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ABSTRACT. The two-component Novikov equation is an integrable generaliza-
tion of the Novikov equation, which has the peaked solitons in the sense of
distribution as the Novikov and Camassa-Holm equations. In this paper, we
prove the existence of the Hl-weak solution for the two-component Novikov
equation by the regular approximation method due to the existence of three
conserved densities. The key elements in our approach are some a priori esti-
mates on the approximation solutions.

1. Introduction. This paper is devoted to the existence of weak solutions to the
Cauchy problem for the two-component Novikov equation [18§]

my + uvm, + (20u, + uvy)m =0, m=u— Uy, t>0,

(1)

ng + uvng + (2uv, +vu)n =0, N =0 — Vgy.
Note that this system reduces respectively to the Novikov equation [23]
my + uuzm + u?my = 0, (2)
when v = u, and the celebrated Camassa-Holm (CH) equation [1]
m; + 2uzm + umg = 0, (3)

when v = 1.

The CH equation was proposed as a nonlinear model describing the unidirec-
tional propagation of the shallow water waves over a flat bottom [1]. Based on the
Hamiltonian theory of integrable systems, it was found earlier by using the method
of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by
using the tri-Hamiltonian duality approach related to the bi-Hamiltonian represen-
tation of the Korteweg-de Vries (KdV) equation [9, 25]. The CH equation exhibits
several remarkable properties. One is the the existence of the multi-peaked soli-
tons on the line R and unit circle S* [1, 2], where the peaked solitons are the weak
solution in the sense of distribution. Second, it can describes wave breaking phe-
nomena [4], which is different from the classical integrable systems. The existence
of H'-conservation law to the CH equation enables ones to define the H'-weak
solution [28]. There have been a number of results concerning about integrability,
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well-posedness, blow up and wave breaking, orbital stability in the energy space and
geometric formulations etc, see for instance [4, 5, 6, 8, 28] and references therein.

The Novikov equation (2) can be viewed as a cubic generalization of the CH
equation, which was introduced by Novikov [23, 24] in the classification for a class
of equations while they possesses higher-order generalized symmetries. Eq. (2) was
proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14],
and is equivalent to the first equation in the negative flow of the Sawada-Kotera
hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits
peaked solitons over the line R and unit circle S* [14, 20], which can be derived
by the inverse spectral method. Orbital stability of peaked solitons over the line
R and unit circle S' of (2) in the energy space were verified [20] based on the
conservation laws and the structure of peaked solitons of the Novikov equation (2).
The well-posedness and wave breaking of the Novikov equation have been discussed
in a number of papers, and it reveals that the Cauchy problem of the Novikov
equation (2) has global strong solutions when the initial data ug € H®, s > 3/2
[3, 15, 26, 27]. The existence of global weak solutions to the Cauchy problem of the
Novikov equation (2) was also discussed in [17].

As the two-component generalization of Novikov equation (2), the so-called Geng-
Xue system [11]

m¢ + 3vum + uvm, = 0,

n + 3uven + uvng, = 0, (4)
has been studied extensively [11, 13]. The integrability [11, 19], dynamics and struc-
ture of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and
wave breaking phenomena of the Cauchy problem of (4) were discussed. The single
peakons and multi-peakons of system (4) were constructed in [21] by using com-
patibility of Lax-pair, which are not the weak solutions in the sense of distribution.
Furthermore, the Geng-Xue system does not have the H'-conserved density, this
is different from the CH and Novikov equations. The weak solution in H' is not
well-defined since it does not obey the H'-conservation law.

The main object in this work is to investigate the existence of weak solutions
to system (1). It is of great interest to understand the effect from interactions
among the two-components, nonlinear dispersion and various nonlinear terms. More
specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas
from previous works on CH and Novikov equations. The weak solution of the
Cauchy problem associated with (1) is established in Theorem 3.1.

The remainder of this paper is organized as follows. In the next section 2, we
review some basic results and lemmas as well as invariant properties of momentum
densities m and n. In Section 3, we establish the existence of weak solutions,
our approach is the regular approximation method together with some a priori
estimates.

2. Strong solutions and some a priori estimates. In this section, we recall
the local well-posedness, some properties of strong and weak solutions to equation
(1) and several approximation results.

First, we introduce some notations. Throughout the paper, we denote the con-
volution by *. Let || - ||x denote the norm of Banach space X and let (-,-) de-
note the duality paring between H!(R) and H'(R). Let M(R) be the space of
Radon measures on R with bounded total variation and M™(R) be the subset of
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positive Radon measures. Moreover, we write BV (R) for the space of functions with
bounded variation, V(f) being the total variation of f € BV (R). Furthermore, for
0<p<oo,8>0,let | -] and || - ||s denote the norm of LP(R) space and H*(R)
space, respectively.

With m = u — ug, and n = v — vy, the Cauchy problem of equation (1) takes
the form:

my + uomy + (20uy +uvg)m =0, m=u— Uy, t>0, xR,
ng + uvng + (2uvy +vu)n =0, N =0 — Uy, (5)
u(0,2) = up(z), ©v(0,2) =vo(z), z€R.

Note that if P(z) = e~1#l, 2 € R, we have (1—02)71 f = Px f for all the f € L*(R)
and P xm = u, Pxn =v. Then we can rewrite the equation (5) as follows:

1 1
us + uvug + Py * (Euiv + UUm Uy + u211) + QP * (uivx) =0, t>0, zeR,

Vi + uvvg + Py % (%Uiu + Vv Uy + U2u) + %P * (viux) =0, (6)
u(0,2) = uo(z), v(0,z) =wvo(z), z€R.

Next we recall the local well-posedness and the conservation laws.

Lemma 2.1. [12] Let ug,vg € H*(R), s > 3. Assume that T = T (ug,vp) > 0 be

the mazimal existence time of the corresponding strong solution (u,v). Then the
initial value problem of system (1) possesses a strong solution

u,v € C((0,7); H*(R)) N CH((0,T); H*~(R))
Moreover, the solution depends continuously on the initial data, i.e. the mapping
(uo,v0) — (u(,u0),v(-,v0)) + H*(R) x H*(R) — C([0,T); H*(R)) N C*([0,T);
H*Y(R)) x C([0,T); H*(R)) N C*([0,T); H*~*(R)) is continuous.

Lemma 2.2. [12] Let ug,vo € H*(R), s > 3, and let (u(t,z),v(t,z)) be the corre-
sponding solution to equation (1) with the initial data (ug,vo). Then we have

/ (u2(t,x) + ui(t,x)) dr = / (u% + ugx) dz,
R

R

/ (V3(t, z) + vi(t,z)) do = / (v§ + v3,) da,
R

R

/ (u(t,x)v(t, z) + up(t, x)v, (t, x)) do = / (upvo + wozvoz) d.
R R

Moreover, we have
V2 V2
jutt, o)l < Llwolls, ot 2)] < Sl
Note that equation (1) has the solitary waves with corner at their peaks. Ob-
viously, such solitons are not strong solutions to equation (6). In order to provide
a mathematical framework for the study of these solitons, we define the notion of
weak solutions to equation (6). Let

1 1
F.(u,v) = uwou, + Py * (iuiv + wtg vy + uv) + §P x (uZvy),

1 1
F,(u,v) = uvv, + Py * (iviu + Vv, 4+ viu) + iP * (vV2ug).
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Then equation (6) can be written as
us + Fy(u,v) =0,
ve + Fy(u,v) =0, (7)
u(0,x) =uo(x), v(0,2) =wvo(x).

Lemma 2.3. [22] Let T > 0. If

df dg
dt’ dt

then f,g are a.e. equal to functions continuous from [0,T] into L?*(R) and

10900 - 76960 = [ (g0 yar s [(22 1) Yar

for all s,t € [0,T].

f,9 € L*((0,T); H'(R)) and € L*((0,T); H ' (R)),

Throughout this paper, let {p,}n>1 denote the mollifiers

~1
Pn = </ p({)d{) np(nx), x€R, n>1,
R

where p € C°(R) is defined by

1
e=?-1, for |z| <1,
o) { =

0, for |z| > 1.
Next, we recall two crucial approximation results and two identities.

Lemma 2.4. [7] Let f : R — R be uniformly continuous and bounded. If n € M(R),
then

[on * (f11) = (pn* f)(pn % )] =0, asn— o0 inL'(R).

Lemma 2.5. [7] Let f : R — R be uniformly continuous and bounded. If g €
L>(R), then

pn % (f9) = (pn* f)(pn*g) =0, asn— oo inL>®(R).
Lemma 2.6. [7] Assume that u(t,-) € WHL(R) is uniformly bounded in W11 (R)
for allt €e Ry. Then for a.e. t € Ry, there hold

d
—/ |pn * uldz = /(pn * g )sgn(py, * u)de
and

d
— / |pn * ug|de = /(pn * Ugt )SEN (P * Uy )d.

Consider the flow governed by (uv)(t, x):

dq(t, )
dt
q(0,z) =2z, xR

= (w)(t,q), t>0, z€R,

(8)

Applying classical results in the theory of ODEs, one can obtain the following useful
result on the above initial value problem.
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Lemma 2.7. [12] Let ug,vg € H*(R), s > 3, and T > 0 be the life-span of the
corresponding strong solution (u,v) to equation (5) with the initial data (ug,vo).
Then equation (8) has a unique solution ¢ € C1([0,T) x R,R). Moreover, the map
q(t,-) is an increasing diffeomorphism over R with

gz = exp </Ot(uv)z(s,q(s,:c))ds) , VY(t,xz) € [0,T) x R.

Furthermore, setting m = % — Uy, and N = v — Vg, we obtain
t
m(ta) = exp (= [ o+ ) st 2))ds ) mo
0
t
n(t,q) = exp (—/ (2uv, + vuy)(s, q(s,x))ds) ng, V(t,z)€[0,T)xR
0

Theorem 2.8. Let ug,vy € H*(R), s > 3. Assume that mg = uy — 0?ug and
no = vo — 0%vy are nonnegative, and T > 0 be the maximal existence time of the
corresponding strong solution (u,v). Then the initial value problem of system (1)
possesses a pair of unique strong solution (u,v), where

u,v € C([0,T); H*(R)) N C*([0,T); H*~1(R)).

Set m(t, ) = uf(t, ) Uz (t,+) and n(t,") = v(t,") — Vez(t,-). Then, E,(u) =
Je (W? +u )dm E,(v) = [5 (v +02) de, H(u,v) = [5 (uv + ugv,) do and Eg(u,v)
f (mn) 3 dx are four conservation laws and we have for allt € Ry

(#). m(t,-) = 0,n(t,-) > 0,u(t,-) > 0,v(t,-) > 0and |u,(¢, )| < u(t,-),
lva(t, )] < v(t,-) on R;

(@) Jult, )L < flm(t, )l s [Jul, ) v2 v2

Lo < 7”“@7')”1 = 7||u0||1=

V2 V2

and [lu(t, )l|z < fInt, ey, o )z < o, )l = - llvolls
(11d). flua(t, )|l < [Im(t,-)|[2r and |lua (2, )||L1 < In(t, )l re-
Moreover, if mg,ng € L*(R), we obtain

m(t, )| < el\uol\ll\wolht||m0||L1 and ||n(t, )| < e\luo\ll\lvo\|1t|‘n0||Ll_

Proof. Let up,vo € H*(R), s > 3, and let T > 0 be the maximal existence time
of the solution (u,v) to equation (5) with the initial data (ug,vg). If mg > 0 and
ng > 0, then Lemma 2.7 ensures that m(¢,-) > 0 and n(¢,-) > 0 for all ¢t € [0, 00).
By u = Pxm, v = Pxn and the positivity of P, we infer that u(¢,-) > 0 and
v(t,-) > 0 for all t > 0. Note that v is analogous as u and

u(t,z) = 62 / eym(t,y)dy+%/ e Ym(t,y)dy, (9)
and
wlte) == [ emdy+ S [ e rmiy (10)

From the above two relations and m > 0, we deduce that

V2

‘ul’(tvx” < u(t7x) < 7|‘U(t7$)”1
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In view of Lemma 2.2, we obtain that E,(u) and E,(v) are conserved and

2
u(t,r) < gﬂuoﬂl, V(t,x) € Ry x R.

Since m(t,x) = u — Uy, it follows that v = P« m and u, = P, * m. Note that
IP|lzr = ||P:llr = 1. Applying Young’s inequality, one can easily obtain (7) — (ii).
Since equation (1) can be used to derive the following form
((mn)%) + ((mn)%uv) =0,
t x
it immediately follows that Fg(u,v) is a conserved density. On the other hand, by
equation (5), we have

/ m(t, x) / (uvmg + (2vuy + wv,)m) dz

oo (oo}
= / (vuzm — (vom),) dx < |u|| g ||v]| Lo / m(t, z)dz
— 00 — 00
(o]
< lols ol [ mt, ).
— 00
Since mg € L*(R), in view of Gronwall’s inequality, we can get
|m(t, )| < ellwollx Hvo\llthOHL1
Similarly, we find
(e, e < el g
This completes the proof of Theorem 2.8. O

3. Global weak solutions. In this section, we will prove that there exists a unique
global weak solution to equation (6), provided the initial data (ug,vo) satisfy certain
sign-invariant conditions.

Theorem 3.1. Let ug, vg € HY(R). Assume mg = ug — Ugpz andng = vy — Vozz €
M (R).Then equation (6) has a pair of unique weak solution (u,v), where

u,v € WH®(R, x R) N L>®(Ry; H'(R))

with the initial data u(0,2) = ug, v(0,2) = vy and such that m = u — Ugy, N =
UV — VUgy € M+(R) are bounded on [O T), for any ﬁmed T > 0. Moreover, E,(u) =
Jg (W* +u2) dz, E,(v) = [ (v +v2) dz and H(u,v) = [ (wv + vyug) dz are con-
served densities.

Proof. First, we shall prove u,v € WH°(R, x R) N L>®(Ry; HY(R)). Let ug, vy €
H'(R) and assume that mg = ug — ug 4z, Mo = Vo — Vo.zz € MT(R). Note that
ug = P xmg and vg = P * ng. Thus, we have for any f € L>°(R),

luollzs = P *moll =  sup /fx (P mo) (2)d
[Ifllzee <1

B |f|SF£g1/Rf(m>/RP($ —y)dmo(y)dz
= sup /R(P*f)(y)dmo(y)

[[fllLee <1

< sup ||PHL1||f||L°°”mOHM(R) = HmOHM(R)-

Lo <1

(11)
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Similarly, we have
llvollr < lInollmw)- (12)

We first prove that there exists a corresponding (u,v) with the initial data (ug, vo),
which belongs to HL (R x R)NL=(Ry; HY(R)) x HL (R, x R)NL=(R; H'(R)),
satisfying equation (6) in the sense of distributions.

Let us define uf = p, xup € H®(R) and v = p, *vg € H*®(R) for n > 1.

Obviously, we have

ud —ug H'(R), n — oo,

(13)
v — vy HY(R), n — oo,
and for all n > 1,
luglls = llpn * uolly < fluollr, flvg(ls < llvoll, (14)
lugllzr = llon * uollLr < lJuollzr,  llvglizr < flvollLr,
in view of Young’s inequality. Note that for all n > 1,
MG = Uy —Ug 4y = Pnx Mo 20, and  ng = vy — vy, = pn *v9 > 0.
Comparing with the proof of relation (11) and (12), we get
Imgllz < lmollm@), and Ingllzr < lInollm@), n=1. (15)

By Theorem 2.8, we obtain that there exists a global strong solution
u" =" (- up), " = 0" (- ug) € O([0,T); HY(R) N CH([0,T); H*~H(R))

for every s > 3, and we have u™(t,z) — u”,(t,z) > 0 and v"(t,x) —v2,(¢t,2) > 0 for
all (t,z) € Ry x R. In view of theorem 2.8 and (14),we obtain for n > 1 and ¢ > 0,

[z (&, oo < Jlu™(E, )l < flu ()l = lluglh < Jluolls,

(16)
[0 (8, lzoe < (0" (@ )z < Ml0™ @)l = llvg [l < Jlvolls
By the above inequality, we have
([t )o" (¢, Juip (¢, )| L2 < JJu™ (& )l [[0™ (E, )| o [Juz (£, )l 22 a7
< (s )0t )l < Jluolli flvoll1-
Similarly, we have
[0 (&, Ju” (¢, vy (¢, ez < Jlooll lluolls- (18)
By Young’s inequality and (16), for all ¢ > 0 and n > 1, we obtain
[P (Gyom a2 ) 4 4P e (o)
2 2 2
1 n n n n_ n n n 1 n n
< 1Pellze || 5 ()™ +u"ugof + @)+ SIPlze [|(u) 02|,
Lt (19)

1 1 1
< Sluzlizello™lees + llu"llzoe luzllzalloz e + lu™ (720" [ + 505 o luz |72

5 2 5 2
< Sl < 3 lluolltllvolls-

Similarly, we get

1 1
L R e T R Y (3

)
< Sl 20
2
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Combining (17)-(20) with equation (6) for all ¢ > 0 and n > 1, we find
d d
Zun(t. - —o"(t,-
Hdtumw I
For fixed T > 0, by Theorem 2.8 and (21), we have

| [ o + o + o) dode < (ool + 5 ool ) 7

7
< Sluollleolls, and

7
< Slvolilluoll- (21)
2

22
[ [ @l + 2 + o ) dode < (ool + 2 olu?) 7 -
It follows that the sequence {u"},>1 is uniformly bounded in the space H*((0,7) x
R).Thus we can extract a subsequence such that
u™ —u  weakly in H'(0,T) x R) for ng — oo (23)
and
u™ —u, a.e. on (0,T) xR for ng — oo, (24)
for some u € H'((0,T) x R). By Theorem 2.8, (11) and (14), we have that for fixed
t € (0,T), the sequence ul*(t,-) € BV (R) satisfies
Vgt (&, )] =lluis (8 ) o < flu"™ (@ )l + [m™ ()]l
<2 (1, ) < 2l I g
gge”%lhHv0|\1f||m0||M(R)
and
[l (8 Mz < Ml ()l = llug® (& )l < Jluolls-

Applying Helly’s theorem, we obtain that there exists a subsequence, denoted again
by {ul*(t,-)}, which converges at every point to some function (¢, -) of finite vari-
ation with

Vli(t, )] < 2600l oy ey,
Since for almost all t € (0,T), ul*(t,-) = u,(t,-) in D'(R) in view of (24), it follows
that 4(t,-) = ug(t,-) for a.e. t € (0,T). Therefore, we have
up® — uy  a.e. on (0,7) x R for ng, — oo, (25)

and for a.e. t € (0,7,

Vit (t, )] = [ tae (b, ) mer) < 2el 01700 g | gy

We can analogously extract a subsequence of {v™}, denote again by {v™} such
that
o™ — v a.e.on (0,T) xR for ngy — oo

26
and vy* — v, a.e. on (0,T) xR for nj — oo. (26)

By Theorem 2.8 (ii) — (iti) and (16), we have

1 1

5 ()" Fuugel 4 (W) 4 S (up) g | < BlluollTflvollr-

For fixed t € (0,7), it follows that the sequence {2 (u?)?v™ 4+ u™ulv? + (u™)?v"+
1 (u?)?v? } is uniformly bounded in L*(R). Therefore, it has a subsequence converg-
ing weakly in L'(R), denoted again by {3(u)?v™ +u™ulvl + (u™)?v™ + L(up)?vp}.




GLOBAL SOLUTIONS FOR THE TWO-COMPONENT NOVIKOV EQUATION 1553

By (24) and (25), we deduce that the weak L*(R)-limit is 3 (us)?0"™ +uugv, +u?v+
1 (ug)?v,. Note that P, P, € L>(R). It follows that

1 1
P, * {(u;’)%" + uujvl + (u")zv”} + P * ((ug)zv:’j)

2 2
1 ) (27)
— P, x {2“92#}” + UUG Vg + uzv} + P % <2u§fux> , as m — oo.
We can analogously obtain that
1 1
P, * [i(v;‘)Qu” + o™ + (v™)*u"] 4+ P x (2(v2)2u2>
(28)

— P, % [%viu” + vvgu, + viu] + P x (;viuw> , as n — 00.
Combining (24)-(26) with (27) and (28), we deduce that (u,v) satisfies equation (6)
in D'((0,T) x R).

Since u;* (t,-) is uniformly bounded in L?(R) for all t € Ry and |[u™*(t,-)||; has
a uniform bound as t € Ry and all n > 1. Hence the family ¢ — u"*(t,-) € H*(R)
is weakly equicontinuous on [0,7] for any T > 0. An application of the Arzela-
Ascoli theorem yields that {u™*} contains a subsequence, denoted again by {u™},
which converges weakly in H!(R), uniformly in ¢ € [0,7]. The limit function is u.
Because T is arbitrary, we have that u is locally and weakly continuous from [0, co)
into H(R), i.e.

u € Cy1oc(Ry; HY(R)).

For a.e. t € Ry, since u™(t,-) — u(t,-) weakly in H*(R), in view of (15) and
(16), we obtain

[[ult, e <[lu(t,)][; <liminf{ju"(E, )
N —» 00

—timinf [ (¢, )] < liin [P m3 (8, )l (20)
N —00 ng—00
<lImoll m(w),

for a.e. t € Ry. The previous relation implies that
u € LRy x R) N L>®(Ry; H'(R)).
Note that by Theorem 2.8 and (15), we have
[l (£, Lo <[[u™(E, )L < Jlu”(E, )]
<[IPlxllmg (£, e < llmo(t, )l am)-
Combining this with (25), we deduce that
u, € L°(Ry x R).

(30)

This shows that

ue WHR (R, x R) N L®(Ry; HY(R)).
Taking the same way as u, we get

v e WH® (R, x R)NL¥([R,; HY(R)).

Please note that we use the subsequence of {v™*} which is determined after using
the Arzela-Ascoli theorem.
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Now, by a regularization technique, we prove that E,(u), E,(v) and H(u,v) are
conserved densities. As (u,v) solves equation (6) in the sense of distributions, we

see that for a.e. t e Ry, n > 1,
[ 2
Pn * Ug + pp * (uvugg)—i—pn * Py % 5%1} + UULVe + UV
+ 1p * P x (uzv ) =
2 n x

1
Pn * Vg + pp * (uvvz)—i—pn * Py % 51} U+ VULV, v2u

+ pn*P*(v uz

By differentiation of the first equation of (31), we obtain
Lo
P % Uzt + P % (WU )z + pp % P * 2uzvz

1
n PII
+ pn * *(2

ULV + Uz Uy + U v> = 0.
Note that §%(P x f) = Px f — f, f € L*(R). We can rewrite (32) as

1
P * Uzt + Png * (U0UL) + pp * P x <2uiv + Uty vy + u2v>

1 1
— P * <2u2v + uugvy + uzv) + pn * Py <2uivm> =0.

0,
(31)

(33)

Take these two equation (32) and (33) into the integration below, we obtain

531 [0+ ()

- /}R (P 0) (o % 1) + (P 14) (P * 1zt

1
— /(Pn * 1) (pn * (Uvug) + pn * Py % <2uiv + uug Uy + u2v)
R

+ pp * P x (2umvm)> dx

(34)

1
_ /(Pn * Uy ) <pm * (uvug) + pp x P <2uiv + uug v, + u2v>
R

1 1
—pn * (2uiv+uumvm +u2v> + pp ¥ Py % <2u ’UT>> dz.

Note that

Jim <=l = T flpn + (wvrer) = v 2 =0,
Therefore, by using Holder inequality, we have for a.e. £t € R™

/(pn *u)(pn * (uvuy))de — / uPvuydr, as n — oo.
R R
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Similarly, for a.e. t € R
1
/(pn *U) (pn * Py * <2u§v + uuy v, + u2v>> drx —
R

1
/ ubP, x <2uiv + UL vy + ugv) dx, as n — oo,
R

1 1
/(pn * 1) (pn * P« (uivx)> dx — / uP <uivx> dz, as n — 00,
R 2 R 2
Lo 2
(pn * ug) | pn * P * iuzv—i—uuxvx—l—uv de —
R
2 x

1
/(pn * Uy <pn * (2%25@ + uugpvy + u%)) dr —
R

/u <u U+ ULV +uv>dx as n — oo
T 2 x VT ) )
R

1 1
/(pn * Uy ) (pn x Py % (uivz)> dr — / Uy Py % (uivgg) dzx, as n — oo,
R 2 R 2

as u(t,-),v(t,) € HY(R) and u,, v, € L®°(R, x R). Furthermore, note that

[0 0o o)) = = [ ()5 ()l

1
/ Uy P (uzv + v, + uzv) dx, as n — oo,
R

(35)
+ /R(pn’m * ) (pn * wv)(pp * Uy )dx + %/R(pn * Uz)2(pn * (uv),)d.

Observe that
/R(pn £ 102)2 (o # (u)s) dT —> /Rui(uv)mdx, as n— oo
On the other hand
Pnas * ullrt < [[tas || pey < 260l img|| vy, VE € [0,T).
As u(t,),v(t,-) € HY(R) and u,,v, € L°(Ry x R), by Lemma 2.5, it follows that
[[(on * uv)(pn * ua) = (pn * (uvtis))|| L =0, n — oo.
Therefore,

/R(pn,m * ) ((pn *uv)(pn * ug) — pp * (uvug))dz — 0, n — 0.
In view of the above relations and (35), we obtain
/R(pn * Ug ) (pra * (uvuy))de — % /Ruf?(uv)mdx, n — oo. (36)
Let us define

B2 = [ (ue ) + (oo + w,)Pd (37)
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and
1

Gi(t) =— 2/(pn * ) (pn * (UvUy) + pp * Py x <2uiv + uuy v, + u2U>

R

[
+ pn * P x §uwvx dx
1, 2

—2 [ (pn *ug) | pnz * (uvug) + pn * P x* §u$v + uugv, + utv

R

1 1
—pn * <2uiv + UtV + u%) + pn * Py * <2uivz>) dx.

We have proved that for fixed T' > 0, for a.e. t € [0,T),

d

—EN(t) = GE(t >1

S0 = Ga(D), n21, 5s)

Gu(t) — 0, n — 0o.

Therefore, we get
t
EX(t)— E;0) = / G (s)ds, tel0,7), n>1. (39)

0

By Young’s inequality and Holder’s inequality, it follows that there is a K“(T) > 0
such that

|Gr(t)| < K“(T), n>1.

In view of (38) and (39), an application of Lebesgue’s dominated convergence the-
orem yields that for fixed a.e. t € Ry,

lim (EX(t) — E(0)) = 0.

n—oo

By (24) and the above relation, for fixed ¢t € Ry, we can get
E,(u) = nhﬁrr;() EX(t) = nhﬁrr;() E}(0) = Ey(ugp).

By Theorem 2.8, we infer that for all fixed ¢ € Ry, E,(u) is conserved. Similarly,
we can show that E,(v) is also conserved.

Next, we prove that H(u,v) is a conserved density.

By differentiation of the second equation of (31), we obtain this relation:

1
P * Vgt + Pna * (U0vy) + pn x P x <21)g2cu + vugv, + U2u>
(40)

1 1
— pp * <2v§.u + VULV, + vzu) + pp * Py (QUiux) =0.

In view of (31), (33) and (40), we obtain
d
G [0 0o 5 0) + (0 02) (o x0r)
R
= /(pn # ) (pn * V) + (Pn Uz )(Pn % Vee) + (pn % ue) (pn % v) + (Pn * Uat) (pn * V2 )d
R

1
- _ /(pn *U) (pn * (UVVz ) + pn * Py % (gviu + VUL Uz + v2u>
R
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1
+ pn * P <§vﬁuz>> dx

_ /(pn * Ug) (pm % (UVVg) + pn * P x <%viu + vuzve + v2u)
R
15 2 15
—pPn * §fuzu + VUg Vg + VU | + pp * Py % Evmuac dx
1
_ /(pn * V) <p7L * (Vutg) + pn * Py (iuiv + UUL VL + u2v> (41)
R
15
+ pn * P x iuzvz dx
1 3 2
_ /(,On * Ug ) (pm * (UVUg ) + pn * P x <§uxv + Uugvr +u v)
R
1 4 2 1 5
—Pn * §uwv + UULVz + UV | + pn * Py o 5%”% dx.

We can analogously get the similar convergence like the case % fR(pn xu)? + (pp *
uz)?dz by using Lemma 2.5, u(t,-),v(t,-) € HY(R) and us,v, € L>(R, x R).
It is nature to define

)= [ (0 000+ 0) + (0o % 10) (o # ), (12)

and
Gp(t)

1
=— /R(pn * ) (pn * (uvvg) + pr * Py % <2v§u + VUuLv, + U2u>
L,
+ pp * P x ivzuw dx
Ly 2
— | (pn *uz) | pna * (uvvy) + pp x P % §Uzu + vuglv, +viu
R
—pn * 11)2u—|—vuv + 0% ) + pp * Py % 11)2u dz

1
_ /(Pn * V) (pn x (Vuug) + pp * Py x (2uiv + uugv, + u2v>
R
[
+ pn * P x 5“1% dx
1y 2
— [ (pn * V) | praz * (uvug) + pp x P x Ua? + Uugy vy + uv
R
[ 2 1y
—pn * iuw + UU Uy + UV | + pp * Py ox 5“1“1 dx.
And it is easy to get
t
H () — H, (0) = / G (s)ds, te[0,T), n> 1. (44)
0

Similarly, we get this estimate by using Young’s inequality and Holder’s inequality:

G @) < K°(T), n=1.
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An application of Lebesgue’s dominated convergence theorem yields that for fixed
a.e. t € Ry,

lim [H,(t) — H,(0)] = 0.

n—oo

By these convergence above, for fixed t € R, we can get
H(u,v) = lim H,(t) = lim H,(0) = H(ug,vo),
n— oo n—oo

which indicates that H(u,v) is a conserved density.
Since LY(R) C (L*(R))* C (Co(R))* = M(R). It is not too hard to show that
for a.e. t €[0,7),

[m(t, )| < 3elolleolstmg | v ).
For any fixed T, Vt € [0,T), we have proved
(ut, ") = uaa(t,-)) € M(R).
Therefore, in view of (24) and (25), we obtain that for all ¢ € [0,T'), as n — oo,
w () —ulh(t, ) = ult, ) — uge(t,-) in D'(R).
Since u™ (¢, ) —ulk(t,-) > 0 for all (¢, z) € Ry xR, we deduce that for a.e. t € [0,T)
ult, ) = use(t, 1) € MT(R).
Similarly, we arrive at the conclusion:
u(t,) = vaa(t, ) € MT(R).

Finally, we show the uniqueness of the weak solutions of equation (6). Let (u,v)
and (u, ) be two weak solutions of equation (6) in the class

(f,9) € Wh=(Ry x R) N L=(Ry; H'(R)) x W (R, x R) N L% (Ro; H'(R))
Note that
u(t, ) = taw (t, )l my < el 1Pt img | v gy

[0(t,+) = Vaw (£, ) Ly < Bel“olH ot ing || gy for ae. te(0,T).

M(T): sup {Hu(t, uzr( )||M(R)+||U( )_vzz( )”M(R)
te[0,T)

Halt, ) = faw (t, ) aay + 19(E ) = Toa (t ) i } -

Then for fixed T, we obtain M (T) < co. For all (¢,z) € [0,T) x R, in view of (11),
we find that

l[u(t, g < [Pl M(T) = M(T),
l[ue(t, e < [[Pellps M(T) = M(T), (45)
ot e, llow (@ )llpss (16, e ae @ )l [0, )l and |02, )l < M(T).
On the other hand, from (29) and (30), we have
[u(t, Mz < lmollmm) <Ny lua(t, )z < lmollpme) < N,
[0t )lzee < llnollpm@m <N, vt )llzee < llnolpmm <N, (46)
[@t, )l oe, [t (t, )| e, 10(E, )| Lo and [[Da (¢, )| < N
Let us define
a(t,z) = u(t,xz) —u(t,z) and o(t,x)=v(t,z)—o(t,z), (tz)e€[0,T)xR
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Convoluting equation (6) for (u,v) and (@, v) with p,,, we have that for a.e. t € [0,T)
and alln > 1,

d
7/ ‘pn * difdz :/ P * Ugsgn(py, * 0)dx

=— / P * (g + Quy O 4 bl ) sgn(py, * 4)de
R

1. _ I o o
- / P * Py % (iu(ug,c + Uy)v + iuiv + WUy Vg + U0y (47)
R

+ Ul Dy + U(u + @)v + u0)sgn(py, * 0)dx
1
_ / P * 5P * (%(uw + Uy )y + ﬂiﬁw) sgn(py, * 4)dx.
R

Using (46) and Young’s inequality, we infer that for a.e. t € [0,T) and all n > 1
d
pr /R |pn * G|dx

SC’(/ |pn*ﬂ|dm+/pn*ﬂm|da:+/|pn*ﬁ|da:+/|pn*ﬁxdx).
R R R R

where C'is a constant depending on N. Similarly, convoluting equation (6) for (u,v)
and (u,v) with p,, ., it follows that

(48)

d
% / ‘pn * ﬁx|dx :/ Pn * azthn(pnw * ’l))dl‘
R R
— / Pr ¥ (Q0Uy + UuyD + UOU, ), SEN(Pne * 0)dx
R

1. _ 1 5. . o

_ / P * Pry % (iu(uw + Ug)v + iuiv + Uy Uy + UVl (49)

R

+ Ul Dy + U(u + @)v + u0)sgn(ppg * @)d
1

- / pn ¥ 5 P x (it (g + U )0y + Ua0,) sE(ppg * 0)d

R
=1+ I, + I5.

For the term I, we have
I

=— / P * (GgVUs + QuzVe + GVUZE + UgUaD + UlerD + Uz Dy
R

+ UpUly + Ulslia + U0laz )SgN(pne * 4)dx

§C’</ |pn*ﬂ|dw+/|pn*ﬁm|d1’+/|pn*@|dx+/|pn*@x|da:>
R R R R

— / P * (W0Uge + Ul + UDULs )SEN(Pny * G)dT
R

§C(/ |pn*1l|dx—|—/|pn*ﬂx|d1’+/|pn*@|dx+/|pn*@x|dx)
R R R R

— /(pn * U0) (Pn * Ugz )SEN(Pne * U)dx — /(pn % U0) (P * Ugpz )SEN(Png * G)d
R R

- /R(pn * UD)(pn * Ugz)SEN(Pre * U)dx + Rn(t)
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SC(/ |pn*ﬁ|dm+/|pn*az|daz+/\pn*@|daz+/\pn*1§z\dm>
R R R R

[ (oo (@) (oo wr)sgn(pns x @)+ [ (o 5 (@0)2) o 5 )sen (s )i
R R (50)

+ /R(pn * (U0)2) (pn * e )sg(pne * 0)dx 4 Rn (t)

§C’(/ |pn*1l|dﬂc+/|pn*11x|dx—|—/\pn*@|dx+/\pn*@gc\dx> + R (1),
R R R R

where C is a constant depending on M(T), N, |lug|l1 and |lvg||1 and R, (t) satisfies
R, (t) — 0, n — 0o, 51
|R,(t)| < k(T), n>1, tel0,T). (51)

For the second term I, we find
I

1
:*‘/Pn*Pzz* (*ﬁ(uz+ﬁz)v+
2 2

+ Wligpby + W(u + @)v

1
<2
<C (/ \pn*ﬁ\dx—f—/|pn*ﬂx|da:+/|pn*ff)\dx+/|pn*f)x|dcc).
R R R R

For the final term I3, we have

'i@ + UUpVp + UV Ug
sgn(pnz * 4)dx (52)

@20 + g vy + Woplly + Uledy + 0(u + @)v 4+ u?0| do

1
L= - / ot 5 P (1t + )0y + T20) s * )
R

<C </ |pn*ﬂdx+/|pn*ﬂmdx+/|pn*@d:c+/|pn*f)m|dx>.
R R R R

Adding these three terms, we obtain

d N
a/ﬁgpn * Uy |dx

<C(/ |pn*ﬁ|dx+/|pn*ﬂm|dx+/|pn*ﬁ|dx+/|pn*ﬁz|dx> + R, ().
R R R R

For these terms % Jz lpn * 0|d2 and % Jg |pn * 0z|dx, we have similar results:
d R
$A|pn*v‘dx
<C (/ lon *ﬂ|dx—|—/ |on *ﬁx|dx+/ |on *ﬁ|dx+/ lon *ﬁz|dm> ,
R R R R
d
ﬁ/ﬂJpn*@Adaj

<C (/ lon *12|dx—|—/ |pn, * G| de —|—/ |on * 0|dz —|—/ |on * @$|dm> + R, (t).
R R R R
From (48), (54) and (55), we infer that

d
el (/ |pn*ﬁ|dx+/|pn*ﬂw|daj+/|pn*ﬁ|dx+/|pn*ﬁx|dx>
dt \Jr R R R

<C(/ |pn*ﬁ|dx+/|pn*ﬁm|dx+/|pn*@|dx+/|pn*ﬁz|dx> + R, (t).
R R R R

(53)

(54)

(55)

(56)
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If [ |pnxdldz+ [ [pn*ta|de+ [o |pn*0lde+ [; [pn* 0z |dz # 0, then by Gronwall’s
inequality, we obtain

</ pn*ﬁ|d$+/|pn*'&x|dx+/|pn*'[)|dx+/|pn*'[)x|dx>
R R R R (57)

< elo CHRDIAT (10 s 1] + [y 5 g| + | pn % D] + | pn % B2]) (0, ),

where Rn(t) = Ra(t) (fy|on * aldz + [, |pn * Gu|dz + [y |pn * 0ldz + [, |pn * 0s|dz) "
From Lebesgue’s dominated convergence theorem, it follows that

</ pn*ﬂ|dm+/|pn*ﬂx|dw+/|pn*i)|dx—|—/|pn>k{)x|dx)
R R R R (58)

< et (|pn * {’J| + |pn * '[’Jac‘ + |pn * '&| + ‘pn * f}xD (0,33),

As T is arbitrary, Gg = Gy = 09 = 09 = 0, we obtain (u,v) = (@, ). This
completes the proof of theorem 3.1. O
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