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Abstract. Let p be a fixed odd prime. The Bockstein free part of the mod
p Steenrod algebra, Ap, can be defined as the quotient of the mod p reduc-

tion of the Leibniz Hopf algebra, Fp. We study the Hopf algebra epimorphism

π : Fp → Ap to investigate the canonical Hopf algebra conjugation in Ap to-
gether with the conjugation operation in Fp. We also give a result about

conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multi-

plicative algebra structure.

1. Introduction. From a topological view, the mod p Steenrod algebra, A, for
any prime p, is the algebra of stable cohomology operations for mod p cohomology.
Being a Hopf algebra, it also has a unique Hopf algebra conjugation map, χ. Let
p be an odd fixed prime and let Ap denote the subalgebra of A at odd primes
generated by the Steenrod reduced pth powers Pi, i ≥ 1 [28] (i.e., the Bockstein-free
part of A). This is also a Hopf algebra with a unique conjugation map.

The Leibniz-Hopf algebra F is the free associative algebra on generators S1, S2,
. . ., where Si has degree i. F is connected. We refer to [18–22] for more detailed
information about this algebra. By the mod p reduction of this algebra, Fp =
F ⊗ Z/p, we mean the free associative Z/p algebra on generators S1, S2, . . .. We
may make Fp a Hopf algebra by defining a comultiplication ∆ by

∆(Sn) =
∑

im+jk=n

Sim ⊗ Sjk .

We can give Fp a new grading by Si has degree 2i(p − 1), then the algebra Ap

is naturally defined as a quotient of Fp by the Adem relations [34]. It follows
that we have a Hopf algebra epimorphism π : Fp → Ap. Recently, this homomor-
phism and its dual π∗ : A∗p → F∗p which is a graded Hopf algebra inclusion play
an important role concerning the Adem relations in the Steenrod algebra and the
conjugation invariant problem in Ap, Fp and the dual of these algebras. Let us
(briefly) give information about it. When p = 2, in an earlier paper [39, Section 3],
the homomorphism π is considered for determining a better formula for the con-
jugation operation in the Steenrod algebra. In the same paper, the conjugation
invariant problem in A2 is also investigated by using the conjugation invariants in
the Leibniz-Hopf algebra [10]. In [40, 41] the author used the π∗ to introduce an
alternative view of the Adem relations for any prime number. In [40], motivated by
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the work of Crossley and Whitehouse [11], the author attempts to solve conjugation
invariant problem in the mod 2 dual Steenrod algebra by using the homomorphism
π∗. Conjugation invariants in the mod p dual Steenrod algebra, A∗p, are determined
in [12]. In [38, Section 3] the author used π∗ to introduce a different approach on
the conjugation invariant problem A∗p. In [43] Turgay and Kaji used π∗ to give
generalisations of some classical results concerning the Steenrod algebra in the lit-
erature. There are also a wide variety of Hopf algebras with different rich algebraic
structures. For some of these algebras we refer to [4, 7, 14,17,26].

The conjugation is a useful tool for studying many problems in the Steenrod
algebra. Conjugation map in A was first studied by Thom [37] in 1954. Afterwards
Milnor gave a conjugation formula [28, Theorem 5] for Steenrod powers [34], Pi.
Many researchers have used it since it has links with topology and algebra. In

1974, Davis [13] computed certain Steenrod powers, Ppn−1+...+p+1. Silverman [33],
Straffin [36], Barratt and Miller [3], and Karaca and I.Y. Karaca [24] have obtained
many relations through this formula. Walker and Wood [45, 46] have used this
formula to give an answer for the nilpotent question in the Steenrod algebra.

There are many descriptions of bases for the Steenrod algebra in literature. There
are bases developed by Milnor [28], Wall [47], D. Arnon [2], R. Wood [48], in the
Steenrod algebra. One of the traditional ones is the admissible basis. In [32],
Serre showed that the set of admissible monomials forms a vector space basis for
the Steenrod algebra. After that many researches have investigated relationships
between the admissible basis and the other bases. Milnor [28, Lemma 8] showed
that the admissible basis is related to the Milnor basis. Monks [30, Section 3]
expressed an admissible monomial in the Milnor basis using the Milnor product
formula. In 1998, Carlisle [6] et al proved a conjecture of Monks [30] on the relation
between the admissible basis and the Milnor basis of the mod 2 Steenrod algebra.
In the same article the results are also generalised to odd prime cases. In [2], Arnon
expressed admissible monomials in A2 in a different form. In [16,25], Arnon’s results
are generalized to odd primes. In [44] Turgay and Karaca give relations using the
Arnon Bases.

The Steenrod algebra has many relations among its elements. The complexity in
the structure of the Steenrod algebra makes calculations without the aid computer
programs time consuming. Examples of such computer-based aid are Monk’s and
Kaji’s Maple packages [23, 31] for A2. Sage [35] includes useful and efficent codes
for calculations in Ap for all primes. Calculations in table 1 in this present paper
agree with what Sage produces.

Now we give the organization of this work with the motivations. The problem of
explicitly computing conjugates of monomials in terms of the admissible monomials
in the Steenrod algebra is an open problem. Motivated by this in section 3, we
investigate if we can have a better understanding of conjugation operation in Ap

using the homomorphism π together with a conjugation formula on Fp. Our method
enables us to write the conjugates of the Steenrod squares in terms of the admissible
basis elements in Ap (see Examples 3.1, 3.2 and the property (7) ). Our approach
cannot solve our problem, but it gives the fact that the Adem relations with better
understanding enable us to calculate the conjugate of some Steenrod powers.

In section 4, we consider the decomposition of the conjugation operation in the
mod 2 dual Leibniz Hopf algebra, F∗2 . We reprove an important identity concerning
the coarsening operation (see Theorem 4.1). Our argument in the proof is new in
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that it is purely combinatorial. Conjugation invariant problem in A∗2 is an impor-
tant problem in algebraic topology because it has links with commutativity of ring
spectra (see [1,11,12] for more details). In [11] Crossley and Whitehouse introduced
a partial answer to this problem. In [9] Crossley and Turgay give another approach
to this problem and determined a vector space basis for the conjugation invariants
in the mod dual Leibniz-Hopf algebra, F∗2 . In this section we give a result for the
conjugation invariants in F∗2 using the multiplicative structure of this algebra (see
Theorem 4.3).

2. The mod p Steenrod algebra. Steenrod operations, Pi, which are also called
Steenrod powers at odd primes , are cohomology operations acting on ordinary mod
p cohomology of the form

Pi : Hq(X;Zp) −→ Hq+2i(p−1)(X;Zp)

for all integers i ≥ 0 and q ≥ 0. These operations satisfy some certain properties
and one of them is the Adem Relations:

PaPb =

[ ap ]∑
j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
Pa+b−jPj

if a < pb, and

PaβPb =

[ ap ]∑
j=0

(−1)a+j

(
(p− 1)(b− j)

a− pj

)
βPa+b−jPj

+

[ a−1
p ]∑

j=0

(−1)a+j−1

(
(p− 1)(b− j)− 1

a− pj − 1

)
Pa+b−jβPj

if a ≤ pb, where β is the Bockstein homomorphism [34, Chapter 6].

Remark 2.1. [ap ] denotes the greatest integer ≤ a
p and the binomial coefficients

are taken modulo p.

Definition 2.1. The mod p Steenrod algebra is the associative algebra over Fp

generated by β,P1,P2, ... subject to β2 = 0, the Adem Relations and to P0 = 1.
This algebra is graded where Pi is degree of 2i(p− 1) and β is degree of 1.

In Ap a monomial can be written in the form

βε0Pr1βε1 · · · Prkβεk

where εi = 0, 1 and ri = 1, 2, . . .. We denote this monomial by PI , where

I = (ε0, r1, ε1, r2, . . . , rk, εk, 0, 0, . . .).

PI is said to be an admissible monomial if ri ≥ pri+1 + εi for all i ≥ 1. Let the
degree of I be the degree of PI , which is denoted by d(I), then we have the following
formula:

d(PI) = d(I) =

k∑
i=0

εi + 2(p− 1)

k∑
i=1

ri.

Remark 2.2. If I is an admissible sequence, then

d(I) > 1 + p+ p2 + · · ·+ pk + ε0 + · · ·+ εk =
pk+1 − 1

p− 1
+

k∑
i=0

εi,
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so that finding an admissible basis for a certain degree is a finite problem which
gives rise to a computer algorithm.

2.1. Conjugation in the Steenrod algebra. In [28], Milnor has showed that A
is a graded connected Hopf algebra with a coproduct defined by the formula:

ψ(Pi) =

i∑
k=0

Pk ⊗ Pi−k, and ψ(β) = β ⊗ 1 + 1⊗ β.

As Ap is a connected Hopf algebra [29], it has a unique Hopf algebra conjugation
which is also an anti-automorphism. By Thom’s identity, a conjugation formula
can be defined [28, Section 7] recursively by

χ(P0) = 1, and

r∑
i=0

Piχ(Pr−i) = 0 r > 0.

Example 2.1. If p = 3, to calculate the image of P1 under χ we need to solve the
equation below

P0χ(P1) + P1χ(P0) = 0. (1)

By Eq. (1) it is easily seen that:

χ(P1) = 2P1.

Moreover we can generalize the above equality to all primes as follow.

Proposition 2.3. χ(P1) = (p− 1)P1.

We also have Davis’s useful conjugation formula as follows.

Theorem 2.4 ( [13, Theorem 1]).

χ(Ppn−1+···+p+1) = (−1)nPpn−1

· · · PpP1. (2)

Lastly we give χ-images of Pi at prime p = 3, 5, 7, 11 is given as follows.

Table 1
Calculations under conjugation operation

χ(Pi) A3 A5 A7 A11

χ(P1) 2P1 4P1 6P1 10P1

χ(P2) P2 P2 P2 P2

χ(P3) 2P3 4P3 6P3 10P3

χ(P4) P3,1 P4 P4 P4

χ(P5) P5 + 2P4,1 4P5 6P5 10P5

χ(P6) P6+P5,1 P5,1 P6 P6

χ(P7) 2P6,1 P7 + 4P6,1 6P7 10P7

χ(P8) P6,2 3P8 + P7,1 P7,1 P8

χ(P9) 2P9+P8,1+2P7,2 3P9 + 4P8,1 P9 + 6P8,1 10P9

χ(P10) P9,1+ P8,2 P10 + P9,1 5P10 + P9,1 P10

3. Computations in the odd primary Steenrod algebra using the conju-
gation via π. The algebra Fp has a basis of words Si1Si2 · · ·Sik in the letters
Si1 , Si2 , . . . , which we will abbreviate to Sj1,j2,...,jr . A formula for the conjuga-
tion operation on F was introduced in [8, 15, 27]. We know that the cojugation is
anti-multiplicative. Hence, we can express it as follows

χ′(Si1,...,ik) =
∑

(−1)mSb1,...,bm (3)
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where the summation is over all refinements b1, . . . , bm of the reversed word ik, . . . , i1.
For instance,

χ′(S2,3) = S3,2 − S3,1,1 − S1,2,2 + S1,2,1,1 − S2,1,2 + S2,1,1,1 + S1,1,1,2 − S1,1,1,1,1.

We now interested in the graded Hopf algebra homomorphism π : Fp → A, where
π(Sn) = Pn. This homomorphism preserves conjugation operations:

χ ◦ π = π ◦ χ′. (4)

Let us work on mod 3 and use the above equation for computing χ in the following
two examples.

Example 3.1. Applying (4) with the OLP S4 gives us that

χ
(
π(S4)

)
= π

(
χ′(S4)

)
. (5)

Since

χ′(S4) = −S4 + S3,1 + S2,2 − S1,2,1 + S1,3 − S2,1,1 − S1,1,2 + S1,1,1,1,

we have

π
(
χ′(S4)

)
= −P4 + P3,1 + P2,2 − P1,2,1 + P1,3 − P2,1,1 − P1,1,2 + P1,1,1,1.

The Adem relations gives us that

P2,2 = P1,2,1 = P2,1,1 = P1,1,2 = P1,1,1,1 = 0,

and P1,3 = P4. It follows that (6) turns into χ(P4) = P3,1.

Example 3.2. Applying (4) with the HLP S3,1 gives us that

χ
(
π(S3,1)

)
= π

(
χ′(S3,1)

)
. (6)

Since

χ′(S3,1) = S1,3 − S1,2,1 − S1,1,2 + S1,1,1,1,

it follows that

π
(
χ′(S3,1)

)
= P1,3 − P1,2,1 + P1,1,1,1.

By the Adem relations, we have: P1,2,1 = P1,1,1,1 = 0 and P1,3 = P4. Hence,
χ(P3,1) = P4.

Using (4) we now reprove a property of the conjugation operation in Ap, which
plays an important role in the proof of relationship between the X- and Z bases [44,
Proposition 3.2]. By the same argument we used in the above examples, we may
compute the χ(Ppn

). Now fix a prime number p and an integer m ≥. Now consider
the following

χ(Ppn

) = π

(∑
(−1)mSj1,...,jm

)
, (7)

where the summation is over all refinements j1, . . . , jm of the word pn. It follows
that the only one-length refinement among these refinements is Ppn

and we know
that π(Ppn

) = Ppn

. Recall from [34] that P pn

is indecomposable. Hence by linearity
of π, (7) leads to

χ(Ppn

) = −Ppn

+K, (8)

where K is a polynomial which is a sum of products of Pr’s where r < pn for each
r.
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4. Results concerning conjugation in the mod 2 dual Leibniz-Hopf alge-
bra. Recall from [42, Section 2] that, conjugation operation in F∗2 has a decom-
position χF∗

2
= C ◦ R, where C is a coarsening operation. Given a basis element

Sb1,...,bp , its image under the coarsening operation C is given by

C(Sb1,...,bp) =
∑

Sl1,...,ln (9)

summed over all coarsening l1, . . . , ln of b1, . . . , bp.
We now reprove the following result using combinatorics

Theorem 4.1. C2 = 1.

The above equality is already given in [42, Section 2]. We give a combinatoric
proof for this identity. For this we first give the following.

Proposition 4.2. Let Sb1,...,bp ∈ F∗2 , then∑
C(Sr1,...,rm) = Sb1,...,bp , (10)

where the summation is over all coarsenings r1, . . . , rm of b1, . . . , bp.

Proof. Let Sc1,...,cn be any word. If Sc1,...,cn = Sb1,...,bp , and is in the sum in
(10), then we shall show that it occurs with coefficient one. On the other hand, if
Sc1,...,cn 6= Sb1,...,bp , then we shall show that it occurs with coefficient zero. In other
words, we need to show that there is an even number of coarsenings r1, . . . , rm of
b1, . . . , bp for which Sc1,...,cn is a summand of C(Sr1,...,rm).

i. Let Sc1,...,cn = Sb1,...,bp , and be in the sum in (10), then by (9), Sc1,...,cn is a
summand of C(Sb1,...,bp). Moreover, there are no proper coarsening r1, . . . , rm
of b1, . . . , bp for which Sc1,...,cn is a summand of C(Sr1,...,rm). Because, if
Sc1,...,cn is a summand of C(Sr1,...,rm), where Sr1,...,rm is a proper coarsening of
Sb1,...,bp , then by (9), Sc1,...,cn is a coarsening of Sr1,...,rm , and hence is a proper
coarsening of Sb1,...,bp . But Sc1,...,cn = Sb1,...,bp , so Sc1,...,cn cannot be a proper
coarsening of Sb1,...,bp . Therefore, there is exactly one coarsening r1, . . . , rm
for which Sc1,...,cn is a summand of C(Sr1,...,rm) which is the improper one,
where m = p and r1 = b1, r2 = b2, . . . , rm = bp. So Sc1,...,cn occurs with a
coefficient one in the sum.

ii. Let Sc1,...,cn 6= Sb1,...,bp . If Sc1,...,cn is to occur in the sum at all, it must be
a summand of C(Sr1,...,rm) for some coarsening r1, . . . , rm of b1, . . . , bp. Then
by(9), Sc1,...,cn is a coarsening of Sr1,...,rm . We know Sr1,...,rm is a coarsening
of Sb1,...,bp , then Sc1,...,cn is also a coarsening of Sb1,...,bp .

On the other hand, each coarsening is obtained by turning some of the
p − 1 commas of b1, . . . , bp into pluses. Let j (j ≥ 1), be the number of
commas in b1, . . . , bp which are turned into pluses when we form c1, . . . , cn.
Since b1, . . . , bp 6= c1, . . . , cn. Then, r1, . . . , rm corresponds to choosing a
subset of these j commas. There are 2j such subsets and, therefore, there are
2j coarsenings r1, . . . , rm for which Sc1,...,cn is a coarsening of Sr1,...,rm . This
number will be even since j > 0.

Hence, in case i, we showed that Sc1,...,cn occurs with a coefficient one in
(10), whereas in case ii, there is an even number of coarsenings r1, . . . , rm of
b1, . . . , bp for which Sc1,...,cn is a summand of C(Sr1,...,rm). Therefore, since we
work modulo 2, each such Sc1,...,cn occurs with coefficient 0 in (10). Therefore
the only summand which is not canceled in the sum is Sb1,...,bp .
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Proof of Theorem 4.1. Applying the function C both sides of (10) completes the
proof.

In recent literature the dual Leiniz-Hopf algebra is also called the overlapping
shuffle algebra [18]. Let | x | denote the degree of the element x. In [9] it is
showed that as a vector space Ker(χF∗

2
− 1) = Im(χF∗

2
− 1) in even degrees.

Here Ker(χF∗
2
− 1) represents a subspace of F∗2 which is formed by conjugation

invariants under χF2
∗ . We use this results and give the following results using the

multiplicative structure of F∗2 .

Theorem 4.3. Let x, y ∈ Ker(χF∗
2
− 1) then xy ∈ Im(χF∗

2
− 1).

Proof. We know Ker(χF∗
2
− 1) is a sub algebra of F∗2 with overlapping shuffle

product. To prove, suppose x, y ∈ Ker(χF∗
2
− 1) we will consider x, y according to

their degrees in the following cases:

i. If | x |, | y | are both odd then | xy | is even, then xy ∈ Im(χF∗
2
− 1).

ii. If | x |, | y | are both even then | xy | is even then xy ∈ Im(χF∗
2
− 1).

iii. If | x | is odd and | y | is even, then by [9, Theorem 2.7] y ∈ Im(χF∗
2
− 1).

Thus there is a z ∈ F∗2 such that y = (χF∗
2
− 1)(z). So (χF∗

2
− 1)(xz) =

χF∗
2
(xz)−xz = χF∗

2
(z)χF∗

2
(x)−xz. Since x ∈ Ker(χF∗

2
−1) then χF∗

2
(x) = x.

Therefore χF∗
2
(z)χF∗

2
(x) − xz = χF∗

2
(z)x − xz = x(χF∗

2
(z) − z) = xy. Thus

(χF∗
2
− 1)(xz) = xy which means xy ∈ Im(χF∗

2
− 1).

iv. If | x | is even and | y | is odd then xy ∈ Im(χF∗
2
− 1)) because of the same

argument with iii, but just the degrees of x, y are different.

By i,ii,iii and iv x, y ∈ Ker(χF2
∗ − 1) then x.y ∈ Im(χF∗

2
− 1).
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12, Amer. Math. Soc., Providence, RI, 1982, 47–52.

[4] D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen, Quasi-Hopf Algebras, Encyclo-
pedia of Mathematics and its Applications, 171, Cambridge University Press, Cambridge,

2019.
[5] S. R. Bullet and I. G. Macdonald, On the Adem relations, Topology, 21 (1982), 329–332.

[6] D. P. Carlisle, G. Walker and R. M. W. Wood, The intersection of the admissible basis and

the Milnor basis of the Steenrod algebra, J. Pure Appl. Algebra, 128 (1998), 1–10.
[7] M. D. Crossley, The Steenrod algebra and other copolynomial Hopf algebras, Bull. London

Math. Soc., 32 (2000), 609–614.

[8] M. D. Crossley, Some Hopf algebras of words, Glasg. Math. J., 48 (2006), 575–582.
[9] M. Crossley and N. D. Turgay, Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra,

Comm. Algebra, 41 (2013), 3261–3266.

[10] M. Crossley and N. D. Turgay, Conjugation invariants in the Leibniz-Hopf algebra, J. Pure
Appl. Algebra, 217 (2013), 2247–2254.

[11] M. D. Crossley and S. Whitehouse, On conjugation invariants in the dual Steenrod algebra,

Proc. Amer. Math. Soc., 128 (2000), 2809–2818.
[12] M. D. Crossley and S. Whitehouse, Higher conjugation cohomology in commutative Hopf

algebras, Proc. Edinb. Math. Soc. (2), 44 (2001), 19–26.

http://www.ams.org/mathscinet-getitem?mr=MR0251716&return=pdf
http://dx.doi.org/10.1007/BFb0081960
http://www.ams.org/mathscinet-getitem?mr=MR1303282&return=pdf
http://dx.doi.org/10.1016/0022-4049(94)90099-X
http://www.ams.org/mathscinet-getitem?mr=MR3155376&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3929714&return=pdf
http://dx.doi.org/10.1017/9781108582780
http://www.ams.org/mathscinet-getitem?mr=MR649764&return=pdf
http://dx.doi.org/10.1016/0040-9383(82)90015-5
http://www.ams.org/mathscinet-getitem?mr=MR1623269&return=pdf
http://dx.doi.org/10.1016/S0022-4049(97)00035-2
http://dx.doi.org/10.1016/S0022-4049(97)00035-2
http://www.ams.org/mathscinet-getitem?mr=MR1767714&return=pdf
http://dx.doi.org/10.1112/S0024609300007128
http://www.ams.org/mathscinet-getitem?mr=MR2271386&return=pdf
http://dx.doi.org/10.1017/S0017089506003302
http://www.ams.org/mathscinet-getitem?mr=MR3169454&return=pdf
http://dx.doi.org/10.1080/00927872.2012.682675
http://www.ams.org/mathscinet-getitem?mr=MR3057307&return=pdf
http://dx.doi.org/10.1016/j.jpaa.2013.03.003
http://www.ams.org/mathscinet-getitem?mr=MR1657790&return=pdf
http://dx.doi.org/10.1090/S0002-9939-00-05283-7
http://www.ams.org/mathscinet-getitem?mr=MR1878725&return=pdf
http://dx.doi.org/10.1017/S0013091599000826
http://dx.doi.org/10.1017/S0013091599000826
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