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Abstract. A multiscale finite element method is proposed for addressing a
singularly perturbed convection-diffusion model. In reference to the a priori

estimate of the boundary layer location, we provide a graded recursion for the

mesh adaption. On this mesh, the multiscale basis functions are able to capture
the microscopic boundary layers effectively. Then with a global reduction, the

multiscale functional space may efficiently reflect the macroscopic essence. The

error estimate for the adaptive multiscale strategy is presented, and a high-
order convergence is proved. Numerical results validate the robustness of this

novel multiscale simulation for singular perturbation with small parameters,

as a consequence, high accuracy and uniform superconvergence are obtained
through computational reductions.

1. Introduction. Singular perturbation problems are ordinary/partial differential
equations with perturbed parameters. For cases those are of a small parameter ε,
the convective term dominates in the convection-diffusion model, and the bound-
ary layer phenomenon involves. A remarkable property is that the equation order
reduces as ε approaches 0. At the same time, the solutions demonstrate either
boundary or interior layer(s) in which their derivatives are extremely large. The
singularly perturbed problems appear from mathematical modellings of scientific
engineerings, such as flows with large Reynolds numbers, heat transfer with large
Peclet numbers, turbulent interactions of waves and currents, mechanical and elec-
trical system, chemical reaction, biotic species, etc.

Basically, the presence of boundary/interior layer(s) would create computational
difficulties, and it is hard to reach the closed-form solutions with regard to ele-
mentary functions. It is known that traditional methods for conducting singular
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perturbations are inefficient because to resolve layers precisely an extremely fine
mesh covering the global domain is required. This sufficiently fine discretization
will lead to systems that are prohibitively expensive for solving, especially in high
dimensions. The a priori knowledge of the layer location is need to take into account.
Stability of the numerical approach is frequently another concern. In general, two
popular approaches are processed for designing efficient algorithms: one is based on
appropriately refined layer-adapted meshes, and the other is based on locally exact
or fitted schemes. A characteristic property of those potential methods is a uniform
convergence in terms of the perturbed parameter; it is independent of whatever the
parameter value is to be validated the stability of numerical solutions.

Many kinds of literature have focused on fitted numerical methods for the singu-
larly perturbed problems [14], such as finite difference method (FDM) [6, 10, 16, 17],
finite element method (FEM) [2, 3, 4, 5, 7, 18], finite volume method (FVM) [19],
discontinuous Galerkin method [8, 20], reproducing kernel method [1], collocation
method, spectral method, etc. Shishkin [16] proposes a finite difference method on
the a priori adapted meshes, it converges almost ε-uniformly for a singularly per-
turbed parabolic equation. In [6] a one dimensional parabolic systems of reaction-
diffusion are studied, components splitting are used by the central finite difference
scheme to discretize in space and by the implicit Euler scheme to discretize in time.
Chen and Xu [5] present a streamline diffusion finite element method and obtain
an optimal maximum norm with stability and accuracy on the adapted grid. [3]
gains the existence and uniqueness of the solution of a nonlinear elliptic problem,
it is verified to be a parameter robust method for solving nonlinear cases. A finite
volume discretization is provided for the perturbed equation in [19], the robust a
posteriori error estimate is based on flux reconstruction with anisotropic meshes.
Du and Chung [8] investigate an adaptive staggered discontinuous Galerkin method
for a steady state convection-diffusion equation, and the a posteriori error estimator
is derived under the boundedness assumption on h/ε.

The multiscale finite element method (MsFEM) is an updated approach for this
type of problems. We [11] consider a two dimensional reaction-diffusion model and
propose an adapted Petrov-Galerkin MsFEM, it provides more flexibility in func-
tional space and eliminates the multiscale resonance automatically to reach a stable
convergence. In [12] the MsFEM is applied for a singularly perturbed convection-
diffusion problem with the Robin boundary, through the reduced mapping matrix
and special interpolations we resolve the rapid oscillation of boundary layers.

Motivated by these works, the goal of this paper is to present a high accuracy and
a high-order convergence of the multiscale finite element computation for singular
perturbations, it will resolve the solution’s singularity with an underlying mesh
adapted to its singular nature. It is accomplished by a reduced multiscale strategy,
with the help of multiscale basis functions to capture the microscopic information
locally and to save the macroscopic capacity globally.

The paper proceeds as follow. In Section 2, a singularly perturbed convection-
diffusion equation with a small parameter is introduced, and the classical finite
element approximation is used for it first. Then in Section 3 we propose a reduced
multiscale strategy for solving the model. A recursion of graded mesh is constructed,
and the numerical analysis of its multiscale error estimate is provided. Numerical
results are offered to testify the behaviors of the multiscale simulation in Section 4.
We end up with conclusions in Section 5.
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2. Model problem and Galerkin method. We consider a convection-diffusion
equation{

Lu := −εu′′(x) + b(x)u′(x) + c(x)u(x) = f(x), in Ω = (0, 1),
u(0) = u0, u(1) = u1,

(1)

where 0 < ε << 1 is a small parameter. u(x) is a solution, and b(x), c(x) are
sufficiently smooth coefficients with properties

b(x) ≥ 2β > 0, c(x) ≥ 0, c(x)− 1

2
b′(x) ≥ c0 > 0, ∀x ∈ Ω̄.

It is known that the solution has a bound

|u(k)(x)| ≤ C(1 + ε−k · exp(x, β, ε)), (2)

its k-th order of derivative k = 0, 1, · · · , q (for a prescribed q ∈ N) and exp(x, β, ε) =

exp−
βx
ε + exp−

β(1−x)
ε . Throughout in this context, C is a generic independent con-

stant. Note that in this form the solution may have boundary layers at x = 0 and/or
x = 1. Convection-diffusion equation of this type arises in linearised versions of the
Navier-Stokes equation.

Standard Sobolev spaces W k,p(Ω), Lp(Ω) = W 0,p(Ω), Hk(Ω) = W k,2(Ω), Hk
0 (Ω)

are used, and (·, ·) is used for the L2(Ω) inner product. Related seminorm and norm
are | · |k,p,Ω and ‖ ·‖k,p,Ω on W k,p(Ω). In the case p = 2, we simplify | · |k,Ω = | · |k,2,Ω
and ‖ · ‖k,Ω = ‖ · ‖k,2,Ω. A ε-weighted energy norm is introduced as

‖ · ‖2ε = ‖ · ‖20,Ω + ε‖ · ‖21,Ω. (3)

The original motivation of this paper is to practice the multi-scale nature through
a scale decomposition of u(x) into two parts, a smooth S(x) and a singular E(x),
i.e.,

u(x) = S(x) + E(x). (4)

Set LS = f , LE = 0 to satisfy Lu = f , and their k-th order of derivatives have

|S(k)(x)| ≤ C, (5)

|E(k)(x)| ≤ Cε−k · e(x, β, ε). (6)

The weak formulation of (1) is based on a bilinear form

a(u, v) = ε(u′, v′) + (bu′ + cu, v), (7)

and an inner product

(f, v) =

∫
Ω

fvdx,

to satisfy
a(u, v) = (f, v), for u, v ∈ H1(Ω). (8)

Denote K as an element and Kh as a mesh partition (for any K ∈ Kh), and V h

is denoted as
V h =

{
v ∈ H1(Ω) : v|K ∈ Pm(K)

}
, (9)

where Pm(K) denotes a space of polynomials of degree less than or equal to m ∈ N.
The classical Galerkin finite element method is to find ug ∈ V h such that

a(ug, v) = (f, v), ∀v ∈ V h, (10)

here ug is the Galerkin FEM solution.
It is known that for cases of a large parameter ε in (1), there is no singular

perturbation so that traditional methods such as FEM works well. However, for
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cases of a small parameter, the boundary layers phenomena are quite troublesome,
the solution or its derivative would exhibit jumps or huge steepness. Our goal is
to obtain the most accurate and convergent solution (with possibly least computa-
tions), and the result does not rely on the perturbed parameter ε. In this way, we
are committed to finding powerful methods to address this situation. In the paper,
we would like to present a novel strategy of the multiscale finite element method
on an adaptive coarse mesh, which is capable of providing enough accuracy with
just moderate computer resources, and it ensures uniform convergence for singular
perturbations.

3. Multiscale adaption and error estimate.

3.1. Multiscale finite element method. Being different from the Galerkin FEM,
the idea of a multiscale approach is to split the multiple solution space into resolvable
and unresolvable scales. It is processed by using the piecewise polynomials space
V h to represent the resolvable scale, and using a projection operator P : U → V h

to represent the unresolvable scale,

U = V h ⊕ Uh, (11)

u = Pu+ (I − P )u = u1 + u2. (12)

We reformulate the weak form (8) as to find u1 ∈ V h, u2 ∈ Uh such that

a(u, v1) = a(u1 + u2, v1) = (f, v1), ∀v1 ∈ V h, (13)

a(u, v2) = a(u1 + u2, v2) = (f, v2), ∀v2 ∈ Uh. (14)

In order to eliminate the unresolvable scales in (14), B(u1) and F (f) are defined as
the following solutions to find B(u1) ∈ Uh, F (f) ∈ Uh such that

a(B(u1), v2) = −a(u1, v2), ∀v2 ∈ Uh, (15)

a(F (f), v2) = (f, v2), ∀v2 ∈ Uh. (16)

Thus the solution of (14) becomes u2 = F (f)− u1 = F (f) + B(u1). And with the
elimination of resolvable scales in (13) we find u1 ∈ V h such that

a(u1 +B(u1), v1) = (f, v1)− a(F (f), v1), ∀v1 ∈ V h. (17)

As we can see that space Uh is to represent the unresolvable scales, it will be
enriched with the multiscale basis functions ϕi (in addition to the finite element
basis functions ψi), that is

Uh = span{ϕi ⊕ ψi, ∀K ∈ Kh}. (18)

These multiscale bases ϕi have abilities to reflect the microscopic information of the
macroscopic problem (1), and they may capture the local perturbation in boundary
layers automatically. It is fulfilled through conducting following local problems in
the finite element scheme.

We solve the multiscale basis functions on each coarse element K,{
Lϕi := −εϕ′′i (x) + b(x)ϕ′i(x) + c(x)ϕi(x) = 0, in K,
ϕi(xj) = δij , on ∂K.

(19)

The boundary condition Kronecker δij is refined as ϕi(xj) = 0 when i 6= j and
ϕi(xj) = 1 when i = j. As for the local problem (19) and the original problem
(1) they have the identical differential operator L, we solve (19) by applying the
FE scheme (with a fine partition M) in coarse elements. Consequently on the
coarse level, the microscopic information of boundary layers is captured through
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the multiscale basis functions ϕi. We should point out that it is quite different from
the classical FEM, which is computed on the fine level and would consume more
computational costs.

As a result, we are driven to find uh ∈ U in a weak form such that

a(uh, v) = (f, v), ∀v ∈ U, (20)

here uh is the MsFEM solution. The strength of multiscale computation comes
from its enrichment of the multiscale space.

In our codes the available multiscale basis functions are deposited in a map-
ping matrix R, whose every row and column in each coarse element K has local
microscopic information. In result, a (reduced) global matrix Ams = R ∗ A ∗ RT
and a (reduced) global vector Fms = R ∗ F are stored on the coarse level. Here
A,F are the FEM (full) stiffness matrix and (full) right vector on the fine level.
Through the multiscale finite element scheme, we assemble the global equations to
solve Amsuh = Fms for uh on the coarse level.

It should be noted that when we apply the FEM on a very fine mesh, the global
system Aug = F is massive. On the contrary, if we apply the MsFEM on a rel-
atively coarse mesh to obtain the MsFEM solution (with enough accuracy), the
corresponding system turns to Amsuh = Fms, which are quite small-scaled. This
merit shows the advantage of our reduced MsFEM, especially for high dimension
problems. As a consequence, this multiscale computation is simply of limited costs
to achieve an accurate solution. We are pleased to show that the MsFEM on an
adaptive coarse mesh is an optimal strategy in the following.

3.2. Mesh adaption. We provide sorts of mesh partitions Kh in this subsection.
Suppose the model (1) has a large parameter of ε, there is no boundary layer and
traditional methods behave well. It is validated that usage of Uniform mesh is suffi-
cient (whose size h is a constant 1/N , here N is a partition number). However, with
a small ε the model will produce boundary layers whose width is O(τ) = O(εlnN).
As for this situation, even though with a very fine partition N the traditional
method would like to perform a fake result.

For a small parameter ε, the domain Ω is divided into smooth and singular parts
concerning a transition point τ = min{ 1

2 ,
εlnN
β }. We take the a priori estimate for

the model problem and figure out the appropriate locations of boundary layers; then
several non-Uniform meshes are to be employed. Here the total partition number
N is kept fixed, as for in a sub-domain it is refined to approach the singular part,
while in another sub-domain it is coarsened to approach the smooth part. These
sorts of h-adapted strategy are offered as follows.

First we provide Shishkin’s idea [13, 17]. Suppose that boundary layers appear
near the right side x = 1, we divide Ω̄ = [0, 1] into Ω1 = [0, 1−τ ] and Ω2 = [1−τ, 1],
both sub-domains are partitioned by N/2 elements. Shishkin grid node is

Shishkin: xi =

{
2(1−τ)
N · i, i = 0, · · · , N2 ,

1− τ + 2τ
N · (i−

N
2 ), i = N

2 + 1, · · · , N.
(21)

Next, a Bakhvalov mesh in [12] is presented to be another adapted layer. Suppose

the boundary layer is near x = 1, its mesh distribution is determined by e−
β(1−xi)

ε =
Ai+B and xN

2
= 1− τ , xN = 1. In this way, Bakhvalov grid node is

Bakhvalov: xi =

{
(1− ε

β lnN) · 2i
N , i = 0, · · · , N2 ,

1 + ε
β ln[1− 2(1− 1

N )(1− i
N )], i = N

2 + 1, · · · , N. (22)
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Finally, a more flexible improvement is a Graded mesh provided in [9, 15], which
is a highly anisotropic non-Uniform. It is based on a recursive iteration, the Graded
grid node is

Graded: xi =


0, i = 0,
iσhε, 1 ≤ i < b 1

σhc+ 1,
(1 + σh)xi−1, b 1

σhc+ 1 ≤ i ≤ N − 1,
1, i = N,

(23)

where 0 < h < 1, σ > 0 are initial constants for the mesh generation. It is taken
h = 0.5, σ = 1 in the following experiments. Be aware that N is no longer fixed
number any more and it satisfies xN−1 < 1 and (1 + σh)xN−1 ≥ 1. In this case
plenty of grid nodes will be concentrated on the left boundary x = 0.

However, if the boundary layer appears on the right boundary x = 1, in our
Matlab codes a command ones−fliplr is used for flipping arrays from left to right.
As a result, these adaptive nodes will be concentrated on the other side contrarily.
Another thing to remark is about the generated partition number N , it could be
even or odd positive integer according to the recursive algorithm. These outputs
would be testified in the following numerical result section 4.

For more general situations, suppose that singular perturbations dominate on
both sides x = 0 and x = 1, we provide a mesh modification as

Graded: xi =



0, i = 0,
σhε, i = 1,
(1 + σh)xi−1, 2 ≤ i ≤ N0 − 1,
0.5, i = N0,
1− (1 + σh)(1− xi+1), N0 + 1 ≤ i ≤ N − 2,
1− σhε, i = N − 1,
1, i = N,

(24)

here N0 is the size of the generated N in (23). It will produce a quasi-symmetric
mesh partition. The Graded mesh adaption could be applied to efficiently address
the solutions that have both boundary layers.

In the paper we set α = k + 1. A transition point is supposed to define as τ =
αεlnN here. Near the left point x = 0 we set xN

2
= τ and in the sub-domain [0, τ ]

a grid generating function g is introduced, and it has g(0) = 0, g( 1
2 ) = logN . Then

for grid nodes we have xi = αεg( iN ). Also, another auxiliary grid characterising
function ω is defined as

g = − logω ⇔ ω = exp
−xi
αε . (25)

As we can see that the Graded is not a pre-determined mesh, it relies on the
recursive iteration, an initial parameter h and a perturbed parameter ε in (23)
and (24). Once the Graded nodes xi are available, we denote hi = xi − xi−1 as a
varying mesh size in the i-th coarse element K. We confirm that the mesh size is
monotone increasing/decreasing, and this grid is prepared for the multiscale finite
element computation on the coarse level. The advantage of Graded mesh is that it
may adaptively adjust to the local quantity of original perturbed problem, and it is
shown to be an optimal mesh for capturing boundary layer phenomena accurately
and economically in the multiscale computation.

3.3. Multiscale error estimate. Now we are ready to prove the error estimate
for the multiscale approximation on the Graded mesh, an error estimate is to be
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derived between the exact solution u and the multiscale solution uh. Associated
with the above coarse mesh Kh, we investigate the enriched multiscale space U in
(11).

Lemma 3.1. [9] Let u and uI be the solution and its interpolation of (8), respec-
tively. Then

ε
1
2 ‖u− uI‖1,Ω ≤ CN−1. (26)

Lemma 3.2. Let u = S +E in (4) be a solution decomposition into a smooth part
and a singular part, SI and EI their interpolants, repectively. Then

‖S − SI‖l,Ω ≤ CN l−α, 0 ≤ l ≤ k, (27)

‖E‖0,Ω1
≤ Cε

1
2N−α, (28)

‖EI‖0,Ω1
≤ CN−α, (29)

‖E − EI‖0,Ω2 ≤ Cε
1
2N−α max |ω′|α. (30)

Proof. Recall that α = k + 1, τ = αεlnN and Ω1 = [0, 1 − τ ], Ω2 = [1 − τ, 1], we
prove (28) first.

‖E‖0,Ω1
≤ C

∫ 1−τ

0

exp−
β(1−x)

ε dx

≤ Cε exp−
βτ
ε ≤ Cε 1

2N−α.

As for (30), since

‖E − EI‖0,Ω2
≤ C(

2τ

N
)α,

|E|α,Ω2
≤ Cε

1
2 (

max |ω′|
N

)α,

then we get ‖E − EI‖0,Ω2 ≤ Cε
1
2N−α max |ω′|α. The proofs for (27) and (29) are

omitted.

Theorem 3.3. Let u and uh be the solution of (8) and the multiscale solution of
(20), respectively. Then

‖u− uh‖ε ≤ CN−α max |ω′|α. (31)

Proof. From the triangular inequality, it is known that

‖u− uh‖ε ≤ ‖u− uI‖ε + ‖uI − uh‖ε.
For the first term on the right, from Lemma 3.2 we have

‖u− uI‖0,Ω1
≤ ‖S − SI‖0,Ω1

+ ‖E‖0,Ω1
+ ‖EI‖0,Ω1

≤ CN−α + Cε
1
2N−α + CN−α

≤ Cε
1
2N−α,

‖u− uI‖0,Ω2
≤ ‖S − SI‖0,Ω2

+ ‖E − EI‖0,Ω2

≤ CN−α + Cε
1
2N−α max |ω′|α

≤ Cε
1
2N−α max |ω′|α,

then ‖u−uI‖0,Ω ≤ Cε
1
2N−α max |ω′|α. With respect to the definition of the energy

norm in (3) and from Lemma 3.1, we get

‖u− uI‖ε ≤ CN−α max |ω′|α.
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For the second term, let e = uI − uh ∈ Uh, using the error a(u− uh, e) = 0 and
the bilinear form in (7) we consider

γ‖uI − uh‖2ε = γ‖e‖2ε ≤ a(e, e)

= a(uI − uh, e) = a(uI − u+ u− uh, e) = a(uI − u, e)
= ε((uI − u)′, e′) + (b(SI − S)′, e)− (b′(EI − E), e)

−(b(EI − E), e′) + (c(uI − u), e),

in the last step, the fourth term attracts a concern. Since

|(b(E − EI), e′)|Ω1
≤ C‖E − EI‖∞,Ω1

N‖e‖0
≤ CN−k‖e‖ε,

|(b(E − EI), e′)|Ω2
≤ C‖E − EI‖∞,Ω2

‖e′‖L1(Ω2)

≤ CN−α max |ω′|α‖e‖ε,

we have |(b(E − EI), e′)|Ω ≤ CN−α max |ω′|α‖e‖ε. Divided by ‖e‖ε on both sides,
and synthesising the estimates the error for ‖uI − uh‖ε is obtained.

Therefore the proof completes.

Remark 1. It is verified in Theorem 3.3 with α = k + 1 when k = 1 linear
polynomials are used in our multiscale finite element computation, the second-order
of convergence is guaranteed. Besides, with the contribution of the adaptive grid
function |ω′|α, the novel method may have the potency to acquire higher convergent
order.

4. Numerical experiment. In this section, singularly perturbed convection-diffu-
sion models are solved on different meshes by the finite element method and by
our reduced multiscale method, respectively. The ability and superiority of the
multiscale computation combined with the Graded mesh will be presented.

The finite element method and the multiscale finite element method are applied
on different meshes, to get the numerical solutions ug and uh respectively, which
are compared with the exact solution u to testify their accuracy. For convenience,
an initial abbreviation of meshes is represented Uniform as (U), Shishkin as (S),
Bakhvalov as (B) and Graded as (G). Computations are executed on the mesh
partition number N . As a result, two methods introduce their discrete system
Aug = F and Amsuh = Fms for solving, which are of large scale and small scale,
respectively.

Numerical errors and convergence orders are tested by

E(N) = ‖u− uN‖ε, (32)

order =
lnE(N)− lnE(2N)

ln 2
. (33)

They are criteria to judge the corresponding abilities of numerical methods. Here
uN may be the classical Galerkin solution ug on the fine level, or the multiscale
solution uh on the coarse level. In addition, E(2N) on the Graded mesh is not from
a fixed 2N exactly but is from its close approximation.

Example 1. Given in (1) with b(x) = 2, c(x) = 1 and an exact solution is

u(x) =
exp

2(x−1)
ε − exp−

2
ε

1− exp−
2
ε

. (34)
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We have u0 = 0, u1 = 1 and an identical right side f(x) = u(x). Note that with
a small parameter ε in this example, u(x) presents an abrupt jump near the right
side x = 1.
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Figure 1. For Example 1, partition number N = 160 for Shishkin
zoom, Bakhvalov zoom, and N = 37 for Graded zoom (from left to
right).

Table 1. For Example 1 with ε = 2−20, corresponding energy norm error and
convergence order of FEM and MsFEM on different meshes.

N FEM(U) order FEM(S) order FEM(B) order N MsFEM(G) order
160 1.568e+0 - 1.080e-4 - 7.352e-5 - 37 3.235e-4 -
320 1.243e+0 0.34 3.255e-5 1.73 1.782e-5 2.04 70 8.357e-5 1.95
640 6.232e-1 1.00 9.591e-6 1.76 3.939e-6 2.18 137 1.686e-5 2.31
1280 2.158e-1 1.53 2.771e-6 1.79 6.235e-7 2.66 276 2.908e-6 2.54
2560 1.032e-1 1.06 7.910e-7 1.81 5.356e-8 3.54 565 4.650e-7 2.64
5120 4.957e-2 1.06 2.244e-7 1.82 1.069e-8 2.32 1164 7.249e-8 2.68
10240 2.315e-2 1.10 6.307e-8 1.83 2.678e-9 2.00 2406 1.139e-8 2.67

We apply the FEM and MsFEM on four types of meshes shown in Figure 1, and
detailed results for a small perturbed parameter ε = 2−20 are listed in Table 1.
It is known that even though with a very fine partition number N = 10240, the
FEM(U) behaves poorly and it has a slow convergence. With the help of Shishkin
and Bakhvalov meshes, the FEM provides a much better accuracy in the refinement
history of N . FEM(S) realizes a clear 1.75-order convergence. The accuracy of
FEM(B) is based on large partition numbers N too, but we are not quite sure
about its somehow fast or slow convergence in this example. That we concern most
is the MsFEM on a Graded coarse mesh, whose coarse partition is an automatical
product, it is even or odd at sometime. Its convergent order of the energy norm is
high and is kept stable from the second to the third, which is in conformity with
Theorem 3.3. It should be pointed out that the MsFEM(G) with coarse partitions
is matching up or even better than the FEM(B) with fine partitions, consequently
the advantage and superiority of MsFEM(G) are quite promising.

It is observed in Figure 2 with partition number N = 160 the numerical solution
of FEM(U) is far wrong from the exact solution. While those solutions of FEM(S)
and FEM(B) are well approximated, on a relatively fine mesh N = 160. What
is more encouraging is that even with a coarse partition N = 37, the MsFEM(G)
captures well. We also find that the grid partition is concentrated to the location
of the boundary layer, while in the smooth part it is sparse partitioned.
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Figure 2. For Example 1 with ε = 2−20, exact solution (blue
line), FEM solution (green star) and MsFEM solution (red star)
on different meshes (from left upper to right lower).

In Figure 3, corresponding discrete errors are plotted. The error (green line)
from FEM(U) is quite annoying, which is from 0 to 3.5. Those maximum errors of
FEM(S) and FEM(B) are reduced to 6 ∗ 10−4 and 1 ∗ 10−3, respectively. Moreover,
we observe the shape of the boundary layer on the right side in FEM(S), while
FEM(B) has almost an equal-distributed error. Besides, with a coarse partition
N = 37, the maximum error of MsFEM(G) is 2 ∗ 10−3. The large error (red line) is
detected only at the near location of the boundary layer. Except this layer, there
is an almost negligible error on this adaptive coarse mesh.

Table 2. For Example 1 with different ε, refinement history of N to the same
magnitude of error on Graded mesh.

MsFEM(G) order N(ε = 1e-7) N(ε = 1e-8) N(ε = 1e-9)
2.811e-4 - 43 49 54
7.371e-5 1.93 80 90 101
1.488e-5 2.31 156 176 195
2.578e-6 2.53 313 351 389
4.139e-7 2.64 638 713 788
6.477e-8 2.68 1309 1458 1606
1.021e-8 2.67 2696 2992 3288
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Figure 3. For Example 1 with ε = 2−20, corresponding error of
FEM and MsFEM on different meshes (from left upper to right
lower).

Figure 4. For Example 1 with different ε, MsFEM(G) error to
partition number N on semilog scale.

To further illustrate the uniform convergence of MsFEM on the Graded mesh,
for different small ε we employ this approach to reach for the same magnitude of
energy norm error, see Table 2 and Figure 4. The high-order (between the second
and the third) convergence is validated again, and the coarse partition N is shown
as a linear growth, which is independent of whatever ε. It is reliable that for cases
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of smaller ε there is a relatively greater N . At the same time, the coarse partition
number in the MsFEM is still much less than the fine one in the FEM.

Example 2. Given b(x) = 1, c(x) = 1 + ε, the exact solution is available as

u(x) = exp−x + exp
(1+ε)(x−1)

ε . (35)

Then u0 = 1 + exp−
1+ε
ε , u1 = 1 + exp−1 and a homogeneous right side f(x) = 0. In

this way, the solution with a small ε will arise boundary layers on both sides. We
apply the FEM on the different fine meshes and the MsFEM on the Graded coarse
mesh (24), respectively, to solve this model with ε = 2−30.

Table 3. For Example 2 with ε = 2−30, corresponding energy norm error and
convergence order of FEM and MsFEM on different meshes.

N FEM(S) order FEM(B) order N MsFEM(G) order
320 1.069e-4 - 2.086e-5 - 106 2.200e-5 -
640 5.215e-5 1.04 5.567e-6 1.91 196 5.781e-6 1.93
1280 2.479e-5 1.07 1.486e-6 1.91 380 1.376e-6 2.07
2560 1.161e-5 1.09 3.962e-7 1.91 758 3.111e-7 2.15
5120 5.337e-6 1.12 1.052e-7 1.91 1534 6.949e-8 2.16
10240 2.320e-6 1.20 2.786e-8 1.92 3132 1.560e-8 2.16
20480 8.097e-7 1.52 7.173e-9 1.96 6416 3.543e-9 2.14

The poor result from the FEM(U) is omitted in Table 3. With the refinement
history of a fine partition N , the accuracy of FEM(S) and FEM(B) is acceptable,
their convergence order is less than the second. We find that the coarse partition N
in MsFEM(G) is almost one quarter to the fine partition in FEM, while the reduced
multiscale method preserves the highest accuracy and it has a superconvergence
greater than the second-order in Theorem 3.3.

In Figure 5 and Figure 6, FEM results on a fine partition N = 320 and MsFEM
results on a coarse partition N = 106 are plotted. It is distinct that 106 coarse
Graded nodes are automatically distributed to both sides densely, and the boundary
layer errors are greatly reduced to the magnitude of 4.5 ∗ 10−4. The advantage of
the reduced multiscale approach is validated again.

In the experiment results, it is demonstrated that by our reduced multiscale
computation on the Graded mesh, the numerical solutions are independent of the
perturbed parameters ε, and they are numerically stable and uniformly supercon-
vergent.

5. Conclusion. In this paper, a novel strategy of the reduced multiscale is pro-
posed to solve a convection-diffusion model with small perturbed parameters. Mak-
ing use of the multiscale nature of the problem, we decompose it into singular scales
and smooth ones. A Graded mesh is built for capturing the local microscopic infor-
mation among scales. It is a type of adaptive grid, and its unfixed partition number
is generated according to the recursive iteration. We present the mathematical
foundation on error estimates, and in numerical experiments, the strength of our
approach has been shown. The multiscale computation is efficient and robust for no
matter of the perturbed parameters; it offers high accuracy and uniform supercon-
vergence with merely moderate computation resources for the singularly perturbed
problem.
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Figure 5. For Example 2 with ε = 2−30, exact solution (blue
line), FEM solution (green star) and MsFEM solution (red star)
on different meshes (from left upper to right lower).
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