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Abstract. In this paper, two properties of the pullback attractor for a 2D

non-autonomous micropolar fluid flows with delay on unbounded domains are
investigated. First, we establish the H1-boundedness of the pullback attractor.

Further, with an additional regularity limit on the force and moment with
respect to time t, we remark the H2-boundedness of the pullback attractor.

Then, we verify the upper semicontinuity of the pullback attractor with respect

to the domains.

1. Introduction. The micropolar fluid model is a qualitative generalization of
the well-known Navier-Stokes model in the sense that it takes into account the
microstructure of fluid [7]. The model was first derived in 1966 by Eringen [4] to
describe the motion of a class of non-Newtonian fluid with micro-rotational effects
and inertia involved. It can be expressed by the following equations:

∂u

∂t
− (ν + νr)∆u− 2νrrotω + (u · ∇)u+∇p = f,

∂ω

∂t
− (ca + cd)∆ω + 4νrω + (u · ∇)ω

−(c0 + cd − ca)∇divω − 2νrrotu = f̃ ,

∇ · u = 0,

(1)

where u = (u1, u2, u3) is the velocity, ω = (ω1, ω2, ω3) is the angular velocity field of

rotation of particles, p represents the pressure, f = (f1, f2, f3) and f̃ = (f̃1, f̃2, f̃3)
stand for the external force and moment, respectively. The positive parameters
ν, νr, c0, ca and cd are viscous coefficients. Actually, ν represents the usual Newto-
nian viscosity and νr is called microrotation viscosity.

Micropolar fluid models play an important role in the fields of applied and com-
putational mathematics. There is a rich literature on the mathematical theory of
micropolar fluid model. Particularly, the existence, uniqueness and regularity of so-
lutions for the micropolar fluid flows have been investigated in [6]. Extensive studies
on long time behavior of solutions for the micropolar fluid flows have also been done.
For example, in the case of 2D bounded domains:  Lukaszewicz [7] established the
existence of L2-global attractors and its Hausdorff dimension and fractal dimension
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estimation. Chen, Chen and Dong proved the existence of H2-global attractor and
uniform attractor in [1] and [2], respectively.  Lukaszewicz and Tarasińska [9] inves-
tigated the existence of H1-pullback attractor. Zhao, Sun and Hsu [18] established
the existence of L2-pullback attractor and H1-pullback attractor of solutions for
a universe given by a tempered condition, respectively. For the case of 2D un-
bounded domains: Dong and Chen [3] investigated the existence and regularity of
global attractors. Zhao, Zhou and Lian [19] established the existence of H1-uniform
attractor and further gave the inclusion relation between L2-uniform attractor and
the H1-uniform attractor. Sun and Li [15] verified the existence of pullback at-
tractor and further investigated the tempered behavior and upper semicontinuity
of the pullback attractor. More recently, Sun, Cheng and Han [14] investigated the
existence of random attractors for 2D stochastic micropolar fluid flows.

As we know, in the real world, delay terms appear naturally, for instance as
effects in wind tunnel experiments (see [10]). Also the delay situations may occur
when we want to control the system via applying a force which considers not only
the present state but also the history state of the system. The delay of partial
differential equations (PDE) includes finite delays (constant, variable, distributed,
etc) and infinite delays. Different types of delays need to be treated by different
approaches.

In this paper, we consider the situation that the velocity component u3 in the
x3-direction is zero and the axes of rotation of particles are parallel to the x3 axis,
that is u = (u1, u2, 0), ω = (0, 0, ω3), f = (f1, f2, 0), f̃ = (0, 0, f̃3). Let Ω ⊆ R2

be an open set with boundary Γ that is not necessarily bounded but satisfies the
following Poincaré inequality:

There exists λ1 > 0 such that λ1‖ϕ‖2L2(Ω) ≤ ‖∇ϕ‖
2
L2(Ω), ∀ϕ ∈ H

1
0 (Ω). (2)

Then we discuss the following 2D non-autonomous incompressible micropolar fluid
flows with finite delay:



∂u

∂t
− (ν + νr)∆u− 2νr∇× ω + (u · ∇)u+∇p

= f(t, x) + g(t, ut), in (τ,+∞)× Ω,

∂ω

∂t
− ᾱ∆ω + 4νrω − 2νr∇× u+ (u · ∇)ω

= f̃(t, x) + g̃(t, ωt), in (τ,+∞)× Ω,

∇ · u = 0, in (τ,+∞)× Ω,

(3)

where ᾱ := c0 + 2cd > 0, x := (x1, x2) ∈ Ω ⊆ R2, u := (u1, u2), g and g̃ stand for
the external force containing some hereditary characteristics ut and ωt, which are
defined on (−h, 0) as follows

ut(s) := u(t+ s), ωt(s) := ω(t+ s), ∀ t ≥ τ, s ∈ (−h, 0).

where h is a positive fixed number, and

∇× u :=
∂u2

∂x1
− ∂u1

∂x2
, ∇× ω := (

∂ω

∂x2
,− ∂ω

∂x1
).
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To complete the formulation of the initial boundary value problem to system (3),
we give the following initial boundary conditions:

(u(τ), ω(τ)) = (uin, ωin), (uτ (s), ωτ (s)) = (φin1 (s), φin2 (s)), s ∈ (−h, 0), (4)

u = 0, ω = 0, on (τ,+∞)× Γ. (5)

For problem (3)-(5), Sun and Liu established the existence of pullback attractor
in [16], recently.

The first purpose of this work is to investigate the boundedness of the pullback
attractor obtained in [16]. We remark that Garćıa-Luengo, Maŕın-Rubio and Real
[5] proved the H2-boundedness of the pullback attractors of the 2D Navier-Stokes
equations in bounded domains. Motivated by [5] and following its main idea, we
generalize their results to the 2D micropolar fluid flows with finite delay in un-
bounded domains. Compared with the Navier-Stokes equations (ω = 0, νr = 0),
the micropolar fluid flow consists of the angular velocity field ω, which leads to a
different nonlinear term B(u,w) and an additional term N(u) in the abstract equa-
tions (13). In addition, the time-delay term considered in this work also increases
the difficulty.

The second purpose of this work is to investigate the upper semicontinuity of the
pullback attractor with respect to the domain Ω. To this end, using the arguments
in [15, 17], we first let {Ωm}∞m=1 be an expanding sequence of simply connected,

bounded and smooth subdomains of Ω such that
∞⋃
m=1

Ωm = Ω. Then we consider

the Cauchy problem (3)-(5) in Ωm. We will conclude that there exists a pullback

attractor ÂĤ(Ωm) for the problem (3)-(5) in each Ωm. Finally, we establish the

upper semicontinuity by showing lim
m→∞

distE2

Ĥ
(AĤ(Ωm)(t),AĤ(t)) = 0, ∀ t ∈ R.

Throughout this paper, we denote the usual Lebesgue space and Sobolev space by
Lp(Ω) and Wm,p(Ω) endowed with norms ‖·‖p and ‖·‖m,p, respectively. Especially,
we denote Hm(Ω) := Wm,2(Ω).

V := V(Ω) := {ϕ ∈ C∞0 (Ω)× C∞0 (Ω)|ϕ = (ϕ1, ϕ2),∇ · ϕ = 0} ,

V̂ := V̂(Ω) := V × C∞0 (Ω),

H := H(Ω) := closure of V in L2(Ω)× L2(Ω), with norm ‖ · ‖H
and dual space H∗,

V := V (Ω) := closure of V in H1(Ω)×H1(Ω), with norm ‖ · ‖V
and dual space V ∗,

Ĥ := Ĥ(Ω) := closure of V̂ in L2(Ω)× L2(Ω)× L2(Ω), with norm ‖ · ‖Ĥ

and dual space Ĥ∗,

V̂ := V̂ (Ω) := closure of V̂ in H1(Ω)×H1(Ω)×H1(Ω), with norm ‖ · ‖V̂

and dual space V̂ ∗.

(·, ·)− the inner product in L2(Ω), H or Ĥ, 〈·, ·〉− the dual pairing between V and

V ∗ or between V̂ and V̂ ∗. Throughout this article, we simplify the notations ‖ · ‖2,
‖ · ‖H and ‖ · ‖Ĥ by the same notation ‖ · ‖ if there is no confusion. Furthermore,
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we denote

Lp(I;X) := space of strongly measurable functions on the closed interval I,

with values in the Banach space X, endowed with norm

‖ϕ‖Lp(I;X) := (

∫
I

‖ϕ‖pXdt)1/p, for 1 ≤ p <∞,

C(I;X) := space of continuous functions on the interval I, with values

in the Banach space X, endowed with the usual norm,

L2
loc(I;X) := space of locally square integrable functions on the interval I,

with values in the Banach space X, endowed with the usual norm,

distM(X,Y)− the Hausdorff semidistance between X ⊆M and Y ⊆ M defined by

distM (X,Y ) = sup
x∈X

inf
y∈Y

distM (x, y).

Following the above notations, we additionally denote

L2
Ĥ

:= L2(−h, 0; Ĥ), L2
V̂

:= L2(−h, 0; V̂ ),

E2
Ĥ

:= Ĥ × L2
Ĥ
, E2

V̂
:= V̂ × L2

V̂
, E2

Ĥ×L2
V̂

:= Ĥ × L2
V̂
.

The norm ‖ · ‖X for X ∈ {E2
Ĥ
, E2

V̂
, E2

Ĥ×L2
V̂

} is defined as

‖(w, v)‖E2

Ĥ
:= (‖w‖2v̂ + ‖v‖2L2

Ĥ

)1/2, ‖(w, v)‖E2
V̂

:= (‖w‖2 + ‖v‖2L2
V̂

)1/2,

‖(w, v)‖E2

Ĥ×L2
V̂

:= (‖w‖2 + ‖v‖2L2
V̂

)1/2.

The rest of this paper is organized as follows. In section 2, we make some
preliminaries. In section 3, we investigate the boundedness of the pullback attractor.
In section 4, we prove the upper semicontinuity of the pullback attractor with
respect to the domains.

2. Preliminaries. In this section, for the sake of discussion, we first introduce
some useful operators and put problem (3)-(5) into an abstract form. Then we
recall some important known results about the non-autonomous micropolar fluid
flows.

To begin with, we define the operators A,B(·, ·) and N(·) by
〈Aw,ϕ〉 := (ν + νr)(∇u,∇Φ) + ᾱ(∇ω,∇ϕ3), ∀w = (u, ω), ϕ = (Φ, ϕ3) ∈ V̂ ,

〈B(u,w), ϕ〉 := ((u · ∇)w,ϕ), ∀u ∈ V, w = (u, ω) ∈ V̂ , ∀ϕ ∈ V̂ ,

N(w) := (−2νr∇× ω,−2νr∇× u+ 4νrω), ∀w = (u, ω) ∈ V̂ .
(6)

What follows are some useful estimates and properties for the operators A, B(·, ·)
and N(·), which have been established in works [11, 13].

Lemma 2.1. (1) The operator A is linear continuous both from V̂ to V̂ ∗ and

from D(A) to Ĥ, and so is for the operator N(·) from V̂ to Ĥ, where D(A) :=

V̂ ∩
(
H2(Ω)

)3
.
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(2) The operator B(·, ·) is continuous from V ×V̂ to V̂ ∗. Moreover, for any u ∈ V
and w ∈ V̂ , there holds

〈B(u, ψ), ϕ〉 = −〈B(u, ϕ), ψ〉, ∀u ∈ V, ∀ψ ∈ V̂ , ∀ϕ ∈ V̂ . (7)

Lemma 2.2. (1) There are two positive constants c1 and c2 such that

c1〈Aw,w〉 ≤ ‖w‖2V̂ ≤ c2〈Aw,w〉, ∀w ∈ V̂ . (8)

(2) There exists a positive constant α0 which depends only on Ω, such that for

any (u, ψ, ϕ) ∈ V × V̂ × V̂ there holds

|〈B(u, ψ), ϕ〉| ≤
{
α0‖u‖

1
2 ‖∇u‖ 1

2 ‖ϕ‖ 1
2 ‖∇ϕ‖ 1

2 ‖∇ψ‖,
α0‖u‖

1
2 ‖∇u‖ 1

2 ‖ψ‖ 1
2 ‖∇ψ‖ 1

2 ‖∇ϕ‖.
(9)

Moreover, if (u, ψ, ϕ) ∈ V ×D(A)×D(A), then

|〈B(u, ψ), Aϕ〉| ≤ α0‖u‖
1
2 ‖∇u‖ 1

2 ‖∇ψ‖ 1
2 ‖Aψ‖ 1

2 ‖Aϕ‖. (10)

(3) There exists a positive constant c(νr) such that

‖N(ψ)‖ ≤ c(νr)‖ψ‖V̂ , ∀ψ ∈ V̂ . (11)

In addition,

δ1‖ψ‖2V̂ ≤ 〈Aψ,ψ〉+ 〈N(ψ), ψ〉, ∀ψ ∈ V̂ , (12)

where δ1 := min{ν, ᾱ}.

According to the definitions of operators A,B(·, ·) and N(·), equations (3)-(5)
can be formulated into the following abstract form:

∂w

∂t
+Aw +B(u,w) +N(w) = F (t, x) +G(t, wt), in (τ,+∞)× Ω,

∇ · u = 0, in (τ,+∞)× Ω,

w = (u, ω) = 0, on (τ,+∞)× Γ,

w(τ) = (uin, ωin) =: win, wτ (s) = (uτ (s), ωτ (s)) = (φin1 (s), φin2 (s))

=: φin(s), s ∈ (−h, 0),

(13)

where

w :=
(
u(t, x), ω(t, x)

)
, F (t, x) :=

(
f(t, x), f̃(t, x)

)
, G(t, wt) :=

(
g(t, ut), g̃(t, ωt)

)
.

Before recalling the known results for problem (13), we need to make the following
assumptions with respect to F and G.

Assumption 2.1. Assume that G : R× L2(−h, 0; Ĥ) 7→ (L2(Ω))3 satisfies:

(i) For any ξ ∈ L2(−h, 0; Ĥ), the mapping R 3 t 7→ G(t, ξ) ∈ (L2(Ω))3 is mea-
surable.

(ii) G(·, 0) = (0, 0, 0).
(iii) There exists a constant LG > 0 such that for any t ∈ R and any ξ, η ∈

L2(−h, 0; Ĥ),

‖G(t, ξ)−G(t, η)‖ ≤ LG‖ξ − η‖L2(−h,0;Ĥ).

(iv) There exists CG ∈ (0, δ1) such that, for any t ≥ τ and any w, v ∈ L2(τ −
h, t; Ĥ),∫ t

τ

‖G(θ, wθ)−G(θ, vθ)‖2dθ ≤ C2
G

∫ t

τ−h
‖w(θ)− v(θ)‖2dθ.
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Assumption 2.2. Assume that F (t, x) ∈ L2
loc(R; Ĥ), ∀ t ≥ τ, τ ∈ R, and there

exists a γ ∈ (0, 2δ1 − 2CG) such that∫ t

−∞
eγθ‖F (θ, x)‖2

V̂ ∗
dθ < +∞. (14)

In order to facilitate the discussion, we denote by P(X) the family of all nonempty

subsets of X. Let D be a nonempty class of families parameterized in time D̂ =
{D(t) : t ∈ R} ⊆ P(X), which will be called a universe in P(X). Based on these
notations, we can construct the universe Dγ in the following.

Definition 2.3. (Definition of universe Dγ) Set

Rγ := {ρ(t) : R 7→ R+ | lim
t→−∞

eγtρ2(t) = 0}.

We denote by Dγ the class of all families D̂ = {D(t) | t ∈ R} ⊆ P(E2
Ĥ

) such that

D(t) ⊆ B̄E2

Ĥ
(0, ρD̂(t)), for some ρD̂(t) ∈ Rγ ,

where B̄E2

Ĥ
(0, ρD̂(t)) represents the closed ball in E2

Ĥ
centered at zero with radius

ρD̂(t).

Based on the above assumptions, we can recall the global well-posedness of so-
lutions and the existence of pullback attractor of problem (13).

Proposition 2.1. (Existence and uniqueness of solution, see [13, 16]) Let Assumption
2.1 and Assumption 2.2 hold. Then for any (win, φin(s)) ∈ E2

Ĥ
, there exists a

unique weak solution w(·) := w(·; τ, win, φin(s)) for system (13), which satisfies

w ∈ C([τ, T ]; Ĥ) ∩ L2(τ, T ; V̂ ) and w′ ∈ L2(τ, T ; V̂ ∗), ∀T > τ.

Remark 2.1. According to Proposition 2.1, the biparametric mapping defined by

U(t, τ) :
(
win, φin(s)

)
7→
(
w(t; τ, win, φin(s)), wt(s; τ, w

in, φin(s))
)
, ∀ t ≥ τ, (15)

generates a continuous process in E2
Ĥ

and E2
V̂

, respectively, which satisfies the

following properties:

(i)U(τ, τ)(win, φin(s)) = (win, φin(s)),

(ii)U(t, θ)U(θ, τ)(win, φin(s)) = U(t, τ)(win, φin(s)).

Proposition 2.2. (Existence of pullback attractor, see [16]) Under the Assumption

2.1 and Assumption 2.2, there exists a pullback attractor ÂĤ =
{
AĤ(t)

∣∣ t ∈ R
}

for
the process {U(t, τ)}t≥τ that satisfies the following properties:
◦ Compactness: for any t ∈ R,AĤ(t) is a nonempty compact subset of E2

Ĥ
;

◦ Invariance: U(t, τ)AĤ(τ) = AĤ(t), ∀ t ≥ τ ;

◦ Pullback attracting: for any B̂ = {B(θ)| θ ∈ R} ∈ Dγ , it holds that

lim
τ→−∞

distE2

Ĥ

(
U(t, τ)B(τ),AĤ(t)

)
= 0, ∀ t ∈ R;

◦ Minimality: the family of sets ÂĤ is the minimal in the sense that if

Ô = {O(t)| t ∈ R} ⊆ P(E2
Ĥ

) is another family of closed sets such that

lim
τ→−∞

distE2

Ĥ
(U(t, τ)B(τ), O(t)) = 0, for any B̂ = {B(θ)| θ ∈ R} ∈ Dγ ,

then AĤ(t) ⊆ O(t) for any t ∈ R.
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Finally, we introduce a useful lemma, which plays an important role in the proof
of higher regularity of the pullback attractor.

Lemma 2.4. (see [12]) Let X, Y be Banach spaces such that X is reflexive, and
the inclusion X ⊂ Y is continuous. Assume that {wn}n≥1 is a bounded sequence
in L∞(τ, t;X) such that wn ⇀ w weakly in Lq(τ, t;X) for some q ∈ [1,+∞) and
w ∈ C([τ, t];Y ). Then w(t) ∈ X and

‖w(θ)‖X ≤ lim inf
n→+∞

‖wn(θ)‖L∞(τ,t;X), ∀ θ ∈ [τ, t].

3. Boundedness of the pullback attractor for the universe Dγ. This section
is devoted to investigating the boundedness of the pullback attractor for the universe
Dγ given by a tempered condition in space E2

Ĥ
. To this end, we consider the

Galerkin approximation of the solution w(t) of system (13), which is denoted by

wn(t) = wn(t; τ, win, φin(s)) =

n∑
j=1

ξnj(t)ej , wnt(·) = wn(t+ ·), (16)

where the sequence {ej}∞j=1 is an orthonormal basis of Ĥ and formed by eigenvectors
of the operator A, that is, for all j ≥ 1,

ej ∈ D(A) and Aej = λjej , (17)

where the eigenvalues {λj}j≥1 of A are real number that we can order in such a
way

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → +∞ as j →∞.
It is not difficult to check that ξn,j(t) is the solution of the following ordinary
differential equations:

d

dt
(wn(t), ej) + 〈Awn(t) +B(un, wn) +N(wn(t)), ej〉

= 〈F (t), ej〉+ (G(t, wnt), ej),

(wn(τ), ej) = (win, ej), (wnτ (s), ej) = (φin(s), ej),

s ∈ (−h, 0), j = 1, 2, · · · , n.

(18)

Next we verify the following estimates of the Galerkin approximate solutions defined
by (16).

Lemma 3.1. Let Assumption (2.1) and Assumption (2.2) hold. Then for any
τ ∈ R, ε > 0, t > τ + h+ ε and (win, φin(s)) ∈ AĤ(τ), we have

(i) the set
{
wn(r; τ, win, φin(s))

∣∣ r ∈ [τ + ε, t]
}
n≥1

is bounded in V̂ ;

(ii) the set
{
wnr(·; τ, win, φin(s))

∣∣ r ∈ [τ + h+ ε, t]
}
n≥1

is bounded in L2
V̂

;

(iii) the set
{
wn(·; τ, win, φin(s))

}
n≥1

is bounded in L2(τ + ε, t;D(A));

(iv) the set
{
w′n(·; τ, win, φin(s))

}
n≥1

is bounded in L2(τ + ε, t; Ĥ).

Proof. Multiplying (18) by βnj(t) and summing them for j = 1 to n, then using
(7), (12) and Young’s inequality, we obtain

1

2

d

dt
‖wn(t)‖2 + δ1‖wn(t)‖2

V̂

≤1

2

d

dt
‖wn(t)‖2 + 〈Awn(t), wn(t)〉+ 〈N(wn(t)), wn(t)〉+ 〈B(un, wn), wn(t)〉

=〈F (t), wn(t)〉+ (G(t, wnt), wn(t)).
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Then integrating the above inequality over [τ, t], t ≥ τ, leads to

‖wn(t)‖2 + 2δ1

∫ t

τ

‖wn(θ)‖2
V̂

dθ

≤‖win‖2 + (δ1 − CG)

∫ t

τ

‖wn(θ)‖2
V̂

dθ +
1

δ1 − CG

∫ t

τ

‖F (θ)‖2
V̂ ∗

dθ

+ CG

∫ t

τ

‖wn(θ)‖2dθ +
1

CG

∫ t

τ

‖G(θ, wnθ)‖2dθ

≤‖win‖2 + (δ1 − CG)

∫ t

τ

‖wn(θ)‖2
V̂

dθ +
1

δ1 − CG

∫ t

τ

‖F (θ)‖2
V̂ ∗

dθ

+ CG

∫ t

τ

‖wn(θ)‖2dθ + CG
( ∫ t

τ

‖wn(θ)‖2dθ +

∫ 0

−h
‖φin(s)‖2ds

)
,

which implies

‖wn(t)‖2 + (δ1 − CG)

∫ t

τ

‖wn(θ)‖2
V̂

dθ

≤max{1, CG}‖(win, φin)‖2E2

Ĥ

+
1

δ1 − CG

∫ t

τ

‖F (θ)‖2
V̂ ∗

dθ. (19)

Thanks to (17), multiplying (18) by λjβnj(t) and summing the resultant equation
for j = 1 to n yields that

1

2

d

dt
〈Awn(t), wn(t)〉+ ‖Awn(t)‖2 + 〈B(un, wn), Awn(t)〉+ 〈N(wn(t)), Awn(t)〉

=(F (t), Awn(t)) + (G(t, wnt), Awn(t)).

Observe that ‖un(t)‖ ≤ ‖wn(t)‖, ‖∇wn(t)‖ ≤ ‖wn(t)‖V̂ , using (10), (11) and
Young’s inequality, it is easy to see that∣∣〈B(un, wn), Awn(t)〉

∣∣+
∣∣〈N(wn(t)), Awn(t)〉

∣∣
≤α0‖un‖

1
2 ‖∇un‖

1
2 ‖∇wn‖

1
2 ‖Awn‖

1
2 ‖Awn‖+

1

4
‖Awn(t)‖2 + c2(νr)‖wn(t)‖2

V̂

≤1

2
‖Awn(t)‖2 + 43α4

0‖wn(t)‖2‖wn(t)‖4
V̂

+ c2(νr)‖wn(t)‖2
V̂

and

(F (t), Awn(t)) + (G(t, wnt), Awn(t)) ≤ 1

4
‖Awn(t)‖2 + 2‖F (t)‖2 + 2‖G(t, wnt)‖2.

Therefore

d

dt
〈Awn(t), wn(t)〉+

1

2
‖Awn(t)‖2

≤4‖F (t)‖2 + 4‖G(t, wnt)‖2 + 128α4
0‖wn(t)‖2‖wn(t)‖4

V̂
+ 2c2(νr)‖wn(t)‖2

V̂

≤4‖F (t)‖2 + 4‖G(t, wnt)‖2

+
(
128c2α

4
0‖wn(t)‖2‖wn(t)‖2

V̂
+ 2c2c

2(νr)
)
〈Awn(t), wn(t)〉. (20)

Set

Hn(θ) := 〈Awn(θ), wn(θ)〉, In(θ) := 4‖F (θ)‖2 + 4‖G(θ, wnθ)‖2,
Jn(θ) := 128c2α

4
0‖wn(θ)‖2‖wn(θ)‖2

V̂
+ 2c2c

2(νr),
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then we get

d

dθ
Hn(θ) ≤ Jn(θ)Hn(θ) + In(θ). (21)

By Gronwall inequality, (21) yields

Hn(r) ≤
(
Hn(r̃) +

∫ r

r−ε
In(θ)dθ

)
· exp

{∫ r

r−ε
Jn(θ)dθ

}
, ∀ τ ≤ r − ε ≤ r̃ ≤ r ≤ t.

Integrating the above inequality for r̃ from r − ε to r, we obtain

εHn(r) ≤
(∫ r

r−ε
Hn(r̃)dr̃ + ε

∫ r

r−ε
In(θ)dθ

)
· exp

{∫ r

r−ε
Jn(θ)dθ

}
.

Since ∫ r

r−ε
Hn(r̃)dr̃ + ε

∫ r

r−ε
In(θ)dθ

=

∫ r

r−ε
〈Awn(r̃), wn(r̃)〉dr̃ + 4ε

∫ r

r−ε

(
‖F (θ)‖2 + ‖G(θ, wnθ)‖2

)
dθ

≤ 1

c1

∫ t

τ

‖wn(θ)‖2
V̂

dθ + 4ε

∫ t

τ

‖F (θ)‖2dθ

+ 4εC2
G

( ∫ t

τ

‖wn(θ)‖2dθ +

∫ 0

−h
‖φin(s)‖2ds

)
,

∫ r

r−ε
Jn(θ)dθ =128c2α

4
0

∫ r

r−ε
‖wn(θ)‖2‖wn(θ)‖2

V̂
dθ + 2εc2c

2(νr)

≤128c2α
4
0 max
θ∈[τ,t]

‖wn(θ)‖2
∫ t

τ

‖wn(θ)‖2
V̂

dθ + 2εc2c
2(νr),

we can conclude that

‖wn(r)‖2
V̂
≤ c2Hn(r)

≤
[
c2
c1ε

∫ t

τ

‖wn(θ)‖2
V̂

dθ + 4c2

∫ t

τ

‖F (θ)‖2dθ

+4c2C
2
G

( ∫ t

τ

‖wn(θ)‖2dθ +

∫ 0

−h
‖φin(s)‖2ds

)]
· exp

{
128c2α

4
0 max
θ∈[τ,t]

‖wn(θ)‖2
∫ t

τ

‖wn(θ)‖2
V̂

dθ + 2εc2c
2(νr)

}
,

which together with (19) and Assumption 2.2 implies the assertion (i).
Now, integrating (20) over [τ + ε, t], we obtain∫ t

τ+ε

‖Awn(θ)‖2dθ

≤ 2

c1
‖wn(τ + ε)‖2

V̂
+ 8

∫ t

τ

‖F (θ)‖2dθ + 8C2
G

( ∫ t

τ

‖wn(θ)‖2dθ +

∫ 0

−h
‖φin(s)‖2ds

)
+

(
256α4

0 max
θ∈[τ+ε,t]

(
‖wn(θ)‖‖wn(θ)‖V̂

)2
+ 4c2(νr)

)∫ t

τ+ε

‖wn(θ)‖2
V̂

dθ,

which together with (19), Assumption 2.2 and the assertion (i) gives the assertion
(iii).
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In addition,∫ 0

−h
‖wnr(θ)‖2V̂ dθ =

∫ r

r−h
‖wn(θ)‖2

V̂
dθ

≤ h · max
θ∈[τ+ε,t]

‖wn(θ)‖2
V̂
, τ + h+ ε ≤ r ≤ t, (22)

which together with the assertion (i) yields the assertion (ii).
Finally, multiplying (18) by β′nj(t) and summing the resultant equation for j = 1

to n, we obtain

‖w′n(t)‖2 +
1

2

d

dt
〈Awn(t), wn(t)〉+ 〈B(un, wn), w′n(t)〉+ 〈N(wn(t)), w′n(t)〉

=(F (t), w′n(t)) + (G(t, wnt), w
′
n(t)). (23)

From Assumption 2.1, it follows that

(F (t), w′n(t)) + (G(t, wnt), w
′
n(t)) ≤

(
‖F (t)‖+ ‖G(t, wnt)‖

)
‖w′n(t)‖

≤2‖F (t)‖2 + 2‖G(t, wnt)‖2 +
1

4
‖w′n(t)‖2. (24)

By Lemma 2.2,∣∣〈B(un, wn), w′n(t)〉
∣∣ ≤α0‖un‖

1
2 ‖∇un‖

1
2 ‖∇wn‖

1
2 ‖Awn‖

1
2 ‖w′n(t)‖

≤α0‖wn‖
1
2 ‖wn‖V̂ ‖Awn‖

1
2 ‖w′n(t)‖

≤α2
0‖wn‖‖wn‖2V̂ ‖Awn‖+

1

4
‖w′n(t)‖2 (25)

and ∣∣〈N(wn(t)), w′n(t)
∣∣ ≤ 1

4
‖w′n(t)‖2 + c2(νr)‖wn(t)‖2

V̂
. (26)

Taking (23)-(26) into account, we obtain

‖w′n(t)‖2 + 2
d

dt
〈Awn(t), wn(t)〉

≤8‖F (t)‖2 + 8‖G(t, wnt)‖2 + 4α2
0‖wn‖3V̂ ‖Awn(t)‖+ 4c2(νr)‖wn(t)‖2

V̂
.

Integrating the above inequality, yields∫ t

τ+ε

‖w′n(θ)‖dθ

≤2c−1
1 ‖wn(τ + ε)‖2

V̂
+ 8

∫ t

τ+ε

‖F (θ)‖2dθ + 8

∫ t

τ+ε

‖G(θ, wnθ)‖2dθ

+ 4α2
0

∫ t

τ+ε

‖wn(θ)‖3
V̂
‖Awn(θ)‖dθ + 4c2(νr)

∫ t

τ+ε

‖wn(θ)‖2
V̂

dθ

≤2c−1
1 ‖wn(τ + ε)‖2

V̂
+ 8

∫ t

τ+ε

‖F (θ)‖2dθ

+ 8C2
G

(∫ t

τ

‖wn(θ)‖2
V̂

dθ +

∫ 0

−h
‖φin(s)‖2ds

)
+ 4c2(νr)

∫ t

τ+ε

‖wn(θ)‖2
V̂

dθ,

+ 2α2
0 max
θ∈[τ+ε,t]

‖wn(θ)‖2
V̂

∫ t

τ+ε

(
‖wn(θ)‖2

V̂
+ ‖Awn(θ)‖2

)
dθ

which together with (20), Assumption 2.2 and the assertions (i)-(iii) gives the as-
sertion (iv). The proof is complete.
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With the above lemma, we are ready to conclude this section with the following

H1-boundedness of the pullback attractor ÂĤ for the universe Dγ .

Theorem 3.2. Let assumptions 2.1-2.2 hold and ÂĤ =
{
AĤ(t)

∣∣ t ∈ R
}

be the
pullback attractor of system (13). Then for any τ ∈ R, ε > 0, t > τ + h + ε and
(win, φin) ∈ E2

Ĥ
, the set

⋃
r∈[τ+h+ε,t]

U(r, τ)AĤ(τ) is bounded in E2
V̂

.

Proof. Based on Lemma 3.1, following the standard diagonal procedure, there exist

a subsequence (denoted still by) {wn}n≥1 and a function w(·) ∈ L∞(τ + ε, t; V̂ ) ∩
L2(τ + ε, t;D(A)) with w′(·) ∈ L2(τ + ε, t; Ĥ) such that, as n→∞,

wn(·) ⇀∗ w(·) weakly star in L∞(τ + ε, t; V̂ ), (27)

wn(·) ⇀ w(·) weakly in L2(τ + ε, t;D(A)), (28)

w′n(·) ⇀ w′(·) weakly in L2(τ + ε, t; Ĥ). (29)

Furthermore, it follows from the uniqueness of the limit function that w(·) is a weak
solution of system (13). According to compact embedding theorem, (28) and (29)

implies w(·) ∈ C([τ + ε, t]; V̂ ). Then Theorem 3.2 follows from (27), Lemma 2.4 and
Lemma 3.1.

Remark 3.1. We here point out that the boundedness of pullback attractor Â in
E2
D(A) can be proved by using similar proof as that in E2

V̂
if we improve the regularity

of F (t) and G(t, wnt) with respect to t, where D(A) := V̂ ∩ (H2)3. Exactly, assume
that

(I) F (t, x) ∈W 1,2
loc (R; Ĥ), ∀ t ≥ τ, τ ∈ R, and

∫ t

−∞
eγθ‖F ′(θ, x)‖2

V̂ ∗
dθ < +∞.

(II)
(
G(t, ξ)

)′
=

dG

dt
: R× L2(−h, 0; Ĥ) 7→ (L2(Ω))3 satisfies:

◦ For any ξ ∈ L2(−h, 0; Ĥ), the mapping R 3 t 7→ G(t, ξ) ∈ (L2(Ω))3 is measur-
able.
◦
(
G(·, 0)

)′
= (0, 0, 0).

◦ There exists a constant L̃G > 0 such that for any t ∈ R and any ξ, η ∈
L2(−h, 0; Ĥ),

‖
(
G(t, ξ)

)′ − (G(t, η)
)′‖ ≤ L̃G‖ξ − η‖L2(−h,0;Ĥ).

◦ There exists C̃G ∈ (0, δ1) such that, for any t ≥ τ and any w, v ∈ L2(τ−h, t; Ĥ),∫ t

τ

‖
(
G(θ, wθ)

)′ − (G(θ, vθ)
)′‖2dθ ≤ C̃2

G

∫ t

τ−h
‖w(θ)− v(θ)‖2dθ.

Then we can deduce that the Galerkin approximate solutions {wn(·)}n≥1 is

bounded in D(A) = V̂ ∩ (H2)3. Moreover, {w′n(·)}n≥1 is bounded in Ĥ. Further,

we can conclude the H2-boundedness of the pullback attractor Â.

4. Upper semicontinuity of the pullback attractor. In this section, we con-

centrate on verifying the upper semicontinuity of the pullback attractor ÂĤ ob-
tained in Propositon 2.2 with respect to the spatial domain. To this end, first we
let {Ωm}∞m=1 be an expanding sequence of simply connected, bounded and smooth

subdomains of Ω such that
∞⋃
m=1

Ωm = Ω. Then we consider the system (3) in each
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Ωm and define the operators A,B(·, ·) and N(·) as previous (in (6)) with the spatial
domain Ω replaced by Ωm. Further we can formulate the weak version of problem
(3)-(5) as follows:

∂wm
∂t

+Awm +B(um, wm) +N(wm)

= F (t, x) +G(t, wmt), in (τ,+∞)× Ωm,

∇ · um = 0, in (τ,+∞)× Ωm,

wm = (um, ωm) = 0, on (τ,+∞)× Γ,

wm(τ) = winm , wmτ (s) = φinm (s), s ∈ (−h, 0).

(30)

On each bounded domain Ωm, the well-posedness of solution can be established by
Galerkin method and energy method, one can refer to [7].

Lemma 4.1. Suppose Assumption 2.1 and Assumption 2.2 hold, then for any given
(winm , φ

in
m ) ∈ E2

Ĥ(Ωm)
, system (30) has a unique weak solution wm satisfying

wm(·) ∈ C([τ, T ]; Ĥ(Ωm)) ∩ L2(τ, T ; V̂ (Ωm)), w′m(·) ∈ L2(τ, T ; V̂ ∗(Ωm)), ∀T > τ.

Moreover, the solution wm(·) depends continuously on the initial value winm with

respect to Ĥ(Ωm) norm.

According to Lemma 4.1, the map defined by

Um(t, τ) : (winm , φ
in
m (s)) 7→ Um(t, τ, winm , φ

in
m (s))

=
(
wm(t), wmt(s; τ, w

in, φin(s))
)
, ∀ t ≥ τ, (31)

generates a continuous process {U(t, τ)}t≥τ in Ĥ(Ωm). Moreover, on any smooth
bounded domain Ωm, with similar proof as those of Lemma 3.2, Lemma 3.3 and

Lemma 3.6 in [16], we can obtain the existence of pullback DĤ(Ωm)
γ -absorbing for

the process {Um(t, τ)}t≥τ and the pullback DĤ(Ωm)
γ -asymptotic compactness of the

process in Ĥ(Ωm). That is,

Lemma 4.2. Under the assumptions 2.1 and 2.2, it holds that

(1) for any (winm , φ
in
m (s)) ∈ E2

Ĥ(Ωm)
, the family B̂Ĥ(Ωm) :=

{
BĤ(Ωm)(t)

∣∣ t ∈ R
}

given

by

BĤ(Ωm)(t) =
{

(w, φ) ∈ E2
Ĥ(Ωm)×L2

V̂ (Ωm)

∣∣ ‖(w, φ)‖2E
Ĥ(Ωm)×L2

V̂ (Ωm)

≤ R1(t)
}

is pullback DĤ(Ωm)
γ -absorbing for the process {Um(t, τ)}, where R1(t) is bounded for

all t ∈ R.
(2) for any ε > 0, there exist rm := rm(ε, t, B̂Ĥ(Ωm)) > 0, τm := τm(ε, t, B̂Ĥ(Ωm)) < t
such that for any r ∈ [rm,m], τ ≤ τm,

‖wm(t, τ, winm , φ
in
m (s))‖L2(Ωm\Ωr) ≤ ε, ∀ (winm , φ

in
m (s)) ∈ BĤ(Ωm)(τ).

(3) the process {Um(t, τ)}t≥τ is pullback DĤ(Ωm)
γ -asymptotically compact in Ĥ(Ωm).

Then based on the Remark 2.1 in [16], we conclude that

Theorem 4.3. Let assumptions 2.1 and 2.2 hold. Then there exists a pullback

attractor ÂĤ(Ωm) =
{
AĤ(Ωm)(t)

∣∣ t ∈ R
}

for the system (30) in Ĥ(Ωm).
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In the following, we investigate the relationship between the solutions of system
(30) and (13). Indeed, we devoted to proving the solutions wm of system (30)

converges to the solution of system (13) as m→∞. To this end, for wm ∈ Ĥ(Ωm),
we extend its domain from Ωm to Ω by setting

w̃m =

{
wm, x ∈ Ωm,

0, x ∈ Ω \ Ωm,
(32)

then it holds that

‖wm‖Ĥ(Ωm) = ‖w̃m‖Ĥ(Ωm) = ‖w̃m‖Ĥ(Ω) := ‖wm‖.

Next, using the same proof as that of Lemma 8.1 in [8], we have

Lemma 4.4. Let assumptions 2.1-2.2 hold and {(winm , φinm (s))}m≥1 be a sequence in
E2
Ĥ(Ωm)×L2

V̂ (Ωm)

converging weakly to an element (win, φin(s)) ∈ E2
Ĥ×L2

V̂

as m→∞.

Then for any t ≥ τ ,

wm(t; τ, winm , φ
in
m (s)) ⇀ w(t; τ, win, φin(s)) weakly in Ĥ, (33)

wm(·; τ, winm , φinm (s)) ⇀ w(·; τ, win, φin(s)) weakly in L2(t− h, t; V̂ ). (34)

Based on Lemma 4.4, we set out to prove the following important lemma.

Lemma 4.5. Let assumptions 2.1-2.2 hold, then for any t ∈ R, any sequence
{(wm(t), wmt(s))}m≥1 with (wm(τ), wmτ (s)) = (winm , φ

in
m (s)) ∈ AĤ(Ωm)(τ),m =

1, 2, · · · , there exists (w(t), wt(s)) ∈ AĤ(t) such that

(wm(t), wmt(s))→ (w(t), wt(s)) strongly in E2
Ĥ
. (35)

Proof. From the compactness of pullback attractor, it follows that the sequence
{(winm , φinm (s))}m≥1 is bounded in E2

Ĥ
. Hence, there exist a subsequence (denoted

still by) {(winm , φinm (s))}m≥1 and a (win, φin(s)) ∈ AĤ(τ) such that

(winm , φ
in
m (s)) ⇀ (win, φin(s)) weakly in E2

Ĥ×L2
V̂

as m→∞. (36)

Further, according to Lemma 4.4 and the invariance of the pullback attractor, we
can conclude that for any t ∈ R, there exist a (wm(t), wmt(s)) ∈ AĤ(Ωm)(t) with

(wm(τ), wmτ (s)) ∈ AĤ(Ωm)(τ) and a (w(t), wt(s)) ∈ AĤ(t) with (w(τ), wτ (s)) ∈
AĤ(τ) such that

(wm(t), wmt(s)) ⇀ (w(t), wt(s)) weakly in E2
Ĥ×L2

V̂

as m→∞. (37)

Then, using the same way of proof as Lemma 3.6 in [16], we can obtain that the
convergence relation of (37) is strong. The proof is complete.

With the above lemma, we are ready to state the main result of this section.

Theorem 4.6. Let Assumption 2.1 and Assumption 2.2 hold, then for any t ∈ R,
it holds that

lim
m→∞

distE2

Ĥ

(
AĤ(Ωm)(t),AĤ(t)

)
= 0, (38)

where AĤ(t) and AĤ(Ωm)(t) are the pullback attractor of system (13) and system

(30), respectively.
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Proof. Suppose the assertion (38) is false, then for any m = 1, 2, · · · , there exist
t0 ∈ R, ε0 > 0 and a sequence (wm(t0), wmt0(s)) ∈ AĤ(Ωm)(t0) such that

distE2

Ĥ

(
(wm(t0), wmt0(s)),AĤ(t0)

)
≥ ε0. (39)

However, it follows from Lemma 4.5 that there exists a subsequence

{(wmk
(t0), wmkt0(s))} ⊆ {(wm(t0), wmt0(s))}

such that

lim
k→∞

distE2

Ĥ

(
(wmk

(t0), wmkt0(s)),AĤ(t0)
)

= 0,

which is in contradiction to (39). Therefore, (38) is true. The proof is complete.
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