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Abstract. In this paper, we construct a modular grad-div stabilization method
for the Navier-Stokes/Darcy model, which is based on the first order Back-

ward Euler scheme. This method does not enlarge the accuracy of numerical

solution, but also can improve mass conservation and relax the influence of
parameters. Herein, we give stability analysis and error estimations. Finally,

by some numerical experiment, the scheme our proposed is shown to be valid.

1. Introduction. Numerical methods of Navier-Stokes/Darcy have attracted a lot
of attention. So far, a great deal of numerical methods are proposed to solve this
model by virtue of different ways, such as finite element methods[12], discontinuous
Galerkin finite element methods[5], two-grid methods[1, 15, 16], modified two-grid
methods[6], partitioned time stepping method[7], characteristic stabilized finite el-
ement methods[8], mortar finite element methods [2], grad-div stabilized projection
finite element method[14], modular grad-div method[11] and so on. The grad-div
stabilized method is first introduced in [4], which can penalize mass conservation
and improve the solution quality efficiently. Recently, the effectiveness of the grad-
div stabilized method has been proved in finite element simulation of Stokes and
Navier-Stokes equation[10]. However, this method leads to a singular matrix stem-
ming from grad-div term, and the larger stabilized parameter will cause solver
breakdown. As a alternative method for grad-div stabilization, the modular grad-
div stabilization method is introduced in [3]. The modular grad-div stabilization
method for the Stokes/Darcy model is proposed in [13]. The modular grad-div
stabilization method is not only easy to implement, but also avoids the influence of
large parameters on the solution as well as preserving the advantages of the grad-div
stabilization method.

In this paper, we extended the modular grad-div stabilization methods from
Stokes/Darcy model to Navier-Stokes/Darcy model. Compare to Navier-Stokes
model, the convection term causes some difficulties in theoretical analysis and nu-
merical simulation. To deal with convection term, the assumption u · nf > 0 is
used[6, 9]. Our proposed method not only relax the influence of parameters but
also improves the mass conservation.
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The rest of this paper is organized as follows: In section 2, some notations and
the time-dependent Navier-Stokes/Darcy model are introduced; In section 3, we
give the modular grad-div stabilization method, and stability analysis is provided
; In section 4, under some regularity assumptions imposed on the true solution,
error estimates are also given; In section 5, Some numerical experiments are given
to verify the theoretical result, we compared with the standard scheme, standard
grad-div scheme and modular grad-div scheme in the numerical experiment; Finally
some conclusions are obtained in section 6.

2. Functional setting of the time-dependent Navier-Stokes/Darcy model.
The model we considered is confined in a bounded domain Ω ∈ Rd(d = 2 or 3),
which is decomposed into a fluid flow region Ωf and porous media flow region Ωp,

see figure 1. Here, Ωf ∩ Ωp = ∅, Ωf ∪ Ωp = Ω and Ωf ∩ Ωp = Γ, Γf = ∂Ωf ∩ ∂Ω,
Γp = ∂Ωp ∩ ∂Ω. In the sake of simplicity, we assume that ∂Ωf and ∂Ωp are smooth
enough throughout this paper.
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Figure 1. The global domain Ω.

The time-dependent Navier-Stokes equation govern the fluid flow in Ωf is ex-
pressed as

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f1(x, t) in Ωf × (0, T ),

∇ · u = 0 in Ωf × (0, T ), (1)

u(x, 0) = u0(x) in Ωf .

here u = u(x, t) is the fluid velocity filed, p = p(x, t) is the pressure, function f1 is
the external force, and coefficient ν > 0 is the kinetic viscosity.

The Darcy equation govern the porous media flow in Ωp is expressed as :

S0
∂φ

∂t
+∇ · up = f2(x, t) in Ωp × (0, T ),

up = −K∇φ in Ωp × (0, T ), (2)

φ(x, 0) = φ0(x) in Ωp.

here the first equation is the saturated flow model and the second equation is the
Darcy’s law. S0 is the specific mass storativity coefficient, up = up(x, t) the velocity,
φ = φ(x, t) the hydraulic head, K is the hydraulic conductivity tensor. We assume
that K is a positive symmetric tensor and the function f2 is a source term.
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We know that

φ = z +
pp
ρg

is the piezometric head, where pp denotes the dynamic pressure, ρ is the height
from a reference level.

Substituting the second formula of (2) into the first formula of (2), the following
Darcy equation can be obtained:

S0
∂φ

∂t
−∇ · (K∇φ) = f2(x, t) in Ωp × (0, T ). (3)

The interface conditions of the conservation of mass, balance of forces, and the
Beavers-Joseph-Saffman condition are imposed on the interface Γ by:

u · nf + up · np = 0 on Γ× (0, T ) (4)

p− νnf
∂u

∂nf
= gφ on Γ× (0, T ), (5)

− ντi
∂u

∂nf
=

α
√
gν

√
τi ·Kτi

u · τi, i = 1, · · ·, d− 1 on Γ× (0, T ), (6)

where, nf and np are the unit outward normal vectors on ∂Ωf and ∂Ωp, respectively,
and τi, i = 1, · · ·, d− 1, are the orthonormal tangential unit vectors on the interface
Γ, g is the gravitational acceleration, α is a positive parameter depending on the
properties of the porous medium and must be determined experimentally.

For simplicity of analysis, we impose the following boundary conditions on Γf ,Γp:

u = 0 on Γf × (0, T )

φ = 0 on Γp × (0, T )
(7)

In this paper, we assume that:

u · nf > 0 on Γ. (8)

The assumption is not hold for general case of Navier-Stokes/Darcy Model. But
for the gentle river, the water infiltration satisfies the assumption u ·nf > 0 on the
interface. It is a special case of Navier-Stokes/Darcy Model.

Next, Hillbert spaces will be introduced:

Hf = {v ∈ (H1(Ωf ))d : v = 0 on Γf},
Hp = {ψ ∈ H1(Ωp) : ψ = 0 on Γp},
Q = L2(Ωf ).

where (·, ·)D denotes the L2 inner produce in the domain D, with corresponding
norm || · ||D. In the rest of this paper, we neglect the subscript. The spaces Hf and
Hp are equipped with the following norms:

||u||Hf
= ||∇u||L2(Ωf ) =

√
(∇u,∇u)Ωf

∀u ∈ Hf ,

||φ||Hp
= ||∇φ||L2(Ωp) =

√
(∇φ,∇φ)Ωf

∀φ ∈ Hp.
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Some discrete norms are defined as,

||w||2L2(0,T ;Hs(Ωf,p)) = ∆t

N∑
n=0

||wn||2Hs(Ωf,p),

||w||L∞(0,T ;Hs(Ωf,p)) = max
0≤n≤N

||wn||Hs(Ωf,p).

Due to ∇ · u = 0, we define a trilinear form af,c(·; ·, ·) as follows

af,c(u;v,w) = ((u · ∇)v,w)f +
1

2
(∇ · u,v ·w)f

=
1

2
((u · ∇)v,w)f −

1

2
((u · ∇)w,v)f +

1

2
〈v ·w,u · nf 〉Γ,

(9)

under the condition (8), we have

af,c(u;v,v) ≥ 0. (10)

Then, we have the following estimates for af,c:

af,c(u,v,w) ≤ C1||∇u||||∇v||||∇w||,
af,c(u,v,w) ≤ C2||u||||v||2||∇w||.

(11)

In addition, we recall the Poincaré inequality and trace inequality. There exist
positive constants cp and ct which only depend on the domain Ωf and exist c̃p and
c̃t which only depend on the domain Ωp.

||v||L2 ≤ cp||v||f ||v||L2(Γ) ≤ ct||v||
1
2

L2(Ωf )||v||
1
2

H1(Ωf ),

||ψ||L2 ≤ c̃p||ψ||p ||ψ||L2(Γ) ≤ c̃t||ψ||
1
2

L2(Ωp)||ψ||
1
2

H1(Ωp),

||∇ · u|| ≤
√
d||∇u||, d = 2, or3.

Thus, the weak formulation of the time-dependent Naiver-Stokes/Darcy model
is to find u : [0, T ]→ Hf , p : [0, T ]→ Q,φ : [0, T ]→ Hp, such that

(ut,v)f + af (u,v) + b(v, p) + aΓ(v, φ) + af,c(u;u, v) = (f1,v)f ∀v ∈ Hf ,

b(u, q) = 0 ∀q ∈ Q, (12)

gS0(φt, ψ)p + ap(φ, ψ)− aΓ(u, ψ) = g(f2, ψ)p ∀ψ ∈ Hp.

Where

af (u,v) = ν(D(u), D(v)) +

d−1∑
i=1

∫
Γ

α

√
νg

τi ·Kτi
(u · τi)(v · τi)ds,

ap(φ, ψ) = g(K∇φ,∇ψ)p,

aΓ(v, φ) = g

∫
Γ

φv · nfds,

af,c(u,u,v) = ((u · ∇)u,v)f ,

b(v, p) = −(p,∇ · v)f .
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Bilinear forms af and ap are continuous and coercive:

af (u,v) ≤ C3||u||Hf
||v||Hf

,

af (u,u) ≥ ν||u||2Hf
,

ap(φ, ψ) ≤ gλmax||φ||Hp
||ψ||Hp

,

ap(φ, φ) ≥ gλmin||φ||2Hp

(13)

The interface coupling term aΓ satisfies the following estimates:

|aΓ(u, φ)| ≤ C4||∇u||f ||∇φ||p

|aΓ(u, φ)| ≤ C5g
2h−1||u||2f + ||∇φ||2p,

|aΓ(u, φ)| ≤ C6g
2h−1||φ||2p + ||∇u||2f

(14)

Lemma 2.1. We assume that

f1 ∈ L2(0, T ;L2(Ωf )d), f2 ∈ L2(0, T ;L2(Ωp)
d), K ∈ L∞(Ωp)

d×d,

and K is uniformly bounded and positive definite in Ωp, there exist two constants
kmin > 0, kmax > 0 such that

0 < kmin|x|2 ≤ Kx · x ≤ kmax|x|2 ∀ x ∈ Ωp.

Furthermore, u ∈ L2(Ωp)
d, φ0 ∈ L2(Ωp), therefore any solution (u, p, φ) ∈(

L2(0, T ;Hf ) ∩ H1(0, T ;L2(Ωf )d)
)
× L2(0, T ;Q) × L2(0, T ;Hp) of (1)-(7) is also

the solution to the equation (12). The converse of the statement is also true.

Lemma 2.2. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, dn be nonnegative
mumbers for n ≥ 0 such that for N ≥ 1. If

aN + ∆t

N∑
n=0

bn ≤ ∆t

N−1∑
n=0

dnan + ∆t

N∑
n=0

cn +H

then for all ∆t > 0,

aN + ∆t

N∑
n=0

bn ≤ exp(∆t
N−1∑
n=0

dn)(∆t

N∑
n=0

cn +H).

3. The modular grad-div stabilization algorithms. We construct τh is a qua-
siuniform triangulation of the domain Ωf

⋃
Ωp, depending on a positive parameter

h > 0, which is made up of triangles if d = 2 or tetrahedra if d = 3. Then we define
the finite element subspace of Hf , Q, Hp as Hfh, Qh, Hph. We assume that the
space pairs (Hfh, Qh) satisfies the discrete LBB condition: there exists a positive
constant β independent of h, such that ∀qh ∈ Qh, ∃vh ∈ Hfh, vfh 6= 0

inf
qh∈Qh

sup
vh∈Hfh

(qh,∇ · vfh)f
||qh||Q||vfh||Hf

≥ β. (15)

Next, we divide time interval [0, T] into: 0 = t0 < t1 < · · · < tN = T with
∆t = ti − ti−1. This leads to tm = m∆t and T = N∆t as a uniform distribution
of discrete time levels. Let (un+1

h , pn+1
h , φn+1

h ) denote the discrete approximation of
(uh(tn+1), ph(tn+1), φh(tn+1)). The modular grad-div scheme our proposed can be
written as:
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Algorithm 1 (The modular grad-div scheme).
For ∀vh ∈ Hfh, qh ∈ Qh, and ψh ∈ Hph.

Step1. Given unh ∈ Hfh, pnh ∈ Qh, and φnh ∈ Hph, find ûn+1
h , pn+1

h , φn+1
h satisfying:

(
ûn+1
h − unh

∆t
,vh) + af (ûn+1

h ,vh) + b(vh, p
n+1
h ) + aΓ(vh, φ

n
h)

+ af,c(u
n
h; ûn+1

h ,vh) = (fn+1
1 ,vh)

b(ûn+1
h , qh) = 0

gS0(
φn+1
h − φnh

∆t
, ψh) + ap(φ

n+1
h , ψh)− aΓ(unh, ψh) = (fn+1

2 , ψh)

(16)

Step2. Given ûn+1
h ∈ Hfh, find un+1

h ∈ Hfh satisfying:

(un+1
h ,vh) + (β + γ∆t)(∇ · un+1

h ,∇ · vh) = (ûn+1
h ,vh) + β(∇ · unh,∇ · vh) (17)

Lemma 3.1. For Algorithm 1, we can obtain the following result,

||ûn+1
h || = ||un+1

h ||2 + ||ûn+1
h − un+1

h ||+ 2γ∆t||∇ · un+1
h ||2

+ β(||∇ · un+1
h ||2 − ||∇ · unh||2 + ||∇ · (un+1

h − unh)||2).

Proof. Refer to Lemma 6 of [3] for proof details.

Theorem 3.2. (Unconditional Stability) For any N > 1, the solution of the Al-
gorithm 1, satisfy

||uNh ||2 + β||∇uNh ||2 + gs0||φNh ||2 +

N−1∑
n=0

(||ûn+1
h − unh||2 + ||ûn+1

h − un+1
h ||2

+ β||∇ · (un+1
h − unh)||2 + gs0||φn+1

h − φnh||2) +

N−1∑
n=0

2γ∆t||∇ · un+1
h ||2

+

N−1∑
n=0

ν∆t||∇ûn+1
h ||2 +

N−1∑
n=0

λming∆||∇φn+1
h ||2

≤ C(∆t

N−1∑
n=0

(
2c2p
ν
||fn+1

1 ||2 +
2c2p
λming

||fn+1
2 ||2) + ||u0

h||2 + β||∇ · u0
h||2 + gs0||φ0

h||2),

Where the constant C = exp(∆t
N−1∑
n=0

max 2C5g
hλmin

, 2C6g
2

hν ).

Proof. Taking vh = 2∆ûn+1
h , qh = 2∆pn+1

h and ψh = 2∆φn+1
h in (16), using the

property (10), and we can obtain af,c(u
n
h, û

n+1
h , ûn+1

h ) ≥ 0. Then seeing [13] Theo-
rem 3.1 for a detail proof.

4. Error analysis. In this section, we will give some error estimates of our pro-
posed method. Denote un, pn and φn be the true solution at time tn = n∆t.
Assuming that the true solution have the following regularities,

u ∈ L∞(0, T ;Hf ∩Hk+1(Ωf )d),ut ∈ L∞(0, T ;Hk+1(Ωf )d),utt ∈ L2(0, T ;L2(Ωf )d).

p ∈ L2(0, T ;Q ∩Hk(Ωf )).

φ ∈ L∞(0, T ;Hp ∩Hk+1(Ωp)), φt ∈ L∞(0, T ;Hk+1(Ωp)), φtt ∈ L2(0, T ;L2(Ωp))

(18)
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Then define a projection operator [12]:

Ph : (u(t), p(t), φ(t)) ∈ Hf ×Q×Hp → (Phu(t), Php(t), Phφ(t)) ∈ Hfh ×Qh ×Hph.

when some regularity conditions on (u(t), p(t), φ(t)) are statisfied, (Phu(t), Php(t),
Phφ(t)) is an approximation of (u(t), p(t), φ(t)), with the following properties:

||Phu(t)− u(t)||f ≤ Chk+1||u(t)||Hk+1(Ωf),

||∇(Phu(t)− u(t))||f ≤ Chk||u(t)||Hk+1(Ωf),

||Php(t)− p(t)||f ≤ Chk+1||p(t)||Hk+1(Ωf),

||Phφ(t)− φ(t)||p ≤ Chk+1||φ(t)||Hk+1(Ωp),

||∇(Phφ(t)− φ(t))||p ≤ Chk||φ(t)||Hk+1(Ωp)

(19)

Next, we define the following error equations

enu = un − unh = (un − Phun)− (unh − Phun) = ηnu − θnu,
enû = un − ûnh = (un − Phun)− (ûnh − Phun) = ηnu − θnû
enp = pn − pnh = (pn − Phpn)− (pnh − Phpn) = ηnp − θnp
enφ = φn − φnh = (φn − Phφn)− (φnh − Phφn) = ηnφ − θnφ

(20)

Lemma 4.1. For Algorithm 1, The following inequality holds

||θn+1
û ||2 ≥ ||θn+1

u ||2 + ||θn+1
û − θn+1

u ||2 + β(||∇ · θn+1
u ||2 − ||∇ · θnu||2

+
1

2
||∇ · (θn+1

u − θnu)||2) + γ∆t||∇ · θn+1
u ||2 − β∆t||∇ · θnu||2

− dβ(1 + 2∆t)||∇ηu,t||2L2(tn,tn+1;L2(Ωf )) − dγ∆t||∇ηn+1
u ||2

Proof. For the detailed proof process, please refer to Lemma 10 in [3].

Theorem 4.2. Under the regularity assumption (18). Suppose β > 0, then there
exists a constant C > 0, such that

||eNu ||2 + β||∇ · eNu ||2 + ||eNφ ||2 +

N−1∑
n=0

(||en+1
û − en+1

u ||2 + ||en+1
û − enu||2

+
β

2
||∇ · (en+1

û − enu)||2 + ||en+1
φ − enφ||2) +

N−1∑
n=0

γ∆t||∇ · en+1
u ||2

+

N−1∑
n=0

ν∆t||∇en+1
û ||2 +

N−1∑
n=0

gλmin∆t||∇en+1
φ ||2

≤ C(h2k + ∆t2 + ∆th2k)

Proof. The true solution satisfies the following relations:

(
un+1 − un

∆t
,vh) + af (un+1,vh) + b(vh, p

n+1) + aΓ(vh, φ
n+1) + af,c(u

n,un+1,vh)

= (fn+1
1 ,vh) + (

un+1 − un

∆t
− un+1

t ,vh)− af,c(un+1 − un,un+1,vh)

b(un+1, qh) = 0

gs0(
φn+1 − φn

∆t
, ψh) + ap(φ

n+1, ψh)− aΓ(un+1, ψh)

= (fn+1
2 , ψh) + gs0(

φn+1 − φn

∆t
− φn+1

t , ψh).

(21)
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Subtracting (16) from (21), we arrive that

(
en+1
û − enu

∆t
,vh) + af (en+1

û ,vh) + b(vh, e
n+1
p ) + aΓ(vh, φ

n+1 − φnh)

+ af,c(u
n,un+1,vh)− af,c(unh, ûn+1

h ,vh)

= (
un+1 − un

∆t
− un+1

t ,vh)− af,c(un+1 − un,un+1,vh)

b(en+1
û , qh) = 0

gso(
en+1
φ − enφ

∆t
, ψh) + ap(e

n+1
φ , ψh)− aΓ(un+1 − unh, ψh)

= gs0(
φn+1 − φn

∆t
− φn+1

t , ψh)

(22)

Setting vh = 2∆tθn+1
û , qh = 2∆tθn+1

p , and ψh = 2∆tθn+1
φ in (22), the resulting

equations are added, this yields:

||θn+1
û ||2 − ||θnu||2 + ||θn+1

φ ||2 − ||θnφ ||2 + ||θn+1
û − θnu||2 + ||θn+1

φ − θnφ ||2

+ 2∆taf (θn+1
û , θn+1

û ) + 2∆tap(θ
n+1
φ , θn+1

φ )

= 2(ηn+1
u − ηnu, θn+1

û ) + 2gs0(ηn+1
φ − ηnφ , θn+1

φ )

+ 2∆taf (ηn+1
u , θn+1

û ) + 2∆tap(η
n+1
φ , θn+1

φ )

+ 2∆taf,c(u
n,un+1, θn+1

û )− 2∆taf,c(u
n
h, û

n+1
h , θn+1

û )

+ 2∆taΓ(θn+1
û , φn+1 − φnh)− 2∆taΓ(un+1 − unh, θ

n+1
φ )

− 2∆t(
un+1 − un

∆t
− un+1

t , θn+1
û ) + 2∆taf,c(u

n+1 − un,un+1, θn+1
û )

− 2∆tgs0(
φn+1 − φn

∆t
− φn+1

t , θn+1
φ )

(23)

Next, we bound each term on the right hand side of (23), by virtue of Cauchy-
Schwarz-Young inequality,

2(ηn+1
u − ηnu, θn+1

û ) ≤
10c2p
ε1
||ηu,t||2L2(tn,tn+1;L2(Ωf )) +

ε1∆t

10
||∇θn+1

û ||2

2gs0(ηn+1
φ − ηnφ , θn+1

φ ) ≤
6gs2

0c̃
2
p

λmin
||ηφ,t||2L2(tn,tn+1;L2(Ωp)) +

gλnim∆t

6
||∇θn+1

φ ||2

2∆taf (ηn+1
u , θn+1

û ) ≤ 2C3∆t||∇ηn+1
u ||||∇θn+1

û ||

≤ 10C2
3∆t

ε2
||∇ηn+1

u ||2 +
ε2∆t

10
||∇θn+1

û ||2

2∆tap(η
n+1
φ , θn+1

φ ) ≤ 2gλmax||∇ηn+1
φ ||||∇θn+1

φ ||

≤ 6gλ2
max∆t

λmin
||∇ηn+1

φ ||2 +
gλmin∆t

6
||∇θn+1

φ ||2

2∆t(
un+1 − un

∆t
− un+1

t , θn+1
û )− 2∆taf,c(u

n+1 − un,un+1, θn+1
û )

≤ C∆t2

ε3
(||utt||2L2(tn,tn+1;L2(Ωf )) + ||∇ut||2L2(tn,tn+1;L2(Ωf ))) +

ε3∆t

10
||∇θn+1

û ||2
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2∆tgs0(
φn+1 − φn

∆t
− φn+1

t , θn+1
φ )

≤
6gs0

2c̃2p∆t
2

λmin
||φtt||2L2(tn,tn+1;L2(Ωp)) +

gλmin∆t

6
||∇θn+1

φ ||2
(24)

For the interface terms, we treat them as follows:

2∆taΓ(θn+1
û , φn+1 − φnh)

= 2∆taΓ(θn+1
û , ηnφ)− 2∆taΓ(θn+1

û , θnφ) + 2∆taΓ(θn+1
û , φn+1 − φn)

2∆taΓ(un+1 − unh, θ
n+1
φ )

= 2∆taΓ(ηnu, θ
n+1
φ )− 2∆taΓ(θnu, θ

n+1
φ ) + 2∆taΓ(un+1 − un, θn+1

φ )

(25)

So, we have the following estimates:

2∆taΓ(θn+1
û , ηnφ) ≤ 10C2

4∆tε4||∇ηnφ ||2 +
ε4∆t

10
||∇θn+1

û ||2

2∆taΓ(θn+1
û , θnφ) ≤ 2∆t(C6g

2h−1||θnφ ||2 + ||θn+1
û ||2)

≤ 10C6g
2∆t

hε5
||θnφ ||2 +

ε5∆t

10
||∇θn+1

û ||2

2∆taΓ(θn+1
û , φn+1 − φn) ≤ 2∆t(C6g

2h−1||φn+1 − φn||2 + ||∇θn+1
û ||2)

≤ 10C6g
2∆t2

hε6
||φt||2L2(tn,tn+1;L2(Ωp)) +

ε6∆t

10
||∇θn+1

û ||2

2∆taΓ(ηnu, θ
n+1
φ ) ≤ 6C2

4∆t

gλmin
||∇ηnu||2 +

gλmin∆t

6
||∇θn+1

φ ||2

2∆taΓ(θnu, θ
n+1
φ ) ≤ 2∆(C5g

2h−1||θnu||2 + ||∇θn+1
φ ||2)

≤ 6C5g∆t

hλmin
||θnu||2 +

gλmin∆t

6
||∇θn+1

φ ||2

2∆taΓ(un+1 − un, θn+1
φ ) ≤ 2C4∆t||∇(un+1 − un)||||∇θn+1

φ ||

≤ 6C2
4∆t2

gλmin
||∇ut||2L2(tn,tn+1;L2(Ωf )) +

gλmin∆t

6
||∇θn+1

φ ||2

(26)

For the trilinear form,we have

2∆taf,c(u
n,un+1, θn+1

û )− 2∆taf,c(u
n
h, û

n+1
h , θn+1

û )

= 2∆taf,c(η
n
u;un+1, θn+1

û )− 2∆taf,c(θ
n
u;un+1, θn+1

û )

+ 2∆taf,c(û
n+1
h ; ηn+1

u , θn+1
û ) + 2∆taf,c(u

n
h − ûn+1

h , ηn+1
u , θn+1

û ),

(27)

then

2∆taf,c(η
n
u;un+1, θn+1

û ) ≤ 2C1∆t||∇ηnu||||∇un+1||||∇θn+1
û ||

≤ 2C1∆t(
||∇ηnu||2||∇un+1||2

2
+
||∇θn+1

û ||2

2
)

≤ 10C2
1∆t

ε7
||∇ηnu||2||∇un+1||2 +

ε7∆t

10
||∇θn+1

û ||2

2∆taf,c(θ
n
u;un+1, θn+1

û ) ≤ 2C2∆t||θnu||||un+1||2||∇θn+1
û ||
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≤ 10C2
2∆t

ε8
||un+1||22||θnu||2 +

ε8∆t

10
||∇θn+1

û ||2

2∆taf,c(û
n+1
h ; ηn+1

u , θn+1
û ) ≤ 2C1∆t||∇ûn+1

h ||||∇ηn+1
u ||||∇θn+1

û ||

≤ 10C2
1∆t

ε9
||∇ûn+1

h ||2||∇ηn+1
u ||2 +

ε9∆t

10
||∇θn+1

û ||2

2∆taf,c(u
n
h − ûn+1

h , ηn+1
u , θn+1

û ) ≤ 2C1∆t||∇(unh − ûn+1
h )||||∇ηn+1

u ||||∇θn+1
û ||

≤ 10C2
1∆t

ε10
||∇(unh − ûn+1

h )||2||∇ηn+1
u ||2 +

ε10∆t

10
||∇θn+1

û ||2

≤ 20C2
1∆t

ε10
(||∇unh||2 + ||∇ûn+1

h ||2)||∇ηn+1
u ||2 +

ε10∆t

10
||∇θn+1

û ||2

(28)

Combining Lemma 4.1 with the properties (13), we obtain

||θn+1
u ||2 − ||θnu||2 + ||θn+1

φ ||2 − ||θnφ ||2 + β||∇ · θn+1
u ||2 − β||∇ · θnu||2

+ ||θn+1
û − θnu||2 + ||θn+1

û − θn+1
u ||2 + ||θn+1

φ − θnφ ||2 +
β

2
||∇ · (θn+1

u − θnu)||2

+ γ∆t||∇ · θn+1
u ||2 + 2ν∆t||∇θn+1

û ||2 + 2gλmin∆t||∇θn+1
φ ||2

≤ 2(ηn+1
u − ηnu , θn+1

û ) + 2gs0(ηn+1
φ − ηnφ , θn+1

φ ) + 2∆taf (ηn+1
u , θn+1

û )

+ 2∆tap(η
n+1
φ , θn+1

φ ) + 2∆taf,c(η
n
u;un+1, θn+1

û )− 2∆taf,c(θ
n
u;un+1, θn+1

û )

+ 2∆taf,c(û
n+1
h ; ηn+1

u , θn+1
û ) + 2∆taf,c(u

n
h − ûn+1

h , ηn+1
u , θn+1

û )

+ 2∆taΓ(θn+1
û , ηnφ)− 2∆taΓ(θn+1

û , θnφ) + 2∆taΓ(θn+1
û , φn+1 − φn)

− 2∆taΓ(ηnu , θ
n+1
φ ) + 2∆taΓ(θnu, θ

n+1
φ )− 2∆taΓ(un+1 − un, θn+1

φ )

− 2∆t(
un+1 − un

∆t
− un+1

t , θn+1
û ) + 2∆taf,c(u

n+1 − un,un+1, θn+1
û )

− 2∆tgs0(
φn+1 − φn

∆t
− φn+1

t , θn+1
φ ) + β∆t||∇ · θnu||2

+ dβ(1 + 2∆t)||∇ηu,t||2L2(tn,tn+1;L2(Ωf )) + dγ∆t||∇ηn+1
u ||2.

(29)

Inserting the above results into (29) and let ε1 = ε2 = · · · · · · = ε10 = ν, we can
get the following estimates:

||θn+1
u ||2 − ||θnu||2 + β||∇ · θn+1

u ||2 − β||∇ · θnu||2 + ||θn+1
φ ||2 − ||θnφ ||2

+ ||θn+1
û − θnu||2 + ||θn+1

û − θn+1
u ||2 + ||θn+1

φ − θnφ ||2 +
β

2
||∇ · (θn+1

u − θnu)||2

+ γ∆t||∇ · θn+1
u ||2 + ν∆t||∇θn+1

û ||2 + gλmin∆t||∇θn+1
φ ||2

≤
10c2p
ν
||ηu,t||2L2(tn,tn+1;L2(Ωf )) + (

10C2
3∆t

ν
+ dγ∆t)||∇ηn+1

u ||2

+
6gS2

0 c̃
2
p

λmin
||ηφ,t||2L2(tn,tn+1;L2(Ωp)) +

6gλ2
max∆t

λmin
||∇ηn+1

φ ||2

+
6C2

4∆t

gλmin
||∇ηnu||2 + +

10C2
4∆t

ν
||∇ηnφ ||2

+ (
6C5g∆t

hλmin
+

10C2
2∆t

ν
||un+1||22)||θnu||2 + ∆tβ||∇ · θnu||2 +

10C6g
2∆t

hν
||θnφ ||2

+ (
10C2

1∆t

ν
||∇ûn+1

h ||2 +
20C2

1∆t

ν
(||∇unh||2 + ||∇ûn+1

h ||2))||∇ηn+1
u ||2
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+
10C2

1∆t

ν
||∇un+1||2||∇ηnu||2 +

C∆t2

ν
||utt||2L2(tn,tn+1;L2(Ωf ))

+ (
C∆t2

ν
+

6C2
4∆t2

gλmin
)||∇ut||2L2(tn,tn+1;L2(Ωf ))

+
6gS2

0 c̃
2
p∆t

2

λmin
||φtt||2L2(tn,tn+1;L2(Ωp)) +

10C6g
2∆t2

hν
||φt||2L2(tn,tn+1;L2(Ωp))

+ dβ(1 + 2∆t)||∇ηu,t||2L2(tn,tn+1;L2(Ωf ))

(30)

Denote C∗ = exp(∆t
N−1∑
n=0

max( 6C5g
hλmin

,
10C2

2

ν ||u||
2
∞,2, β,

10C6g
2

hν )). Sum (30) from

n = 0 to n = N − 1, together with Theorem 3.2 and Lemma 2.2, we get the
following inequality:

||θNu ||2 + β||∇ · θNu ||2 + ||θNφ ||2 +

N−1∑
n=0

(||θn+1
û − θnu||2 + ||θn+1

û − θn+1
u ||2

+
β

2
||∇ · ||θn+1

û − θnu||2 + ||θn+1
φ − θnφ ||2) + γ∆t

N−1∑
n=0

||∇ · θn+1
u ||2

+ ν∆t

N−1∑
n=0

||∇θn+1
û ||2 + gλmin∆t

N−1∑
n=0

||∇θn+1
φ ||2

≤ C∗[
10c2p
ν
||ηu,t||2L2(0,T ;L2(Ωf )) + (

10C2
3

ν
+

6C2
4

gλmin
+ dγ +

1

ν
)||∇ηu||2

+
6gS2

0 c̃
2
p

λmin
||ηφ,t||2L2(0,T ;L2(Ωf )) + (

6λ2
maxg

λmin
+

10C2
4

ν
)||∇ηnφ ||2

+
C∆t2

ν
||utt||2L2(0,T ;L2(Ωf )) + (

C∆t2

ν
+

6C2
4∆t2

gλmin
)||∇ut||2L2(0,T ;L2(Ωf ))

+
6gS2

0 c̃
2
p∆t

2

λmin
||φtt||2L2(0,T ;L2(Ωp)) +

10C6g
2∆t2

hν
||φt||2L2(0,T ;L2(Ωp))

+ dβ(1 + 2∆t)||∇ηu,t||2L2(0,T ;L2(Ωf )) + ||θ0
u||2 + β||∇ · θ0

u||2 + ||θ0
φ||2]

(31)

Finally, we have

||eNu ||2 + β||∇ · eNu ||2 + ||eNφ ||2 +

N−1∑
n=0

(||en+1
û − en+1

u ||2 + ||en+1
û − enu||2

+
β

2
||∇ · (en+1

û − enu)||2 + ||en+1
φ − enφ||2) +

N−1∑
n=0

γ∆t||∇ · en+1
u ||2

+

N−1∑
n=0

ν∆t||∇en+1
û ||2 +

N−1∑
n=0

gλmin∆t||∇en+1
φ ||2

≤ C(h2k + ∆t2 + ∆th2k)

(32)

where C > 0 is a constant.

Remark 1. Here we can propose a second-order backward differentiation for-
mula(BDF2) methods for Stokes/Darcy model and Navier-Stokes/Darcy model,
respectively. We will analyze it in the future.
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Algorithm 2 (The BDF2 modular grad-div scheme for Stokes/Darcy model).
For ∀vh ∈ Hfh, qh ∈ Qh, and ψh ∈ Hph.

Step1. Given un−1
h ,unh ∈ Hfh, pnh ∈ Qh, and φn−1

h , φnh ∈ Hph, find ûn+1
h , pn+1

h , φn+1
h

satisfying:

(
3ûn+1

h − 4unh + un−1
h

2∆t
,vh) + af (ûn+1

h ,vh) + b(vh, p
n+1
h )

+ aΓ(vh, 2φ
n
h − φn−1

h ) = (fn+1
1 ,vh),

b(ûn+1
h , qh) = 0,

gS0(
3φn+1

h − 4φnh + φn−1
h

2∆t
, ψh) + ap(φ

n+1
h , ψh)− aΓ(2unh − un−1

h , ψh)

= (fn+1
2 , ψh).

(33)

Step2. Given ûn+1
h ∈ Hfh, find un+1

h ∈ Hfh satisfying:

(
3un+1

h − 3ûn+1
h

2∆t
,vh) + β(∇ ·

3un+1
h − 4unh + un+1

h

2∆t
,∇ · vh)

+ γ(∇ · un+1
h ,∇ · vh) = 0.

(34)

Algorithm 3 (The BDF2 modular grad-div scheme for Navier-Stokes/Darcy
model).

For ∀vh ∈ Hfh, qh ∈ Qh, and ψh ∈ Hph.

Step1. Given un−1
h ,unh ∈ Hfh, pnh ∈ Qh, and φn−1

h , φnh ∈ Hph, find ûn+1
h , pn+1

h , φn+1
h

satisfying:

(
3ûn+1

h − 4unh + un−1
h

2∆t
,vh) + af (ûn+1

h ,vh) + b(vh, p
n+1
h )

+ af,c(2u
n
h − un−1

h , ûn+1
h ,vh)aΓ(vh, 2φ

n − φn−1) = (fn+1
1 ,vh)

b(ûn+1
h , qh) = 0

gs0(
3φn+1

h − 4φnh + φn−1
h

2∆t
, ψh) + ap(φ

n+1
h , ψh)− aΓ(2un − un−1, ψh)

= (fn+1
2 , ψh)

(35)

Step2. Given ûn+1
h ∈ Hfh, find un+1

h ∈ Hfh satisfying:

(
3un+1

h − 3ûn+1
h

2∆t
,vh) + β(∇ ·

3un+1
h − 4unh + un−1

h

2∆t
,∇ · vh)

+ γ(∇ · un+1
h ,∇ · vh) = 0

(36)

5. The numerical results. In this section, We will compare two grad-div schemes
with standard scheme respectively to justify the results of the theoretical analysis.
We implement numerical experiments using software Freefem++.

The domain Ω be decomposed into Ωf = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1)
with the interface Γ = (0, 1)× {1}. The exact solution is taken as follows:

(u1, u2) =
(

[x2(y − 1)2 + y]cos(t), [−2

3
x(y − 1)3]cos(t) + [2− πsin(πx)]cos(t)

)
,

p = [2− πsin(πx)]sin(0.5πy)cos(t),

φ = [2− πsin(πx)][1− y − cos(πy)]cos(t).
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Here, the parameters n, ρ, g, ν,K, S0 and α are set to 1. The initial conditions,
boundary conditions, and the forcing terms follows the exact solution, and we set
h = ∆t in experiments. The famous Taylor-Hood element(P2-P1) for the Navier-
Stokes problem and the piecewise quadratic polynomials(P2) for the Darcy flow are
used, respectively. The numerical results are presented in Table 1-Table 4.

Table 1 ,Table 2 and Table 3 shows the error and convergence order of velocity
u, pressure p and hydraulic head φ by using the standard scheme, standard grad-
div scheme and modular grad-div scheme, respectively. where γ = 1 and β = 0.2
for standard grad-div scheme and modular grad-div scheme. By observation and
comparison, it can be found that the divergence velocity errors of the standard grad-
div and modular grad-div scheme are smaller than that of the standard scheme, and
the modular grad-div scheme is more accurate. Moreover both numerical results is
consist with the theoretical analysis.

Next, we set up a numerical experiment by using the different parameter K to
show the superiority of modular grad-div scheme. Let’s fix ∆t = h = 1

40 . Ta-
ble 4 shows the ||∇ · eu||f for the standard scheme without stabilization, stan-
dard grad-div scheme and modular grad-div scheme with hydraulic conductity
K = I,0.1I,0.01I,0.001I. We observe that the divergence of velocity error for all
three schemes increase with the decrease of K. Yet their growth is relatively small,
in particular there’s almost no change in modular grad-div scheme. Such results
are also consistent with our theoretical analysis.

Table 1 Numerical results at time T=1 for the standard scheme.
1
h ||eu||L2 uL2rate ||eu||f uHf

rate ||∇ · eu||L2 divuL2rate
4 0.0158906 0.0352882 0.042823
8 0.00847782 0.906408 0.0161872 1.12433 0.00978438 2.12983
16 0.00436799 0.956724 0.00805077 1.00765 0.00230198 2.08761
32 0.00221516 0.979559 0.00404369 0.993454 0.000609902 1.91623
64 0.00111531 0.989966 0.00203112 0.993397 0.000131401 2.2146
1
h ||eφ||L2 φL2rate ||eφ||p φHp

rate ||ep||L2 pL2rate
4 0.0404764 0.0653031 0.500655
8 0.0182477 1.14937 0.0182649 1.83808 0.25716 0.961151
16 0.00927325 0.976568 0.00777467 1.23222 0.130569 0.977854
32 0.00468612 0.984681 0.00370671 1.06864 0.0658343 0.987901
64 0.00235584 0.992152 0.00183888 1.01131 0.0330473 0.994307

Table 2 Numerical results at time T=1 for the standard grad-div scheme .
1
h ||eu||L2 uL2rate ||eu||f uHf

rate ||∇ · eu||L2 divuL2rate
4 0.015796 0.0349907 0.0332181
8 0.00847477 0.898313 0.0161629 1.11429 0.00795638 2.06179
16 0.00436788 0.956241 0.00804856 1.00588 0.00192546 2.04691
32 0.00221515 0.979529 0.00404351 0.993123 0.000551883 1.80277
64 0.00111531 0.98996 0.0020311 0.993347 0.000112974 2.28837
1
h ||eφ||L2 φL2rate ||eφ||p φHprate ||ep||L2 pL2rate
4 0.040389 0.0652755 0.512196
8 0.018239 1.14694 0.0182613 1.83775 0.257443 0.992443
16 0.00927265 0.975973 0.00777441 1.23198 0.130582 0.979297
32 0.00468607 0.984603 0.00370669 1.0686 0.0658357 0.988014
64 0.00235583 0.992143 0.00183888 1.0113 0.0330474 0.994333
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Table 3 Numerical results at time T=1 for the modular grad-div scheme .
1
h ||eu||L2 uL2rate ||eu||f uHf

rate ||∇ · eu||L2 divuL2rate
4 0.0161227 0.0422295 0.00546336
8 0.00849478 0.924445 0.0186987 1.17531 0.00133666 2.03116
16 0.00436888 0.959313 0.00849608 1.13807 0.000250008 2.41859
32 0.00221526 0.979787 0.0042394 1.00294 7.36766e-005 1.7627
64 0.00111531 0.990031 0.00204415 1.05236 6.93936e-006 3.40833
1
h ||eφ||L2 φL2rate ||eφ||p φHp

rate ||ep||L2 pL2rate
4 0.0403803 0.0652523 0.500113
8 0.0182335 1.14706 0.0182584 1.83747 0.257152 0.959633
16 0.00927249 0.975563 0.00777436 1.23176 0.13057 0.977798
32 0.00468608 0.984575 0.0037067 1.06859 0.0658345 0.987908
64 0.00235583 0.992146 0.00183888 1.01131 0.0330473 0.994311

Table 4 The ||∇ · eu||f for the standard without grad-div scheme, standard
scheme and grad-div scheme with vaying hydraulic conductivity tensor K.

K Non-stabilized Standard grad-div modular grad-div
I 0.0169173 0.0108085 0.077557

1e− 1I 0.0202974 0.0130437 0.0775562
1e− 2I 0.0464625 0.0301879 0.077554
1e− 3I 0.124238 0.0824988 0.0775521

6. Conclusion. In this paper, we extend the grad-div stabilized method from
Stokes/Darcy model to Navier-Stokes/Darcy model. Stability and error estimates
are provided. Numerical experiments confirm the theoretical analysis, and show
that the modular grad-div scheme is more efficient than that of the standard grad-
div scheme.
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