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ABSTRACT. In recent years, many numerical methods have been extended to
fractional integro-differential equations. But most of them ignore an important
problem. Even if the input function is smooth, the solutions of these equations
would exhibit some weak singularity, which leads to non-smooth solutions,
and a deteriorate order of convergence. To overcome this problem, we first
study in detail the singularity of the fractional integro-differential equation, and
then eliminate the singularity by introducing some smoothing transformation.
We can maximize the convergence rate by adjusting the parameters in the
auxiliary transformation. We use the Jacobi spectral-collocation method with
global and high precision characteristics to solve the transformed equation. A
comprehensive and rigorous error estimation under the L°°- and Lia_ﬂ—norms
is derived. Finally, we give specific numerical examples to show the accuracy of
the theoretical estimation and the feasibility and effectiveness of the proposed
method.

1. Introduction. With more attention to integro-differential equations, the nu-
merical calculation of fractional integro-differential equations has been also paid
more attention by many scholars. Fractional integro-differential equations have
a profound physical background and a rich connotation. For various phenomena
in damping laws, diffusion process[31], earthquake model[13], fluid-dynamic traffic
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model[14], mathematical physics and engineering[28, 37|, chemistry, acoustics, fluid
and continuum mechanics[8], psychology[l, 35] and other fields, fractional integro-
differential equations are suitable models.

In recent years, several numerical methods were proposed to solve the fractional
integro-differential equation. The most common methods are the Adomian decom-
position method [25], collocation method [33] and fractional differential transform
method [2]. In [16], Huang proposed a method for solving linear fractional integro-
differential equations by Taylor’s expansion, including Fredholm type and Volterra
type. Yang et al. [34] used the Laplace decomposition method to solve the fractional
integro-differential equation. M. Jani et al. [17] proposed a numerical method for
solving fractional integro-differential equations with nonlocal boundary conditions
by using Bernstein polynomials.

The fractional differential operators are nonlocal and have weakly singular ker-
nels. The fractional differential equations are more complicated than the integer-
order counterparts. In recent years, many numerical methods have been extended
to fractional integro-differential equations. Most of the analyses have some unrea-
sonable limitations on solutions in order to achieve high accuracy. When these
equations are transformed into the equivalent Volterra integral equations of the sec-
ond kind with a weakly singular kernel, even if the input function is smooth, the
solution of the equation usually exhibits a weak singularity at z = 0. Which leads
to a non-smooth solution and a lower order of convergence.

So far, in order to solve the fractional differential equations and fractional integro-
differential equations with non-smooth solutions, several methods have been pro-
posed. One method is to approximate the fractional derivative operators in the gov-
erning differential equation directly and then the corresponding collocation schemes
are derived [3, 18]. Another method is to rewrite the governing differential equation
in an equivalent integral equation, solved by the corresponding collocation method
[22, 36, 21]. The integral collocation method is more stable than the differential
collocation method. The reason is that numerical differentiation is sensitive to
small perturbations in the input. But numerical integration is essentially stable
[10]. Therefore, when using the differential collocation method to solve differential
equations, we need to employ efficient integration preprocessing to overcome the ill-
conditioning problem. It is necessary with increasing of the number of collocation
nodes [15]. We would like to note that Hao proposed an efficient finite difference
algorithm to solve fractional boundary value problems with non-smooth solutions
in [12].

For many types of equations with non-smooth solutions, the idea of introducing
suitable transformations has been considered. It would eliminate the singularity in
the transformed equation, and lead to a high convergence order. For the second
kind of Volterra integral equation, Chen and Tang [9] proposed a variable trans-
formation to eliminate the singularity of the solution. With a strict error analysis,
the method is shown to have a spectral convergence. Pedas [19] made a proper
transformation, and used the piecewise polynomial collocation method to solve the
resulting equation on a mildly graded grid or a uniform grid. Baratella and Orsi [7]
used a variable transformation to turn the solution of the linear Volterra integral
equation of the second kind smooth, and solved it by the standard product inte-
gration method. Tang [20] used a variable transformation and the Jacobi spectral
collocation method to solve the Abel-Volterra integral equation of the second kind.
For the linear Fredholm integral equation of the second kind, Monegato and Scuderi
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[26] proposed a non-linear transformation to eliminate the singularity of the equa-
tion. Ghoreishi [11] used a variable transformation and a spectral method to solve
the multi-order fractional differential equation. Pedas et al. [27] regularized the
solution of fractional initial and boundary value problems by a suitable smoothing
transformation. They solved the transformed equation by a piecewise polynomial
collocation method on a mildly graded grid and on a uniform grid. Zaky [38] used a
smoothing transformation and the Jacobi spectral collocation method to solve the
rational-order fractional terminal value problems with non-smooth solutions.

Based on the above works, we apply the smoothing transformation and the Jacobi
spectral collocation method with high accuracy and global characteristics to the
following fractional integro-differential equations.

D2y(z) = /KZT TYdr + g(z), z€lI=10,T],
9(0) = A, (1)

where §(z) is the source function, and K(z,7) is the kernel function. The given
function §(z) and K (z,7) are continuous on their respective domains 0 < 7 < z < T
and Ar = {(2,7) € R2: 0 <7< 2<T}, A € R. DY is the Caputo fractional
derivative of rational-order o, 0 < av < 1.

Let T'(-) denote the Gamma function. For any positive integer n with n — 1 <
a < n, the Caputo derivative is defined as follows:

« o 1 ? n—a—1 g(n
sz(z)—m/a (z—71) i )(T)dT, z € [a,b].

In addition, the Riemann-Liouville fractional integral I of order « is defined by

ITf(z) = ﬁ /Z(z — 7)Y f(r)dr, 2z €]a,b].
We note that,
n—1 Zk
I2(D7 f(2)) :f(z)*Zf(k)(a)g- (2)
k=0

The layout of this paper as follows: In Section 2, we introduce the basic proper-
ties of Jacobi polynomials and Jacobi-Gauss interpolation. The fractional integral
differential equation is transformed into an equivalent integral equation, in Section
3. A smoothing transformation of variable is defined for the new equation so that
the solution is smooth, in Section 3. The Jacobi spectral-collocation method is de-
fined in Section 4. The convergence analysis of the collocation method is derived in
Section 5. In Section 6, we give several numerical examples verifying the accuracy
of the theoretical estimation and the feasibility and effectiveness of the method.
Finally, some concluding remarks are drawn in Section 7.

2. Some properties of Jacobi polynomials. In this section, we introduce some
basic properties about Jacobi polynomials and Jacobi-Gauss interpolation that are
related to spectral-collocation methods [30].

The Jacobi polynomials, denoted by P2#(z), are orthogonal with the Jacobi
weight function w®?(z) = (1 — z)*(1 + x)” over A = (—1,1), namely,

(PO (), Py (@) s = / Pf ()PP ()P () da = 406 5, (3)
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where d; ; is the Kronecker function and

op @ (i +a+ )T +B+1)
L Qi+ a+B+DT(E+ )T da+pf+1)

(4)

For a given positive integer N > 0, let PN denote the space of all polynomials of
degree not exceeding N. We denote by {x? @B ¥, the set of quadrature nodes
and weights of the Jacobi-Gauss integration. The Jacobi-Gauss integration formula
has the form

N

/A (@) (@)dz ~ 3 o). (5)

=0

The above quadrature formula (5) is exact for any ¢(z) € Pony1. Hence, by (3),
ZJ’ﬂ VOV TP @ Py =P85, YO <i+j< 2N+ 1L (6)

For any p1 € C'(A), the Jacobi-Gauss interpolation operator Io"f, C(A) = Py is
determined uniquely by

RSy = p(@s?), 0<j<N. (7)

The interpolation condition (7) implies that Ia v = p for all 4 € Py. On the

other hand, since I u € Pn, we can write

Z

athu Zﬂaﬁ‘] 75 7 AOéﬁ

’L
1 7=0

In particular, for 8 = 0, the set of Jacobi polynomials is reduced to J&(x). There-

. ,0 ,0 0
fore, we can also write = = 257, wf = @} and I v = Iy

3. Setting the problem. In this section, we use the definition and related prop-
erties of Riemann-Liouville fractional integral and Caputo fractional derivative to
transform the original fractional equation with initial conditions into the second
kind of Volterra integral equation with weak singular kernel. We show the equa-
tion has a non-smooth solution. Then we apply the smoothing transformation to
eliminate the singularity of the solution at the left endpoint.

First, we use (2) to transform the original equation (1) into an equivalent Volterra
integral equation with weak singular kernel.

Using Dirichlet’s formula

/OZ /OS (s, 7)drds = /OZ /TZ o(s, 7)dsdr,
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we derive
gz) = A+ ﬁ /OZ(Z —5)*"1g(s)ds
—l—ﬁ /OZ ((Z — S)a*1 4 /:(z — T)O‘*lf((T, s)d7->g(3)d5. (9)

The equation (9) is transformed into the following Volterra integral equation of
the second kind by the linear transformation w = =2 w € [0, 1],

5 = £+ [ = o K (e = 5) + 5,90 (5)ds, (10)
where
flz) = A+ ﬁ/o (z—8)*"1g(s)ds,
Kw(z—s)+s,8) = ﬁ (1 + /o (z—s)(1 —w)* 'K (w(z — s) + s, s)dw).

Lemma 3.1. The kernel function K(w(z — s) + s,s) in (10) is continuous and
bounded.

Proof. We have
K(w(z—s)+s,s)

= ﬁ (1 + /Ol(z —5)(1 —w)* T K(w(z —s) +s, s)dw)
= ﬁ (1 + /Ol(z —5)(1 —w)* 'K (w(z — s) + s, s)dw).

For z € [0,T] and s € [0, 2], z — s € [—2,T]. It is known that K(w(z — s) + s, 5)
is bounded and continuous on Ap. Let K(w(z — s) + s, s) have the maximum and
minimum values on A7, Qe and Qumin, respectively. There is

ﬁ(l—szmB(l,a)) < K(w(z—s)+s,5)
1
< — (14T +B(1
-~ P(a) ( + QTTLIL.L ( 7a)))
where B(-,-) is the B8 function: B(&,n) = fol 711 — s)""d¢. The lemma is
proved. O

We give some lemmas on smoothness of solution of the general Volterra integral
equation of the second kind.

Lemma 3.2. [23] Consider the following general Volterra integral equation of the
second kind:

1 : ¥ _
y(z) = f(2) + W/o (z —8)"K(z,8,y(s))ds, ze€lI=10,T], (11)

where v > —1, f: I — R™ is a continuous bounded function, K : S x R™ — R" is
a continuous bounded function, and {S = (z,5): 0 < s <z <T}.

1. If f(2) and K(z,s,y(s)) are differentiable, the integral equation has a unique
solution y(z) that is also differentiable on (0,T];
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2. If f(2) = F(z,2'77), F(21,22) and K(z,5,y(s)) are differentiable, the integral
equation has a unique solution y(z) that satisfies

y(z) =Y(z, ZHJY)’
where Y (z1, 22) is differentiable at (0,0).

We note that the solution of equation (14) is not smooth at z = 0 in general.

It can be obtained from the above lemma that the Eq.(10) has a unique solution
y(z), which is differentiable on z € (0, 7] and is not necessarily smooth at z = 0. For
0 < 1—a < 1, the equation has a singular term (z —s)*~!. By the literature [5], for
any positive integer m, if K(r(w(z — s)),s) and f(z) are continuous differentiable
functions of order m in the corresponding area, there exists a function Y = Y (z,v)
possessing continuous derivatives of order m, such that the solution of the Eq.(10)
can be written as y(z) = Y (z, 2*). This indicates that when z — 0, (™) (z) ~ 20~™,
and thus y(z) ¢ C™[0,T).

Lemma 3.3. [4] Let 0 < a < 1. We assume that f € C™(I), K € C™(D) for
some m > 0.

1. If m = 0, the Volterra integral equation,
Wo) = )+ [ o= PR oy(sds, 1> >0z E L (12)
0

possesses a unique solution y(z) € C(I). This solution has the representation

/st zel,

where the resolvent kernel R,,(z,s) of the kernel (z—s) " K(z,s) has the form
Rz, 8) = (2 — ) " Qulz,5).

Here, Qu(z,s) is continuous on D.
2. If m > 1, every nontrivial solution has the property that y(z) ¢ C(I): as
z— 07" the solution behaves like

y(z)~CzH", 0<pu<l.

In earlier work, when 0 < 1 — a < 1, the general form of the exact solution of
the Eq.(10) has been derived, in next lemma.

Lemma 3.4. [5] Assume that f € C™(I) with m € Nt, and K(w(z — s) + s,5) €
C™(IxI) with K(w(z—s)+s,w(z—8)+8) #0 on I =10,T]. Then, the regularity
of the unique solution of the weakly singular Volterra integral equation (10) can be
described by

y(2) € CO,TI()C™(0,T), |y(2) |<Cuz™, z€(0,T), (13)
= k) LY (), z€,
(j’k)u

where (j,k), == {(j,k) : 5,k € NTUO0,j+ k(1 —p) < m},vjr(p) are some con-
stants and Yo, (- p) € C™(I).

Lemma 3.5. [6] Suppose that f € C™(I), K(w(z — s) + s,5) € C™(I x I) on
I=10,T], and K(w(z —s) 4+ s,8) Z0 with m > 0. Let p=1—a, 0 < p < 1.
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The Volterra integral equation (10) has a unique solution y(z) € C[0,T](C™(0,T).
Further, y(z) has the following form

+Zwk MWz e,

where Y, € C™(I),k > 1, and the series is absolutely uniformly convergent on I.
If u= % is rational (i.e.,p,q € N, reduced to lowest terms), then the solution of

the Eq.(10) can be expressed in the form

q—
) + ZI/S )220=m e, (14)
s=1

where vs € C"™(I)(0<s<qg—1).

From the above lemma, y(z) ¢ C™[0,T]. For the Eq.(13), Chen and Tang
[9] proposed the function transformation g(t) = t“T™~1[y(t) — y(0)] to remove a
single term singularity like ¢t'~“~™. They used the spectral-collocation method and
achieved excellent results. Our work has been inspired by their excellent results in
[9, 32]. We apply the similar transformation mentioned above to (14), and obtain
the following lemma. This result will be the starting point to the construction of
the numerical method presented later.

Lemma 3.6. Using the following transformation for (14),
z=t7, Y({t)=y(z), tel =[0,T7], o€ NT, (15)
it is deduced that

1. if o = q or a multiple of q, then Y (t) € C™(I');
2. if o > ﬁ, then Y (t) is at least a first-order differentiable function.

Proof. Taking the above transformation (15) to (14), we obtain

q—1 q—1
y(t7) = F(t7) + D e (t)e T = f(t7) + > vy () ).
s=1 s=1
Thus we deduce the two conclusions in the lemma. O

By the Lemma 3.5, it follows that the solution of the Eq.(10) can be written in
the form of §(z) = y1(2) + y2(z) where, for a fixed m, y1(z) € C™(I) and ya(2) is
the non-smooth part of the solution.

Our first step is to replace §(z) by 4(2) := y(z) + A, where y(0) = 0. Hence, the
Eq.(1) can be expressed in terms of y as

DEy(e) = (u:) + 320+ 3) + [ Rt + N, € 0.7],

y(0) =0. (16)
An equivalent integral form of the above equation is
1
= — - d 1
W) = | G (() ()H) . (1)

+ﬁ/ / ) + A)drds.
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We apply the smoothing transformation
z=1° s=7%, 1<oé€N,

reducing the problem (17) to the following integral equation whose solution does
not involve anymore singularities in the first derivative.

1

W) = g | e = (w7 07 + Ay (18)

o

1 ' o—1(i0 oya—1 K o
+m/o oy (7 —4%) /0 K7, 7)(y(r) + N)drdy.

Moreover, using the linear transformation

r+1

t="T7( o) TEA,
:Ti(&—gil)a fe (_L'r)a
the Eq.(18) becomes
R IR T L Y SNVAS N S e
WIS = g [ G (g -
1 1 1
<(ur G +ar () + ) de +
T Loy €L e
<[ e (g - y)
T e
x /0 BT, 7) () + Ndrde. (19)
Furthermore, in order to transform the integral interval (0, T(%)”) into (—1, &),
we use the linear transformation 7 = T'(41)?,n € A, we obtain
r4+1., 1 ToT E+1,,_ r+1., E+1 ,\o!
WIS = g [ G (T -1 y)
1 1 1
< (wr ) + s + Al + s
T ool 5, &+1,,_ x+1, E+1, \o1
<[ GrE T (rd gy —ré )
577_‘_14771~ £+1a 77+10
NE o1 g (e 2ye p 2
<[ gk (e )
< (s (L)) + X dnde (20)

We use the following linear transformation to convert the integration interval

(=1,¢) to (—1,1).

1 —1
Ly 8-l pen

n=n(&,0) 5 5
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Equation (20) can be written as

WIS = e [ TRy -t
< (w7 + o T 4 ) e+
2 2 I'(«)

<[ R (rE e~ )T

2 2 2 2
1
x /71(%)071[%(71(5 ; 1)U’T(7](£a 02) + 1)0)
X (y(T(n(g’Z) ey A)d&df. (21)

Using the formula
a’ — b = (a _ b) Z aibo—i—l’

(21) becomes

W) = g [ @90 e (wr )

a+1 T
4G 4 N+ o [ (-9

/ .60 £+1)0T(’7(§’9)+1)0)

2 2
x (T ( 2ef+1 6 e )7) + A) dode, (22)
where
1 = 1. 1 . a—1
g(x,§) = U(gg_)a_l(izo(x;— )’(%)a—z—l) 7
0 1 o—1 1 .
g(z,£,0) = 02(77(§a 2) )= 1 f-i— (; 5_1_ o i 1) .

Finally, by the change of variable
z+1 z—1

and setting
1
V() = y(T(5=)7),
(22) is reduced to
o 1
V@) = g [+ D=0 Gl o),

TaJrl ! « a—1
+7220‘+1F(a) /_1(;10 +1)%(1 —v)
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« /_ 11 K (&G, v).n) (Y (n) + ) déo, (23)

where
Gl g0 = gl ele))(v(©) +ar DT e ),
o)+ 1, o (e 0).0) 11,
) TEEEEr)).

K(E(@0)m) = gl &@,0),0K (T

4. The Jacobi spectral collocation method. In this section, we propose the
Jacobi spectral-collocation method to (23). Solving Equation (23) by the Jacobi
spectral-collocation method is to find Yy (2) € Py, such that

T !
Yn(z) = Ig‘jvlm /_1 Iijvl(gc + 1)1 —v)* Gy (x, &(x, v))dv
Ta—l—l

1
IgNIWF() /_1 IS @+ 1)1 —v)t

x[l Kn(&(x,v),n)d0dv, (24)

where

Gl €)= g, € (Y@ + o T )y 4y,
Kn(E(ev)m) = K@), (Y +2).

In order to implement the above basic algorithm more effectively, we set

N
=Y wd? N (@)
=0

1
Ij’j\,lfﬁj\,l/ (z+ 1)Ky (£(z, de_ZZd”Ja Hz) I8 (v),

-1 =0 j=0

ISV IS (@ + )G (@, €(x,v) ZZb”J"‘ Ha) I8 (). (25)

1=0 j5=0
Employing (25) and (3), we can directly calculate the result that

T (z + 1) ! 1
Ia—lila—l 1 a—1 / K
N 22a+1r( ) oN /ﬁﬁ v) B ~(&(z,v),m)dodv

Ta+1 a— a— a—
= FTre) ZZdJJ Y / (1 —v)* L Js v)do
i= 0; 0 1
Ta+1 a—1
= m Zdz OJ ( ) (26)

Using (26), (5) and (8) it ylelds
a(2i + ) L E ot
dip = ———= 2> > (2 + 1) Kn(E(x,0),7)

*1w2’0, (27)
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where
B (€(w,0),m) = K (&5 0m), (&, 0m),00) ) (Ya (06, 0m), 6)) + A
Similarly, by Egs. (3) and (25), we conclude that

a—l7 a(x 1)(1 a—1 /1 a—1
—1 1—w Gn(x,&(z,v))dv
z,N jozl"( ) v,N 1( ) N( 5( ))

4@ ZZb”Jfl /(1—u)a*1J;¥*1(v)dv
-1

=0 j=0
I
a—1
=S bioJS . 2

Using (28), (5) and (8), we obtain

2z+a Sl
bio = Z Z xzj+1) VG (x, &, v)J&T l(xj)wj‘ lye=t (29)

7j=0m=0

where

G (€2 v)) = glay, €y, v)) (Yov(§lag, o) + 5T

In summary, by (25)-(29), we deduce that
N
Z pidi (@)

Ta+1 a— 1 r al a—1

Finally, using (3) it yields

6(%‘],’Um)+1 o
i )+)\).

Ta+l T
7(12 0o+ ———
20+ T (a 4+ 1) 7 " 20T (a4 1)

The numerical solution can be obtained by solving the equations.

Hi = bi,(), 0 S ) S N. (31)

5. Error analysis. In this section, we estimate the error of the numerical solution.
We bound the error in the L> and Lia,ﬁ norms. In order to give the subsequent
lemmas conveniently, we first introduce some spaces.

Let the region A C R™ be a non-empty Lebesgue measurable set, u(z) is a real
value Lebesgue measurable function defined on A. LP(A) is defined as

LP(A) = {u: HuHLr(A) < oo, 1 <p< oo},

equipped with the norm,

lull ey = (/|u pdz) | <p<oo

[ull ooy = esssupu(@)]

For a non-negative integer [, and 1 < p < oo, the Sobolev space is defined as:

HYP(A) = {u € LP(A) : 0w € LP(A), V |a| < 1}.
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If p = 2, we record H"2(A) as H'(A), which is a separable Hilbert Space. If [ = 0,
H'P(A) is LP(A) space.
Then we introduce the weighted Lwa 5 (A) space. Assume that the weight function
w*B(z) = (1 — 2)*(1 + 2)? with a, 8 > —1, then

L2.5(A) = {u:u is measurable and ||ul|,a.s < oo},

endowed with the norm and inner product

[uflwes = (/AIU(SE)IQW“’B(x)dx)é,

(U, V) gars = /u(z)v(x)wo"ﬁ(m)dx, Yu,v € L2, s (A).
A
The weighted Hilbert space is defined as follows
H.os(A) i={u: 0w € Lo s(A), 0<m <1},

equipped with the norm, semi-norm and inner product

[ullwes = <Z 10™ ull2e. B) s Juliwas = 10"ullyas,
(U, V) op = Z / M u(2)0M v (x)w™ P da.
m=0"4A

For a non-negative integer [, we introduce the non-uniformly Jacobi-weighted
Sobolev space
Bl a(A)i={u:0"u € L2 i prm(N), 0<m <1},
endowed with the norm, semi-norm and inner product
1/2 !
lallge, =Gl lulg = N0l

l

(u,v) gt B Z (07w, 07" 0) ot m gtm,
wes

m=0
where |[u|ga.6 is the norm of L2, ;(A). Especially, L*(A) = B2, |-l =1 l2(a)
and || - [oc = || - [[zee(a)- The non-uniform Jacobi-weighted Sobolev space distin-

guishes itself from the usual weighted Sobolev space H! . , by involving different
weight functions for derivatives of different orders. It is clear that H UZJ o5 1S a sub-
space of B! , ,, that is ||uHBz s S c||uHHz s

The space L>®(A) is the Banach space of the measurable functions u that are
bounded outside a set of measure zero, equipped the norm

|u]loo = esssup |u(z)].
x

We denote by C™(A) the space of m-times continuously differentiable functions
on the interval A.

Lemma 5.1. [24] Let F; (x);.vzo be the Nth Lagrange interpolation polynomials as-
sociated with the N + 1 Gauss points of the Jacobi polynomials. Then

1

e ﬁ(lOgN), -1 < aaﬁ < )
I = Z By 1 2
O(Nt2), € = max(a, (), otherwise.
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Lemma 5.2. [29] For o,8 > —1, and any u € BLQ,B with I > 1, and integers
0<m<I<N+1,

102 (u — T2 Rw)|watmosim < N M Ohulgasras.
Moreover, for any u € HL,I/ZV,I/Q with 1 <I < N +1,

= I N P ulloo < N2 ullyoa/ose,

where ¢ is a positive constant independent of I, N and u.

Lemma 5.3. [38] Let v~ ! be the Jacobi-Gauss nodes in A and £ = &(x, v 1).
The mapped Jacobi-Guass interpolation operator xlg]_\,l :C(—1,2) = Py(—1,z) is
defined by

LN u(ET) =u(ET), 0<i<N.
Hence
ERET) = (e = u(E@ o) = LR ul( o),

and

e () =N u(E(@0) [ 2e 1

From the above formula, we can derive the following results

’ a—1 ja— _ 1+, ! a—1ra—
| @-ortrzituee = (50 [ a-0r R e )

N
= (D e e,
=0

/ T LI u©Pd = (TS i),

’ 2
-1 i=0

Moreover, if we denote I as the identity operator, for any 1 <1 < N 4+ 1, we have
that

/ e O (= () P de

-1

= (5 [ = 0 = It o) P

< cN‘Ql(HTx)a/ (1= 0)* ™ 1+ ) | du(é(z,v)) [* dv

-1

_ CN72Z i(x 75)a+171(1 +é-)l | aéu(g) |2 d§

Now, we are ready to prove the following convergence results.
5.1. Error analysis in Lia,lﬁo(A).

Theorem 5.4. Let Y be the exact solution of the original equation (16). Let Yy
be the numerical solution obtained by the discrete scheme (25) combined with the
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approximate Eq. (24). Letexn =Y — Yy.

lexllyoro < V@) = ERY @) pamro + 1TZNY = Yo pooro

5
S Z HEin"‘*LO’ (32)
=1
where
By = Y(@) - LVY(x),
TOC T
By = grelint [ @00 -1 GG s
TCK x .
By = mffjvl/_1(96—f)“‘lmlgj;G(x,g)(Y—YN)dg, (33)
T(,H—l o x o 1 o
Bi = grmalon [ @00 [ (- g K gndode,
Ta+1 o T o 1 1
Es = Saripge)l= 1/ﬂ(w—£) 1/71xI§’N1K(a:,£,n)(Y—YN)deg,
Here
¢8) = o0 (v© +arEhn) 1),
G, =Yx) = 9@ (Y(©)-Yw(©),
- 0
K(z,&n) = g(z,60K T(%)U’T(n(ﬁ,gﬂ)(;)

K($7€777)(Y - YN) = g(£7§ve)K

Proof. Tt follows from (22) that

T r
ENY@) = grmlen [ =07 Gl
Ta+1 T 1
+m1§,&1/_1($—f)a_l/_lK(Ivf,ﬁ)ded&
W) = grmlen [ @I O e (34)

To+1 1 T ) 1 L
— T — &) A8 Kn(x, &,n)dodE,
20+ (o) =N [1(x £) [1 &N ~(z, &, n)dodS

where 1, g‘&l is defined in Lemma 5.3, and

+

G = g0 (YO +arES) 42,
n(r.8) = . &)(Yw(© +ar( L) +2),

Ken) = o0& (107 r(EDE D0 (vie 0 1),
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Kneem) = ol 0)K (1507 &0 (vipie 0) + ).

By (34), we obtain

IIVY =Yy
— r a—1 ’ _ \a— _ ga—1
- 2(11'\( ) z,N /_1(.’13 f) 1(I wlg’N )G(x,f)d§
Ta « a— (e}
+2ap( )Im Nl/l(xff) ! Ig NlG(z Y —Yn)dE (35)
TaJrl 1 o
5T (a) / ) 1/1(I—xI£7N1)K(:c,§7n)d0d§
Ta—i—l 1 R
+2a+1r / yel / 1 AN K (2,6,m) (Y — Yy )dfde,
where
G, (Y =Yx) = g6 (Y(©) - Yv(©),
. - 0
K&y -¥y) = g6 0K (15 r(180 )
(Y ((&.0) = Ya(n(&,0))).
The theorem is proved. O

Theorem 5.5. Let Y be the exact solution of the original equation (16). Let Y
is the numerical solution obtained by the discrete scheme (25) combined with the
approzimate equation (24). Let o € (0,1). Assume that Y € B, . (A) with
1 <1< N+ 1. We conclude the error estimate:

HeNHw‘l*LO

< eNT'G7||oL (Y + g) i + (N NTHE

aéYkuJrl*LL

+eNTH A+ NEK* + K* + G)||0LY || i1 (36)
where
¢ = 13(?%]5;?&53619( &),
K* = 7y 0 ) 76 .
(e max  max ]g(x & 0k) K (& (&, 0k))
Proof. By Lemma 5.2,
11| yomro = Y (@) = ZRY (@)]| yamro < eNTHOLY | jagicri- (37)
Using (5), we get
||E2Hw“*1’0
= sl [ -0 - R 6 e (38)
QO‘F(Q) z,N . zle N 5 wa—1,0
o N . 1/2
- . . a—1 _ a—1
= 2“‘1‘(0{) ;wz</1 (xz 5) (I riI&N) ($17£)d§> ] .




1176 YIN YANG, SUJUAN KANG AND VASILIY I. VASIL’EV

Apply the Cauchy-Schwarz inequality,

| / £)de [P< / €) 2 d / &) I de. (39)

where

S
—~
o
~—

Il
—
8
Sh
|
o
~—
.

S
—~
i
~

I
—~
K
&
|
i
~
V)

(I = 2, IEN )G (24, €),

and Lemma 5.3, we derive

HE2HUJO‘71’D = 2O‘F Z / _ Oz 1d£
’ 1/2
x / = O 1 - w8 )Gl ) ﬂ
T N
T, 1/2
<[ = - B G €1 ﬂ
-1
—1 yx al « 1/2
< ¢N~'G (gwia(xiJrl) ) ig[l&ﬁ]
T; 1/2
([ @19 10(V©) +0(©) Pag)
where

96 = (ITCZ))+2), G = max max g(:.€).

2 i€[0,N] E€[—1,2]
For any z; € (—1,1), and « € (0,1),

N
> wialzi +1)% <2 (41)
1=0
Hence
B2l yoro < eNTGHIOE(Y () + 90)) [ yosronr (42)

In the same way, by the Cauchy-Schwarz inequality, we deduce that

HESHwO‘*I’O
= s [ @ =97 Iz (G O = ¥ ) de

T ) 1/2
2a€( ) lﬁ;wi(/l (2 — )1 12 (G(xi,f)(Y—YN))dg) ]
= 2€;G* Z / - §)a71d§ /I; (z; — f)aﬁl (43)

<125 (YO - vw(©) 2 ag]
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Using Lemma 5.3 yields

HESHUJC‘ 1,0
G 12 2 o
Qar (sz a(z; +1) ) ig[loa,%] (/_1 (z; — &) riIE,Nl

x(Y(©) - vn(©) I dé)

GT° 2 e 12
< miggﬁ] ((/ (2 =) L IENY () =Y (§) P df)

—1

([ w-o v -y P a) )

< eG*N7! max (/w(x — )t 14 ) | Bty P ds)l/2

7,€[07N] 1

T 2 - 12
+migg>]§] ([1 (2 =Y () —Yn(O) [ d§)

< cG*N‘l’|8iYHwa+L,L, + CG*H‘SNHwaq.o- (44)

Similarly, by (5), we obtain that

1B ][ ya-r.0
TaJr 1
= gerir) =, [ -t [ (T =T E (@, & 9] o
Ta—i—l o 1
= 201 (a) [sz(/ z; —§) 1/_1
1/2
X(I = 4, I8 K (xi,é,n)dedf) } : (45)

By the Cauchy-Schwarz inequality, we further get

o+t -
[F22 —— 51T (a) [Zwl/ T — 5)@—1d§/_1(x _
1/2
|/ (I = o IEN K (23, €,m)d0 |2 df)]
Tt K+

20 [%
72”‘*@‘ (a+1 (sza x; + 1) ) [/_1 (w; — gt

1/2
x|§j (= 2 I3 (Y (n(€,60)) + ) Pdé] S )

IN

where

K(en(e.0) = K (152 n(1& 04 ),

K*: 19 9 bl ’0 .
Zg{lg}ﬁ]kg%g%gen[laf(x]g(ﬂf £,0k)K(&,m(&,6k))
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Applying Lemma 5.3 leads to

N 1/2
1-1 -1 * . ) a
||E4||w(x—1,0 < C(N + N )K (gwia(xl + 1) ) Zg[la,)]\([] kg%(;)j:)]i,]

([ @i—grrta gl o (vineon) +2) P ag)

-1

N 1/2
< oW N (et 107) e ma
=0 ’ ’
i a+l—1 l l 2 12
([ @-orrtar gl o men) Fas) T @
By (41),
[Bal| o0 < eNH+ NTOEOGY ()| i1 (48)

Similarly, using the Cauchy-Schwarz inequality, we further get
15 o0

Ta—i—l

T 1
a—1 a— a—1 7
= 3eTTT(a) )| Iy /_1(3; 3 1/_ AEN K (2,6 (Y = YN )dOdE || o0
Ta+1

N
gy [ et [t X
k=0

< B, € m(E ) (Y V) [2de] (49)
From the above formula, we can get

15|

wa—1,0

Toc+1K* N o1 T; - 1 N o1
= 2a+1F [sz/ z; —§) d£/71 (z;i — &) | ];)fﬂr[f,N
Y(n(€,6,) — Y (n(€,00)) + Y ((5, 6)) — Ya(n(&, 0x)) 2 d€] ™

o+l g+ ) 1/2
<
< T+ D) (ZWZ afwi +1)7) " max max

. 1/2
[/1 =€) 1\2%1‘1 Y (n(€,0x)) = Y (n(&, 0x)) d&]

CTO‘+1K* 1/2
iz +1)°)
2a+1F (Zw i+ ié?%] krerf&}zif]

. 1/2
Vl v — al\Z n(€,0k)) N<n(£,0k)>)|2d£] . (50)

Also using Lemma 5.3 and (41), we obtain
|1 25|

wa—1,0

< Nl*l N*l K* /ZL P — a+l—1 1 l
Se(NTUENTOR max max ([ (@ -0 T4
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. 9 1/2
X | LY (n(€, 00)) 2 d) " + (N + DK

i L a—1 _ 2 1/2
e e ([ (=077 [V (e, 00) — VGt 00) )
Drawn by the above formula,
HE5||w°‘*1~0
S (NP NHYEOLY || asivn + (N + DK™ |len] o 10 (51)

In summary,

len ]l a-ro
< (N N KO | yossa + NGO (Y +0) i
+eNTHL+ NK* + K* 4+ G)||0LY || jariai- (52)

O
5.2. Error analysis in L™(A).
Theorem 5.6. Let Y be the exact solution of the original equation (16). Yy is the

numerical solution obtained by the discrete scheme (25) combined with the approwi-
mate equation (24). Let a € (0,1). Suppose that Y € H' ., o(A)H. ./, 1,2(A)
with 1 <1 < N 4+ 1, we conclude the following error estimate:
len|l, < cG**NY27|o; (Y(f) + g(é)) | posiors F NV Cuo o
+CK**(N3/2—Z + Nl/2—l)”aéy”

wa+l71,l

wa«#lfl.l?
where
G** — , ,
L 2 1)
K™ = max. max  max gl & 0 K(En(E 0h)).

xe[—1,1] 0 €[—1,1] £€[—1,x]

Proof. According to (32),

5
lenlle < 11V = ERY [l + [EZRY = Yfloo < D [[Eifoc. (53)
i=1
By (5.1) and (5.2), we deduce that

1B = Y =LY =Y~ LY + 2 1Y - 125V
< A ER Y - LY,
< eNUUY | pmanagee (54)
The Cauchy-Schwarz inequality, along with Lemmas 5.1 and 5.3, lead to
| Ex |

T v
sar(@) | N / (e = T =L )Gl e |

™ a—1 ‘ a—1 a—1
< goralEn e x| [ @ =00 0 126 e |

z€[—1,1
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< N2 max ‘/ =TI = IEN) G, €)d | (55)
zc|—1,1

§0N1/2 max |:/ a 1d§/ a 1]_ Ia 1)
z€[—1,1] _

x | G(z,€) 2 dg]'"?

/ . 1/2
sk n71/2—1 a—1 l 11 2
< cG**N xglf‘ffl] |:/_1(SL‘ =& (1+8)" | 0 (Y(f) +9(§)) | dﬁ]
< G NY*7|| o) (Y(é) + 9(5)) | atiotas

where
€+l

96 = (AT +A), G = max  max g(@.).

z€[—1,1] £€[—1,x]
Similarly, by Lemma 5.1 and the Cauchy-Schwarz inequality, we obtain

| B3 |

=2£fg)|fs;/i<x—s>“ LI 1( @)Y —Yx)) ) de |

< gl max | [ @ -tz 1(G< ,@(Y—YN)))dm
et o
x| oIg 1( (2,6)(Y = Y))) I* d§) /2. (56)
Using the Lemma 5.3 yields
| Es | N
<2 max ([ (-0t LI (Gla o - i) P de)

< GUNY? max [ / (x =& IRV ()
-1

z€[-1,1

Y (€) 24| V() - Yi(©) 2 de]

<GNP LY || ovivi + cGNY2len|| oo (57)
By Lemma 5.1,
| By |
TaJrl a—1 * a—1 ! a—1
:2(1_;’_171—\()|IIN (I*f) (I* oI N ) K (2, €, m)dbdE |
1
a 1 a—1
- 2a+1F H zen[laf(l / /I(I - mIg,N )

XK(%& 1)dods |

x 1
<NV max | [ (=9 [ (0 - g K G enands | (58)

z€[—1,1]
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We obtain from the Cauchy-Schwarz inequality that
| By |

< eNV2 max [ JCE / TEK (5 6) |2ded5]

z€[—1,1]
" 1/2
/ )~ 1|Z IENDK (2,6,m) 2d5]

xT
S CK**(NB/Q_Z + N1/2_l) max max |:/ (fL' - §)a+l_1
z€[—1,1] 0, €[—1,1] 1

1/2

< ¢N'? max
z€[—1,1]

1/2
<1+ €)1 04 (Y (e, 00)) + \) P ]
< CK**(N3/27I + N1/271)||8éYHwa+l71,za (59)

where

Ken(e.0) = & (1< & D),

K = 0K (€,0(E,61)).
xen[laf(1]ekrerfa)1{1]ger?alxx]g($f k) K (E,n(&, 0k))

By Lemma 5.1 and 5.3,

| Es5 |

Ta+1 a—1 * a—1 ! a—1
:W\Ixzv/l(x—f) / N K (2,6,m) (Y — Yiy)dodg |

1
a—1
2°‘+1F H H xe[ 11]|/ /1 IE’N

WK (z,€, n)(Y Y )dode | (60)
< CN1/2 mafil] | / if B a 1/ Ig;f((x,&n)(y - YN)dedg | :

We further get from the Cauchy-Schwarz inequality that
| Es |

r prx x 1
< N2 max / (x — €)*lde / (x— &) | / ISR (2, 6,)
ze[-1,1] [ J -1 —1 -1 7
(Y = Yy)do |* d¢]"*

r rx 1 1/2
<N max | [ @t [ LI R ey - Yads P dg}
rel=Li LJ -1 -1

< cK**N'Y? max
z€[—1,1]

x 1/2
% /_1 jo1 | Z I?Nl( n(&, 0k)) — N(ﬁ(f,@k))) E dg]

< ¢(N3/? + Nl/z)K** max  max
z€[—1,1] 0 €[—1,1]

. 1/2
| [ @t LIzt s 00) - Vit 00) 2d5]

L/ —1
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+¢(N32 + NY2)K** max  max
z€e[—1,1] 0 e[—1,1]

T 1/2
<[ -9 ivae oy - vvenn e T o
It follows from Lemma 5.3 that
| Es |

< (N3? £ NY2)K** max  max [/ (x — &)1 4 ¢)!
16[71,1] 0;@6[71,1] —1

X | LY (n(&, 0)) | de]"? + e(N*/271 4 NY21 K max

z€[—1,1]
N 1/2
<o [ @m0 entoe.o 2 af (62)
orel-1,1] | J 1
< C(NB/Qil + N1/271)K**HaleHon»lfl‘l
+C(N3/2 + Nl/Z)K** eNHwafl,O'

In summary, we get

lenl
< GNP (Y () + 9(6)) lywrina + N Y rra 1o
+e(G A+ NE™ + K™ )NV LY || s,
K (N3 NY2D0Y || o (63)
The theorem is proved. O

6. Numerical tests. In this section, we give numerical examples to illustrate the
feasibility and efficiency of the method.

6.1. Example 1. We consider the following fractional integro-differential equation:

2 5 8 5. s ¢
sDF) = T(3) =8 = 51368 —u(t) + [ (e
yo=0, telo,1]. (64)

The exact solution is ¢3.

In the table 1, we list L°°- and Lia_l‘o—error with N = 10 and o takes values
of 1-9. As can be seen from the table, for o takes values of 3, 6 and 9, which are
multiples of 3, the error decreases faster and the convergence is better. Through a
lot of numerical experiments, we conclude that not for all o taking multiple value
of 3, the convergence is better. One cannot predict that the greater the value of
o is, the better the convergence is. There is a critical point, which is the value of
27. For o takes values of 2 to 27, the error convergence is better than that without
smoothing transformation. To be more intuitive, we give a comparison of the exact
solution and numerical solution with N = 10 and ¢ = 1, 3, 6, and 9 in Figures 1
and 2. And in Figure 3, we give L*°- and Lf)a,l,o—error between the exact solution
and the numerical solution with NV = 10 and ¢ =1 to 9 and 28. Obviously, the error
deceases faster when the value of 3, 6 and 9, which is the multiple of 3. Moreover, at
the value of 28, the error convergence effect does not work well without smoothing
transformation.
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TABLE 1. The L*°- and L?

values of 1-9.

wa—1

o-error for N = 10 and o takes

N o =1 o=2 =3
lu—Ullpe flu=Ullgz Jlu=Ullze [u=Ullrz [lu—=Ule [u—=Ull:
2 4.31E-03 4.31E-03 4.12E-04 5.06E-04 3.21E-05 3.14E-05
4 7.92E-04 7.07E-04 2.76E-05 2.84E-05 2.34E-08 1.87E-08
6 2.63E-04 2.32E-04 5.37TE-06 4.37E-06 1.44E-11 1.05E-11
8 1.15E-04 1.01E-04 1.32E-06 1.05E-06 3.00E-15 1.76E-15
10 6.01E-05 5.26E-05 4.08E-07 3.32E-07 2.33E-15 1.20E-15
N o =4 o=5H o=6
lu—=Ullee llu=Ullrz lu—=Ulle~ [lu=Ullz [lu=Ulre flu—"Ulz:
2 6.47E-03 6.21E-03 1.30E-02 1.24E-02 1.72E-02 1.65E-02
4 1.70E-05 1.29E-05 2.40E-05 1.75E-05 6.46E-09 4.82E-09
6 7.51E-07 5.35E-07 4.86E-07 3.18E-07 8.14E-10 5.29E-10
8 7.42E-08 5.85E-08 3.20E-08 2.20E-08 5.97E-12 3.60E-12
10 1.46E-08 1.05E-08 4.08E-09 2.89E-09 3.76E-14 1.94E-14
N o =7 =8 =9
lu—UllLe llu—=Ule flu—=Ulle~ [lu—Ullgz [lu—=Ulre flu—"Ulr2
2 1.84E-02 1.77E-02 1.68E-02 1.61E-02 1.27E-02 1.21E-02
4 0.31E-03 0.22E-03 1.03E-03 0.73E-03 2.13E-03 1.52E-03
6 5.14E-07 3.09E-07 8.26E-07 4.92E-07 3.70E-07 2.28E-07
8 1.20E-08 6.94E-09 1.11E-08 5.96E-09 9.08E-10 5.12E-10
10 7.20E-10 4.42E-10 4.26E-10 2.40E-10 3.16E-11 1.68E-11
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FIGURE 1. The exact solution and numerical solution for N = 10

and o =1 and

3.
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FIGURE 2. The exact solution and numerical solution for N = 10
and o =6 and 9.

25N <10,L"-error 25N <10, Lgso-error

FIGURE 3. For N = 10, o takes values of 1-9 and 28, the error of
L and Lia,l,o changes as the collocation point N increases.

6.2. Example 2. Consider

sDiu(0) = 1)+ [ ryriar, te .,
yo = 0, (65)
where f(t) = @BesselJ[O, Vi — t( —2(=6 + t)VtcosV/t + 6(—2 + t)sinﬂ).

The exact solution is siny/%.

We list the L*°- and Lia_l,o—error with N = 10 and o takes values of 1-6 in
Table 2. From the table, we can also see that when o takes values of 2 and 4, which
is the multiple of 2, the error decreases faster. And through a large number of
numerical experiments, we get a critical point of o, which is the value of 14. When
o takes values of 2-13, the error convergence is better than that without smoothing
transformation. For the sake of intuition, we give a comparison when N = 10 and
o takes values of 1, 2 and 4 in Figure 4. In Figures 5, the L>°- and LZa,lyo—error
between the exact solution and the numerical solution are given when N = 10 and
o takes values 1-6 and 14. It clear that when o takes values of 2 and 4, which are
multiples of 2, the error is smaller. While o takes the value of 14, the error is worse
than that without smoothing transformation.
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TABLE 2. The L>- and L2, -error for N = 10 and o takes
values of 1-6.

N o=1 o=2 o=3
lu—Ullpe flu—Ullrz lu—Ullre fu—Ulze [lu—=Ullpe [lu—"Ullze
2 3.13E-04 4.55E-04 2.79E-04 3.21E-04 1.86E-03 2.14E-03
4 2.30E-05 2.85E-05 2.11E-07 1.85E-07 3.37E-06 3.58E-06
6 4.27E-06 5.23E-06 1.62E-10 1.54E-10 5.11E-07 4.18E-07
8 1.38E-06 1.51E-06 1.01E-13 8.56E-14 6.87E-08 6.62E-08
10 5.29E-07 5.61E-07 4.77E-15 4.36E-15 1.88E-08 1.57E-08

N o=4 o=H o=06
lu—Ullp= flu—Ullrz lu—Ullre lu—Ullze [lu—=Ullpe [lu—"Ullze
2 3.94E-03 4.53E-03 5.31E-03 6.11E-03 3.86E-03 4.44E-03
4 2.70E-05 2.51E-05 1.38E-04 1.27E-04 4.51E-04 4.12E-04
6 3.23E-07 2.62E-07 8.69E-07 7.52E-07 1.09E-06 9.15E-07
8 1.44E-09 1.12E-09 5.54E-08 3.90E-08 1.67E-07 1.18E-07
10 3.14E-11 2.70E-11 2.06E-09 1.61E-09 3.68E-09 2.52E-09
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FIGURE 4. The exact solution and numerical solution for N = 10
and o=1, 2 and 4.
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2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
2N <10,L"-error 25N <10, Ligso-error

FIGURE 5. For N = 10 and o takes values of 1-6 and 14, the error
of L*° and Lia,w changes as the collocation point N increases.

6.3. Example 3. Consider the following equation

“Diy(t) = £(t) + / temy(r)dr, t e (0,1,
0
yO - 07 (66)

1
where f(t) = ﬁ(Qet(B — 20)VE - 3TEr filvI] + 3 )

The exact solution is y(t) = tv/1.

In Table 3, We list the L*°- and Lia_lro—error when N = 10 and o takes values
of 1-6. From the table, when o takes the value of 4, which is the multiple of 4, the
error decreases faster and the convergence is better. Through a lot of numerical
experiments, we derive a critical point of the o, which is the value of 8. When
o takes values of 2-7, the error is better than the situation that the smoothing
transformation is not performed. We give a comparison when N = 10 and o takes
values of 1, 2 and 4 in Figures 6. In Figure 7, the L°°- and Lia,lro—error are given
when N = 10 and o takes values of 1-6 and 8. Obviously, when o takes multiples
of 4, the error decreases faster. However, when o takes the value of 8, the error is
not good without smoothing transformation.

TABLE 3. The L>-and L2, ,,-error for N = 10 and o takes
values of 1-6.

N o=1 o=2 =3
[u=Ullpe flu=Ullgz [lu=Ulze [u=Ullrz [lu—=Ulre [u=Ull:
2 3.34E-04 6.18E-04 3.65E-03 6.78E-03 3.94E-02 6.96E-02
4 5.68E-05 9.69E-05 3.54E-06 5.57E-06 1.79E-04 2.87E-04
6 1.17E-05 1.97E-05 1.77E-08 2.78E-08 5.01E-07 7.54E-07
8 3.58E-06 6.02E-06 1.66E-09 2.60E-09 3.82E-09 4.57E-09
10 1.39E-06 2.33E-06 2.68E-10 4.17E-10 2.67E-10 2.90E-10

N o=4 o=>5 =6
lu—=Ullee llu=Ullrz lu—=Ulle~ [lu=Ullz [lu—=Ulre flu—"Ulz:
2 7.75E-02 1.37E-01 9.07E-02 1.60E-01 8.04E-02 1.42E-01
4 7.27TE-04 1.25E-03 1.02E-03 1.21E-03 2.33E-03 3.89E-03
6 1.27E-05 1.84E-05 1.00E-04 1.47E-04 3.62E-04 5.36E-04
8 6.24E-08 8.53E-08 1.10E-06 1.50E-06 8.27E-06 1.13E-05

—
o

2.09E-10 2.73E-10 8.63E-09 1.13E-08 1.15E-07 1.50E-07
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FIGURE 6. The exact solution and numerical solution for N = 10
and c=1, 2 and 4.
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FIGURE 7. For N = 10 and o takes values of 1-6 and 8, the error
of L>° and L? 1.0 changes as the collocation point N increases.

we—

7. Conclusion. In this paper, we first study in detail the reason why the fractional
integro-differential equation has non-smooth solution. We eliminate the singularity
of the solution by introducing a smooth transformation. Then we use the Jacobi
spectral-collocation method with global and high precision characteristics to solve
the transformed equation. Particularly, we have proved that the convergence rate
for non-smooth solutions can be enhanced by using a suitable smoothing transfor-
mation, which allows us to adjust a parameter in the solution in view of a priori
known regularity of the given data. The proposed scheme has many advantages,
including (¢) ease of implementation, (i) lower computational cost, and (iii) ex-
ponential accuracy. In addition, we give a theoretical proof of the convergence of
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collocation method, in both L*°-norm and Liaﬁ—norm. Finally, we give some spe-
cific numerical examples. The numerical results confirm the validity of scheme and
the correctness of the conclusions for solving the fractional integro-differential equa-
tion. This indicates that the proposed scheme possesses a good prospect in solving
fractional integro-differential equations with non-smooth solutions. Next, we will
apply the methods in this paper to solve the nonlinear fractional integro-differential
equations.
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