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ABSTRACT. This paper develops efficient numerical algorithms for the opti-
mal control problem constrained by Poisson equations with uncertain diffusion
coefficients. We consider both unconstrained condition and box-constrained
condition for the control. The algorithms are based upon a multi-mode ex-
pansion (MME) for the random state, the finite element approximation for the
physical space and the alternating direction method of multipliers (ADMM)
or two-block ADMM for the discrete optimization systems. The compelling
aspect of our method is that, target random constrained control problem can
be approximated to one deterministic constrained control problem under a
state variable substitution equality. Thus, the computing resource, especially
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the memory consumption, can be reduced sharply. The convergence rates of
the proposed algorithms are discussed in the paper. We also present some
numerical examples to show the performance of our algorithms.

1. Introduction. In recent years, optimization problems governed by PDEs with
uncertain coefficients have been the subject of growing interest in the scientific
community [11, 3, 22]. This subject lies at the interface of PDEs with uncertain
coefficients, optimization in Banach spaces, and stochastic programming.

In this paper, we study an optimal control problem constrained by a Poisson
equation with uncertain diffusion coefficients. The control is a determinate function
in the Dirichlet boundary condition. Our goal is to design efficient algorithms for
this stochastic boundary control problem.

Deterministic optimal control problems constrained by partial differential equa-
tions have been well developed and investigated for several decades. While, there
are not as much papers devoted to the random optimal control problems. In con-
trary to the deterministic problems, it is more expensive to get the numerical so-
lution for the random optimization problem. Since the parameters are uncertain,
the resulting states are random fields, i.e., random variables. And the inclusion
of the stochastic dimension brings in additional freedom in the cost functionals.
Therefore, we need to discretize the governing PDE in space and approximate the
variables in random field. Moreover, it needs special probability theories to ana-
lyze and handle the stochastic domain in the optimal control problem. Existent
algorithms for this problem always need to solve a large number of deterministic
PDEs at each optimization iteration, and the memory consumption is huge. For the
random discretization, commonly used methods are mainly divided into two cat-
egories: projection-based methods, such as stochastic Galerkin (SG) method and
generalized polynomial chaos (gPCs) method, etc.; and sample-based methods, such
as Monte Carlo (MC) method and stochastic collocation (SC) method, etc.. Naseri
and Malek apply the SG method combined with preconditioned Newton’s conjugate
gradient method to solve an SPDE-constrained optimization problem with random
force [28]. Cao designs an efficient MC method with variance reduction technique to
solve random Burgers equation-constrained optimization problem [9]. In [30], the
authors apply the SC method together with a gradient descent for the SPDE con-
strained control problem. Kouri and his collaborators improve the efficiency of SC
method by adopting adaptive sparse-grid collocation with a trust-region framework
for the random discretization [23]. Currently, a domain decomposition techniques
have been applied for the random optimal control problems in [21]. In [5], the au-
thors presented a low-rank tensor method to discrete PDE-constrained optimization
problem. And we refer to [1, 24, 25] for some theoretical results.

The SG method provides a solid mathematical framework for the analysis and
algorithms design, but it is not always the most computationally efficient means
of solving large problems. While, the stochastic collocation method is often more
popular than the projection-based method for it only needs to solve a collection
of decoupled deterministic problems instead of a stochastic problem. However, the
collocation method usually be exploited to a large class of random PDE-constrained
optimization problems at the cost of losing the non-intrusivity property(see [4, 32]).
Over the past several year, a new stochastic discretization method has been pro-
posed by Feng and his colleges for the Stochastic PDEs, which shows higher ef-
ficiency than traditional methods, see [13, 15, 16, 14]. Inspired by this idea, we
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developed a multi-mode representation preprocessing technique for the optimal con-
trol problems constrained by random Helmholtz equations in [26]. This technique
combines the merits of projection-based methods and sample-based methods, which
reduces the number of equations evaluations sharply. Meanwhile, it is robust and
easy to implement. The computational complexity is similar to solve a determin-
istic PDE-constrained control problem and a mathematical expectation of random
matrices.

The main focus of this paper is on the efficient discretize then optimize numerical
method for solving the optimal control problem constrained by random Poisson
equation with deterministic control. While most of existing articles for the random
PDESs constrained control problem are only concerned with distributed parameter
controls, it is not a realistic situation since such controls are not easy to implement in
practice. We think that boundary controls are much more natural and only consider
the model problems with these controls. In order to overcome the difficulties of
unbearable computation and memory consumption, we first do some pre-processing
for the model problem with a modified multi-mode expansion (MME) form. The
key idea is to transfer the randomness from the coefficients in the state equations
to the coefficients in the cost functional, in which the random field is much easy to
handle. With the MME technique, we can convert the random state equation to a
deterministic one. Then discrete the physical space by the finite element method
(FEM). After approximating the expectation in the cost functional with Monte
Carlo method, we get a deterministic PDE-constrained control problem which can
be solved by an alternating direction method of multipliers (ADMM) fastly. The
memory cost of the proposed algorithm is only O(N?). The theoretical analysis
in this paper are more difficult than those in the random Helmholtz equations
constrained control problems for the randomness of diffusion coefficients in the
state equations. We prove the existence of optimal control and deduce the global
error estimate of the algorithm.

The rest of the paper is organized as follows. In Section 2 we present an optimal-
ity problem constrained by random Poisson equations under unconstrained control
(UC) condition and box-constrained control (BCC) condition. The existence of op-
timal solutions and the first order necessary conditions are also discussed in this
part. In Section 3, we first deduce the multi-modes representation approximation
scheme for the model problem, then discrete the physical space by FEM. After that,
we transform the new random discrete optimal control problem into a deterministic
optimization problem. This deterministic problem will be solved by ADMM and
two-block ADMM for the UC and BCC cases respectively in section 4. Section 5
presents the global error estimates for two algorithms. And Section 6 provides nu-
merical experiments which demonstrate the efficiency of our algorithms. The last
section is devoted to some concluding remarks.

2. Model problem.

2.1. Definitions. Let D C Rd(d = 1,2,3) be a bounded Lipschitz domain. Sup-
pose H"(D) = {v € L*(D) | v € L*(D) , 0 < || < m}, m € Nt is the
Sobolev space on D with the norm

vl zm (D) =( Z /D|8O‘U|2da:>§.

lal<m
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Let (92, F, P) be a complete probability space, where 2 is the set of outcomes, F
is the o-algebra of events and P is the probability measure. Let the Bochner space
LP(V,Q) be a space of strongly measurable functions w ranging in a separable
Hilbert space V' with the norm

1

fllrvey = ([ ot O aP©)” <o 1<p<

Before listing the model problem, a detailed description of the state equations
and some necessary properties will be given. Suppose that the deterministic control
variable u(z) and the random state variable y(z, ) satisfies the following random
elliptic equations,

=V (a(z,§)Vy(z,§)) = 0, (z,§) €D x, (1)
y(x, &) = wu(x), (x,&) €D xQ. (2)

In the elliptic equations, a(z,§) is the diffusion coefficient with a small random
perturbation defined by:

a(z,§) = ao(x) + en(z, £). (3)
Here, the random process n € L?(L*>°(D); Q) satisfies

and the parameter € represents the magnitude of the random perturbation.
To ensure the well-posedness of the forthcoming model problem, it requires the
following assumption on the random diffusion coefficient a:

Assumption 2.1. There exist constants 0 < a_ < a4 < oo such that the random
coefficient a(x,§) satisfies:
0 <a_ <essinfrepa(z,§) < |la(z,§)|pep) < ay < oco.
The corresponding weak formulation of the random elliptic equation (1)~ (2) is
given by: Find y € L*(H}(D); ), such that
E[(a(z,&)Vy, Vv)p] =0, Vv e L*(Hy(D);9Q), (5)
with Hl(D) := {y € H'(D)|y = u on dD}, H}(D) := {y € H'(D)|y = 0 on 0D},
(vi,v2)p = [pvi(z, §)va(x,€) dz and E[w(£)] = [, w(§) dP(8).
Lemma 2.2. Under the assumption 2.1, for every u € L*(dD), the elliptic equaiton
(1) admits a unique solution y € L*(HL(D); ). Further more, if u € H'/?*°(9D),
then y € L2(HT9(D);9Q),0 < o < 1, and from the elliptic regularity theory it has
the following regularity estimation,
Ellyll zrr++ 0yl < C(D, a)llull grr2+eap)- (6)
where C(D, a) is some constant dependent on domain D and coefficient a.

Proof. The existence of the solution to the equation (5) can be deduced from the

Lax-Milgram Theorem. And the regularity estimate (6) follows by the elliptic reg-
ularity theory together with the transposition method (see [27]). O

Note Y := L2(H'°(D),Q) and U := H'/?*9(9D),0 < ¢ < 1 as the state space
and control space respectively. Lemma 2.2 indicates that for all u € U, there is
exactly one random state y = y(u) € Y. So we use the continuous mapping S in
the following to denote the “random weak solution operator” of equation (5), i.e.

S+ L*(0D) — L*(H*(D); ), y(x,€) = S(u(w)). (7)
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From (6), the estimate of the operator S is
E[l[S)l[L2p)] < ElIS(W)ll 1140 (p)] < C(D, a)|ull /240 (ap) (8)

In next part, the target random optimal control problem will be represented in
the form of the “random weak solution operator”. By S, we are able to formally do
the FEM error analysis for the model problem.

2.2. Random elliptic equation constrained control problem. With the def-
inition of S in (7), the optimal control problem with random elliptic constraint is
given by

min  F(y(z,£),u(x))

(P) zetyueyl(]x ) = S(u()), 9)
u(z) € Ugq,
where
Plo(e&)u@) = 5[5 [ o) —mlda] + 3 [ w@ie, 0

in which y4 € Y and ug € U are given functions.

In this paper, two kinds of control constraint U,,; are considered: one is the
unconstrained case (UC) with U,q := U, and the other is the box-constrained case
(BCC) with Uyg := {u(x) € U | ug < ulx) < up}.

Firstly, the existence and uniqueness results for the problem (P) are shown in
the following theorem.

Theorem 2.3. Under the assumption (2.1), and a > 0, the problem (P) has a
unique pair of optimal solutions (§,@).

Proof. Denote the feasible set by
W :={(y,u) €Y xUsq | y = S(u)}
Since F' > 0 and W is nonempty, the infimum

F*= inf F(y,u
- (y,u)

exists and then we can find a minimizing sequence (yy,, u,) C W with

lim F(yn,un) = F*.

n—r oo

The sequence {u,} is bounded, since F(yn,u,) > %Hunﬂi(a[)). {un} is included

in a complet space H'/ 2+9(9D), so there exists a weakly convergent subsequence
{un, } C {un} with u,, — u as j — oo.
It is easy to know that S is a bounded and linear operator, then

Y, = 5= S(@), as j = oc.

It follows from the closedness and convexity of the product space Y x U,y that
(g,u) € Y x Uqg, and (g, @) satisfies the state equation y§ = S(a), so (g,a) € W.
Due to the expression of the cost function (10), (y,u) € ¥ x U — F(y,u) is
continuous and convex. Hence, F' is weakly lower semicontinuous and using that
(7, u) is feasible yields

F* = lim F(yn,un) = F(y,u) > F".

n—oo -
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Thus, (g, u) is the optimal solution of (P). And with a > 0 and the linearity of the
operator S, it is easy to find that u — F(S(u), u) is strongly convex, which implies
the uniqueness. O

Next, we consider the optimality conditions for the optimal control problem
(P) under unconstrained case and box-constrained case. The problem (P) can be
rewrited in the following reduced form

B, "
where G(u) := F(S(u),u) =E [§ [, [S(u) — ya|*dz| + % [, u?dz.

For the unconstrained case (UC): Under this condition, the optimal control
satisfies

G'(u) =0,
where @ € U is the optimal control and G’(@) is the Fréchet derivative of G at 4.
With the definition of Fréchet derivative, the linearity of expectation operator E
and the operator S, one can deduces the first order necessary condition

G'(a) = E[S* (St — ya)] +vu = 0, (12)
where S* is the adjoint of operator S.

For the box-constrained case (BCC): The bounded optimal control satisfies the
following lemma,

Lemma 2.4 ([20]). Suppose G : Uyq — R is Gateauz-differentiable and U,q is
nonempty and convex. If u is an optimal control of the problem
min G(u),

u€Uqq

then @ € Uyq and u satisfies the variational inequality
<G'(u), u — a>U/,U >0, Vu € Uyyq

With lemma 2.4 and the expression of G'(u) in (12), the first order necessary
condition of (P) under box-constrained case can be summarized as

(E[S™(Su = ya)] + 78, u — @)vr v 20,

Vu € Ugg = {u(z) € U | ug < u(z) < upl. (13)
3. Numerical approximation. To compute numerical solutions of the random
optimal control problem (P) in (9), both a random space approximation and a
physical space finite element discretisation are needed. In order to formulate a
computationally efficient scheme, we introduce a multi-modes expansion (MME)
preprocessing technique which will be described in detail later to approximate ran-
dom variables. Do not like the stochastic collocation method or standard Monte
Carlo method, the MME technique simplifies the random space without solving te-
dious and messy optimized system. The essential feature of MME is to transfer the
random field from the coefficients to the right hand side functions. And the advan-
tages of this technique will be more clear after the MME approximate optimization
problem is discretized by FEM. Moreover, With an equation about the stochastic
state variable the discrete stochastic PDE-constrained optimization problem can be
recast as an almost deterministic optimization problem with a mathematical ex-
pectation of random coefficients in the cost functional. Next, using Monte Carlo
method we can compute the mathematical expectation without spending too many
computing resources.
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3.1. Multi-modes expansion approximation scheme(MME). Recall that y
denotes the random state variable, and also it is the real solution to equations (1)-
(2). And y has the following multi-modes representation as a power series of the
perturbation parameter.

Lemma 3.1 ([15]). Under 4e/C (D, a)(1+ ko) < 1, where C(D, a) is given by (6),
the random state variable y has the following multi-modes expansion in terms of
powers of the perturbation parameter €,

y=> %, (14)
q=0

where y, €Y, ¢ =0,1,2,---.

The proof of lemma 3.1 can be found in Feng’s paper [15].
Actually, we are more interested in the finite dimensional truncation of the multi-
modes expansion forms, which is

Q-1

yQ = Z elyq. (15)

Q

The truncation error of y and y® will be stated later.

Substituting the expansion of y? for y in the equation (1) and boundary condition
(2), and match the coefficients of €7 order terms for ¢ =0,1,2,--- ,Q — 1 it follows
that

=V - (ao(z)Vyo(z)) = 0,

16
V- (00(@) Yy (2.6)) = V- (e, Vg (2.8, forg =1, -1, 0
with the boundary conditions for each mode function y, as
x) = u(x),
Yo(x) () (17)

yq(%f):O, for g=1,---,Q —1,

It is easy to find that the first equation in (16) is irrelevant to randomness, and
yo(z) is determinate. And we remind that in the following text yo(x, £) always refers
to yo(x).

Let V = HZ(D), and relative finite element weak formulations to equations (15)-
(17) are defined as follows: Find y?(-,£) € Y such that

Q-1
ye=> ey, (18)
q=0

with yo € {v(z) € HZ(D)|v(z) = u(x),Vz € D}, y, € Y,g=1,--- ,Q — 1 and
E[(ao(z)Vyo(x), Vv)p] =0, Yv eV,
E[(ao(:c)qu(:v,g), VU)D} E[(n(xaﬁ)qufl(x,f), VU)D]v Vv eV, (19)
qg=12,---,Q -1,

According to the weak formulations, the “MME solution operator” S© : L2(9D)
— L?(H?*(D); Q) is defined by

y? = S%(u), (20)
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where u is the Dirichlet boundary function, and y? is the relative multi-modes
expansion truncation solution solved by the above weak formulations. Obviously,
S is a linear operator respect to .

Using lemma 2.2 we can get the following theorem about the convergence analysis
between the real solution and the truncated solution.

Theorem 3.2. Assume that ¢ < 1, and u € HY**7(9D) for 0 < o < 1. Then
E(llly(w, z) =y (@, &)}1+0(py) < O ul3 240 o)
which can also be writed as

E[[I(S = S)@)3+0(py) < CF ' *? ullF /240 o)

Similar proof can be found in [15].
Then, with the “MME solution operator” S?, we can rewrite the optimal control
problem (P) as

yQeY,uelU (21)
st yQ(x, &) = S9(u(x)),

where the definition of functional F' can be found in (10).

) { min_ F(y(r,€), u())

3.2. Finite element discretization. In this part, we deduce the variational dis-
cretization for problem (P?).
Suppose T, = UTETh T is a triangulation on D which consists of shape regular

polygons. Let h = Tmle)< hr, where hp is the maximal diameter of the polygon T'.
€Th

Let the set of edges under 7, be denoted by &, = Ueesh e.
Associated with the triangulation, we consider the finite element space

Up = {up€C&):up|c€P1, e€ &}
Y, = {yn€CD)NY 1y |reP1, T € Th}
Vi = {thC(D)ﬁV:yh |TEP1, TG%}
Whe = {uyn € Hg(D) syn(z, €) = up(x), Yo € E,NOD}

where P; denotes the linear polynomial space. The discrete control constraint set
is given by

Uh Uy, for UC;
ad = up € Uy, | a < up(z) < B,Vz € D}, for BCC.

Denote by {z;}{; and {¢;}}L, the nodal points and the corresponding basis
functions of V}, respectively, where

¢j(x))=1 for I=j; ¢j(x)=0 for 1+#j.
For any ¢ € , the FEM interpolations of 4@ (z,£) in state equations (18) is:

N
uR (,€) = D0y (€)85(a), (22)

N
Yo,n(z) = Zyo,j¢j (), (23)
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with yo,; = yo(xj) for j=1,2,---,N.
And for any £ € Q, the FEM interpolations of y,(z,§) in equation (19) is:

N
Yon(2,6) = Z Ya.i (©)o;(2), (24)

with yq,](f) = yq(xj7€) for ] = 1’25 o 7N and q= 1a e 7Q - 17'
We also use the same basis functions to express the FEM interpolation of bound-
ary control function up(z), that is

up(z) = Z ujg;(x), (25)

where

w — up(xj), x; € 0D,
771 0, else.

Then the finite element scheme for the weak formulations (18)-(19) is given by:
For each realization & € €, seeking y,?(-, &) € Vj, such that

Q-1
y}?(mv f) = Z quq,h(xa 5)7 (26)
q=0

where yo, € Wiy, and yg5(2,8)(¢ = 1,2,---,Q — 1) € V,, for fixed £ € Q satisfy
the following equations,
(VyO,ha VUh)D = Oa V?)h S Vh7
(qu,h('7§)’vuh>p = (n('»g)va*l,h('vg)vvvh)D» vvh S th (27)
q:]-a 7Q71'
Notice that the discrete control variable uy, is implicit in the solution space Wh,,

that yo 5 belongs to, which makes y;?(a:,f) in (26) related to uy. And (26)-(27) can
be summarized as

Y (2,€) = Sy (un(2)),

where S,? : L2(0D) — Y}, is a random operator.

Next we focus on the regularity estimate of S,? and error estimate between S
and S,?.

Lemma 3.3. From [15], we can summarize that:
(a) For any given uy, € Uy, suppose {yq.n}tq>0 are a series of solutions solved by
equations (27) with respect to uy. Then the regularity estimates for yq are

E [ly0l3r2(0y] < CTHD, ) unlpsavo oy 0> 1 (28)

(b) For any given uy, € Uy, suppose y© and y,? are the solutions in equations (18)-
(19) and equations (26)-(27) relate to uy, respectively, which means y@ = S%(uy)
and y}? = S}?(uh). Then we have the error estimate as

E[[[[(S° = S2) (un)l|72(py]"* = Elllly? (@, 2) — 2 (w, 2) [ 2(p)) ">

(29)
< Ch(1+g)||uh||H1/2+a(8D), O<o< 1.
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From the inequalities (28), we can deduce that

Q-1
E[lyfllep] = E [| > e‘fyq,hu;(m]
q=0

Q-1

E lz qu”yqﬁ”JLz(D)
q=0

where C; = ZqQ:_Ol C(D,a)?™1e/4. In another word, it means

E (IS5 ) lap)| < Crllunllysioopys 5= 24 (30)

Combining theorem 3.2 with inequality (29), we get the error estimate between
S and S}?.

E[[[I(S — i) (un) 132 ()] "/
<E[[[I(S = S2) (un) | 32(p)]2 + E[[1(S? = S2) (un) 132 ()] (31)
SC(EQ + hl+U)HUhHH1/2+a(5D)7 0<o<1.

IN

S ClHuhHg—Il/Zﬁ»a(aD)a ] - 2747

Now, the stochastic optimal control problem (P®) in (21) has a discretization
scheme as

min F Qa:, ,up(T
(P2 Jin (ypy (2,€), un()) (52)

st y2(@,€) = S2(un ().

Here, we give the one-order necessary optimality conditions of (P}?) which will
be used later,

UC:  E[S?*(S%uy, — ya)] + viin = 0, (33)
BCC:  (E[SP*(S2an — ya)] + Yin, up — n)orv > 0,Yuy € Uy, (34)

in which @, is the optimum solution of the problem (P}f2 ).
For simplicity of calculation, we rewrite the FEM functions to relative vector

forms. Suppose there is a vector function R(z) = [¢1(x), p2(x), -, dn(x)]. Then
from (22) the function y}? in (26) can be written in the following form

ui (#,€) = R(2)y (€) (35)
where

Y€)= w1(9), - ,yn(©)" eRY, Ve 0
Similarly, there have

Yo,n(z) = R(z)yo,n, (36)
where
Yoh = (Yo,1,  ,yon)" €RY,
and
yq,h(xaf) :R(x)yz;,h(f)v g=1,---,Q—1, (37)
where

Yq,h(f) = (yq,1(§)> T aquV(g))T € RN ,Vf € Q.

And from (25) we set
up(z) = R(x)up, (38)
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with
up = (ug, - ,uN)TERN.

By substituting (35)-(38) into equations (26)-(27) and eliminating R(z), we get

Q-1
Yo = 3 ey, n(®), (39)
q=0
with
Ayon +Buy =0, 10
Ayon(€) = CE)yg1n(6), for g=1,--,Q—1, (40)
where

A = [(ao(l')vd)i(x)’V(bj(x))L%D)}
= [(V6u). Y650 o) -

C©) = |(@.8Vi(x). V() 1o |

Finally, it is necessary to mention that equations (39)-(40) are equivalent to
equations (26)-(27) in different formats.

NxN'

NxN

3.3. A determinant optimal control problem derived from (PhQ) In this

part, we will show that the problem (P}f2 ) in (32) can be approximated to a discrete
optimal control problem with determined state and control variables. The key
to this transformation lies in equality between the random state variable y,? (x,8)
and the determined finite dimensional variable yo 1. First, let us study on the

relationship between y}?(f ) and yo,h-
In equations (40), due to the singularity of stiffness matrix A it holds
yq:h(g) = (A_lc(g))qyﬂ,h fOI‘ q= 13 7Q_ 1 (41)
Then bringing (41) into (39), we can compute that

-1

V) =D e (AT'C(9)) you = Hq()yon, Q=123+,  (42)

q=0

O

where Hq(€) is a random matrix defined as

Q
Hq(&) =) 1 (A7'C©¥)", Q=1,2,3,---.
q

|
—

I
o

Notice the equality (42) that the random field and physical space in yl?(f) are
separated into a random matrix Hq(§) and a a non-random variable yg n.

With the help of equality (42), we are ready to get the new optimal control
problem. By substituting yg(x,f) = R(x)yl?(g) = R(z)Hq({)yon and up(x) =
R(z)uy, in the cost functional F(y,?(x,f),uh(x)) in (32), it has

Fiu(yo,n un) :=F(y? (2, €),un(z))
1

43
:E[Q L(R(x)HQ(g)YO,h - yd)2dx} + % /BD(R(x)uh)deC, ( )
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where

5[5 | RHa(@yon —ids

:]E[% /D(R(sc)HQ(f)YO,h ~ya)" (R(z)Hq(§)yon — yd)d:v}

=E[% /D Yon' Hq(§)"R(z) " R(z)Hq(€)yon — 2yon' Ho(§) ' R(z) ya + ygdx}
1

25/13(},07}1% [Ha()"R(2)"R(2)Hq(§)]yon—2yon" E[Hq (&) "JR(z)"ya +y§) da.

In the above equation, randomness only exists in E[Hq(¢)"R(z)"R(z)Hq(¢)]
and E [HQ(§ )T] which can be estimated approximately by Monte Carlo simulation
at the very beginning.

Next we list some theoretical conclusions of Monte Carlo simulation in order to
get further global error estimates of our algorithms.

Suppose {&;}1, are arbitrary independent, identically distributed samples in the
probability space (2, F, P). For given v(z,£) € Y, define an approximation of the
expectation Efv(z, £)] as

1

M

M=

Enlv(z, )] := v(x, &) (44)
i=1
And we can find the following estimate in [2],
1 3
IEE) — Exbollzzm) < <= (Ellolam)]) (45)
Applying the Monte Carlo simulation (44) to the expanded functional Fy(yo n,
up), we get an equivalent optimal control problem (]3,52 ) to (32)

min th(yg’h, up)
=0 Y0,h;Un

(P) s.t. Ayon+ Bup =0, (46)
up € Ue};d’

where

Fuyonmn) = 5 [ you { Bu[Ha(6) R(@) Rz Ha(©)]yon

~2yon” Ear [Ho(€) | R(2) ya + 3 }do + /a (R(a)up ),

and

Uh _ ]RN7 UC}7
ad = 1 Ly = (vy,v9, - ,oN)T € RN |u, <v;<u,j=1,---,N}, BCC.

Compared to the stochastic optimal control problem (PhQ ) in (32), the new prob-
lem (PhQ) possesses a simpler composition with deterministic state variable, control
variable, and state equation. Although these two problems have different formation,
they are almost equivalent. Major change is the substitution of mathematical ex-
pectation for its Monte Carlo approximation. The whole transformation from (P}? )
to (}3,?) is carried out under the equality (42). And most importantly the control
variables are identical, which leads to the similar first order necessary conditions
between the two problems.
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The following proposition reveals the first order necessary condition of problem
(P}? ), which is derived by substituting the Monte Carlo simulation Ej; for the
mathematical expectation E in (33) and (34).

Proposition 1. Problem (15}?) admits a unique FEM optimal solution (§o n,Up)
with Jo.n = R(x)¥on,n, = R(x)Tn, and the optimum control uy, satisfies the
following one order necessary condition:

UcC: EM[S,?*(S;?ﬂh —ya)] +yun =0, (47)
BCC: <EM[S;?*(S;?% —Ya)| + Yn, vy — Un)uru = 0,V € Ul (48)

4. The ADMM for (th ) under unconstrained and box-constrained con-
strains. In this section, we shall solve the optimal control problem (15}52 ) in (46)
by an alternating direction method of multipliers (ADMM). The origin of ADMM
can be traced back to the 1950s for nonlinear variational problems [17]. In recent
years, it is mainly applied to sparse signal recovery, image restoration, compressed
sensing, machine learning and so on [29, 31]. Besides, ADMM is an efficient numeri-
cal algorithm for convex optimization problem, which combines the benefits of dual
decomposition and augmented Lagrangian methods. Relative theoretical results of
ADMM can be found in [6, 7, 12, 18, 19].

The advantages of ADMM for solving the PDE-constrained optimization (P}? )
can be summarized as follows: (1) ADMM enjoys a global convergence with a
convergence rate of O(3), where k denotes the number of iterations, compared
with the local convergence method such as Newton’s method or SQP method. (2)
ADMM makes use of the character that the control variable and the state variable
are decoupled in the cost functional, which will reduce the computational cost. (3)
The stiff matrix of left hand side is invariant in each iteration, so that we only need
to calculate the inverse matrices for one time in the whole process which reduces
the computing time of solving the algebraic system sharply [33].

Next we will present two ADMM algorithms for unconstrained case and box-
constrained case separately.

4.1. Unconstrained case. Because the cost functional in (46) has variables sep-
arable structure, it can be divided into two irrelevant items. Let

Biyon) = 5 | {von" Pu[Hol©) R@)RE)H(O)]yon
—2yon’ Ex[Hq(§)"|R(2)"ya + yﬁ}dl”
Do(un) = %/BD(R(sc)uh)zdx.

Then the augmented Lagrangian function for problem (ﬁ,? ) is given by

L, (Yo,n, un, An) == P1(yo,n) + P2(un)

~(Mn, Ayon + Bun) + £ |Ayon + Buy % (49)
where A\, € V}, is the Lagrange multiplier and p is the penalty parameter. Similarly,
the problem (IBhQ ) is equivalent to the saddle-point problem

min max L, (Yo,h; Uh, An) - (50)
Y0,h,Uh  Ap
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Let 7 be the tolerance error and 7% = [[uf ™ —uf|| +||AFT — M || be the iterative
error at k-th step. Then the ADMM for solving (54) under unconstrained case is
given by the following algorithm 1.

Algorithm 1: ADMM for UC.
begin

Set the initial values u, Ay;

while 7% < 7 do

k+1 _ . E kY.
Yon — arg 13}(1)12 L,(Yo,hs Up, An);

ui 't = arg muin Ep(ygjll, up, A
A =L - p(Aygh + Bugt);
| Increase k :=k + 1.

One of the advantages for applying ADMM to the optimal control problem (P}? )

is that y’éj},u’ffl, /\ffl are easy to figure out in each iteration step. By simple

calculation, we obtain

Yo = (W+pATA) ™ (w—pATBuj + ATN), (51)
wt = (yE+pB"B) ' (-pB Aysi! + BTAL),
)\ffl = A\ - p(Aijl1 + Buﬁ+1),

where W = Ey {HQ(QTDHQ(@], w = Ey {HQ(g)Tc] and the matrix D and

vectors ¢ are defined as

D= /D R(z)"R(z)dz, E= | R(2)TR(z)dz, ¢ = / ya(2)R(x)da.

oD D

4.2. Box-constrained case. For the box-constrained case, there should bring in
additional constraints x,, and an indicative function Q(xy) as

Q) = {

Secondly, to get the ADMM form under the box-constrained case, we regard
yo.n and xp, as a global variable w = (yo n,Xn). Thus the discrete optimal control
problem (46) under box-constrained case can be rewritten as

0, Xh € Uzl;ld
400, otherwise.

min Fy(w,up) = @1 (yo,n) + Qxn) + Pa2(up),
s.t. Ayon +Buy =0, (52)
Xh — Up = 0.

Suppose

L,(¥0,hsXh, Un, A1h, A2h)
= ®1(yo,n) + O(xn) + P2(un) — (A1n, Ayo,n + Bup) (53)
— (\ansxn = un) + S ([ Ayon + Bun| + xn — un|?).
Then the equivalent saddle-point problem is

min max /:'p (W, un, Ap) - (54)
w,Uh  Ap
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Let 7§ = |luf — up ™| + M5, — A5+ IAs, — Asn ||, therefore the two block
ADMM algorithm for the saddle—point problem (54) is

Algorithm 2: Two block ADMM for BCC.
begin

Set the initial values ud, A, A9y

while 7% < 71 do

k+1 A E o \k ).
yOh - a‘rgml nl (yO h7xh7uh7A1h7A2h)7

k+1 _ E \k ).
Xy, argmlnﬁ (y0 1o Xh, UE AR AR

k+1 _ k+1 _k+1 .
u = argmmﬁ (yOh X uh,)\lh,/\Zh),

N = M p(AyEL + Bkt
MY = A, — o — uft):
Increase k := k + 1.

The sub-optimal problems in algorithm 2 can be computed directly without it-
eration. Let Pyn (v) be the projection of v onto Ugy, i.e.

Pyn_(v) = max(ug, min(up, v)).

Then, the fomulas in each iterative step of algorithm 2 turns to be

—1

ygtl = (W+pATA) (w—pATBuﬁ—I—AT/\lfh)7
)\k
= oy, (uh+ 2,
—1

wt' = (VE+pBB+I) (- pBTAysh +oxp T+ BTAL, — AG),
MEt = M- p(Ayeht + By,
Mt = M- ol - ),

where I is the identity matrix.

We finish this part by giving the convergence rate of the general ADMM algo-
rithm. Because algorithm 1 and algorithm 2 have essentially the same structures,
they share common convergence results.

Lemma 4.1 ([8]). The sequence (y’&h, uf, \b) in both algorithm 1 and 2 converges
to the optimal solutions (¥n,0n, \n). And AE denotes the vector (Ak, k) in the
second algorithm. Let vE = (uf,\k) and ¥, = (@in, A\n). Both algorithms are
contractive and they satisfy the following estimate

1 _
vy = vall% < m”vg — ¥l (55)
where v) = (u, \0) is the initial value of the ADMM.

Remark 1 ([8]). Let @i, be the real solution of the problem (P) in (46), and uk be
the numerical solution after k steps iteration in both algorithm 1 and algorithm 2.

Then in general case, Lemma 4.1 implies that the theoretical convergence rate for
the ADMM is

lu§ — a3, = O(1/k), (56)
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where H is some given matrix related to B and p (concrete definition can be found
in [8]). The computational results always show faster convergence rate than O(1/k)
(see numerical simulations in Section 6).

5. Convergence analysis. This section provides some error estimates for the pro-
posed algorithms in the foregoing discussion. Suppose @, Gy, uﬁ denote the optimum
control for the problem (P) in (9), the real solution for the problem (lf’}f2 ) in (46),
and the iterative solution for algorithm 1 and algorithm 2. The ultimate goal is
to derive the global error estimate ||z — R(z)uf| 12(sp) for algorithm 1 and algo-
rithm 2. For this purpose, firstly we will show the discretization error estimate
for || — tp||L2(opy, where 4y = R(z)Ty is the corresponding FEM function of @y,.
Then with the existing ADMM convergence rate (56), the global error estimate is
derived.

5.1. Discretization error estimates. Let us start with the unconstrained case.
Similar error estimates have been discussed in our earlier article [26], so we draw
the following conclusion directly.

Theorem 5.1. In algorithm 1 for the optimal control problem (]5}?), let M be the
number of samples for MC simulation, h be the FEM mesh size, € be the magni-
tude of the random perturbation, and Q) be the numbers of MME expansion. Then,
algorithm 1 enjoys the following conclusion,

K
@ — an 200y < = + 9 + Kb, (57)

VM

where K1 and Ka are constants independent of M and h, and 0 < o < 1.

Proof. With the help of first order necessary conditions (12) for (P) and (47) for
(P}? ) under unconstrained case, lemma 3.3, the Monte Carlo error estimate in (45),
we can get the estimate. For a rigorous proof the reader is referred to [26]. O

Next, the box-constrained case will be considered. For ease of understanding, we
transcribe the one order necessary conditions (13) for (P) and (48) for (P?) under
box-constrained case below,

(E[S™(Stu — ya)] + vl u — Wy v > 0,Vu € Uyq (58)

<EM [Si?* (S}?ﬂg — yd)] + ’Yﬂh, Vhp — ah)U’,U 2 O,V'Uh c U:d' (59)

To estimate % — @p || £2(ap) from (58) and (59), common skill is to insert u = iy,
in (58), and if we can also take v, = @ in (59), the estimation will be trivial to
carry out by adding these two inequalities together. Unfortunately, this can not be
realized because @ does not belong to U gd. Therefore, a discrete control 4y, € U l%
will be constructed to approximate u. Especially, the variable u; should satisfies
G'(u)(u — up,) = 0 for subsequent estimates where the functional G is defined in
(11).

Following the idea in [10] ,we construct the discrete control 4, € U, with
Up(z;) = up,; for every node x; € 9D as

Dij ;jjjll G'(u(z))u(x)g;(x)dx, if D; #0,
Uhij = L S u(x)de, if Dy =0,

| —a;—1]+|ej1—z;] Ja;—

(60)
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where

D= [ 6o )i

r

The following lemma reveals that 4 satisfies some requirements.

Lemma 5.2 ([10]). 4y € Uy, defined by 60 obeys the following properties:

1. ap € U;le.
2. G'(u)(a— ap) =0.
3. The approximation property

1@ — | 200y < Ch' 1P (61)
where p > 2.
With the help of the function @, we can now prove the following theorem.

Theorem 5.3. Suppose M is the number of samples for MC' simulation, h is the
FEM mesh size, € is the magnitude of the random perturbation, and @ is the num-
bers of MME ezpansion in the optimal control problem (P,?) in (46). Then, for the

problem (}5}?) under box-constrained case it has the following conclusion,

1 _
H’lfb*ﬂ?”[{Q(D) Sc<m+€Q+h1 1/P>’ (62)

where p > 2.
Proof. Insert @, C Uyq and 4y, € U2? into (13) and (48) respectively, then we have

(E[S™(Su = ya)] + v, an — Wuru
(B[S (S (@h) = ya)] +~vtin, i — Uh) 17

(AVAVS

For simplicity, we omit the subscript of the inner product (-, )y ¢ in the following.
Then, by adding these two inequalities and re-ordering the result it gets
WE = anl|3 200y + B |52 (@n — n)l172 ()]
<(Eum —E)[(Spun — ya, S (iin, — an))] + (v, n — @)
+E[(St — ya, S(un — )] + E[(Sin — ya, S (in — n))]
= (Ex — E)[(SPan — ya, ST (an — @))] +E[(S2ay, — Sa, S (@ — )]

I II (65)
+E[(ya, (S = $)(@— wn))] +E [ (sa,(5F - 9)(@—aP))]
111
+ E[<S}?U}L — Yd, S}?(uh — ’l_l,)>] + <’Yﬂg, Up — 1_1,>
v

We divide the right hand of the above inequality in four terms and estimate
them step by step. For the first term I, it follows from the estimate (45), the
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Cauchy-Schwarz inequality, and the triangle inequality that

I =

IN

%\H -5~

IN

<

—E) [(Sin — ya, Sy2 (itn, — 1n))]

E )
E | (1S in — yall 32 o) IS5 (i — an)|[ :
l n Uh Z/dHL2(D)|| h(uh Uh)HLZ(D)

—~

E

/N

NI
Bl

(E 158 = valltey] ) * (B 152 — @)l o))

(5 [(158s00  loliso) ) (2 152000 - o))

For further estimation of I, we should use the following inequality

(E[

a+b)")i < (E[8(at+bM))F < (E[8a'])* + (E[8H])F, Va,b> 0.

—

Under the above inequality, the estimate (30) when j = 4, and the approximation
property (61) it can be deduced that

11

1 < ﬁ {(E [81520lLa] ) + (B [8|yd||‘i2w>]ﬂ

(E[IS2 (0 - i)l ]) |

V8

< C Cullanll 2 cop + Gp — ip | 2
> \/M( 1|| h”L (D) ||Z/d||L2(D)) || h h||L (D)
< <o —m
p— - 2
= U h h||L2(8D)
C 1—1
< —h P
T VM
For the second term II, it turns to be
= E[(Sia — Sa, SP(a —un))]
= E[{(S? — S)an, S (a —up))] +E[(S(ay, — @), S (@ — an))]
< O h”")Hufuhan op) + CRY ™7 |la — |12 (op)
< CEQ+htT 4+ h s )@ — an L2 o)

Next, using the Cauchy-Schwarz inequality, the error estimate (31), the estimate
of Sin (8), and (30) when j = 2, it is easy to check that

III E[(ya, (S5 — S)(@—an))] +E {(Sﬂ (57 —S)(a— ﬂh))}

< O+ h1+g)||ﬂ — UnllL20D)-

The rest is to estimate IV. Before proceeding further, let us see an important
equation which comes from the second property of 4 in Lemma 5.4.

J'(a)(u—up) = E[(S*(Su—yq)+yu,in —u))
= E[(St—yq, S(a, — 1)) + (ya,an —u) =0
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With the above equation, we are now turning to the following estimation.

IV = E[(SZan — ya, S (an, —a))] + (vin, iy — )
= ]E[<S§ﬁh — Yd, SQ(fL )>] < uh,uh — ’l_l,>
[<Sﬂ—yd, (i, — @) (va, ap — @)

+ [<SQuh, SQ(uh — u)>]
[<Su S(ap, — u)>] +
= ]E[<yd,(5 SQ Yap —a

U, U, — @)

)
= ]EKyd,(S SQ uh—u>
y(up —

)] +E[(sa, (5§ ) (an - a)

] -
]
(
]

(
+E[((SR = S)itn, Si (an — )] + B [(S(in — 1), S (tn — u))]

+’Y<ﬂh — u, Uy, — )

IN

+OR2%) 4R F | — a? || 12(op)s

where 0 < o <1 and p > 2.

C(eQ + h'To)R 5 + C(e2 + KTV "5 + O(eQ + ARl s

995

Substituting the estimates for I, IT, II1, IV into the inequality (65), we arrive at

@~ anllzzop) + Bt (157 (@n — an)|22(p)]

C i

< Whl P+ C(E? + R+ 1)@ — Al 2 o)
FO(ET + B0 5 + CR2(H)
C o ia

S ot CE = anllzaon)

+C(e7 + W) v 4+ CR20 ).
With Young’s inequality, it turns to be

vl — ﬂh”%?(ap)

< Alla - anlF2om) + B [|ISF (iun — @) 7200m))
cC 1 1 C C 1 Y- -
< M+1h2(1 ”)+;52Q+;h2(1 p)+§||U_UhH%2(aD)

Q4 B2 4 %hzuﬁ) L op2a-),
By rearranging the above inequality, we get

Y- -~
§||u_uh||%2(6D)

IN

1
C(M+62Q+(6Q+h1+”)2+h2(1_;)>
C( L Q+h11)2

— 15 P .

VM

1 1
@ —anlL20p) < C < +e@ +h1”> , P22,

VM

IN

Thus

which completes the proof.
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5.2. Global error estimate. Finally, we summarise the above conclusions and
arrive at the following global error estimate of the control variables.

Lemma 5.4. Let @ be the optimum control for the problem (P) in (9) under either
the unconstrained case (UC) or the boz-constrained case (BCC). And u¥ is the
optimal iterative solution for both algorithm 1 and algorithm 2. It has the following
global error estimate

g — R(z)uf||z2(py < C(\/LM +EQ+hs+%)a (66)

where C' is a generic constant, and

[ 140, for UC;
5= -1, for BCC.

with0<o<1landp>2.

The above lemma can be easily proved by theorem 5.3, theorem 5.3, remark 1
and the triangle inequality

@ - R(z)ugllr2op) < @ —unllz2(op) + [IR(2) 80 — R(2)ugi L2 op)
17— anllz2op) + [R(2)H | [[En — il

where @, = R(z)Ty and H is some bounded matrix defined as
BTB 0
H=|{" ).
0 =1
P
6. Numerical simulations. In this section, we present some numerical tests to

show the performance of algorithm 1 and algorithm 2. Let D = [-1,1] x [-1,1] C
R2, and consider

IN

Ya(x) := ya(z1, 22) = —sin(nzy)sin(rre) — x%x%

We are going to solve the following optimal control problems constrained by random
Poisson equations,

win F(y(z.€).u(w) =E[3 [ 00,0 = ma(@)Pde] +5 [ a(a)aa
st. = V(A +en(z,€)Vy(z,£)) =0, inD,

y(@,6) = u(x), on aD,

UGUad,

where

U - H3/2(0D), unconstrained case;
| {u(z) €U | 0.5 < wu(z) <0.8}, box-constrained case.

In the following, we will show the convergence rates of FEM, ADMM, and MME
for algorithm 1 and algorithm 2 separately. As it is commonly used in other articles,
we choose the random variable to be uniformly distributed in [-0.5,0.5]. The
magnitude of the random fluctuation € will set to be different values in the following
tests. First, we will get the mean value of coefficient by Monte Carlo method with
1000 samples (which can guarantee that the error of MC is around 3.2 x 10~3) and
discretize the problem by continuous piecewise linear finite elements. The resulting
deterministic finite dimensional optimization problem is solved with ADMM. We
use classical ADMM for the unconstrained case, and two-block ADMM for the
box-constrained case.
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The FEM error for Algorithm 1 The FEM error for Algorithm 2

— .
—o— I Rull 2 —O vyl z o)
A=YVl 2oy

Rk
I=RY 220 10t ¢
— — Slope of order 2

— — Slope of order 2

The error in log scale
The error in log scale
=
5

107F

10* 10? 10° 10 10! 10? 10° 10
Degree of freedom in log scale Degree of freedom in log scale

FIGURE 1. The FEM disretization errors dominating |l —
Ruh’k||L2(D) and |ly* — Ryh’k||L2(D) for two algorithms: (Left)
algorithm 1; (Right) algorithm 2.

Test 1: The convergence rates of FEM

We start by examining the convergence rates of FEM numerically. The FEM
mesh sizes are set to be h = 1/2,1/4,1/8,1/16,1/32, and 1/64 respectively. Note
that for this problem we do not have an exact solution, therefore the error is com-
puted with respect to a reference numerical solution derived under h = 1/128. Let
the iterative steps k = 200 in both unconstrained case and box-constrained case
to guarantee that the error of ADMM is about 10~%. The perturbation magnitude
e = 0.1, and we use three modes (i.e., Q = 3) in MME approximation. Figure 1
gives the FEM convergence rates of the numerical solutions uf and y§ to the algo-
rithm 1 (left) and algorithm 2 (right) correspondingly. From figure 1, we can find
that the FEM convergence rate of w in unconstrained case is approximate to order
2, and the FEM convergence rate of u is about order 1.5, which are both higher
than the theoretical results.

Test 2: The convergence rates of ADMM

Consider the convergence rates of ADMM with H-norm numerically in both cases.
The perturbation magnitude € is setted to be 0.1. In figure 2, three modes in MME
are used. And the FEM mesh size is fixed to be h = 1/64 to guarantee the ADMM
errors ||y, — uf||3 being the major error source. Figure 2 shows the ADMM errors
for two algorithms with respect to the k-iteration in log-scale. In these results we can
observe that the ADMM convergence rate is much faster than O(ﬁ) in algorithm 1.
This is possible, since the control in the model problem under unconstrained case
is smooth. Comparing to algorithm 1, the ADMM convergence rate is lower in
algorithm 2 because of the non-smoothness of the control variable u under the
box-constrained condition.

Test 3: The convergence rates of MME

The goal of this test is to validate the convergence rates of MME numerically
with respect to the perturbation magnitude € and the truncated number ). The
mesh size of the FEM is h = 1/64, and the tolerance error is set to 10~* (in which
the iterative number of ADMM is about k = 200). First, we fix Q = 3 to observe
the convergence rate about ¢ alone. Figure 3 shows the convergence rates is about
order 3 which is consistent with the theory. Then, fix ¢ = 0.1 to see the error of
control variable u under different modes. Table 1 gives the results in which we can
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The ADMM error for Algorithm 1

—#—ADMM convergence rate

The ADMM error for Algorithm 2

—#— ADMM convergence rate

112 112,
)

slope of order O(1/k — slope of order O(1k*?)

T
I

relative error in H-norm
= =
9, Q
x
!
relative error in H-norm

»—\
Q

10° 10* 10° 10° 10* 10?
iter step iter step

FIGURE 2. The errors of the ADMM with respect to k-th iteration
(|[tn — uk|l%) in algorithm 1 (left) and algorithm 2 (right) with
k =100 and h =1/32

The MME error for Algorithm 1

oItz
5H__

The MME error for Algorithm 2

/
llu-u, Il 2 /
0.045 s oo ;

FIGURE 3. The convergence rates of € under () = 3 in algorithm 1
(left) and algorithm 2 (right)

find that the bigger the number of modes is, the lower is the error of w. But, it also
cost more CPU time. So we just using three modes for the two algorithms.

TABLE 1. The error of u for algorithms 1 and algorithm 2 with
different mode number Q.

Q | Algorithms 1 | Algorithms 2
1 1.942e-1 2.276e-1
2 2.315e-2 2.823e-2
3 8.241e-3 7.566e-3

7. Conclusion. In this paper, we presented two numerical algorithms for solving
optimal control problems constrained by random Poisson equations under uncon-
strained condition and box-constrained condition. Both algorithms adopt MME
technique for the random space and FEM for physical space discretization. Then
under a special state variable substitution (42), the random constrained control
problem can be approximated to a deterministic discrete optimization problem.
Further in algorithm 1 and algorithm 2, we use ADMM and two-block ADMM to
solve the fully discretized problem respectively. A detailed analysis is carried out
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for the error estimation of the discrete optimal solution under some mild assump-
tions on the random input data. Because it only needs to solve a deterministic
constrained control problem, our algorithms can reduce the memory consumption
sharply, especially for high-dimensional and large-scale problems which require a
great number of samples.
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