy, €
{BDHSDL DLSDL, ,E/IHSDL 6MLSDL} It is assumed that «y, satisfies the backtrack-
ing condition. Further, we will use the notation £, € {ﬂDHS, DLS  gMHS ﬂMLS}
Clearly,

gksk 1

dklkl

e (5.21)

Lemma 5.4. [17, 142] Let Assumption 5.1 be accomplished and the points {xy} be
generated by the method M(ax, Br). Then (5.4) holds

Lemma 5.5. The parameters 3;, in M(ay, Br) satisfy
CA>1 (5.22)
in each iterative step k.

Proof. In the case §;, € {,BDHS,ﬁ,?LS} the inequalities

O<6DHS ELS< HngQ
7 plgrde—1|

are known from [29].
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For g, = MHS , it is possible to verify
2_ gr Il |oT
0 < BMHS g™ — fgia | 811 < [
S Ok = = .
dg—ﬁ’k*l IgEdzH\
For ), = MLS , we have
2 lgr 1| T
0 < gMLS — lgkll” — g |8k 81| < izl
- —di_18k—1 g i1
Since p > 1 the proof is completed. O

Lemma 5.6. The iterations M(ay, i) satisfy
grd,<—cl gkl (5.23)
for some 0 < c <1, all k >0 and arbitrary P.

Proof. The inequality (5.23) will be verified by induction. In the initial situation
k = 0, one obtains gd dp=—||go||?. Since ¢ < 1, obviously (5.23) is satisfied in the
basic case. Suppose that (5.23) is valid for some k > 1. By taking the inner product
of the left and right hand side in (1.10) with the vector g, it can be obtained
grde=—|lgrll* + Brgi di—1. (5.24)
An application of (5.21) and s;_1 =ay_1dg_1 leads to further conclusions:

g Sk—1
grdy=—|g:l*+ <5k - thk ) grdi1
k—1 Yie—1

k187 djp—1
dg,1)’k—1
ap—1(grdp—1)?

df yr-1

=gkl + Brgr dr—1 — t gidy_1

=—|lgkll* + Brgrdr—1 —

From (5.20), ¢t > 0 and a;_1 > 0, one obtains
tak—l(ggqu)Q
dg_l}’k—l
Now (5.25) in conjunction with (5.22) implies

grdi <—|gxl® + Brer di—1

> 0. (5.25)

e
<~ lgl? + 3l
Tde

2
8k
<~ g )? + 18E10

—(1-3) I |

In view of A > 1, the inequality (5.23) is satisfied for ¢ = (1 — §) and arbitrary
k>0. O

Lemma 5.7. The parameter 5, € {ﬁDHSDL,BDLSDL,ﬂMHSDL} satisfies

2
< ”gk” Hgfkll‘u |gkgk 1| tgksk 1

k>
dk 1Yk—1

(5.26)
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Proof. For Bj, = BPHSPL in view of (5.20), it follows that
|

2 gl T
DHSDL _ lgkl” — rertyy |8 861 ., 8iSk-1
H ’ggdk—1| + dE,1y1f—1 d;f_1}’k—1
2 gkl T
< ”gk” - HgkﬁlH |g;€ gk71| .y ggsk_l (5.27)
B S G di_ yr—1
2 .
_ lgkll” — Hgfﬂ‘“ |g5gk—1| —tgysk—1
dE,1Yk—1 .

As > 1 we conclude

d;f_lyk_l :d;g—l(gk - gk—l)

:d%l1gk - d’lgflgkfl

(5.28)
< ‘drlf—lgk| - drlg—1gk—1
<u |d;£_1gk| - dE_1gk—1~
Using inequalities (5.20) and (5.28) in 8 = SPESPL one obtains
2 llgre || |&T
DLSDL _ lgrll™ — fg. 1 | gk ., 8hSko1
L =
lgrde—1| — di_ gr—1 df L yi1
2
< g™ — lll‘ggtij‘\l |gggk—1| ¢ ggsk—l (5.29)
- dg—ﬂ’k—l d;f_l}’k—l
2
_ lgrll™ — ||2§f|1‘“ ’gggkfll - tggskfl
dE,Q’kfl .
The following conclusion is valid in the case 8 = SMHSPL:
2 ex ll |,T
GMHSDL _ lgel” — rg |8k 8r—1] L, BiSk-1
d}_yr s P £ 30
I ||2_ llg ‘T ‘_tT (5.30)
B gk Tee_a]l |8k 8k—1 81 Sk—1
d’k];flykfl ’
Therefore, the inequality (5.26) follows from (5.27), (5.29) and (5.30). O

The global convergence of the proposed methods is confirmed by Theorem 5.8.

Theorem 5.8. Assume that Assumption 5.1 is true and f is a uniformly convex
function. Then the sequence {xy} generated by the M(ay, Br) method fulfils

lim inf ||gx|| =0. (5.31)
k—o00

Proof. Assume that (5.31) is not true. This implies the existence of a constant
c1 > 0 such that

gkl > c1, for all k. (5.32)
Squaring both sides of (1.10) implies

Idkll*=llgel* — 2Bgr di—1 + (Br)* [l dr—1]I*. (5.33)
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Taking into account (5.22), one can obtain

s
—2B grdy_1=—2 (ﬁk—t 88k )g}fdkl

d; Yk—1
o e (5.34)
dj,_
=2 (ﬂ;@g',fdkl—ta’:i(fk k1) )
k—1Yk—1

ak—1(grde—1)*

= [~ 3
Now from (5.25), with respect to ¢ ar oy

hold:

> 0, the following inequalities

—2Bgit di—1 <2|5}|lgi di—1|
e |I?
— g dp
> /\|ggdk_1||gk 1] (5.35)
2
e
A

Case 1. In the cases 3; € {ﬁEHSDL,BELSDL,ﬁ}Q/IHSDL} from Lemma 5.7, we con-
clude

2 (|
< ek H!fi‘l” !g;fgkfﬂ - tggsk—l
- dE_1Yk71
g{gk - ||2§i|1‘” |gggk—1| - tggsk—l
N dE_1Yk—1
< j2y2 (gk* Hg?lllﬂgk 1— tsk—l)’
B Oove—1||di—1 |
gr (gk —8k—1 T 8k—1 — Hgfﬂl”gk—l - tsk—l)’
Ocv—_1||dp_1]? (5.36)
el (1l — gl + |jger (1= 72l ) | + ¢ lse-al)
<

Bag_y|dy—1 |
gk (Ilgk — g+ |1 — el
<

lgr—1ll
O [|de—1 |
Hng(llgk*gk 1l + k=1l = gl + ¢ lIsk-1l)
O || di—1 ||
Hng(Hgk—gk 1l 4+ llgr—1 — gkl +tlIse—1ll)
Oov—1 || dp—1]

lge-rll +tls1])

So,
gkl (2 llgn — gr—1ll + ¢ [Isk—1l])
Br <
Oag—1[|dg- 1||
< gkl @L lIsk—1ll +t lIse-1l)
9ak71||dk71||2
< L+1) gl skl
9ak71||dk—1||2

(5.37)
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lgrll -1 [|dr—1]|

O]/ dj—1
B (2L +t)

6 ||dx—
(5.33), we obtain

Using (5.35) and (5.37) in

gl
1l

lgkl?> | L+ gl >
I del® <llgwll® + 2 |dr—1l
A 02||di—1
lgkll® | RL+1)*
<llgwll* + 2757 + 5l
2 (2L +1t)?
< 1+*+(72) gl (5.38)
A 0
A+2  (2L+41)° )
<
_< g gkl

2
LQ+2)0 4

(2L +t)? 2

62

gk

Next, dividing both sides of (5.38) by ||gk/|* and using (5.32), it can be concluded

Idel> _ (A +2)0* +A(2L+1)* 1
el = v g .
4 ) (5.39)
gkl MO~ -1
[drll> = (A +2)62 + X (2L +t)?
The inequalities in (5.39) imply

lerl* 5 A0 - cf

Z DD ; 5= (5.40)
<Nl ~ &= (A +2)02 + X (2L + t)

Therefore, ||gk|| > ¢1 causes a contradiction to (5.4). Consequently, (5.31) is con-

firmed for Case 1.

Case 2. In the cases 3 = BMISPL applying Lemma 5.6 and Assumption 5.1, we
have
2 llgk I
BMLSDL < g™ — gt |8 8k 1| 8 Sk—1
- —d}_ g1 dj_ yr-1
llgk I T
e i L O
- —di_18r-1 i ye]
T _ el
8k (gk Hgkflugk—l)’ gt sk
< . L
|*dk_1gk—l| |dk 1y1e—1’
T _ _ _liskll
_ Bk (gk k-1 Bh—1 ~ [lg,_,[| 8k 1)’ iy lgrsi1]
|—di_ gr1] i ye—1]
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llgx |l
_ gkl (Hgk — gr—1ll + ‘gk—l - ||gk—1“gk_1H) +t||gk|| Isk—1]]

= T T
k— - _1Yk—
|—di gk ¥ ye—1]

lg I
B [ (||gk —gr1ll + ‘gkfl(l - ”gk_lH)H) o el s

- |_d%l1gk—1’ |drl£71yk_1‘
[ (||gk — gl + |1 - el IIg;HH> [N
S T +i7
‘_dk—lgk%’ ’dk,1}’k—1|
< el g — geoll + [ligeosll = ligell) |, gl el (541
a |—di_ gr1] i ye—1]
< gkl (lgr — gk;ll + llgr — gr-1ll) +t||g1;|| k-1l
|—di_ g1 iy
< 2 llgklllige = grall gl lIse—1]
= 2 T
cllgr-1ll i1y
< 2L - ligrll skl [l lIsk—1ll
cllge—1l” | ye
From (5.18), (5.19) and (5.41), we conclude
2L - |lgk || [Isk—1 gkl llsk—1
MLSDL gkl : I, el 1 |
cllge—1ll Ollsk—1l
_ 2L - lgklllise—all | _tligkll
cllgr—1]* 0 |[sk—1ll
2L - Sk— t
< ||gk|||2| k1] + gl (5.42)
o 0 llske—1ll
210 - |l Isk—1]l* + ¢} - t ||l
: ¢ Bl
< (2L - D* +c-c} - t) gl
c- -0 a1 |de_1|
Replacement of (5.35) and (5.42) in (5.33) leads to
2 2
lgkll* , (2L6-D*+c-ci -t)” gl
Idell® < llgel® + 2 h\ ( 5 3 ) ol dr—1]?
(c-ef-0-ap_1) [|de—1ll
2
lgkll?  (2L6-D*+c-c} -t 0
=lgell* + 2 \ ( 5 2) gkl
(coci-0-ap_1)
2 2L9~D2+c~02-t2
=1+ 5+ ( . : 2) (=l (5.43)
(c-cf-0-ag_q)
A+ 2 (2L9~D2+c~c%-t)2 9
(A2, B ) e
(c-c5-0-ag_q)

()\+2)(c~c%-9-0[;.3_1)2—1—/\(2L<9~D2—|—c-c%-t)2|| 2
= 8kl -

)\(c~c%‘9~ak_1)2
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Next, dividing both sides of (5.43) by ||gx]* and using (5.32), it can be concluded

||dk||2<()‘+2)(c 0o 1) +)\(2L9-D2+c-c§~t)2.i

lgkll* Ae-c2-0-ap1)’ cf 5 44
4 2, (5.44)

el . e 0 o)

[del> = (A +2) (-2 0-ap_1)> +ANQ2LO-D2+c-2-t)*
The inequalities in (5.44) imply
00 2
Z ||gk||4 Z Ale-ct-0-apa) - =0co. (5.45)
Nl dill> ~ = A+ 2)(c- 20 1) +AQRLO-D2+c- 2 -t)°

Therefore, ||gk|| > ¢1 causes a contradiction to (5.4). Consequently, (5.31) is con-
firmed for Case 2. The proof is complete. O

6. Numerical experiments. The code used in the testing experiments is written
in the software Matlab R2017a, and executed on the personal computer Workstation
Intel Core i3 2.0 GHz, 8GB of RAM memory, and Windows 10 operating system.
Three important criteria: the number of iterations (IT), number of function evalu-
ations (FE) and CPU time (CPU) in all tested methods are analyzed.

The numerical experiments are performed on contains functions presented in [3],
where much of the problems are taken over from CUTEr collection [14]. Each test
function is tested 10 times with a gradually increasing values of the dimension by
the rule n = 10, 50, 100, 200, 300, 500, 700, 800, 1000 and 1500.

Strong Wolfe line search use the following choice of parameters for all algorithms
01 =0.0001 and 05 =0.5.

We utilized the performance profile given in [43] to compare numerical results (IT,
FE and CPU) for all tested methods. The upper curve of the selected performance
profile corresponds to the method that shows the best performance.

6.1. Numerical experiments on QN methods with constant diagonal Hes-
sian approximation. BFGS, DFP, SR1 updates in QN methods with respect to
different ILS strategies are compared in [40]. The main conclusion is that the BFGS
method is superior to the others. Continuing such research, we compare the nu-
merical performances obtained from AGD, MSM and SM methods, i.e, gradient
methods with acceleration parameter. The numerical experiment contains 25 test
functions proposed in [3]. For each of tested functions, we performed 12 numerical
experiments with 100, 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 8000, 10000, and
15000 variables. Tested algorithms are based on the same implementation of the
backtracking line search (Algorithm 2), which we set w = 0.0001 and ¢ = 0.8

The uniform stopping criteria in this numerical experiments are

-6 |f k+1 — f k ‘
Il <100 ang ettt

Summary numerical data generated by AGD, MSM and SM method, tried on 25
test functions, are arranged in Table 4.

Table 4 contains numerical results corresponding to I'T, FE and CPU criteria for
the AGD, MSM and SM methods. Figures 1, 2, 3 illustrate the performance profiles
corresponding to the results in Table 4 corresponding to the criterion IT, GE and
CPU, respectively.

< 10716,
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TABLE 4. Summary numerical results of the AGD, MSM and SM meth-
ods with respect to IT, FE and CPU.

‘ H IT profile ‘ | FE profile H CPU time ‘
[Test function [[AGD [MSM[SM [[AGD [MSM [SM__[[AGD [MSM [SM |
Perturbed Quadratic 353897 [34828 [59908||13916515|200106|337910][6756.047 [116.281]185.641
Raydan 1 22620 [26046 [14918||431804 [311260|81412 |[158.359 [31.906 |36.078
Diagonal 3 120416 [7030 [12827][4264718 [38158 [69906 [[5527.844 [52.609 [102.875
Generalized Tridiagonal 1 670 346 325 9334 1191 1094 11.344 1.469 1.203
Extended Tridiagonal 1 3564 1370 4206 [[14292 10989 [35621 [|55.891 29.047 [90.281
Extended TET 443 156 156 3794 528 528 3.219 0.516 [0.594
Diagonal 4 120 96 96 1332 636 636 0.781 0.203 [0.141
Extended Himmelblau 396 260 196 6897 976 668 1.953 0.297 ]0.188
Perturbed quadratic diagonal 2542050(37454 |44903|[94921578|341299|460028|(44978.750{139.625|185.266
Quadratic QF1 366183 36169 [62927||13310016|208286|352975|12602.563|81.531 [138.172
Extended quadratic penalty QP1 210 369 271 2613 2196  [2326 1.266 1.000 [0.797
Extended quadratic penalty QP2 395887 [1674 [3489 [[9852040 [11491 (25905 [[|3558.734 [3.516 [6.547
Quadratic QF2 100286 |32727 [64076](3989239 [183142[353935[|1582.766 |73.438 [132.703
Extended quadratic exponential EP1][48 100 73 990 894 661 0.750 0.688 ]0.438
Extended Tridiagonal 2 1657 659 543 8166 2866 2728 3.719 1.047 1.031
ARWHEAD (CUTE) 5667 430 270 214284 [5322  [3919 95.641 1.969 |1.359
Almost Perturbed Quadratic 356094 [33652 [60789||14003318]|194876|338797|[13337.125|73.047 [133.516
LIARWHD (CUTE) 1054019[3029 [18691][47476667[27974 [180457[[27221.516]9.250 [82.016
ENGVALL (CUTE) 743 461 375 6882 2285 2702 3.906 1.047 1.188
QUARTC (CUTE) 171 217 290 402 494 640 2.469 1.844 2.313
Generalized Quartic 187 181 189 849 493 507 0.797 0.281 [0.188
Diagonal 7 72 147 108 333 504 335 0.625 0.547 ]0.375
Diagonal 8 60 120 118 304 383 711 0.438 0.469 0.797
Full Hessian FH3 45 63 63 1352 566 631 1.438 0.391 ]0.391
Diagonal 9 329768 [10540 [13619||13144711|68189 |89287 |[6353.172 |43.609 |38.672

From Table 4, we conclude that the AGD, MSM and SM methods have success-
fully solved all test functions.

Figure 1 presents the performance profiles of the IT of the AGD, MSM and SM
methods. In this figure, it is observable that MSM method is best in 52.00% of the
test functions compared with: AGD (24.00%) and SM (32.00%).

0.2 1
e AGD
01 —— MSM
el SM
0 . . . . . . . , ,
0 1 2 3 4 5 6 7 8 9

FIGURE 1. IT performance profile for AGD, MSM and SM methods.

From Figure 1, it is observable that the graph of the MSM method comes first
to the top, which means that the MSM is superior compared to other considered
methods with respect to the IT profile.

Figure 2 presents the performance profiles of the FE of the AGD, MSM and SM
methods. It is observable that MSM method is best in 64.00% of tested functions
compared with: AGD (12.00%) and SM (32.00%). In view of Figure 2, the MSM
graph first comes to the top, which means that the MSM is winer with respect to
the FE profile.
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FIGURE 2. FE performance profile for AGD, MSM and SM methods.

Figure 3 presents the performance profiles of the CPU of the AGD, MSM and
SM methods. It is obvious that MSM is winer in 56.00% of the test functions with
respect to: AGD (4.00%) and SM (44.00%). Figure 3 demonstrates that the graph
of the MSM method first comes to the highest level, which signifies that the MSM
is winer with respect to the CPU.

0.3

0.2

v

H wan AGD
- ——MSM| |
-

0.1 H
' @ SV
-

0 2 s 6 s 1 1
FIGURE 3. CPU time performance profile for AGD, MSM and SM methods.

From the previous analysis of the results shown in Table 4 and Figures 1-3, we
can conclude that the MSM iterates are most efficient in terms of all three basic
metrics: IT, FE and CPU. The MSM method has the smallest IT, FE and the CPU
time compared to the other two methods on the most test functions.

6.2. Numerical experiments on the CG methods with y{flgk in the nu-
merator of ;. The uniform stopping criterion during testing CG methods is

gkl < e,

where € = 1075 or when the number of function evaluations becomes greater than
1000000.
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In this subsection, we compare the numerical results obtained from HS, PRP
and LS methods, i.e., methods with y} gy in the numerator of 8. The numerical
experiment is based on 26 test functions. Summary numerical results for HS, PRP
and LS method, tried on 26 test functions, are presented in Table 5.

Table 5 shows the numerical results (IT, FE and CPU) for the HS, PRP and LS
methods.

TABLE 5. Summary numerical results of the HS, PRP and LS methods
with respect to the IT, FE and CPU.

[ ” IT profile ” FE profile ” CPU time ”
[Test function [[HS [PRPJLS [[HS [PRP [LS [[HS [PRP |LS ]
Perturbed Quadratic 1157 1157 |6662 3481 3481 (19996 0.234 |0.719 [1.438
Raydan 2 NaN (174 |40 NaN [373 120 NaN [0.094 |0.078
Diagonal 2 NaN [1721 [5007 NaN [6594 [15498 NaN [1.313 |2.891
Extended Tridiagonal 1 NaN (170 17079 ||[NaN 560 54812 NaN [0.422 [13.641
Diagonal 4 NaN |70 1927 NaN |180 5739 NaN [0.078 ]0.391
Diagonal 5 NaN [|154 (30 NaN [338 90 NaN [0.172 |0.078
Extended Himmelblau 160 120 241 820 600 1043 0.172 [0.125 [0.172
Full Hessian FH2 5096 |5686 [348414[[15294 [17065 |1045123||83.891|80.625|5081.875
Perturbed quadratic diagonal 1472 [1120 |21667 [|4419 [3363 [65057 0.438 [0.391 [2.547
Quadratic QF1 1158 [1158 |5612 3484 3484 [16813 0.281 [0.313 [1.047
Extended quadratic penalty QP2 NaN (533 [NaN NaN 5395 |NaN NaN [0.781 [NaN
Quadratic QF2 2056 (2311 |[NaN 9168 [9862 [NaN 0.969 [0.859 [NaN
Extended quadratic exponential EP1|[NaN [NaN |70 NaN NaN 350 NaN [NaN [0.141
TRIDIA (CUTE) 6835 (6744 [NaN 20521 [20248 [NaN 1.438 |1.094 |[NaN
Almost Perturbed Quadratic 1158 [1158 5996 3484 |3484 (17998 0.281 |0.328 [1.063
LIARWHD (CUTE) NaN (408 [11498 [[NaN [4571 (50814 NaN [0.438 [2.969
POWER (CUTE) 7781 |7789 [190882((23353 |23377 |572656 |[[1.422 [1.219 [14.609
NONSCOMP (CUTE) 4545 (3647 [NaN 15128 [12433 |[NaN 0.875 [0.656 [NaN
QUARTC (CUTE) NaN [165 [155 NaN 1347 |1466 NaN [0.781 |0.766
Diagonal 6 NaN (174 [137 NaN [373 442 NaN [0.109 |0.125
DIXON3DQ (CUTE) NaN [12595[12039 [[NaN [37714 [36091 NaN [1.641 |2.859
BIGGSB1 (CUTE) NaN [11454[11517 |[[NaN [34293 (34530 NaN [1.969 |2.141
Generalized Quartic NaN (134 [139 NaN [458 445 NaN [0.125 [0.094
Diagonal 7 NaN |51 80 NaN 142 240 NaN [0.063 [0.109
Diagonal 8 NaN |70 80 NaN ]180 180 NaN [0.063 ]0.125
FLETCHCR (CUTE) 18292{19084(20354 [{178305(170266({171992 |[|8.859 [6.203 |7.484

Figures 4, 5 and 6 plot the performance profiles for the results in Table 5 with
respect to IT, FE and CPU criterion, respectively.

Figure 4 presents the performance profiles of the IT correspondig to the HS, PRP
and LS methods. In this figure, it is observable that PRP method is best in 61.54%
of the test functions compared with: HS (26.92%) and LS (23.08%). From Figure 4,
it is observable that the graph of the PRP method comes first to the top, which
signifies that the PRP outperforms other considered methods with respect to the
IT criterion.

Figure 5 presents the performance profiles of the FE of the HS, PRP and LS
methods. It is observable that PRP method is best in 69.23% of the test functions
compared with: HS (23.08%) and LS (23.08%). From Figure 5, it is observed that
the PRP graph first comes to the top, which signifies that the PRP is the best with
respect to the FE.

Figure 6 presents the performance profiles of the CPU of the HS, PRP and LS
methods. It is obvious that PRP is best in 69.23% of the test functions compared
with: HS (11.54%) and LS (19.23%). Figure 6 demonstrates that the graph of the
PRP method first comes to the top, which signifies that the PRP is the best with
respect to the CPU.

From the previous analysis of the results shown in Table 5 and Figures 4-6, we
can conclude that the PRP method achieved the best and most efficient results in
terms of all three basic metrics: IT, FE and CPU.
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6.3. Numerical experiments on CG methods with ||g;||? in the numerator
of Bj. In this subsection, we compare the numerical results obtained from DY, FR
and CD methods, i.e, methods with ||g;||? in the numerator of ;. The numerical
experiment contains 25 test functions. Summary numerical results for DY, FR and
CD method, tried on 25 test functions, are presented in Table 6.

Table 6 contains numerical results (IT, FE and CPU) for the DY, FR and CD
methods. Figures 7, 8 and 9 plot the performance profiles for the results in Table 6
with respect to profiles IT, FE and CPU, respectively.

TABLE 6. Summary numerical results of the DY, FR and CD methods
with respect to IT, FE and CPU.

[ I IT profile I FE profile I CPU time |
[Test function [[DY [FR [CD [[DY [FR [CD [[DY [FR [CD |
Perturbed Quadratic 1157 [1157 [1157 |[3481 [3481 [3481 0.469 [0.609 [0.531
Raydan 2 86 40 40 192 (100 |100 0.063 |0.016 (0.016
Diagonal 2 1636 [3440 [2058 |[[4774 [7982 [8063 0.922 [1.563 [1.297
Extended Tridiagonal 1 2081 [690 [1140 [|4639 [2022 [2984 1.703 [1.141 [1.578
Diagonal 4 70 70 70 200 [200 [200 0.047 [0.031 [0.016
Diagonal 5 40 124|155 100 |258 320 0.109 |0.141 (0.125
Extended Himmelblau 383 [339 [207 1669 [1467 [961 0.219 [0.172 [0.172
Full Hessian FH2 4682 |4868 [4794 [[/14054|14610(14390 [{65.938(66.469(65.922
Perturbed quadratic diagonal 1036 (1084 (1276 |[3114 |3258 |3834 0.406 |0.422 |0.422
Quadratic QF1 1158 [1158 [1158 |[[3484 [3484 [3484 0.297 [0.297 |0.328
Quadratic QF2 NaN [NaN (2349 [[NaN [NaN (10073 |[[NaN [NaN [1.531
Extended quadratic exponential EP1{|[NaN |60 60 NaN [310 (310 NaN [0.109 [0.125
Almost Perturbed Quadratic 1158 [1158 [1158 [[3484 [3484 [3484 0.422 [0.453 [0.391
LIARWHD (CUTE) 2812 [1202 [1255 [[12366(7834 [7379 0.938 [1.000 [1.109
POWER (CUTE) 7779 [7781 [7782 [[23347]23353]23356 [[1.078 [1.500 [1.328
NONSCOMP (CUTE) 2558 [13483(10901|({49960(43268|33413 |[1.203 [1.406 |1.422
QUARTC (CUTE) 134 94 95 1132 {901 [916 0.688 [0.672 [0.563
Diagonal 6 86 40 40 192 100 [100 0.047 [0.063 |0.063
DIXON3DQ (CUTE) 16047(18776(19376|[48172[56369(58176 |[2.266 [2.516 [2.734
BIGGSB1 (CUTE) 15274(17835[18374|[45853[53546(55170 |[2.875 [2.922 [2.484
Generalized Quartic 142 (214 [173 497 [712 [589 0.078 [0.172 [0.109
Diagonal 7 50 50 50 160 [160 [160 0.063 [0.047 [0.094
Diagonal 8 50 40 40 160 (130 [130 0.109 [0.125 [0.063
Full Hessian FH3 43 43 43 139 [139 [139 0.063 [0.109 [0.109
FLETCHCR (CUTE) NaN [NaN [26793[|NaN [NaN [240237||[NaN [NaN [10.203

From Figure 7, it is observable that the graph of the CD method comes first to
the top, which signifies that the CD outperforms other considered methods with
respect to the IT.

Figure 8 presents the performance profiles of the FE of the DY, FR and CD
methods. From Figure 8, it is observed that the CD graph first comes to the
highest level, which means that the CD possesses best performances with respect
to the criterion FE.

Figure 9 presents the performance profiles of the CPU of the DY, FR and CD
methods. Figure 9 demonstrates that the graph of the CD method first achieves
the top level,so that the CD is winer with respect to the CPU.

From the previous analysis of the results shown in Table 6 and Figures 7-9, it is
clear that the CD method achieved most efficient results in terms of all three basic
metrics: IT, FE and CPU.

6.4. Numerical experiments on the hybrid conjugate gradient methods.
This subsection analyses numerical results obtained by running a MATLAB imple-
mentation with predefined conditions given at the beginning section. The following
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ten hybrid CG methods in the form of (1.2) and (1.10), which differ only in the
choice of the CG parameter [, are tested:

- HCG1: The CG method with S defined by (4.15).

- HCG2: The CG method with S, defined by (4.16).

- HCG3: The CG method with S defined by (4.17).

- HCG4: The CG method with 8, defined by (4.18).

(4.19)

(

- HCG5: The CG method with i defined by (4.19) in which ¢ = ﬁ—g

- HCG6: The CG method with 8 defined by (4.20).

- HCG7: The CG method with the parameter 8, defined by (4.27).

- HCG8: The CG method with the parameter 8y defined by (4.22) in which
O € [0, 1].

- HCGY9: The CG method with the parameter 3 defined by (4.23) in which
0y € 10,1].

- HCG10: The CG method with the parameter f3; defined by (4.24) in which
Vg, 0 € 10,1].

The numerical experiment contains 25 test functions.
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FIGURE 9. CPU time performance profile for DY, FR and CD methods.
Summary numerical results for hybrid CG methods, tried on 25 test functions,
with respect to IT, FE and CPU profiles are presented in Table 7.

TABLE 7. Summary numerical results of the hybrid CG methods
HCG1-HCG10 with respect to IT.

[Test function [[HCG1[HCG2[HCG3[HCG4[HCG5[HCG6[HCG7[HCG8[HCG9[HCG10|
Perturbed Quadratic 1157 1157 1157 [1157 1157 1157 [1157 1157 1157 [1157
Raydan 2 40 40 40 57 78 81 40 69 NaN 126
Diagonal 2 1584 |1581 1542 1488 1500 2110 (2193 1843 1475 1453
Extended Tridiagonal 1 805 623 754 2110 (2160 10129 [1167 [966 NaN 270
Diagonal 4 60 60 70 60 70 70 60 70 NaN 113
Diagonal 5 124 39 98 39 120 109 39 141 154 130
Extended Himmelblau 145 139 111 161 181 207 159 381 109 108
Full Hessian FH2 5036 [5036 [5036 [4820 [4820 [4800 [4994 [4789 [5163 [5705
Perturbed quadratic diagonal||1228 1214 1266 934 1093 987 996 1016 NaN 2679
Quadratic QF1 1158 1158 1158 1158 1158 1158 1158 1158 |NaN 1158
Quadratic QF2 2125 2098 2174 1995 1991 2425 [2378 |NaN 2204 (2034
TRIDIA (CUTE) NaN NaN NaN [6210 [6210 [5594 [NaN NaN 6748 |7345
Almost Perturbed Quadratic [|1158 1158 1158 1158 1158 1158 1158 1158 1158 1158
LIARWHD (CUTE) 1367 |817 1592 1024 1831 1774  [531 2152 [NaN 573
POWER (CUTE) 7782 |7782 7782 |7779 |7779 7802 |7781 7780 [NaN 7781
NONSCOMP (CUTE) 10092 [10746 [8896 10466 [9972 13390 [11029 [3520 [3988 11411
QUARTC (CUTE) 94 160 145 150 126 95 160 114 165 154
Diagonal 6 40 40 40 57 78 81 40 69 NaN 126
DIXON3DQ (CUTE) 12182 [5160 11257 [5160 11977 [14302 [5160 17080 [NaN 12264
BIGGSB1 (CUTE) 10664 [5160 10479 [5160 11082 13600 [5160 16192 |NaN 11151
Generalized Quartic 129 107 110 107 142 153 107 123 131 145
Diagonal 7 50 NaN 40 NaN 40 50 NaN 50 51 40
Diagonal 8 40 40 40 50 NaN 50 40 NaN NaN 40
Full Hessian FH3 43 42 42 42 42 43 42 43 NaN NaN
FLETCHCR (CUTE) 17821 17632 [18568 [17272 (17446 |26794 (24865 |NaN 17315 [20813

Figure 10 plot corresponding performance profiles I'T for the results included in
Table 7, in three columns denoted by IT.

From Figure 10, it is observable that the graph of the HCG6 method comes first
to the top, which signifies that the HCG6 outperforms other considered methods
with respect to the IT. However, if we look in more detail Figure 10, we can see
that the HCG6 method does not have the best results, it has the best results in
only (16%), while the HCG7 method has the best results in (52%) on the number
of functions tested. The reason for such behavior lies in the fact that the HCG6
method is the only one that has successfully solved all the test problems.

The numerical results of the hybrid CG methods with respect to the FE are
arranged in Table 8.
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F1cUre 10. IT performance profile for hybrid CG methods HCG1-HCG10.

TABLE 8. Summary numerical results of the hybrid CG methods
HCG1-HCGI10 with respect to FE.

[Test function

[[HCGI[HCG2[HCG3[HCG4[HCG5HCG6HCGT[HCG8[HCGI[HCGI0]

Perturbed Quadratic 3481 3481 [3481 3481 3481 [3481 3481 3481 3481 3481
Raydan 2 100 100 100 134 176 182 100 158 NaN 282
Diagonal 2 6136 (6217 [6006 [5923 (5944 [8281 8594 4822 (5711 5636
Extended Tridiagonal 1 2369 1991 2275 4678 4924 22418 (3119 2661 NaN 869
Diagonal 4 170 170 200 170 200 200 170 200 NaN 339
Diagonal 5 258 88 206 88 270 228 88 292 338 270
Extended Himmelblau 855 687 583 763 813 961 757 1613  |567 594
Full Hessian FH2 15115 [15115 [15115 [14467 [14467 |14407 [14989 |14374 (15495 [17122
Perturbed quadratic diagonal||3686 [3647 |3805 [2805 (3282 [2967 [2993 [3053 |NaN 8044
Quadratic QF1 3484 3484 3484 |3484 3484 (3484 (3484 (3484 [NaN 3484
Quadratic QF2 9455 (9202 [9501 [9016 [9054 10229 [10086 [NaN 9531  [9085
TRIDIA (CUTE) NaN NaN [NaN 18640 |18640 (16792 |[NaN NaN [20260 [22051
Almost Perturbed Quadratic [|3484 [3484 |3484 (3484 3484 [3484 [3484 (3484 |3484 (3484
LIARWHD (CUTE) 7712 [5931 8275 [6165 [8113 [9395 |5854 10305 |NaN  [4848
POWER (CUTE) 23356 [23356 [23356 |23347 [23347 |23416 [23353 [23350 |NaN 23353
NONSCOMP (CUTE) 31355 [33211 (27801 [32705 (31458 [40807 |34013 [23411 [13367 [35106
QUARTC (CUTE) 901 1254 1261 1224 1224 [916 1254 1041 1347 [1305
Diagonal 6 100 100 100 134 176 182 100 158 NaN 282
DIXON3DQ (CUTE) 36508 |15534 [33759 [15534 |35926 [42952 [15534 |51284 |NaN 36796
BIGGSB1 (CUTE) 31960 [15534 (31427 [15534 (33247 [40846 |[15534 |48620 [NaN [33469
Generalized Quartic 457 371 370 371 481 529 371 439 446 467
Diagonal 7 160 NaN 130 NaN 130 160 NaN 160 142 13
Diagonal 8 130 130 130 160 NaN 160 130 NaN NaN 130
Full Hessian FH3 139 136 136 136 136 139 136 139 NaN NaN
FLETCHCR (CUTE) 166463 [165774 (168739 [175309 [175845 [240240 [184939 [NaN 174406 [215687

Figure 11 plots the performance profiles for the results in Table 8, in three
columns denoted by FE.

From Figure 11, it is observable that the graph of the HCG6 method comes first
to the top, which signifies that the HCG6 outperforms other considered methods
with respect to the FE. However, if we look in more detail Figure 11, we can see an
identical situation as in Figure 10 that the HCG6 method does not have the best
results, it has the best results in only (16%), while the HCG2 method has the best
results in (48%) on the number of functions tested.

Table 9 contains numerical results of the hybrid CG methods with respect to the
CPU.

Figure 12 plots the performance profiles for the results in Tables 9.

From Figure 12, it is observable that the graph of the HCG6 method comes first
to the top, which signifies that the HCG6 outperforms other considered methods
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FIGURE 11. FE performance profile for hybrid CG methods HCG1-HCG10).

TABLE 9. Summary numerical results of the hybrid CG methods
HCG1-HCGI10 with respect to the CPU (sec).

[Test function [[HCG1[HCG2[HCG3[HCG4[HCG5[HCG6[[HCG7[HCG8[HCG9[HCG10|
Perturbed Quadratic 0.656 [0.516 [0.781 [0.719 [0.594 [0.438 0.719 [0.688 [0.844 [0.688
Raydan 2 0.031 [0.063 [0.078 ]0.078 [0.078 [0.078 ][0.078 [0.078 |NaN [0.078
Diagonal 2 1.453 [1.328 |1.656 |1.172 [1.438 [1.797 1.813 [1.266 |1.250 |1.141
Extended Tridiagonal 1 1.016 [1.125 [1.359 [2.250 [2.375 [7.578 1.672 [1.375 |NaN 0.922
Diagonal 4 0.031 [0.031 [0.031 [0.078 ]0.078 [0.047 0.109 [0.094 |[NaN 0.094
Diagonal 5 0.141 ]0.063 [0.156 [0.094 ]0.094 [0.125 0.109 [0.078 [0.219 [0.156
Extended Himmelblau 0.172 ]0.172 [0.109 [0.141 |0.172 |0.141 0.125 ]0.141 [0.172 [0.125
Full Hessian FH2 83.125 [91.938 [86.984 [85.766 |94.484 [78.281 [[77.141 |74.500 [80.969 |82.469
Perturbed quadratic diagonal|[0.406 ]0.609 [0.641 |0.375 [0.563 |0.359 0.328 [0.344 |[NaN 0.734
Quadratic QF1 0.359 ]0.438 [0.422 [0.422 |0.406 |0.391 0.484 [0.422 |[NaN 0.281
Quadratic QF2 1.047 |(1.313 |[1.203 |[1.156 |[1.063 |[1.156 1.000 |NaN 1.094 [1.047
TRIDIA (CUTE) NaN NaN NaN 1.688 [1.391 [1.859 NaN NaN 1.875 [1.391
Almost Perturbed Quadratic [[0.406 [0.438 [0.516 [0.594 [0.250 [0.359 0.406 |0.578 [0.641 [0.422
LIARWHD (CUTE) 0.938 ]0.828 [1.203 [0.797 |1.125 |1.172 0.938 [1.203 |[NaN 0.594
POWER (CUTE) 1.563 [1.672 [1.750 [1.609 [1.625 [1.578 1.625 [1.188 |[NaN 1.453
NONSCOMP (CUTE) 1.547 [1.484 ]1.063 |1.766 [1.422 [1.719 1.516 [1.063 |1.203 |1.703
QUARTC (CUTE) 0.750 [1.000 [0.969 [0.969 ]0.875 [0.797 0.938 [0.703 [1.266 |[0.93
Diagonal 6 0.078 ]0.078 [0.078 [0.094 ]0.063 |0.016 0.016 [0.125 [NaN 0.109
DIXON3DQ (CUTE) 2.047 [1.453 [2.016 [1.484 [2.359 [2.234 1.406 [2.297 |NaN 2.078
BIGGSB1 (CUTE) 1.875 [2.047 ]2.359 |1.750 |2.250 [2.391 1.422 [2.672 |NaN 2.422
Generalized Quartic 0.063 ]0.125 [0.141 [0.156 |0.125 [0.094 0.078 ]0.109 [0.172 [0.109
Diagonal 7 0.063 [NaN 0.016 |NaN 0.109 ]0.063 NaN 0.063 ]0.063 [0.063
Diagonal 8 0.078 [0.125 [0.078 ]0.031 |[NaN [0.063 [[0.109 [NaN |NaN [0.078
Full Hessian FH3 0.063 ]0.047 [0.109 [0.047 ]0.031 |0.063 0.047 [0.109 |[NaN NaN
FLETCHCR (CUTE) 5.656 [6.750 [7.922 [9.484 |6.484 |8.766 7.281 |[NaN 6.906 |7.547

with respect to the CPU. However, if we look in more detail Figure 12, we can see
an identical situation as in the figures 10 and 11 that the HCG6 method does not
have the best results, it has the best results in only (8%), while the HCG7 and
HCG10 methods has the best results in (20%) on the number of functions tested.

6.5. Numerical experiments on the modified Dai-Liao methods. The nu-
merical experiments presented in this subsection investigate the influence of the
scalar size in the modified Dai-Liao methods. The previously mentioned variants of
the DL method use a fixed value of the parameter t. It can also be seen that the
scalar ¢ in all the above papers are greater than 0 and is less than 1. Analyzing the
results from [18, 26, 131, 139], we conclude that the scalar ¢ was defined by a fixed
value of 0.1 in numerical experiments. Also, numerical experience related the fixed
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FIGURE 12. CPU time performance profile for hybrid CG methods
HCG1-HCG10.

valued ¢t = 1 was reported in [26]. Common numerical experience is that different
choice of ¢ initiate totally different numerical experience.

That is why we come to the next question. What is the ‘best’ value of t €
(0,1) from the computational point of view? Because of that, our intention is to
investigate numerically and theoretically behavior of different variants of the DL
conjugate gradient framework with respect to various values t. For this reason, we
started this research with the aim to find answer to the aforementioned question.
Our strategy is to select several values of the parameter ¢ within the interval (0, 1)
and to compare the obtained results based on different criteria. In that way, we will
get the answer to the question: whether it is better to take values closer to zero or
closer to one.

6.5.1. Motivations and the corresponding algorithm. As we have already indicated
in the previous section, the aim of this subsection is to answer to the question: what
is the ‘best’ value of ¢ € (0,1) in DL CG computational scheme? Our plan is to
examine numerically the influence of the scalar ¢ in the DL class of iterations and
determine some rules for its appropriate choice and, if possible, find the best value.
The detailed research plan is to find the answer to two challenging questions:

- Does and how much the values of the scalar ¢ affect each of the methods DHSDL,
DLSDL, MHSDL and MLSDL, which are observed individually, with respect to IT,
FE and the CPU time (CPU)?

- Does the choice of t favor one (or some) of the considered methods?

To give an answer to these questions, we would have to test all the methods under
the same conditions. During testing, we will compare all the considered methods
with the same values of required scalars. The Algorithm 2, i.e. the backtracking
line search, determines the step-size oy in (1.2).

Algorithm 6 gives the corresponding general framework for DHSDL, DLSDL,
MHSDL and MLSDL methods.

Values of ¢t used during the testing of the observed methods are given in the
Table 10. Each particular value of the scalar ¢ is marked with one of the labels
T1 to T6, corresponding to a joined value of t. Five of the six given values are
fixed during testing of the observed methods. Only the value of ¢ labeled by T'1
is variable during the iterations, where the value in kth iteration is denoted by .
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Algorithm 6 Modified Dai-Liao conjugate gradient methods.

Require: A starting point xq, real numbers 0 < e <1,0<d <1, u > 1and ¢t > 0.

1: Set k=0 and compute dg=—gj.
=4 oo — fil
k+1 — Jk
el < e and D <
STOP;
else perform Step 3.
3: Determine ay, € (0,1) using backtracking in Algorithm 2.
4: Compute Xg11 =Xy + apdy.
5. Calculate gk+1, Y =8k+1 — 8k Sk =Xp+1 — X
6: Calculate Sy by (4.9) or (4.10) or (4.11) or (4.12).
7: Compute dp =—gi + Brdr_1.
8: k=k+1, and go to Step 2.

In this case, the value t; is obtained from backtracking line search, i.e., tx = ay
inherits a new value obtained from Algorithm 2 in each iteration.

The reason why we decided to define values t; from the backtracking line search
algorithm is:

-t € (0,1);

-ty also affects the iterative steps when computing the next value for xy.

TABLE 10. Labels and values of scalar ¢ in the DHSDL, DLSDL,
MHSDL and MLSDL methods.

[ Label [T1 [T2 [T3[T4|[T5[T6]
l Value of the scalar ¢ H thk = g [ 0.05 [ 0.1 [ 0.2 [ 0.5 [ 0.9 ‘

The convergence of the above methods has already considered in the mentioned
references. Our goal is to give a unified analysis of the convergence of proposed DL
methods. The aim of our research is to investigate the influence of the scalar ¢ in
the DL iterates.

Each particular value of the scalar ¢ is marked with one of the labels T'1 to T6,
corresponding to a joined value of t. Five of the six given values are fixed during
testing of the observed methods. Only the value of ¢ labeled by T'1 is variable during
the iterations, where the value in kth iteration is denoted by ;. In this case, the
value tj, is obtained from backtracking line search, i.e., tx = ay inherits a new value
obtained from Algorithm 2 in each iteration.

The convergence of the above methods has already considered in the mentioned
references. Our goal is to give a unified analysis of the convergence of the proposed
DL methods. The aim of our research is to investigate the influence of the scalar ¢
in the DL iterates.

Arranged numerical results are generated by testing and comparing DHSDL,
DLSDL, MHSDL and MLSDL methods on 6 different values t, denoted by T'1-T6.
Three important criteria (IT, CPU, FE) in all tested methods are analyzed. Numer-
ical report is based on 22 test functions proposed in [3]. For each of tested functions,
we performed 10 numerical experiments with 100, 500, 1000, 3000, 5000, 7000, 8000,
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10000, 15000 and 20000 variables. Summary results for DHSDL, DLSDL, MHSDL
and MLSDL methods, tried on 22 tests, are presented.

The uniform stopping criteria are (refer to previous)

|fk+1 - fk‘

<107% and = <1016,
lgrll < A
The backtracking parameters for all algorithms are w=0.0001 and ¢=0.8.
During the testing of the DHSDL and DLSDL methods, the constant parameter
1 = 1.2 was used in each iteration.

6.5.2. Numerical eexperiments on DHSDL method. Figure 13 indicates the perfor-
mance profiles of the IT criterion with respect to the DHSDL method depending on
the scalar value ¢. This figure exhibits that the DHSDL method successfully solved
all the problems for all values of the scalar ¢t. Also, the DHSDL-T2 method is
finest in 45.5% of testings with respect to DHSDL-T1 (18.2%), DHSDL-T3 (9.1%),
DHSDL-T4 (4.5%), DHSDL-T5 (13.6%) and DHSDL-T6 (13.6%). It can be noticed
that the graph of DHSDL-T2 reaches the top first, which signifies that DHSDL-T2
is the best with respect to IT.

--------- DHSDL-T1 | 1
——s— DHSDL-T2
021 s+@ DHSDL-T3| |
DHSDL-T4
o1 DHSDL-TS | |
—&— DHSDL-T6

0 0.‘5 i 115 é 2.‘5 3‘ 3.‘5 4 4.‘5
FIGURE 13. Performance profiles of DHSDL (T1,T2,T3,T4,T5,T6)
method based on IT.

Figure 14 shows the performance profile given by FE of the DHSDL solver with
respect to t. Evidently, DHSDL solves all test problems for all values of the scalar
t, and the DHSDL-T2 method is winer in 50.0% of the test problems compared to
the DHSDL-T1 (18.2%), DHSDL-T3 (9.1%), DHSDL-T4 (0%), DHSDL-T5 (13.6%)
and DHSDL-T6(9.1%). From Figure 14, it is notifiable that the DHSDL-T2 is the
best with respect to FE.

Figure 15 illustrates the CPU criterion spanned by the DHSDL method depend-
ing on the metrics t. Again, the DHSDL method is able to solve all the tested
problems for all values of the scalar t. Further, the DHSDL-T6 method is supe-
rior in 40.9% of tests with respect to the DHSDL-T1 (4.5%), DHSDL-T2 (27.3%),
DHSDL-T3 (9.1%), DHSDL-T4 (4.5%) and DHSDL-T5 (13.6%). We also observed
that at the beginning, DHSDL-T2 does not perform well but as the number of
problems increases, its graph crosses other graphs and achieves the top fist, which
means that the DHSDL-T2 is dominant with respect to CPU.
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FIGURE 14. Performance profiles of DHSDL (T1,T2,T3,T4,T5,T6)
method based on FE.

1 ; 4+—
1
0.9
0.8
0.7 r ks
0.6 g%
054
044
s e DHSDL-T1] |
P ——— DHSDL-T2
021 “wss@ss DHSDL-T3| |
[ DHSDL-T4
01 : DHSDL-TS |
—&— DHSDL-T6
0 . . . .
0 1 2 3 4 5

FIGURE 15. Performance profile of DHSDL (T1,T2,T3,T4,T5,T6)
method based on CPU time.

The graphs displayed in figures 13-15 show that the DHSDL method has achieved
superior results for t = T2 = 0.05.

6.5.3. Numerical experiments on DLSDL method. Figure 16 illustrates the IT cri-
terion in the DLSDL method depending on the scalar value ¢. It is observable that
DLSDL successfully solves all the problems for all values of the scalar t. Moreover,
the DLSDL-T2 method is winner in 36.4% of the tests compared to DLSDL-T1
(22.7%), DLSDL-T3 (13.6%), DLSDL-T4 (9.1%), DLSDL-T5 (9.1%) and DLSDL-
T6 (13.6%). Figure 16 (left) exhibits that the graph DLSDL-T2 achieves the top
first, which means that DLSDL-T2 outperforms all the other methods with respect
to IT.

Figure 17 shows the performance profiles of the criterion FE corresponding to
the DLSDL method and the scalar value t. In this Figure, it is observable that
DLSDL for all values of the scalar ¢ successfully solves all tests, and DLSDL-T?2 is
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FIGURE 16. Performance profiles of DLSDL (T1,T2,T3,T4,T5,T6)
method based on IT.

best in 36.4% of the test functions in comparison to DLSDL-T1 (18.2%), DLSDL-
T3 (4.5%), DLSDL-T4 (18.2%), DLSDL-T5 (13.6%) and DLSDL-T6 (9.1%). From
Figure 17, it is observed that DLSDL-T2 is the best with respect to FE.

'17 ‘: ‘ ‘ ‘ ‘ ‘ :::é‘ Fj |
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o 05 1 15 2 25 3 35 4 45 5
FIGURE 17. Performance profiles of DLSDL (T1,T2,T3,T4,T5,T6)
method based on FE.

Figure 18 shows the performance profiles of the CPU time of the DLSDL method
depending on t. The graphs in this figure indicate that DLSDL method solved all
the problems for all values of ¢, and the DLSDL-T4 method is superior in 31.8% of
the test problems compared to DLSDL-T1 (13.6%), DLSDL-T2 (22.7%), DLSDL-
T3 (18.2%), DLSDL-T5 (9.1%) and DLSDL-T6 (4.6%). We also observed that at
the beginning, DLSDL-T2 does not perform well; but as the number of problems
increases, its graph crosses other graphs and comes to the top which signifies that,
with respect to CPU, the DLSDL-T?2 is the best.

Based on figures (16-18) analysis, we come to the conclusion that the DLSDL
method has achieved best responses for t = T2 = 0.05.

6.5.4. Analysis of average values. In Subsection 6.5.1, we have defined two ques-
tions. Our aim in this subsection is to give answers. In order to answer properly
to the first question, in Tables 11, 12, 13 are collected average values for all three
considered criteria.
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TABLE 11. Average IT values for 22 test functions tested on 10 numer-
ical experiments.

[Method|[T1 [T2 T3 [T4 IT5 T6

DHSDL ||32980.14(31281.32|33640.45(32942.36|34448.32|33872.36
DLSDL {30694.00|28701.14|31048.32|30594.77|31926.59|31573.05
MHSDL {|29289.73|27653.64|29660.00|29713.50(30491.18|30197.27
MLSDL ||25398.82|22941.77|24758.27(24250.68|25722.64/|25032.64

TABLE 12. Average values of FE for 22 test functions tested on 10
numerical experiments.

[Method|[T1 [T2 T3 [T4 [T5 [T6
DHSDL [[1228585.50]1191960.55[1252957.09[1238044.36]1271176.59]1255710.45
DLSDL [[1131421.41[1083535.14[1149482.41[1134315.00[1167030.14[1158554.77
MHSDL [[1089700.41]1036710.32[1089777.64[1091985.41]1105299.91|1101380.18
MLSDL [[904217.14 [845017.55 [891669.50 [879473.14 |913165.68 |895652.36

TABLE 13. Average CPU time for 22 test functions tested on 10 nu-
merical experiments.

[Method[[T1 [T2 [T3 [T4 [T5 [T6 |
DHSDL [902.06[894.73]917.77]930.56/911.28870.93
DLSDL _[[816.08]790.63]804.69|816.28]803.84|809.67
MHSDL [|770.78|751.65|728.61|749.70712.64|720.57
MLSDL ||573.14|587.41|581.50|576.32/582.62|580.96

After the numerical testing of the compared methods and the individual analysis
for each method, we can now give a global conclusion of the behavior of the observed
methods. The first conclusion is that the value of the scalar ¢ significantly affects
on each of the DHSDL, DLSDL, MHSDL and MLSDL methods with respect to all
three criteria. Further, a common conclusion is that all the methods give the best
performance profiles for the scalar value t = 0.05. We can also give an answer to
another question. According to the previous analysis, a particular selection of the
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scalar value t can give priority to one of the observed method. All methods do not
behave identically for the same values of the scalar ¢. If we observe Table 11 which
contains the average number of iterations, we can notice that the difference between
the smallest and the biggest average result of the observed method is in the range
of 10.1% to 12.1% in relation to the minimum obtained value. Table 12 shows the
average results related FE. An individual comparison of considered methods leads
to the conclusion that the difference between the smallest and the biggest average
results is in the range of 6.6% to 8.9% in relation to the minimum obtained value.
This brings us to the same conclusion once again, that is, the value of the scalar
t affects the methods in a given percentage. Also, if we observe Table 13 with the
average CPU time, we can notice that the difference between the smallest and the
biggest average CPU time observed method is in the range of 2.5% to 10.6% in
relation to the minimum value.

7. Conclusion. Overview of QN methods, CG methods and their classification
are presented. Section 5 investigates convergence properties of CG methods, fol-
lowing the CG classes in accordance with the presented taxonomy of basic CG
methods. Numerical experiments compare main classes of QN and CG methods.
More precisely, main QN methods with constant diagonal Hessian approximation
are compared as well as two classes of basic CG methods, hybrid CG methods, and
finally some variants of modified Dai-Liao methods.

The problem of defining further improvements of the CGUP Sy is still open.
Moreover, new CG methods could be defined using appropriate updates of the
parameter t. Another research stream includes various hybridizations of so far
proposed CG methods. On the other hand, there are open possibilities for defining
new updates of the matrices By and Hy, used in defining QN methods. Continuing
research on some composite definitions of §; based on CG and BFGS updates, it is
possible to discover new three-term (or even different) CG variants.

One of prospective fields for further research includes a generalization of the
discrete-time approach to continuous-time approach, considered in [69]. Another
possibility for further research is extension of gradient methods to tensor case. This
possibility was exploited in [77] on solving M-tensor equations.

Moreover, an application of low rank updates used in optimization can be trans-
ferred to appropriate numerical methods for computing generalized inverses. Ap-
plications of rank-one update formula are investigated in [115, 116].
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