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Abstract. The two-component Novikov equation is an integrable generaliza-
tion of the Novikov equation, which has the peaked solitons in the sense of

distribution as the Novikov and Camassa-Holm equations. In this paper, we

prove the existence of the H1-weak solution for the two-component Novikov
equation by the regular approximation method due to the existence of three

conserved densities. The key elements in our approach are some a priori esti-

mates on the approximation solutions.

1. Introduction. This paper is devoted to the existence of weak solutions to the
Cauchy problem for the two-component Novikov equation [18]{

mt + uvmx + (2vux + uvx)m = 0, m = u− uxx, t > 0,

nt + uvnx + (2uvx + vux)n = 0, n = v − vxx.
(1)

Note that this system reduces respectively to the Novikov equation [23]

mt + 3uuxm+ u2mx = 0, (2)

when v = u, and the celebrated Camassa-Holm (CH) equation [1]

mt + 2uxm+ umx = 0, (3)

when v = 1.
The CH equation was proposed as a nonlinear model describing the unidirec-

tional propagation of the shallow water waves over a flat bottom [1]. Based on the
Hamiltonian theory of integrable systems, it was found earlier by using the method
of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by
using the tri-Hamiltonian duality approach related to the bi-Hamiltonian represen-
tation of the Korteweg-de Vries (KdV) equation [9, 25]. The CH equation exhibits
several remarkable properties. One is the the existence of the multi-peaked soli-
tons on the line R and unit circle S1 [1, 2], where the peaked solitons are the weak
solution in the sense of distribution. Second, it can describes wave breaking phe-
nomena [4], which is different from the classical integrable systems. The existence
of H1-conservation law to the CH equation enables ones to define the H1-weak
solution [28]. There have been a number of results concerning about integrability,
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well-posedness, blow up and wave breaking, orbital stability in the energy space and
geometric formulations etc, see for instance [4, 5, 6, 8, 28] and references therein.

The Novikov equation (2) can be viewed as a cubic generalization of the CH
equation, which was introduced by Novikov [23, 24] in the classification for a class
of equations while they possesses higher-order generalized symmetries. Eq. (2) was
proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14],
and is equivalent to the first equation in the negative flow of the Sawada-Kotera
hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits
peaked solitons over the line R and unit circle S1 [14, 20], which can be derived
by the inverse spectral method. Orbital stability of peaked solitons over the line
R and unit circle S1 of (2) in the energy space were verified [20] based on the
conservation laws and the structure of peaked solitons of the Novikov equation (2).
The well-posedness and wave breaking of the Novikov equation have been discussed
in a number of papers, and it reveals that the Cauchy problem of the Novikov
equation (2) has global strong solutions when the initial data u0 ∈ Hs, s > 3/2
[3, 15, 26, 27]. The existence of global weak solutions to the Cauchy problem of the
Novikov equation (2) was also discussed in [17].

As the two-component generalization of Novikov equation (2), the so-called Geng-
Xue system [11]

mt + 3vuxm+ uvmx = 0,

nt + 3uvxn+ uvnx = 0,
(4)

has been studied extensively [11, 13]. The integrability [11, 19], dynamics and struc-
ture of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and
wave breaking phenomena of the Cauchy problem of (4) were discussed. The single
peakons and multi-peakons of system (4) were constructed in [21] by using com-
patibility of Lax-pair, which are not the weak solutions in the sense of distribution.
Furthermore, the Geng-Xue system does not have the H1-conserved density, this
is different from the CH and Novikov equations. The weak solution in H1 is not
well-defined since it does not obey the H1-conservation law.

The main object in this work is to investigate the existence of weak solutions
to system (1). It is of great interest to understand the effect from interactions
among the two-components, nonlinear dispersion and various nonlinear terms. More
specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas
from previous works on CH and Novikov equations. The weak solution of the
Cauchy problem associated with (1) is established in Theorem 3.1.

The remainder of this paper is organized as follows. In the next section 2, we
review some basic results and lemmas as well as invariant properties of momentum
densities m and n. In Section 3, we establish the existence of weak solutions,
our approach is the regular approximation method together with some a priori
estimates.

2. Strong solutions and some a priori estimates. In this section, we recall
the local well-posedness, some properties of strong and weak solutions to equation
(1) and several approximation results.

First, we introduce some notations. Throughout the paper, we denote the con-
volution by ∗. Let ‖ · ‖X denote the norm of Banach space X and let 〈·, ·〉 de-
note the duality paring between H1(R) and H−1(R). Let M(R) be the space of
Radon measures on R with bounded total variation and M+(R) be the subset of
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positive Radon measures. Moreover, we write BV (R) for the space of functions with
bounded variation, V(f) being the total variation of f ∈ BV (R). Furthermore, for
0 < p <∞, s ≥ 0, let ‖ · ‖Lp and ‖ · ‖s denote the norm of Lp(R) space and Hs(R)
space, respectively.

With m = u − uxx and n = v − vxx, the Cauchy problem of equation (1) takes
the form:

mt + uvmx + (2vux + uvx)m = 0, m = u− uxx, t > 0, x ∈ R,
nt + uvnx + (2uvx + vux)n = 0, n = v − vxx,
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R.

(5)

Note that if P (x) = 1
2e
−|x|, x ∈ R, we have (1−∂2x)−1f = P ∗f for all the f ∈ L2(R)

and P ∗m = u, P ∗ n = v. Then we can rewrite the equation (5) as follows:
ut + uvux + Px ∗ (

1

2
u2
xv + uuxvx + u2v) +

1

2
P ∗ (u2

xvx) = 0, t > 0, x ∈ R,

vt + uvvx + Px ∗ (
1

2
v2xu+ vvxux + v2u) +

1

2
P ∗ (v2xux) = 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R.

(6)

Next we recall the local well-posedness and the conservation laws.

Lemma 2.1. [12] Let u0, v0 ∈ Hs(R), s ≥ 3. Assume that T = T (u0, v0) > 0 be
the maximal existence time of the corresponding strong solution (u, v). Then the
initial value problem of system (1) possesses a strong solution

u, v ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))

Moreover, the solution depends continuously on the initial data, i.e. the mapping
(u0, v0) → (u(·, u0), v(·, v0)) : Hs(R) × Hs(R) → C([0, T );Hs(R)) ∩ C1([0, T );
Hs−1(R))× C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is continuous.

Lemma 2.2. [12] Let u0, v0 ∈ Hs(R), s ≥ 3, and let (u(t, x), v(t, x)) be the corre-
sponding solution to equation (1) with the initial data (u0, v0). Then we have∫

R

(
u2(t, x) + u2x(t, x)

)
dx =

∫
R

(
u20 + u20x

)
dx,∫

R

(
v2(t, x) + v2x(t, x)

)
dx =

∫
R

(
v20 + v20x

)
dx,∫

R
(u(t, x)v(t, x) + ux(t, x)vx(t, x)) dx =

∫
R

(u0v0 + u0xv0x) dx.

Moreover, we have

|u(t, x)| ≤
√

2

2
‖u0‖1, |v(t, x)| ≤

√
2

2
‖v0‖1.

Note that equation (1) has the solitary waves with corner at their peaks. Ob-
viously, such solitons are not strong solutions to equation (6). In order to provide
a mathematical framework for the study of these solitons, we define the notion of
weak solutions to equation (6). Let

Fu(u, v) = uvux + Px ∗ (
1

2
u2xv + uuxvx + u2v) +

1

2
P ∗ (u2xvx),

Fv(u, v) = uvvx + Px ∗ (
1

2
v2xu+ vvxux + v2u) +

1

2
P ∗ (v2xux).
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Then equation (6) can be written as
ut + Fu(u, v) = 0,

vt + Fv(u, v) = 0,

u(0, x) = u0(x), v(0, x) = v0(x).

(7)

Lemma 2.3. [22] Let T > 0. If

f, g ∈ L2((0, T );H1(R)) and
df

dt
,
dg

dt
∈ L2((0, T );H−1(R)),

then f, g are a.e. equal to functions continuous from [0, T ] into L2(R) and

〈f(t), g(t)〉 − 〈f(s), g(s)〉 =

∫ t

s

〈
df(τ)

dτ
, g(τ)

〉
dτ +

∫ t

s

〈
dg(τ)

dτ
, f(τ)

〉
dτ

for all s, t ∈ [0, T ].

Throughout this paper, let {ρn}n≥1 denote the mollifiers

ρn =

(∫
R
ρ(ξ)dξ

)−1
nρ(nx), x ∈ R, n ≥ 1,

where ρ ∈ C∞c (R) is defined by

ρ(x) =

{
e

1
x2−1 , for |x| < 1,

0, for |x| ≥ 1.

Next, we recall two crucial approximation results and two identities.

Lemma 2.4. [7] Let f : R→ R be uniformly continuous and bounded. If µ ∈M(R),
then

[ρn ∗ (fµ)− (ρn ∗ f)(ρn ∗ µ)]→ 0, as n→∞ inL1(R).

Lemma 2.5. [7] Let f : R → R be uniformly continuous and bounded. If g ∈
L∞(R), then

ρn ∗ (fg)− (ρn ∗ f)(ρn ∗ g)→ 0, as n→∞ inL∞(R).

Lemma 2.6. [7] Assume that u(t, ·) ∈ W 1,1(R) is uniformly bounded in W 1,1(R)
for all t ∈ R+. Then for a.e. t ∈ R+, there hold

d

dt

∫
R
|ρn ∗ u|dx =

∫
R
(ρn ∗ ut)sgn(ρn ∗ u)dx

and

d

dt

∫
R
|ρn ∗ ux|dx =

∫
R

(ρn ∗ uxt)sgn(ρn ∗ ux)dx.

Consider the flow governed by (uv)(t, x):
dq(t, x)

dt
= (uv)(t, q), t > 0, x ∈ R,

q(0, x) = x, x ∈ R.
(8)

Applying classical results in the theory of ODEs, one can obtain the following useful
result on the above initial value problem.



GLOBAL SOLUTIONS FOR THE TWO-COMPONENT NOVIKOV EQUATION 1549

Lemma 2.7. [12] Let u0, v0 ∈ Hs(R), s ≥ 3, and T > 0 be the life-span of the
corresponding strong solution (u, v) to equation (5) with the initial data (u0, v0).
Then equation (8) has a unique solution q ∈ C1([0, T )× R,R). Moreover, the map
q(t, ·) is an increasing diffeomorphism over R with

qx = exp

(∫ t

0

(uv)x(s, q(s, x))ds

)
, ∀(t, x) ∈ [0, T )× R.

Furthermore, setting m = u− uxx and n = v − vxx, we obtain

m(t, q) = exp

(
−
∫ t

0

(2vux + uvx)(s, q(s, x))ds

)
m0,

n(t, q) = exp

(
−
∫ t

0

(2uvx + vux)(s, q(s, x))ds

)
n0, ∀(t, x) ∈ [0, T )× R.

Theorem 2.8. Let u0, v0 ∈ Hs(R), s ≥ 3. Assume that m0 = u0 − ∂2xu0 and
n0 = v0 − ∂2xv0 are nonnegative, and T > 0 be the maximal existence time of the
corresponding strong solution (u, v). Then the initial value problem of system (1)
possesses a pair of unique strong solution (u, v), where

u, v ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Set m(t, ·) = u(t, ·) − uxx(t, ·) and n(t, ·) = v(t, ·) − vxx(t, ·). Then, Eu(u) =∫
R
(
u2 + u2x

)
dx, Ev(v) =

∫
R
(
v2 + v2x

)
dx, H(u, v) =

∫
R (uv + uxvx) dx and E0(u, v)

=
∫
R (mn)

1
3 dx are four conservation laws and we have for all t ∈ R+

(i). m(t, ·) ≥ 0, n(t, ·) ≥ 0, u(t, ·) ≥ 0, v(t, ·) ≥ 0 and |ux(t, ·)| ≤ u(t, ·),
|vx(t, ·)| ≤ v(t, ·) on R;

(ii). ‖u(t, ·)‖L1 ≤ ‖m(t, ·)‖L1 , ‖u(t, ·)‖L∞ ≤
√

2

2
‖u(t, ·)‖1 =

√
2

2
‖u0‖1,

and ‖v(t, ·)‖L1 ≤ ‖n(t, ·)‖L1 , ‖v(t, ·)‖L∞ ≤
√

2

2
‖v(t, ·)‖1 =

√
2

2
‖v0‖1;

(iii). ‖ux(t, ·)‖L1 ≤ ‖m(t, ·)‖L1 and ‖vx(t, ·)‖L1 ≤ ‖n(t, ·)‖L1 .

Moreover, if m0, n0 ∈ L1(R), we obtain

‖m(t, ·)‖L1 ≤ e‖u0‖1‖v0‖1t‖m0‖L1 and ‖n(t, ·)‖L1 ≤ e‖u0‖1‖v0‖1t‖n0‖L1 .

Proof. Let u0, v0 ∈ Hs(R), s ≥ 3, and let T > 0 be the maximal existence time
of the solution (u, v) to equation (5) with the initial data (u0, v0). If m0 ≥ 0 and
n0 ≥ 0, then Lemma 2.7 ensures that m(t, ·) ≥ 0 and n(t, ·) ≥ 0 for all t ∈ [0,∞).
By u = P ∗ m, v = P ∗ n and the positivity of P , we infer that u(t, ·) ≥ 0 and
v(t, ·) ≥ 0 for all t ≥ 0. Note that v is analogous as u and

u(t, x) =
e−x

2

∫ x

−∞
eym(t, y)dy +

ex

2

∫ ∞
x

e−ym(t, y)dy, (9)

and

ux(t, x) = −e
−x

2

∫ x

−∞
eym(t, y)dy +

ex

2

∫ ∞
x

e−ym(t, y)dy. (10)

From the above two relations and m ≥ 0, we deduce that

|ux(t, x)| ≤ u(t, x) ≤
√

2

2
‖u(t, x)‖1.
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In view of Lemma 2.2, we obtain that Eu(u) and Ev(v) are conserved and

u(t, x) ≤
√

2

2
‖u0‖1, ∀(t, x) ∈ R+ × R.

Since m(t, x) = u − uxx, it follows that u = P ∗ m and ux = Px ∗ m. Note that
‖P‖L1 = ‖Px‖L1 = 1. Applying Young’s inequality, one can easily obtain (i)− (iii).
Since equation (1) can be used to derive the following form(

(mn)
1
3

)
t

+
(

(mn)
1
3uv

)
x

= 0,

it immediately follows that E0(u, v) is a conserved density. On the other hand, by
equation (5), we have

d

dt

∫
R
m(t, x)dx = −

∫ ∞
−∞

(uvmx + (2vux + uvx)m) dx

=

∫ ∞
−∞

(vuxm− (uvm)x) dx ≤ ‖u‖L∞‖v‖L∞
∫ ∞
−∞

m(t, x)dx

≤ ‖u0‖1‖v0‖1
∫ ∞
−∞

m(t, x)dx.

Since m0 ∈ L1(R), in view of Gronwall’s inequality, we can get

‖m(t, ·)‖L1 ≤ e‖u0‖1‖v0‖1t‖m0‖L1 .

Similarly, we find

‖n(t, ·)‖L1 ≤ e‖u0‖1‖v0‖1t‖n0‖L1 .

This completes the proof of Theorem 2.8.

3. Global weak solutions. In this section, we will prove that there exists a unique
global weak solution to equation (6), provided the initial data (u0, v0) satisfy certain
sign-invariant conditions.

Theorem 3.1. Let u0, v0 ∈ H1(R). Assume m0 = u0 − u0xx andn0 = v0 − v0xx ∈
M+(R).Then equation (6) has a pair of unique weak solution (u, v), where

u, v ∈W 1,∞(Rx × R) ∩ L∞(R+;H1(R))

with the initial data u(0, x) = u0, v(0, x) = v0 and such that m = u − uxx, n =
v − vxx ∈ M+(R) are bounded on [0, T ), for any fixed T > 0. Moreover, Eu(u) =∫
R
(
u2 + u2x

)
dx, Ev(v) =

∫
R
(
v2 + v2x

)
dx and H(u, v) =

∫
R (uv + vxux) dx are con-

served densities.

Proof. First, we shall prove u, v ∈ W 1,∞(Rx × R) ∩ L∞(R+;H1(R)). Let u0, v0 ∈
H1(R) and assume that m0 = u0 − u0,xx, n0 = v0 − v0,xx ∈ M+(R). Note that
u0 = P ∗m0 and v0 = P ∗ n0. Thus, we have for any f ∈ L∞(R),

‖u0‖L1 = ‖P ∗m0‖L1 = sup
‖f‖L∞≤1

∫
R
f(x)(P ∗m0)(x)dx

= sup
‖f‖L∞≤1

∫
R
f(x)

∫
R
P (x− y)dm0(y)dx

= sup
‖f‖L∞≤1

∫
R

(P ∗ f)(y)dm0(y)

≤ sup
‖f‖L∞≤1

‖P‖L1‖f‖L∞‖m0‖M(R) = ‖m0‖M(R).

(11)
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Similarly, we have

‖v0‖L1 ≤ ‖n0‖M(R). (12)

We first prove that there exists a corresponding (u, v) with the initial data (u0, v0),
which belongs to H1

loc(R+×R)∩L∞(R+;H1(R))×H1
loc(R+×R)∩L∞(R+;H1(R)),

satisfying equation (6) in the sense of distributions.
Let us define un0 = ρn ∗ u0 ∈ H∞(R) and vn0 = ρn ∗ v0 ∈ H∞(R) for n ≥ 1.

Obviously, we have

un0 −→ u0 H1(R), n→∞,
vn0 −→ v0 H1(R), n→∞,

(13)

and for all n ≥ 1,

‖un0‖1 = ‖ρn ∗ u0‖1 ≤ ‖u0‖1, ‖vn0 ‖1 ≤ ‖v0‖1,
‖un0‖L1 = ‖ρn ∗ u0‖L1 ≤ ‖u0‖L1 , ‖vn0 ‖L1 ≤ ‖v0‖L1 ,

(14)

in view of Young’s inequality. Note that for all n ≥ 1,

mn
0 = un0 − un0,xx = ρn ∗m0 ≥ 0, and nn0 = vn0 − vn0,xx = ρn ∗ v0 ≥ 0.

Comparing with the proof of relation (11) and (12), we get

‖mn
0‖L1 ≤ ‖m0‖M(R), and ‖nn0‖L1 ≤ ‖n0‖M(R), n ≥ 1. (15)

By Theorem 2.8, we obtain that there exists a global strong solution

un = un(·, un0 ), vn = vn(·, vn0 ) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))

for every s ≥ 3, and we have un(t, x)− unxx(t, x) ≥ 0 and vn(t, x)− vnxx(t, x) ≥ 0 for
all (t, x) ∈ R+ ×R. In view of theorem 2.8 and (14),we obtain for n ≥ 1 and t ≥ 0,

‖unx(t, ·)‖L∞ ≤ ‖un(t, ·)‖L∞ ≤ ‖un(t, ·)‖1 = ‖un0‖1 ≤ ‖u0‖1,
‖vnx (t, ·)‖L∞ ≤ ‖vn(t, ·)‖L∞ ≤ ‖vn(t, ·)‖1 = ‖vn0 ‖1 ≤ ‖v0‖1.

(16)

By the above inequality, we have

‖un(t, ·)vn(t, ·)unx(t, ·)‖L2 ≤ ‖un(t, ·)‖L∞‖vn(t, ·)‖L∞‖unx(t, ·)‖L2

≤ ‖un(t, ·)‖21‖vn(t, ·)‖1 ≤ ‖u0‖21‖v0‖1.
(17)

Similarly, we have

‖vn(t, ·)un(t, ·)vnx (t, ·)‖L2 ≤ ‖v0‖21‖u0‖1. (18)

By Young’s inequality and (16), for all t ≥ 0 and n ≥ 1, we obtain∥∥∥∥Px ∗
(

1

2
(un

x)2vn + unun
xv

n
x + (un)2vn

)
+

1

2
P ∗

(
(un

x)2vnx
)∥∥∥∥

L2

≤ ‖Px‖L2

∥∥∥∥1

2
(un

x)2vn + unun
xv

n
x + (un)2vn

∥∥∥∥
L1

+
1

2
‖P‖L2

∥∥(un
x)2vnx

∥∥
L1

≤ 1

2
‖un

x‖2L2‖vn‖L∞ +
1

2
‖un‖L∞‖un

x‖L2‖vnx‖L2 + ‖un‖2L2‖vn‖L∞ +
1

2
‖vnx‖L∞‖un

x‖2L2

≤ 5

2
‖un‖21‖vn‖1 ≤

5

2
‖u0‖21‖v0‖1.

(19)

Similarly, we get∥∥∥∥Px ∗ (1

2
(vnx )2un + vnunxv

n
x + (vn)2un

)
+

1

2
P ∗

(
(vnx )2unx

)∥∥∥∥
L2

≤ 5

2
‖v0‖21‖u0‖1. (20)
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Combining (17)-(20) with equation (6) for all t ≥ 0 and n ≥ 1, we find∥∥∥∥ ddtun(t, ·)
∥∥∥∥
L2

≤ 7

2
‖u0‖21‖v0‖1, and

∥∥∥∥ ddtvn(t, ·)
∥∥∥∥
L2

≤ 7

2
‖v0‖21‖u0‖1. (21)

For fixed T > 0, by Theorem 2.8 and (21), we have∫ T

0

∫
R

(
[un(t, x)]2 + [un

x(t, x)]2 + [un
t (t, x)]2

)
dxdt ≤

(
‖u0‖21 +

49

4
‖u0‖41‖v0‖21

)
T,∫ T

0

∫
R

(
[vn(t, x)]2 + [vnx (t, x)]2 + [vnt (t, x)]2

)
dxdt ≤

(
‖v0‖21 +

49

4
‖v0‖41‖u0‖21

)
T.

(22)

It follows that the sequence {un}n≥1 is uniformly bounded in the space H1((0, T )×
R).Thus we can extract a subsequence such that

unk ⇀ u weakly in H1(0, T )× R) for nk →∞ (23)

and

unk −→ u, a.e. on (0, T )× R for nk →∞, (24)

for some u ∈ H1((0, T )×R). By Theorem 2.8, (11) and (14), we have that for fixed
t ∈ (0, T ), the sequence unk

x (t, ·) ∈ BV (R) satisfies

V[unk
x (t, ·)] =‖unk

xx(t, ·)‖L1 ≤ ‖unk(t, ·)‖L1 + ‖mnk(t, ·)‖L1

≤2‖mnk(t, ·)‖L1 ≤ 2e‖u
nk
0 ‖1‖v

nk
0 ‖1t‖mnk

0 ‖L1

≤2e‖u0‖1‖v0‖1t‖m0‖M(R)

and

‖unk
x (t, ·)‖L∞ ≤ ‖unk(t, ·)‖1 = ‖unk

0 (t, ·)‖1 ≤ ‖u0‖1.

Applying Helly’s theorem, we obtain that there exists a subsequence, denoted again
by {unk

x (t, ·)}, which converges at every point to some function û(t, ·) of finite vari-
ation with

V[û(t, ·)] ≤ 2e‖u0‖1‖v0‖1t‖m0‖M(R).

Since for almost all t ∈ (0, T ), unk
x (t, ·)→ ux(t, ·) in D′(R) in view of (24), it follows

that û(t, ·) = ux(t, ·) for a.e. t ∈ (0, T ). Therefore, we have

unk
x −→ ux a.e. on (0, T )× R for nk →∞, (25)

and for a.e. t ∈ (0, T ),

V[ux(t, ·)] = ‖uxx(t, ·)‖M(R) ≤ 2e‖u0‖1‖v0‖1t‖m0‖M(R).

We can analogously extract a subsequence of {vnk}, denote again by {vnk} such
that

vnk −→ v a.e. on (0, T )× R for nk →∞
and vnk

x −→ vx a.e. on (0, T )× R for nk →∞.
(26)

By Theorem 2.8 (ii)− (iii) and (16), we have∥∥∥∥1

2
(unx)2vn + ununxv

n
x + (un)2vn +

1

2
(unx)2vnx

∥∥∥∥
L1

≤ 3‖u0‖21‖v0‖1.

For fixed t ∈ (0, T ), it follows that the sequence
{

1
2 (unx)2vn + ununxv

n
x + (un)2vn+

1
2 (unx)2vnx

}
is uniformly bounded in L1(R). Therefore, it has a subsequence converg-

ing weakly in L1(R), denoted again by
{

1
2
(un

x)2vn + unun
xv

n
x + (un)2vn + 1

2
(un

x)2vnx
}
.
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By (24) and (25), we deduce that the weak L1(R)-limit is 1
2 (ux)2vn+uuxvx+u2v+

1
2 (ux)2vx. Note that P, Px ∈ L∞(R). It follows that

Px ∗
[

1

2
(unx)2vn + ununxv

n
x + (un)2vn

]
+ P ∗

(
1

2
(unx)2vnx

)
−→ Px ∗

[
1

2
u2xv

n + uuxvx + u2v

]
+ P ∗

(
1

2
u2xvx

)
, as n→∞.

(27)

We can analogously obtain that

Px ∗ [
1

2
(vnx )2un + vnvnxu

n
x + (vn)2un] + P ∗

(
1

2
(vnx )2unx

)
−→ Px ∗ [

1

2
v2xu

n + vvxux + v2u] + P ∗
(

1

2
v2xux

)
, as n→∞.

(28)

Combining (24)-(26) with (27) and (28), we deduce that (u, v) satisfies equation (6)
in D′((0, T )× R).

Since unk
t (t, ·) is uniformly bounded in L2(R) for all t ∈ R+ and ‖unk(t, ·)‖1 has

a uniform bound as t ∈ R+ and all n ≥ 1. Hence the family t 7→ unk(t, ·) ∈ H1(R)
is weakly equicontinuous on [0, T ] for any T > 0. An application of the Arzela-
Ascoli theorem yields that {unk} contains a subsequence, denoted again by {unk},
which converges weakly in H1(R), uniformly in t ∈ [0, T ]. The limit function is u.
Because T is arbitrary, we have that u is locally and weakly continuous from [0,∞)
into H1(R), i.e.

u ∈ Cw,loc(R+;H1(R)).

For a.e. t ∈ R+, since unk(t, ·) ⇀ u(t, ·) weakly in H1(R), in view of (15) and
(16), we obtain

‖u(t, ·)‖L∞ ≤‖u(t, ·)‖1 ≤ lim inf
nk→∞

‖un(t, ·)‖1

= lim inf
nk→∞

‖unk
0 (t, ·)‖1 ≤ lim inf

nk→∞
‖P‖1‖mnk

0 (t, ·)‖L1

≤‖m0‖M(R),

(29)

for a.e. t ∈ R+. The previous relation implies that

u ∈ L∞(R+ × R) ∩ L∞(R+;H1(R)).

Note that by Theorem 2.8 and (15), we have

‖unx(t, ·)‖L∞ ≤‖un(t, ·)‖L∞ ≤ ‖un(t, ·)‖1
≤‖P‖1‖mn

0 (t, ·)‖L1 ≤ ‖m0(t, ·)‖M(R).
(30)

Combining this with (25), we deduce that

ux ∈ L∞(R+ × R).

This shows that

u ∈W 1,∞(R+ × R) ∩ L∞(R+;H1(R)).

Taking the same way as u, we get

v ∈W 1,∞(R+ × R) ∩ L∞(R+;H1(R)).

Please note that we use the subsequence of {vnk} which is determined after using
the Arzela-Ascoli theorem.
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Now, by a regularization technique, we prove that Eu(u), Ev(v) and H(u, v) are
conserved densities. As (u, v) solves equation (6) in the sense of distributions, we
see that for a.e. t ∈ R+, n ≥ 1,

ρn ∗ ut + ρn ∗ (uvux)+ρn ∗ Px ∗
(

1

2
u2xv + uuxvx + u2v

)
+

1

2
ρn ∗ P ∗

(
u2xvx

)
= 0,

ρn ∗ vt + ρn ∗ (uvvx)+ρn ∗ Px ∗
(

1

2
v2xv + vuxvx + v2u

)
+

1

2
ρn ∗ P ∗

(
v2xux

)
= 0.

(31)

By differentiation of the first equation of (31), we obtain

ρn ∗ uxt + ρn ∗ (uvux)x + ρn ∗ Px ∗
(

1

2
u2xvx

)
+ ρn ∗ Pxx ∗

(
1

2
u2xv + uuxvx + u2v

)
= 0.

(32)

Note that ∂2(P ∗ f) = P ∗ f − f , f ∈ L2(R). We can rewrite (32) as

ρn ∗ uxt + ρnx ∗ (uvux) + ρn ∗ P ∗
(

1

2
u2xv + uuxvx + u2v

)
− ρn ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ Px ∗

(
1

2
u2xvx

)
= 0.

(33)

Take these two equation (32) and (33) into the integration below, we obtain

1

2

d

dt

∫
R

(ρn ∗ u)2 + (ρn ∗ ux)2dx

=

∫
R
(ρn ∗ u)(ρn ∗ ut) + (ρn ∗ ux)(ρn ∗ uxt)dx

=−
∫
R
(ρn ∗ u)

(
ρn ∗ (uvux) + ρn ∗ Px ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ P ∗

(
1

2
u2xvx

))
dx

−
∫
R
(ρn ∗ ux)

(
ρnx ∗ (uvux) + ρn ∗ P ∗

(
1

2
u2xv + uuxvx + u2v

)
−ρn ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ Px ∗

(
1

2
u2xvx

))
dx.

(34)

Note that

lim
n→∞

‖ρn ∗ u− u‖L2 = lim
n→∞

‖ρn ∗ (uvux)− uvux‖L2 = 0.

Therefore, by using Hölder inequality, we have for a.e. t ∈ R+∫
R

(ρn ∗ u)(ρn ∗ (uvux))dx −→
∫
R
u2vuxdx, as n→∞.
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Similarly, for a.e. t ∈ R∫
R

(ρn ∗ u)

(
ρn ∗ Px ∗

(
1

2
u2xv + uuxvx + u2v

))
dx −→∫

R
uPx ∗

(
1

2
u2xv + uuxvx + u2v

)
dx, as n→∞,

∫
R

(ρn ∗ u)

(
ρn ∗ P ∗

(
1

2
u2xvx

))
dx −→

∫
R
uP ∗

(
1

2
u2xvx

)
dx, as n→∞,

∫
R

(ρn ∗ ux)

(
ρn ∗ P ∗

(
1

2
u2xv + uuxvx + u2v

))
dx −→∫

R
uxP ∗

(
1

2
u2xv + uuxvx + u2v

)
dx, as n→∞,

∫
R
(ρn ∗ ux)

(
ρn ∗

(
1

2
u2xv + uuxvx + u2v

))
dx −→∫

R
ux

(
1

2
u2xv + uuxvx + u2v

)
dx, as n→∞,

∫
R

(ρn ∗ ux)

(
ρn ∗ Px ∗

(
1

2
u2xvx

))
dx −→

∫
R
uxPx ∗

(
1

2
u2xvx

)
dx, as n→∞,

as u(t, ·), v(t, ·) ∈ H1(R) and ux, vx ∈ L∞(R+ × R). Furthermore, note that∫
R

(ρn ∗ ux)(ρnx ∗ (uvux))dx = −
∫
R
(ρn,xx ∗ u)(ρ ∗ (uvux))dx

+

∫
R

(ρn,xx ∗ u)(ρn ∗ uv)(ρn ∗ ux)dx+
1

2

∫
R
(ρn ∗ ux)2(ρn ∗ (uv)x)dx.

(35)

Observe that∫
R

(ρn ∗ ux)2 (ρn ∗ (uv)x) dx −→
∫
R
u2x(uv)xdx, as n→∞.

On the other hand

‖ρnxx ∗ u‖L1 ≤ ‖uxx‖M(R) ≤ 2e‖u0‖1‖v0‖1t‖m0‖M(R), ∀t ∈ [0, T ).

As u(t, ·), v(t, ·) ∈ H1(R) and ux, vx ∈ L∞(R+ × R), by Lemma 2.5, it follows that

‖(ρn ∗ uv)(ρn ∗ ux)− (ρn ∗ (uvux))‖L∞ → 0, n→∞.

Therefore,∫
R
(ρn,xx ∗ u) ((ρn ∗ uv)(ρn ∗ ux)− ρn ∗ (uvux)) dx→ 0, n→∞.

In view of the above relations and (35), we obtain∫
R

(ρn ∗ ux)(ρnx ∗ (uvux))dx→ 1

2

∫
R
u2x(uv)xdx, n→∞. (36)

Let us define

Eun(t) =

∫
R
(ρn ∗ u)2 + (ρn ∗ ux)2dx, (37)
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and

Gun(t) =− 2

∫
R

(ρn ∗ u)

(
ρn ∗ (uvux) + ρn ∗ Px ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ P ∗

(
1

2
u2xvx

))
dx

− 2

∫
R

(ρn ∗ ux)

(
ρnx ∗ (uvux) + ρn ∗ P ∗

(
1

2
u2xv + uuxvx + u2v

)
−ρn ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ Px ∗

(
1

2
u2xvx

))
dx.

We have proved that for fixed T > 0, for a.e. t ∈ [0, T ),
d

dt
Eun(t) = Gun(t), n ≥ 1,

Gun(t)→ 0, n→∞.
(38)

Therefore, we get

Eun(t)− Eun(0) =

∫ t

0

Gun(s)ds, t ∈ [0, T ), n ≥ 1. (39)

By Young’s inequality and Hölder’s inequality, it follows that there is a Ku(T ) > 0
such that

|Gun(t)| ≤ Ku(T ), n ≥ 1.

In view of (38) and (39), an application of Lebesgue’s dominated convergence the-
orem yields that for fixed a.e. t ∈ R+,

lim
n→∞

(
Eun(t)− Eun(0)

)
= 0.

By (24) and the above relation, for fixed t ∈ R+, we can get

Eu(u) = lim
n→∞

Eun(t) = lim
n→∞

Eun(0) = Eu(u0).

By Theorem 2.8, we infer that for all fixed t ∈ R+, Eu(u) is conserved. Similarly,
we can show that Ev(v) is also conserved.

Next, we prove that H(u, v) is a conserved density.
By differentiation of the second equation of (31), we obtain this relation:

ρn ∗ vxt + ρnx ∗ (uvvx) + ρn ∗ P ∗
(

1

2
v2xu+ vuxvx + v2u

)
− ρn ∗

(
1

2
v2xu+ vuxvx + v2u

)
+ ρn ∗ Px ∗

(
1

2
v2xux

)
= 0.

(40)

In view of (31), (33) and (40), we obtain

d

dt

∫
R
(ρn ∗ u)(ρn ∗ v) + (ρn ∗ ux)(ρn ∗ vx)dx

=

∫
R
(ρn ∗ u)(ρn ∗ vt) + (ρn ∗ ux)(ρn ∗ vxt) + (ρn ∗ ut)(ρn ∗ v) + (ρn ∗ uxt)(ρn ∗ vx)dx

=−
∫
R
(ρn ∗ u)

(
ρn ∗ (uvvx) + ρn ∗ Px ∗

(
1

2
v2xu+ vuxvx + v2u

)
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+ ρn ∗ P ∗
(

1

2
v2xux

))
dx

−
∫
R
(ρn ∗ ux)

(
ρnx ∗ (uvvx) + ρn ∗ P ∗

(
1

2
v2xu+ vuxvx + v2u

)
−ρn ∗

(
1

2
v2xu+ vuxvx + v2u

)
+ ρn ∗ Px ∗

(
1

2
v2xux

))
dx

−
∫
R
(ρn ∗ v)

(
ρn ∗ (vuux) + ρn ∗ Px ∗

(
1

2
u2
xv + uuxvx + u2v

)
+ ρn ∗ P ∗

(
1

2
u2
xvx

))
dx

−
∫
R
(ρn ∗ vx)

(
ρnx ∗ (uvux) + ρn ∗ P ∗

(
1

2
u2
xv + uuxvx + u2v

)
−ρn ∗

(
1

2
u2
xv + uuxvx + u2v

)
+ ρn ∗ Px ∗

(
1

2
u2
xvx

))
dx.

(41)

We can analogously get the similar convergence like the case d
dt

∫
R(ρn ∗ u)2 + (ρn ∗

ux)2dx by using Lemma 2.5, u(t, ·), v(t, ·) ∈ H1(R) and ux, vx ∈ L∞(R+ × R).
It is nature to define

Hn(t) =

∫
R

(ρn ∗ u)(ρn ∗ v) + (ρn ∗ ux)(ρn ∗ vx)dx, (42)

and

Gu,vn (t)

=−
∫
R
(ρn ∗ u)

(
ρn ∗ (uvvx) + ρn ∗ Px ∗

(
1

2
v2xu+ vuxvx + v2u

)
+ ρn ∗ P ∗

(
1

2
v2xux

))
dx

−
∫
R
(ρn ∗ ux)

(
ρnx ∗ (uvvx) + ρn ∗ P ∗

(
1

2
v2xu+ vuxvx + v2u

)
−ρn ∗

(
1

2
v2xu+ vuxvx + v2u

)
+ ρn ∗ Px ∗

(
1

2
v2xux

))
dx

−
∫
R
(ρn ∗ v)

(
ρn ∗ (vuux) + ρn ∗ Px ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ P ∗

(
1

2
u2xvx

))
dx

−
∫
R
(ρn ∗ vx)

(
ρnx ∗ (uvux) + ρn ∗ P ∗

(
1

2
u2xv + uuxvx + u2v

)
−ρn ∗

(
1

2
u2xv + uuxvx + u2v

)
+ ρn ∗ Px ∗

(
1

2
u2xvx

))
dx.

(43)

And it is easy to get

Hn(t)−Hn(0) =

∫ t

0

Gu,vn (s)ds, t ∈ [0, T ), n ≥ 1. (44)

Similarly, we get this estimate by using Young’s inequality and Holder’s inequality:

|Gu,vn (t)| ≤ Ku,v(T ), n ≥ 1.
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An application of Lebesgue’s dominated convergence theorem yields that for fixed
a.e. t ∈ R+,

lim
n→∞

[Hn(t)−Hn(0)] = 0.

By these convergence above, for fixed t ∈ R+, we can get

H(u, v) = lim
n→∞

Hn(t) = lim
n→∞

Hn(0) = H(u0, v0),

which indicates that H(u, v) is a conserved density.
Since L1(R) ⊂ (L∞(R))∗ ⊂ (C0(R))∗ = M(R). It is not too hard to show that

for a.e. t ∈ [0, T ),

‖m(t, ·)‖ ≤ 3e‖u0‖1‖v0‖1t‖m0‖M(R).

For any fixed T , ∀t ∈ [0, T ), we have proved

(u(t, ·)− uxx(t, ·)) ∈M(R).

Therefore, in view of (24) and (25), we obtain that for all t ∈ [0, T ), as n→∞,

unk(t, ·)− unk
xx(t, ·)→ u(t, ·)− uxx(t, ·) in D′(R).

Since unk(t, ·)−unk
xx(t, ·) ≥ 0 for all (t, x) ∈ R+×R, we deduce that for a.e. t ∈ [0, T )

u(t, ·)− uxx(t, ·) ∈M+(R).

Similarly, we arrive at the conclusion:

v(t, ·)− vxx(t, ·) ∈M+(R).

Finally, we show the uniqueness of the weak solutions of equation (6). Let (u, v)
and (ū, v̄) be two weak solutions of equation (6) in the class

(f, g) ∈W 1,∞(R+ × R) ∩ L∞(R+;H1(R))×W 1,∞(R+ × R) ∩ L∞(R+;H1(R))

Note that

‖u(t, ·)− uxx(t, ·)‖M(R) ≤ 3e‖u0‖1‖v0‖1t‖m0‖M(R),

‖v(t, ·)− vxx(t, ·)‖M(R) ≤ 3e‖u0‖1‖v0‖1t‖n0‖M(R) for a.e. t ∈ [0, T ).

Define

M(T ) = sup
t∈[0,T )

{
‖u(t, ·)− uxx(t, ·)‖M(R) + ‖v(t, ·)− vxx(t, ·)‖M(R)

+‖ū(t, ·)− ūxx(t, ·)‖M(R) + ‖v̄(t, ·)− v̄xx(t, ·)‖M(R)
}
.

Then for fixed T , we obtain M(T ) <∞. For all (t, x) ∈ [0, T )×R, in view of (11),
we find that
‖u(t, ·)‖L1 ≤ ‖P‖L1M(T ) = M(T ),

‖ux(t, ·)‖L1 ≤ ‖Px‖L1M(T ) = M(T ),

‖v(t, ·)‖L1 , ‖vx(t, ·)‖L1 , ‖ū(t, ·)‖L1 , ‖ūx(t, ·)‖L1 , ‖v̄(t, ·)‖L1 and ‖v̄x(t, ·)‖L1 ≤M(T ).

(45)

On the other hand, from (29) and (30), we have

‖u(t, ·)‖L∞ ≤ ‖m0‖M(R) ≤ N, ‖ux(t, ·)‖L∞ ≤ ‖m0‖M(R) ≤ N,
‖v(t, ·)‖L∞ ≤ ‖n0‖M(R) ≤ N, ‖vx(t, ·)‖L∞ ≤ ‖n0‖M(R) ≤ N,
‖ū(t, ·)‖L∞ , ‖ūx(t, ·)‖L∞ , ‖v̄(t, ·)‖L∞ and ‖v̄x(t, ·)‖L∞ ≤ N.

(46)

Let us define

û(t, x) = u(t, x)− ū(t, x) and v̂(t, x) = v(t, x)− v̄(t, x), (t, x) ∈ [0, T )× R.
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Convoluting equation (6) for (u, v) and (ū, v̄) with ρn, we have that for a.e. t ∈ [0, T )
and all n ≥ 1,

d

dt

∫
R
|ρn ∗ û|dx =

∫
R
ρn ∗ ûtsgn(ρn ∗ û)dx

=−
∫
R
ρn ∗ (ûvux + ūuxv̂ + ūv̄ûx) sgn(ρn ∗ û)dx

−
∫
R
ρn ∗ Px ∗ (

1

2
û(ux + ūx)v +

1

2
ū2xv̂ + ûuxvx + ūvxûx

+ ūūxv̂x + û(u+ ū)v + u2v̂)sgn(ρn ∗ û)dx

−
∫
R
ρn ∗

1

2
P ∗

(
ûx(ux + ūx)vx + ū2xv̂x

)
sgn(ρn ∗ û)dx.

(47)

Using (46) and Young’s inequality, we infer that for a.e. t ∈ [0, T ) and all n ≥ 1

d

dt

∫
R
|ρn ∗ û|dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
.

(48)

where C is a constant depending on N . Similarly, convoluting equation (6) for (u, v)
and (ū, v̄) with ρn,x, it follows that

d

dt

∫
R
|ρn ∗ ûx|dx =

∫
R
ρn ∗ ûxtsgn(ρnx ∗ û)dx

=−
∫
R
ρn ∗ (ûvux + ūuxv̂ + ūv̄ûx)x sgn(ρnx ∗ û)dx

−
∫
R
ρn ∗ Pxx ∗ (

1

2
û(ux + ūx)v +

1

2
ū2xv̂ + ûuxvx + ūvxûx

+ ūūxv̂x + û(u+ ū)v + u2v̂)sgn(ρnx ∗ û)dx

−
∫
R
ρn ∗

1

2
Px ∗

(
ûx(ux + ūx)vx + ū2xv̂x

)
sgn(ρnx ∗ û)dx

=I1 + I2 + I3.

(49)

For the term I1, we have

I1

=−
∫
R
ρn ∗ (ûxvux + ûuxvx + ûvuxx + ūxuxv̂ + ūuxxv̂ + ūuxv̂x

+ ūxv̄ûx + ūv̄xûx + ūv̄ûxx)sgn(ρnx ∗ û)dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
−
∫
R
ρn ∗ (ûvuxx + ūuxxv̂ + ūv̄ûxx)sgn(ρnx ∗ û)dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
−
∫
R
(ρn ∗ ûv)(ρn ∗ uxx)sgn(ρnx ∗ û)dx−

∫
R
(ρn ∗ ūv̂)(ρn ∗ uxx)sgn(ρnx ∗ û)dx

−
∫
R
(ρn ∗ ūv̄)(ρn ∗ ûxx)sgn(ρnx ∗ û)dx+Rn(t)
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≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
+

∫
R
(ρn ∗ (ûv)x)(ρn ∗ ux)sgn(ρnx ∗ û)dx+

∫
R
(ρn ∗ (ūv̂)x)(ρn ∗ ux)sgn(ρnx ∗ û)dx

+

∫
R
(ρn ∗ (ūv̄)x)(ρn ∗ ûx)sgn(ρnx ∗ û)dx+Rn(t)

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
+Rn(t),

(50)

where C is a constant depending on M(T ), N , ‖u0‖1 and ‖v0‖1 and Rn(t) satisfies{
Rn(t) −→ 0, n→∞,
|Rn(t)| ≤ κ(T ), n ≥ 1, t ∈ [0, T ).

(51)

For the second term I2, we find
I2

= −
∫
R
ρn ∗ Pxx ∗

(
1

2
û(ux + ūx)v +

1

2
ū2xv̂ + ûuxvx + ūvxûx

+ ūūxv̂x + û(u+ ū)v + u2v̂
)

sgn(ρnx ∗ û)dx

≤2

∫
R
ρn ∗

∣∣∣∣12 û(ux + ūx)v +
1

2
ū2xv̂ + ûuxvx + ūvxûx + ūūxv̂x + û(u+ ū)v + u2v̂

∣∣∣∣ dx
≤C

(∫
R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
.

(52)

For the final term I3, we have

I3 = −
∫
R
ρn ∗

1

2
Px ∗

(
ûx(ux + ūx)vx + ū2xv̂x

)
sgn(ρnx ∗ û)dx

≤C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
.

(53)

Adding these three terms, we obtain

d

dt

∫
R
|ρn ∗ ûx|dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
+Rn(t).

(54)

For these terms d
dt

∫
R |ρn ∗ v̂|dx and d

dt

∫
R |ρn ∗ v̂x|dx, we have similar results:

d

dt

∫
R
|ρn ∗ v̂|dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
,

d

dt

∫
R
|ρn ∗ v̂x|dx

≤ C
(∫

R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
+Rn(t).

(55)

From (48), (54) and (55), we infer that

d

dt

(∫
R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
≤ C

(∫
R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
+Rn(t).

(56)
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If
∫
R |ρn ∗ û|dx+

∫
R |ρn ∗ ûx|dx+

∫
R |ρn ∗ v̂|dx+

∫
R |ρn ∗ v̂x|dx 6= 0, then by Gronwall’s

inequality, we obtain(∫
R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
≤ e

∫ t
0
C+R̃n(τ)dτ (|ρn ∗ û|+ |ρn ∗ ûx|+ |ρn ∗ v̂|+ |ρn ∗ v̂x|) (0, x),

(57)

where R̃n(t) = Rn(t)
(∫

R |ρn ∗ û|dx+
∫
R |ρn ∗ ûx|dx+

∫
R |ρn ∗ v̂|dx+

∫
R |ρn ∗ v̂x|dx

)−1
.

From Lebesgue’s dominated convergence theorem, it follows that(∫
R
|ρn ∗ û|dx+

∫
R
|ρn ∗ ûx|dx+

∫
R
|ρn ∗ v̂|dx+

∫
R
|ρn ∗ v̂x|dx

)
≤ eCt (|ρn ∗ û|+ |ρn ∗ ûx|+ |ρn ∗ v̂|+ |ρn ∗ v̂x|) (0, x),

(58)

As T is arbitrary, û0 = û0x = v̂0 = v̂0,x = 0, we obtain (u, v) = (ū, v̄). This
completes the proof of theorem 3.1.
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