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Abstract. We consider the anomalous localized resonance induced by neg-

ative elastic metamaterials and its application in invisibility cloaking. We
survey the recent mathematical developments in the literature and discuss two

mathematical strategies that have been developed for tackling this peculiar

resonance phenomenon. The first one is the spectral method, which explores
the anomalous localized resonance through investigating the spectral system of

the associated Neumann-Poincaré operator. The other one is the variational

method, which considers the anomalous localized resonance via calculating the
nontrivial kernels of a non-elliptic partial differential operator. The advan-

tages and the relationship between the two methods are discussed. Finally, we

propose some open problems for the future study.

1. Introduction. Plasmon materials, also known as negative materials, are the
artificially engineered exotic materials. The materials do not exist in nature and
could exhibit negative parameters. There are many important applications for this
plasmon materials, such as plasmon resonance, superlens and absorber. Theoretical
analysis of the negative materials was firstly studied by Veselago [42] in 1968. Smith
et. al. [41] was the first one to realize the negative material in laboratory. The
existence of such negative materials can be found in [23] for the acoustic system,
[39, 40] for Maxwell system and [43] for the elastic system. Generally speaking, the
exotic materials were fabricated by placing arrays of small physical units. Then
for the frequency in a certain regime, the small structure could have the resonance
phenomenon, which then could induce the negative properties for the corresponding
materials. Such research can be found in [5, 23, 30, 39, 43].

Anomalous localized resonance (ALR) is associated with the approach to an
essential singularity, which is different from the usual resonance. The ALR has
the following characteristic features. Firstly, the corresponding wave field oscillates
more and more highly as the loss of the material goes to certain value depending
on the plasmonic configuration. Moreover, the oscillation only exists in a certain
region and outside the region, the field converges to a smooth field. Thirdly, the
resonance heavily depends on the location of the source term. Indeed, there is a
critical radius. When the source is located inside the critical radius, then the ALR
could occur. Otherwise, there is no such the resonance phenomenon. Due to these
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distinctive characteristics, the ALR could induce the cloaking effect; that is when
the phenomenon of ALR occurs, then both the plasmonic configuration and the
source term are invisible with respect to the observation outside certain region.
This cloaking phenomenon is referred to as cloaking due to anomalous localized
resonance (CALR). CALR was first observed and rigorously justified by Milton
and Nicorovici in [32] and was further studied by Ammari et al in [3]. The CALR
has been extensively investigated. We refer to [4, 6, 9, 11, 15, 20, 21, 29] for the
relevant study in acoustics, [8, 10, 17, 18, 19, 27, 28, 24] for elastic system and
[3, 2, 1, 7, 13, 14, 15, 25, 26, 31, 32, 33, 34, 36, 37, 38] for the Maxwell system.

In this paper, we provide an overview of the recent progress on the mathematical
study of anomalous localized resonance in linear elasticity. Mathematically, the
ALR is caused by nontrivial kernels of a non-elliptic partial differential operator
(PDO), which is the Lamé operator that governs the elastic wave propagation. The
presence of the negative parameters of the plasmon material breaks the ellipticity of
the corresponding PDO. Thus the nontrivial solutions of the non-elliptic PDE arise,
which then induce the phenomenon of ALR. The nontrivial solutions are referred to
as perfect polariton waves in the literature. Indeed, finding such nontrivial solutions
is equivalent to investigating the spectrum of the boundary integral operator, called
the Neumann-Poincaré (N-P) operator. Thus there are mainly two methods to
explore the anomalous localized resonance. The first one is the spectral method
(cf. [8, 10, 12, 17, 19, 24]). With the help of potential theory, the wave field can be
expressed by the boundary integral operators. Then by matching the transmission
condition on the boundary, the problem is reduced to investigate the spectral system
of the N-P operator. The other one is the variational approach (cf. [27, 28]). One
should first construct the variation principle for the original problem and then
should find the nontrivial solutions of the corresponding non-elliptic PDE, namely
the perfect plasmon waves. The two methods have their own advantages. For the
spectral method, the CALR can occur for a general source f as long as it is located
inside a critical radius. However, the parameters in the core and the shell should
be a constant. For the variational method, the shape of the core could be arbitrary
and the parameters in the core could be any bounded function. However, to induce
the ALR, the source term f should be supported on a circle. Next, we present the
mathematical formulation for our subsequent discussion.

Let C(x) := (Cijkl(x))Ni,j,k,l=1, x ∈ RN with N = 2, 3, be a four-rank elastic
material tensor defined by

Cijkl(x) := λ(x)δijδkl + µ(x)(δikδjl + δilδjk), x ∈ RN , (1.1)

where δ is the Kronecker delta. In (1.1), λ and µ are two scalar functions and
referred to as the Lamé parameters. For a regular elastic material, the Lamé pa-
rameters satisfy the following two strong convexity conditions,

i). µ > 0 and ii). Nλ+ 2µ > 0. (1.2)

Let D,Ω ⊂ RN with D ⊂ Ω be two bounded domains with connected Lipschitz
boundaries. Assume that the domain RN\Ω is occupied by an elastic material pa-
rameterized by the Lamé constants (λ, µ) satisfying the strong convexity condition
(1.2). The shell Ω\D is occupied by a metamaterial whose Lamé parameters are

given by (λ̂, µ̂), where (λ̂, µ̂) ∈ C2 with =λ̂ > 0,=µ̂ > 0, which shall be properly
chosen in what follows. For the inner core D, the elastic material parameters are

(λ̆, µ̆) fulfilling the condition (1.2). Denote by CRN\Ω,λ,µ to specify the dependence
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of the elastic tensor on the domain RN\Ω and the Lamé parameters (λ, µ). The
same notation also applies for the tensors CΩ\D,λ̂,µ̂ and CD,λ̆,µ̆. Now we introduce

the following elastic tensor

C0 = CRN\Ω,λ,µ + CΩ\D,λ̂,µ̂ + CD,λ̆,µ̆. (1.3)

C0 describes an elastic material configuration of a core-shell-matrix structure with
the metamaterial located in the shell. Let f ∈ H−1(RN )N signify an excitation
elastic source that is compactly supported in RN\Ω. The induced elastic displace-
ment field u = (ui)

N
i=1 ∈ CN corresponding to the configurations described above

is governed by the following PDE system{
∇ ·C0∇su(x) + ω2u(x) = f in RN ,

u(x) satisfies the radiation condition,
(1.4)

where ω ∈ R+ is the angular frequency, and the operator ∇s is the symmetric
gradient given by

∇su :=
1

2

(
∇u +∇ut

)
, (1.5)

with ∇u denoting the matrix (∂jui)
N
i,j=1 and the superscript t signifying the matrix

transpose. In (1.4), the radiation condition designates the following condition as
|x| → +∞ (cf. [22]),

(∇×∇× u)(x)× x

|x|
− iks∇× u(x) =O(|x|1−N ),

x

|x|
· [∇(∇ · u)](x)− ikp∇u(x) =O(|x|1−N ),

(1.6)

where i =
√
−1 and

ks = ω/
√
µ, kp = ω/

√
λ+ 2µ, (1.7)

with λ and µ defined in (1.3).

Next we introduce the following functional for w,v ∈
(
H1(Ω\D)

)N
,

Pλ̂,µ̂(w,v) =

∫
Ω\D
∇sw : C0∇sv(x)dx

=

∫
Ω\D

(
λ̂(∇ ·w)(∇ · v)(x) + 2µ̂∇sw : ∇sv(x)

)
dx,

(1.8)

where C0 and ∇s are defined in (1.3) and (1.5), respectively. In (1.8) and also

in what follows, A : B =
∑3
i,j=1 aijbij for two matrices A = (aij)

3
i,j=1 and B =

(bij)
3
i,j=1. Henceforth, we define

E(u) = =Pλ̂,µ̂(u,u), (1.9)

which signifies the energy dissipation exists energy of the elastic system (1.4). We
are now in a position to present the definition of CALR. We say that polariton
resonance occurs if for any M ∈ R+,

E(u) ≥M, (1.10)

where u depends on the Lamé parameters (λ̂, µ̂). In addition to (1.10), if the
displacement field u further satisfies the following boundedness condition,

|u| ≤ C, when |x| > R̃, (1.11)
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for a certain R̃ ∈ R+, which does not depend on the Lamé parameters (λ̂, µ̂), then
we say that CALR occurs.

To ensure the phenomenon of CALR, the resonance condition (1.10) is crucial.
For the bounded condition (1.11), the core-shell-matrix structure could generally
fulfill this condition. However, if there is no core in the configuration, namely D = ∅
in (1.3), then the bounded condition is not satisfied. Thus in the rest of the paper, we
focus ourself on the resonance condition (1.10). Two methods are discussed to show
the resonance results. The first one is the spectral method. Through investigating
the spectral system of the N-P operator, one can determine the metamaterial in
the shell such that the ALR can occur. Another one is the variational method, via
establishing the primal variational principle and dual variational principle, one can
show the ALR result by finding perfect plasmon waves. At last, we present some
open problems for future discussing.

2. Spectral method. To give a better description of the spectral method, we
first present some preliminary knowledge for the elastic system. Set Y mn with n ∈
N0,−n ≤ m ≤ n to be the spherical harmonic functions. Let SR be the surface of
the ball BR and denote by S for R = 1 for simplicity. We also denote the surface
gradient by the operators ∇S. Let jn(t) and hn(t), n ∈ N0, denote the spherical
Bessel and Hankel functions of the first kind of order n, respectively (cf. [16]). The
elastostatic operator Lλ,µ associated to the Lamé constants (λ, µ) is defined by,

Lλ,µw := µ4w + (λ+ µ)∇∇ ·w, (2.1)

for w ∈ C3. The traction (the conormal derivative) of w on ∂Ω is defined to be

∂νw = λ(∇ ·w)ν + 2µ(∇sw)ν, (2.2)

where ∇s is defined in (1.5) and ν is the outward unit normal to the boundary
∂Ω. From [22], the fundamental solution Γω for the operator Lλ,µ + ω2 can be
decomposed into shear and pressure components

Γω(x) = Γωs (x) + Γωp (x), (2.3)

where

Γωp (x) = − 1

µk2
s

∂i∂jΓ
ω
p (x),

and

Γωp (x) =
1

µk2
s

(k2
sI + ∂i∂j)Γ

ω
p (x),

with ks and kp defined in (1.7). The function

Γωα(x) = Γω(kαx)

with α = p, or s, and

Γω(x) =

−
i
4H

(1)
0 (kα|x|), N = 2,

− e
ikα|x|

4π|x| , N = 3,
(2.4)

where H
(1)
0 (kα|x|) is the Hankel function of the first kind of order 0.

Then the single layer potential associated with the fundamental solution Γω is
defined as

Sω∂Ω[ϕ](x) =

∫
∂Ω

Γω(x− y)ϕ(y)ds(y), x ∈ RN , (2.5)
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for ϕ ∈ L2(∂Ω)N . On the boundary ∂Ω, the conormal derivative of the single layer
potential satisfies the following jump formula

∂Sω∂Ω[ϕ]

∂ν
|±(x) =

(
±1

2
I + (Kω

∂Ω)
∗
)

[ϕ](x) x ∈ ∂Ω, (2.6)

where

(Kω
∂Ω)∗[ϕ](x) = p.v.

∫
∂Ω

∂Γω

∂ν(x)
(x− y)ϕ(y)ds(y), (2.7)

with p.v. standing for the Cauchy principal value and the subscript ± indicating
the limits from outside and inside Ω, respectively. The operator (Kω

∂Ω)∗ is called to
be the Neumann-Poincaré (N-P) operator.

Thus the elastic system (1.4) can be expressed as the following equation system

Lλ̆,µ̆u(x) + ω2u(x) = 0, in D,

Lλ̂,µ̂u(x) + ω2u(x) = 0, in Ω\D,

Lλ,µu(x) + ω2u(x) = f , in RN\Ω,
u|− = u|+, ∂ν̆u|− = ∂ν̂u|+ on ∂D,

u|− = u|+, ∂ν̂u|− = ∂νu|+ on ∂Ω.

(2.8)

In (2.8) and also in what follows, Lλ̂,µ̂ and ∂ν̂ denote the Lamé operator and the

traction operator associated with the Lamé parameters λ̂ and µ̂, and the same
notations hold for the single-layer potential operator ŜωΩ and the N-P operator

(K̂ω
∂Ω)∗.
With the help of the potential theory introduced before, the solution to the

equation system (2.8) can be represented by

u(x) =


S̆ω∂D[ϕ1](x), x ∈ D,

Ŝω∂D[ϕ2](x) + Ŝω∂Ω[ϕ3](x), x ∈ Ω\D,
Sω∂Ω[ϕ4](x) + F(x), x ∈ RN\Ω,

(2.9)

where ϕ1,ϕ2 ∈ L2(∂D)N , ϕ3,ϕ4 ∈ L2(∂Ω)N and F is the Newtonian potential of
the source f defined by

F(x) =

∫
RN

Γω(x− y)f(y)ds(y), x ∈ RN .

One can easily see that the solution given (2.9) satisfies the first three condition in
(2.8) and the last two conditions on the boundary yield that

S̆ω∂D[ϕ1] = Ŝω∂D[ϕ2] + Ŝω∂Ω[ϕ3], on ∂D,

∂ν̆ S̆ω∂D[ϕ1|− = ∂ν̂(Ŝω∂D[ϕ2] + Ŝω∂Ω[ϕ3])|+, on ∂D,

Ŝω∂D[ϕ2] + Ŝω∂Ω[ϕ3] = Sω∂Ω[ϕ4] + F, on ∂Ω,

∂ν̂(Ŝω∂D[ϕ2] + Ŝω∂Ω[ϕ3])|− = ∂ν(Sω∂Ω[ϕ4] + F)|+, on ∂Ω.

(2.10)

With the help of the jump formual in (2.6), one has that the equation system (2.10)
is equivalent to the following integral system,

Aω


ϕ1

ϕ2

ϕ3

ϕ4

 =


0
0
F
∂νF

 , (2.11)



1262 HONGJIE LI

where ∂ν̂i and ∂ν̂e signify the conormal derivatives on the boundaries of D and Ω,
respectively.

Aω =


S̆ω∂D −Ŝω∂D −Ŝω∂Ω 0

− 1
2 + (K̆ω

∂D)∗ − 1
2 − (K̂ω

∂Ω)∗ ∂ν̂i Ŝ
ω
∂Ω 0

0 Ŝω∂D Ŝω∂Ω −Sω∂Ω

0 ∂ν̂e Ŝ
ω
∂D − 1

2 + (K̂ω
∂Ω)∗ − 1

2 − (Kω
∂Ω)∗


From the equation (2.11), one can conclude that if the spectral system of the

N-P operator (Kω
∂Ω)∗ is determined, then the eigensystem of the operator Aω is

determined. Furthermore, by appropriately choosing the metamaterial in the shell

Ω\D, namely the Lamé parameters (λ̂, µ̂), such that 0 is an essential spectrum
of the operator Aω, one can show that the resonance condition (1.10) is satisfied.
For the boundedness condition (1.11), since the configuration is a core-shell-matrix
structure, this condition is generally easy to prove; see [3, 17]. Thus in the following,
we focus ourself on investigating the spectral system of the N-P operator (Kω

∂Ω)∗.
For the spectral method, Ammari et al [3] firstly apply this method to show the

phenomenon of CALR in electrostatics governed by the Laplace equation in two
dimensions. In this case, the corresponding N-P operator is compact and by intro-
ducing a new inner product, one can show that the corresponding N-P operator is
symmetric in the new Hilbert space. Thus Hilbert-Schmidt theorem could be ap-
plied to investigate the spectrum of the N-P operator. However, for the elastostatic,
the N-P operator (Kω

∂Ω)∗ with ω = 0 is no longer compact and is only polynomial
compact ([8, 12]). More precisely, in two dimensions the following polynomial op-
erator is compact (

(K0
∂Ω)∗

)2 − k2
0I, (2.12)

where

k0 =
µ

2(λ+ 2µ)
. (2.13)

Here we would like to mention that the elastostatic denotes the case that the size
of the scatter is small compared with the wavelength of the associated wave field,
namely

ω · diam(Ω)� 1. (2.14)

We also call this quasi-static approximation. By the coordinate transformation, the
quasi-static approximation is equivalent to the situation where the scatter Ω is of
the regular size and the frequency ω � 1. In many researches [8, 10, 17, 27, 28],
the ALR is considered by directly taking ω = 0. In [8], the eigensystem of the
N-P operator (K0

∂Ω)∗ is derived in two dimensions when Ω is a disk and an ellipse.
Indeed, when Ω is a disk, the eigenvalues of the N-P operator are

1

2
, − λ

2(λ+ 2µ)
, ±k0,

where k0 is given in (2.13). The associated eigenfunctions are given as follows

1. 1/2:

(1, 0)T , (0, 1)T , (x2,−x1)T

2. − λ
2(λ+2µ) :

(x1, x2)T ,
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3. k0 [
cosmθ
sinmθ

]
,

[
− sinmθ
cosmθ

]
, m = 2, 3, · · · ,

4. −k0 [
cosmθ
− sinmθ

]
,

[
sinmθ
cosmθ

]
, m = 1, 2, 3, · · · .

When the domain Ω is ellipse, the expression for the eigenvalues of the N-P operator
is complicated and please refer to [8].

Whereas in three dimensions, the spectral system of the N-P operator (K0
∂Ω)∗

is more complex. Nevertheless, the paper [17] exactly shows the spectral system of
N-P when the integral domain is a sphere and strictly verifies the phenomenon of
CALR. Specifically, when Ω is a ball in three dimensions, the eigenvalues of the of
the N-P operator (K0

∂Ω)∗ are given as follows

ξn1 =
3

4n+ 2
,

ξn2 =
3λ− 2µ(2n2 − 2n− 3)

2(λ+ 2µ)(4n2 − 1)
,

ξn3 =
−3λ+ 2µ(2n2 + 2n− 3)

2(λ+ 2µ)(4n2 − 1)
,

(2.15)

where n ≥ 1 are nature numbers. The corresponding eigenfunctions are respectively
T mn , Mm

n and Nm
n , where

T mn (x) =∇SY
m
n (x̂)× νx,

Mm
n (x) =∇SY

m
n (x̂) + nY mn (x̂)νx,

Nm
n (x) =

amn
2n− 1

(−∇SY
m
n−1(x̂) + nY mn−1(x̂)νx).

(2.16)

From [35], one has that the function T mn , Mm
n and Nm

n form an complete basis on
L2(S)N . From the expressions of the eigenvalues of the N-P operator (K0

∂Ω)∗ in
(2.15), one can conclude that the polynomial operator given in (2.12) is no longer
compact in three dimensions, since the eigenvalues

ξn1 =
3

4n+ 2
→ 0, as n→∞.

Thus one may suspect that the corresponding polynomial compact operator in three
dimensions should have the following form

(K0
∂Ω)∗

((
(K0

∂Ω)∗
)2 − k2

0I
)
,

with k0 given in (2.13). Indeed, this conclusion has been verified in [12]. Here, we
briefly introduce how to calculate the spectrum of the N-P operator (K0

∂Ω)∗ in three
dimensions. Let x and y be vectors on ∂Ω. From the definition of the fundamental
solution Γ0(x) in (2.3) and straightforward computations one can show that

∂νxΓ0(x− y) = −b1K1(x,y) + K2(x,y), (2.17)

where

K1(x,y) =
νx(x− y)T − (x− y)νTx

4π|x− y|3
,

K2(x,y) =b1
(x− y) · νx
4π|x− y|3

I3 + b2
(x− y) · νx
4π|x− y|5

(x− y)(x− y)T ,

(2.18)
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with

b1 =
µ

2µ+ λ
and b2 =

3(µ+ λ)

2µ+ λ
. (2.19)

Then by the definition of the N-P operator (K0
∂Ω)∗ in (2.7), one has that

(K0
∂Ω)∗[ϕ](x) =− b1

∫
∂D

K1(x,y)ϕ(y)ds(y) +

∫
∂D

K2(x,y)ϕ(y)ds(y)

:=L1 + L2.
(2.20)

Since Ω is a central ball, for x,y ∈ ∂Ω, one has that

(νx − νy)(x− y)t = (x− y)(νx − νy)t

and thus

K1(x,y) =
νx(x− y)t − (x− y)νtx

4π|x− y|3
,

=
(νx − νy + νy)(x− y)t − (x− y)(νx − νy + νy)t

4π|x− y|3
,

=
νy(x− y)t − (x− y)νty

4π|x− y|3
.

(2.21)

Next, one can verify that

(x− y) · νy
|x− y|3

= − 1

2r0

1

|x− y|
. (2.22)

By using vector calculus identity, (2.20) and (2.22), one can obtain that

L1 = −b1
∫
∂Ω

∇xΓ0(x− y)× νy ×ϕ(y) +
1

2r0
Γ0(x− y)ϕ−

∇xΓ0(x− y)(ν ·ϕ)ds(y)

= −b1
(
∇× SΩ[ν ×ϕ](x) +

1

2r0
SΩ[ϕ](x)−∇SΩ[ν ·ϕ](x)

)
,

(2.23)

where

SΩ[φ](x) :=

∫
∂Ω

Γ0(x− y)φ(y)dsy,

with Γ0(x) defined in (2.4). Then direct calculation shows that

K2(x,y) = − b1
2r0

Γ0(x− y)I3 +
b2
2r0

(x− y)(x− y)t

4π|x− y|3

= − b2
2r0α2

Γ0(x− y) + (
b2α1

2r0α2
− b1

2r0
)Γ0(x− y)I3.

(2.24)

Hence, there holds

L2 = − b2
2r0α2

∫
∂Ω

Γ0(x− y)ϕ(y)ds(y)+(
b2α1

2r0α2
− b1

2r0

)∫
∂Ω

Γ0(x− y)ϕ(y)ds(y)

= − b2
2r0α2

SΩ[ϕ](x) + (
b2α1

2r0α2
− b1

2r0
)SΩ[ϕ](x).

(2.25)
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Finally, by combining (2.23) and (2.25), we have

(K0
∂Ω)∗[ϕ](x) =− b1 (∇× SΩ[ν ×ϕ](x)−∇SΩ[ν ·ϕ](x))

− b2
2r0α2

SΩ[ϕ](x) + (
b2α1

2r0α2
− b1
r0

)SΩ[ϕ](x).
(2.26)

Moreover, the eigensystem of the operator SΩ has the following expression

SΩ[T mn ] = − r0

2n+ 1
T mn ,

SΩ[Mm
n ] = − r0

(2n− 1)
Mm

n ,

SΩ[Nm
n+1] = − r0

2n+ 3
Nm
n+1,

(2.27)

where T mn , Mm
n and Nm

n are given in (2.16). Then with the help of the jump
formula defined in (2.6), one can finally derive the spectrum of the N-P operator
(K0

∂Ω)∗.
As mentioned before, [8, 10, 17, 27, 28] consider the static case by directly taking

ω ≡ 0. Moreover, to induce the ALR, these research break off both the two strong
convexity conditions shown in (1.2). Later, the paper [24] strictly verifies the ALR
for the quasi-static approximation case, namely ω � 1. Besides, in [24], only one
of the two strong convexity conditions in (1.2) is required to be violated in order
to induce the ALR. This extensively extends the restriction on the matematerial in
the shell and makes the fabrication of the matematerial comparatively easier.

Recently, the paper [19] considers the CALR for the elastic system in three
dimensions within finite frequency beyond the quasi-static approximation; that is
the quasi-static approximation ω � 1 is not required. The spectral method is
utilized to show the CALR. In this case, the N-P operator (Kω

∂Ω)∗ is neither compact
or symmetric in any Hilbert space. Thus, showing the ALR is difficult for the elastic
system within finite frequency beyond the quasi-static approximation. The critical
point is again the spectrum of the N-P operator. In [19], the eigensystem of N-P
operator (Kω

∂Ω)∗ is explicitly derived in three dimensions when Ω is a ball. In detail,
the eigensystem of the N-P operator (Kω

∂Ω)∗ have the following expression,:

(Kω
∂Ω)
∗

[T mn ] = λ1,nT mn , (2.28)

(Kω
∂Ω)
∗

[Umn ] = λ2,nUmn , (2.29)

(Kω
∂Ω)
∗

[Vmn ] = λ3,nVmn , (2.30)

where

λ1,n = bn − 1/2,

and if d1n 6= 0,

λ2,n =
c1n + d2n − 1 +

√
(d2n − c1n)2 + 4d1nc2n

2
,

λ3,n =
c1n + d2n − 1−

√
(d2n − c1n)2 + 4d1nc2n

2
,

Umn =
(
c1n − d2n +

√
(d2n − c1n)2 + 4d1nc2n

)
Mm

n−1 + 2d1nNm
n+1,

Vmn =
(
c1n − d2n −

√
(d2n − c1n)2 + 4d1nc2n

)
Mm

n−1 + 2d1nNm
n+1;
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if d1n = 0,

λ2,n =c1n − 1/2, λ3,n = d2n − 1/2,

Umn =Mm
n−1, Vmn = c2nMm

n−1 + (d2n − c1n)Nm
n+1,

with T mn ,Mm
n and Nm

n given in (2.16), and the parameters bn, c1n, d1n, c2n and d2n

defined with the help of the the spherical Bessel functions jn(t) and Hankel functions
of the first kind hn(t). Then the phenomenon of CALR could be demonstrated with
the help of the explicit expression of the spectral system of the N-P operator (Kω

∂Ω)∗.
As aforementioned, the CALR results are different for the spectral method and

the variational method. For the spectral method, the CALR results can be sum-
marized for both the quasi-static approximation and beyond the quasi-static ap-
proximation as follows. Consider the configuration (C0, f) given in (1.4). Suppose

that the source f is compactly supported in RN\Ω. Then if the parameters (λ̆, µ̆)

in the core D and the parameters (λ̂, µ̂) in the shell Ω\D are chosen appropriately,
then both the configuration and source are invisible provided the source f is located
inside the critical radius r∗. If the source f is located outside the critical radius r∗,

the ALR will not occur. We would like to mention that the parameters (λ̆, µ̆) in the

core D as well as the parameters (λ̂, µ̂) in the shell Ω\D should be constant, and
the CALR can occur for a general source f as long as it is located inside a critical
radius.

3. Variational method. In this section, we discuss the anomalous localized reso-
nance for the linear elastic system from the variational perspective. The papers [27]
and [28] apply this method to explore the ALR in two and three dimensions. To
utilize the variational method, one needs to first establish the variational principles.
For that purpose, the configuration C0 in (1.3) should be modified accordingly.
More precisely, the parameters should be chose as follows(

A(x) + iδ
)
(λ, µ), x ∈ RN , N = 2, 3, (3.1)

where δ ∈ R+ denotes a loss parameter and (λ, µ) are two Lamé constants satisfying
the strong convexity condition (1.2). In (3.1), the function A(x) has a matrix-shell-
core representation in the following form

A(x) =


+1, x ∈ D,

c, x ∈ Ω\D,

+1, x ∈ RN\Ω,

(3.2)

where c is a negative constant denoting the metamaterial in the shell. Thus the
dissipation energy defined in (1.9) becomes

E(u) = δPλ,µ(u,u),

where Pλ,µ(u,u) is defined in (1.8) with integration domain replaced by RN . Fur-
thermore, we decompose the wave field of the system (1.4) into the real part and
imaginary part, namely,

u = v + i
1

δ
w.

Then the system (1.4) is equivalent to solve the following equation system

LλA,µAv − Lλ,µw = f , (3.3)

LλA,µAw + δ2Lλ,µv = 0, (3.4)
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where
(λA(x), µA(x)) := A(x)(λ, µ), x ∈ RN (3.5)

with A is given in (3.2). Based on the equations (3.3) and (3.4), one can construct
the primal variational principle and dual variational principle for the system (1.4).
In detail, the primal variational principle is established by treating the equation
(3.3) as a constrain and doing the variation for the equation (3.4). Conversely, the
dual variational principle is established by treating the equation (3.4) as a constrain
and doing the variation for the equation (3.3). Next, we explain this in details. First,
we introduce the following Banach space

S :=
{
u ∈ H1

loc(RN )N ; ∇u ∈ L2(RN )N×N and

∫
BR0

u = 0
}
, (3.6)

endowed with the Sobolev norm for u = (ui)
N
i=1,

‖u‖S :=

(∫
RN

N∑
i=1

‖∇ui‖2 dV +

∫
BR0

‖u‖2 dV

)1/2

. (3.7)

Furthermore, we define the following two energy functionals

Iδ(v,w) :=
δ

2
Pλ,µ(v,v) +

1

2δ
Pλ,µ(w,w) for (v,w) ∈ S × S, (3.8)

Jδ(v,ψ) :=

∫
R3

f ·ψ − δ

2
Pλ,µ(v,v)− δ

2
Pλ,µ(ψ,ψ) for (v,ψ) ∈ S × S. (3.9)

Then, we consider the following optimization problems:

Minimize I(v,w) over all pairs (v,w) ∈ S × S
subject to the PDE constraint LλA,µAv − Lλ,µw = f ;

(3.10)

and

Maximize J(v,ψ) over all pairs (v,ψ) ∈ S × S
subject to the PDE constraint LλA,µAψ + δLλ,µv = 0.

(3.11)

The optimization problems are referred to as (3.10) and (3.11), respectively, as the
primal and dual variational problems for the elastostatic system (1.4), or equiva-
lently (3.3)-(3.4). Then we have the following variational principles; see [27] and
[28] .

Theorem 3.1. There holds the primal variational principle that the problem (3.10)
is equivalent to the elastic problem (1.4) in the following sense. The infimum

inf
{
I(ṽ, w̃); LλA,µA ṽ − Lλ,µw̃ = f

}
is attainable at a pair (v,w) ∈ S × S. The minimizing pair (v,w) verifies that
the function u := v + iδ−1w is the unique solution to the elastic problem (1.4) and
moreover one has

E(u) = I(v,w). (3.12)

Similarly, there holds the dual variational principle that the problem (3.11) is
equivalent to the elastic problem (1.4) in the following sense. The supremum

sup
{
J(ṽ, ψ̃);LλA,µAψ̃ + δLλ,µṽ = 0

}
is attainable at a pair (v,ψ) ∈ S × S. The maximizing pair (v,ψ) verifies that
the function u := v + iψ is the unique solution to the elastic problem (1.4), and
moreover one has

E(u) = J(v,ψ). (3.13)
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After establishing the variational principle, then one can apply the dual varia-
tional principle to show that ALR and primal variational principle to show none
resonance result. The essential issue for applying the variational principle is to find
the perfect plasmon waves, namely the nontrivial solution of a non-elliptic PDE as
aforementioned. Indeed, the non-elliptic PDE has the following form:

LλA,µAψ = 0,

ψ|− = ψ|+, ∂νλA,µAψ|− = ∂νλA,µAψ|+ on ∂BR,

ψ(x) = O(‖x‖−1) as ‖x‖ → ∞,

(3.14)

where the function ψ ∈ H1
loc(RN )N : RN → RN and (λA, µA) is given of the form

(3.5) with

A(x) =

{
c, ‖x‖ ≤ R,
+1, ‖x‖ > R.

(3.15)

In [27], the perfect plasmon waves in two dimensions are obtained. If

c := − λ+ µ

λ+ 3µ
, (3.16)

then the perfect plasmon waves ψ = ψ̂k, k = 1, 2, . . . have the following form

ψ̂k(x) :=



[
rk cos(kθ)

−rk sin(kθ)

]
, r ≤ R,

R2k

[
kα(r2−R2)

rk+2 cos((k + 2)θ) + 1
rk

cos(kθ)
kα(r2−R2)

rk+2 sin((k + 2)θ)− 1
rk

sin(kθ)+

]
, r > R;

(3.17)

or

ψ̂k(x) :=



[
rk sin(kθ)

rk cos(kθ)

]
, r ≤ R,

R2k

[
1
rk

sin(kθ) + kα(r2−R2)
rk+2 sin((k + 2)θ)

1
rk

cos(kθ)− kα(r2−R2)
rk+2 cos((k + 2)θ)

]
, r > R;

(3.18)

where

α = −c. (3.19)

If

c = −λ+ 3µ

λ+ µ
, (3.20)

then the perfect plasmon waves ψ = ψ̂k, k = 2, 3, . . . can be written as

ψ̂k(x) :=



[
rk cos(kθ)− kα(r2 −R2)rk−2 cos((k − 2)θ)

rk sin(kθ) + kα(r2 −R2)rk−2 sin((k − 2)θ)

]
r ≤ R,

R2k

 r−k cos(kθ)

r−k sin(kθ)

 r > R;

(3.21)
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or

ψ̂k(x) :=



 −rk sin(kθ) + kα(r2 −R2)rk−2 cos((k − 2)θ)

rk cos(kθ) + kα(r2 −R2)rk−2 sin((k − 2)θ)

 , r ≤ R,

R2k

 −r−k sin(kθ)

r−k cos(kθ)

 , r > R;

(3.22)

where α is also given of the form in (3.19).
In three dimensions, the paper [28] presents the perfect plasmon waves. The same

as the eigensystem of the N-P operator in three dimensions, the perfect plasmon
waves in three dimensions are very complicated. The parameter c in (3.15) is not a
constant any more and should be chosen depending on the order n as follows:

c1 = −1− 3

n− 1
,

c2 = − (2n+ 2)((n− 1)λ+ (3n− 2)µ)

(2n2 + 1)λ+ (2 + 2n(n− 1))µ
,

c3 = − (2n2 + 4n+ 3)λ+ (2n2 + 6n+ 6)µ

2n((n+ 2)λ+ (3n+ 5)µ)
.

(3.23)

The corresponding perfect plasmon waves are very complicated and we choose not
to present them here. Please refer to [28].

As mentioned before, finding the perfect plasmon waves of the corresponding non-
elliptic PDE is equivalent to investigate the spectral system of the N-P operator.
Next, we elaborate the relationship between the perfect plasmon waves and the
spectral system of the N-P operator. Let us consider the non-elliptic PDE in (3.14)
again. With the help of the potential theory, the solution, namely the perfect
plasmon waves can be written as

ψ = S0
∂Ω[ϕ](x) =

∫
∂Ω

Γ0(x− y)ϕ(y)ds(y), x ∈ RN , (3.24)

where Γ0(x) is the fundamental solution defined in (2.3), and ϕ ∈ H−1/2(∂BR)N .
With the help of the jump formula given in (2.6) and using the transmission condi-
tion across ∂BR for ψ, one can show that

(K0
∂Ω)∗[ϕ] =

c+ 1

2(c− 1)
ϕ. (3.25)

Clearly, if we can choose the parameter c such that (c+1)/(2(c−1)) is an eigenvalue
of the Neumann-Poincaré operator (K0

∂Ω)∗, then the function ψ defined in (3.24)
is a solution of the non-elliptic PDE in (3.14), with ϕ being the corresponding
eigenvector. Conversely, if we can appropriately choose the constant c such that
the non-elliptic PDE in (3.14) has an nontrivial solution ψ, then (c+1)/(2(c−1)) is
an eigenvalue of the Neumann-Poincaré operator (K0

∂Ω)∗. Indeed, this has provided
a way to investigate the spectrum of the N-P operator.

For the variational method, the CALR results can be summarized as follows.
Consider the configuration (C0, f), where C0 is given in (3.1) and the source f is

supported on a circle in RN\Ω. Then if the parameters (λ̆, µ̆) in the core D and

the parameters (λ̂, µ̂) in the shell Ω\D are chosen appropriately, then both the
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configuration and source are invisible provided the source f is located inside the
critical radius r∗. If the source f is located outside the critical radius r∗, the ALR

will not occur. We would like to mention that the parameters (λ̆, µ̆) in the core
D could be a arbitrary bounded function and the shape of the core D could be
arbitrary, which is different from the case for the spectral method. However, the
limitation the CALR can occur for the source f supported on a line.

4. Some open problems. The paper [19] is the only research investigating the
CALR for the system (1.4) within finite frequency beyond the quasi-static approx-
imation. However, the authors only consider the radial geometry. Thus how to
extend the phenomenon of CALR for the system (1.4) to the general geometry is
still open. For the variational method, the papers [27] and [28] only establish the
variational principle for the elastostatic system, namely the frequency ω = 0. Thus
how to build the variational principle for the system (1.4) within finite frequency
beyond the quasi-static approximation is worthy investigating. The system (1.4)
is the linear elastic system. However, many physical problem are nonlinear elastic
system. Thus considering the ALR for the nonlinear elastic system is also very
important.
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