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SUPERCLOSE ANALYSIS OF A TWO-GRID FINITE ELEMENT
SCHEME FOR SEMILINEAR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS
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ABSTRACT. In this paper, a two-grid finite element scheme for semilinear par-
abolic integro-differential equations is proposed. In the two-grid scheme, con-
tinuous linear element is used for spatial discretization, while Crank-Nicolson
scheme and Leap-Frog scheme are ultilized for temporal discretization. Based
on the combination of the interpolation and Ritz projection technique, some
superclose estimates between the interpolation and the numerical solution in
the H'-norm are derived. Notice that we only need to solve nonlinear problem
once in the two-grid scheme, namely, the first time step on the coarse-grid
space. A numerical example is presented to verify the effectiveness of the pro-
posed two-grid scheme.

1. Introduction. In this paper, we consider the following semilinear parabolic
integro-differential equations:

ut—Au—F/tAu(s)ds:f(u), XeQ tel (1)
0

u(X,t) =0, X €09Q, teJ, (2)
u(X,0) = up(X), X € Q, (3)

where Q C R? is a rectangle with boundary 9, X = (x,y), J = (0,7T], f(-) is twice
continuously differentiable and ug is a given function. We assume that

W+ 1" ()| <M, yeR.

There exists a lot of numerical methods for solving nonlinear partial differential
equations in the literature. For example, Cannon and Lin [1] derived a priori error
estimates of semidiscrete and Crank-Nicolson finite element approximations to the
solution of the nonlinear diffusion equations with memory. Eriksson and Johnson [3]
used adaptive finite element method to solve nonlinear parabolic problems. Moore
[9] considered a posteriori error estimates for semi- and fully discrete finite element
methods using a degree polynomial basis for solving nonlinear parabolic equations.
Garcia [4] discussed a priori error estimates of fully discrete Raviart-Thomas mixed
finite element scheme for nonlinear parabolic equations.
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Two-grid method was first proposed by Xu [11, 12] as an efficient discretiza-
tion technique for solving the nonlinear and the nonsymmetric problems. Liu et
al. exploited the two kinds of two-grid algorithms for finite difference solutions of
semilinear parabolic equations in [8]. Chen et al. [2] presented a two-grid scheme of
mixed finite element method for fully nonlinear reaction-diffusion equations. Hou et
al. [5] presented a two-grid method of Pg-P; mixed finite element method combined
with Crank-Nicolson scheme for a class of nonlinear parabolic equations. Shi and
Mu [10] discussed some superclose results of a two-grid finite element method for
semilinear parabolic equations. Yang and Xing [13] discussed the convergence of
two-grid discontinuous Galerkin scheme for a kind of nonlinear parabolic problems.

This paper is motivated by the ideas of the works [10, 11], we present a two-grid
scheme for semilinear parabolic integro-differential equations discretized by finite
element method combined with Crank-Nicolson scheme. We mainly discuss the
superclose estimates between the numerical solution and the interpolation.

The plan of this paper is as follows. In Section 2, we give the Crank-Nicolson
scheme and deduce the superclose result of order O(h? + (At)?) in the H!-norm.
In Section 3, we present the two-grid method and derive the superclose estimates
of order O(H? + (At)?) and order O(h% + H* + (At)?), respectively. In Section 4,
we present a numerical example to demonstrate the effectiveness of our method.

2. Superclose analysis of the Crank-Nicolson scheme. We adopt the stan-
dard notation W™ P(Q) for Sobolev spaces on 2 with a norm || - ||;p given by

ol = 22 [1D"]70(q), & semi-norm ||, p given by [vlf, , = 32 [[D0]|7, (-
la|]<m |a]=m

We set W"P(Q) = {v € W™P(Q) : v|]gg = 0}. For p = 2, we denote H™(Q) =
Wm2(Q), Hi*(9) = We™*(Q), and || [l = || - .2, I -1l = Il - llo.2-
We denote by L*(J; W"™P?()) the Banach space of all L*® integrable functions

1

from J into W™P(§2) with norm |[v[|zs(swm.p(q)) = (fOT \|v||§vm,p(ﬂ)dt) “for s €
[1,00), and the standard modification for s = oo. For simplicity of presentation,
we denote ||v||zs(rwmr@)) by [[v|Lswmer). Similarly, one can define the spaces
H(J;W™P(Q)). In addition C' denotes a general positive constant independent of
h and At, where h is the spatial mesh-size, and At is the time step.

Let 7n be a uniform rectangular partition of 2 with mesh size h. V} be the
bilinear finite element space with vanishes on 9. Let I, and Ry, be the associated

interpolation and Ritz projection operators on V}, respectively(see[10]).
Then, for u € H}(Q) N H3(2), from [10] we know that

lu = Ryull + 2|V (u = Ryw)l| < Chlull2, (4)
Hnu — Ryully < Ch?|lulls, (5)
(V(u = Iyu), Vo) < Ch?|luls|[ Vo, (6)
(V(u — Rhu), V’Uh> =0, Vo, € V. (7)
The weak formulation of (1) is to find u : J — H}(Q), such that
¢
(10,0) + (V0 90) = [ (Vu(). Vo)ds = (f(u).0), Vo e HY@. ()
0
Let {tn|tn = nAt;0 <n < N} be a uniform partition in time with time step At,
u" = u(X,t,) and t,_1/2 = (tn—1 +1t,)/2. For a sequence of functions {¢"}2_, we
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denote dyp™ = (¢ — ¢"~1)/At, then the Crank-Nicolson scheme of (1) is to find
up € Vp, forn=1,2,..., N, such that

n—2
At ; , At
(dyul ,vp) — TV(uiL +ulth 4 = (3Vup ™ + Vup) , Vuy,
=0 9)
n n—1 n n—1
_ (V(uh J;uh )7Wh> n (f(uh) +2f(uh ))Uh> R
uy) = Rpup(X), X € Q. (10)

For the proof of existence and uniqueness of the solution for the nonlinear alge-
braic problem (9)-(10), please refer to [6].

Theorem 2.1. Let u and u} be the solutions of (8) and (9), respectively. Assume
that u € LOO(HS), U € L2(H2), U € L2(L2)7 Ut € L2(L2), Vutt € L2(H2) n
L>(L?) and Vuy € L*(L?), then, forn =1,2,..., N, we have

luly = Inu™||, < C(h* + (At)). (11)
Proof. Letting t = t,,_1 /o and v = vy, in (8), we get

Y (u” n—1 th—1/2
(dpu™,vp) + ((u 42—u ),Vvh> —/ (Vu(s), Vo) ds
0

= (f(u""Y2),01) + (RY,vp) + (VRY, Vo), ¥ vy € Vi,

(12)

where R} = dyu™ —up~"/?, Ry = W ynm1/2,
Setting u™ — u = u” — Rpu™ + Rpu™ — uf := 0" + £". Subtracting (9) from
(12), with the help of (7), we have

v(€n+£n—1) Vvh)

(d€" vn) + ( :

. th_1/2 n—2 At ; i1
=— (den™,vp) + /0 Vu(s)ds — Z 7V(uh +up )

J=0

N (13)
oy (3Vup~! + Vup) ,Vvh> + (RY,vn) + (VRY, Vuy)
n n—1
+ (f(un1/2) _ f(uh) +2f(uh )’Uh) YV oup €V,
Selecting vy, = di&™ in (13), noting that
V(Er+&h 1 2 —1p2
(TEEE awer) = S ven - v ) (14)

then multiplying (13) by 2At¢ and summing from n = 1,...,I1(1 < I < N), we
conclude that
! !
2 [ldi™ POt + | VE N = =2 (den™, di&™) At
n=1 n=1
l tpn_1/2 n—2 At 4 -
+2 / Vu(s)ds — — V(! +u’
S a3 G )

=0
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At L2 A
_ n—1 n—1/2 n j 741
- VT +u ), Vdi& )At+2n§_1<§_0 5 VE -+

A n n—1
+ —tV (gn—l + Rhun—1/2 _ uh+uh> ’th§n> At

4 2
) (15)
+2Z< wr-y/zy - L) I, )dtg") AtJrQZ T
6
4—2§j<v Ve Ve =)
n=1 i=1

where we used (7) and £° = 0.
Now, we estimate the right-hand terms of (15). For Iy, it is easy to check that

1 tn
I < 5 [ s,

which together with Cauchy inequality, Young’s inequality and (4) yields

l
1
I < OW el + g D Ide€™ | At (16)
n=1

For I, we decompose it as
n—2

w7 (ru - T

th_1/2 v(un—l +un—1/2) N i
+[ (ww%- . )wﬂs—w )

n—1

l n—2 41 j ]
SR o ]
/tn—l/2 <VU(S) B v(unfl ;un1/2)) d57 vﬁn 3 V£"1>

ti/2 3
+2 (/0 ' (Vu(s) - W) ds,V§1> =: ZAi'
i=1

Using Cauchy inequality and Young’s inequality, we see that

122 ptin J J+1

Ay =2 Z/ (Vu UC +“ )>ds,vgl)
; t;
J=

([ (0T )

- 22 (/tt (Vu(s) - WM) ds, vg”)

B 2

l
n 1
C(A!|Vurelfa (o) +C Y IVE Pt + SV,

n=1
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ti—1/2 v(ul—l +ul—1/2)> .
Ay =2 \Y% — ds,V
2 </tl1 ( u(s) B s, V¢
t3/2 v(u1+u3/2)) 1)
-2 \% ——— = ]ds,V
(/ (Futs) - 5 sV

_p Z < / e <Vu(s) BRCHE i) +2“n+1/2)) ds (19)

tn_1/2 n— n—1/
_/ / (Vu(s) _ V(u ! ;-'LL ! 2)) dS,V£n>
t

n—1

l
n 1
C(A)! | Vure|fa ey + C Y IVE [Pt + SVl

n=1
and
Az < C(AY|Vuse|| 2212y + CIIVE P At. (20)
Thus, we get
l
1

L <C(A4)!|[Vuul|Ga(zy +C Y IVEPAt + JIveE®. (21)

n=1

For I3, by virtue of Cauchy inequality and Young’s inequality, we have

I3 =2 Z (Z ot (V& + vt ver — vgn—l)

7=0

n n—1
+ §_ <A2t (Vf“l +V (Rhu”1/2 St >) \VEm — v5”1>
A A
=92 (2 : 2t (vfj +v€j+1) V{l) _9 <§ : 2t (vgn 1 +V£n) vgn)

=0 n=1

-1
+2<A4 (vgl 1+V<R T +2“h ))N&l) #2)

-1
At ul ™t
) = n n+1/2 _ “h T %h
E: ( 1 (V§ +V (Rhu 5
At noppt
T (vf” Y (Rhu” Y2 Zh T h QUh )) ,V§">

l
OO [V F2 g0y +C S IVE"] At

n=1

where we used the following estimate

e u + !
[ (e - i )|

2 2 2
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:%HV(Rhu"’l — Rpu" %) + V(Rpu" — Ry 1?) + VT 4+ V€T

SCIVRuu(@")(tn — tn_1/2) + VRuyus (V") (tn-1 — tn_1,2)ll + C|[VE"|]
+Cver|

<O AtV Ryun (X" (@7 — ™) + C||VE™ | + C|[vem | (23)

<C(D)?||VRyue (A + C|IVE™ | + C| Ve

<C(AL2(IVun (A + [[Vue (A") = VRyun (X)) + C||VE™ | + C|IVE™ |

<C(A?|[Vuu(A)|l2 + CIVE™ | + CIIVE ],

where ¢™ is located between ¢,, and t,,_1 /2, " is located between t,,_; /o and t,,—1,
A" is located between ¢™ and 3™, and

|¢n - ¢n| < |tn - tn71| = At.

Next, we estimate I;. By use of mean value theorem and the assumption on f,
we conclude that

Sl”f/()\g)(un—l/Q _ un) + f/()\?)(un—l/Q _ un_l)H

fl) + fu"h)
2

| -

=210 0D) — PO 03 (24)
Z% L2 (0F) — £/ e (05) + ' (N ua(03) — £/ (03 e (603)])

At

= I OAD)uee (05)(05 = 01) + f7(A3) (A7 = A3)us (03]

<O(A8)? (Jluse (03] + Jue (83)]])
where we also used

95’—9{" <tp—tn_1=A.,¢
and
IXF = M| <l — X+ Y2 -

§|Un o u”71| + |un _ un71/2| + |un71/2 _ unfl
§2(|un _ un—1/2| + |un—1/2 _ un—1|)

=2(Jus (07)| + [ (63) )AL,

where 07 is located between ¢, 1 and t,,_;/2, 03 is located between t,,_; /o and ¢y,
0% is located between 07 and 0%, A} is located between u™~! and w12, A} is
located between u™~1/2 and u™, A} is located between A} and \3.

Using (4), mean value theorem and the assumption on f, we easily get

H flum) +2f(u”*1> Flup) + f(up™h) ‘

B 2
<CR*([|u™l2 + lu™Hl2) + CUIE™ | + I1E™ D).

<C([lu" = upll + llu" =" = up =" l)
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By use of Cauchy inequality, Young’s inequality and (24)-(25), we derive

Iy <C(At)4(||UttH%2(L2 + ||ut||%2 12)) + CR* ulZa g2

+CZ||V§"| At + = Z||dt§”| At.

n=1

For I5, from Cauchy inequality, Young’s inequality and
IRT < C(A1) uwe (P,

we have
1 l
I < O(At)4|‘Uttt‘|%2(L2) + 3 7; ||dt£n||2At,

where p” is located between ¢, and t,.
Notice that

l -1

Z 5, Vdi£") At = (VRS VE) = Y (VRyT — VR, VE)

n=1 n=1

Using Taylor expansion, we know that

n At n At 1 n
un,:un+1/2_ut+1/27+ tt+1/2( 8) — U (87) (A1),

wat/2 (O 1 .
e IC E S )

Y 8 18

n+l _ un+1/2 +u?+1/2%

where ¢, < 8" <tp 172 <" <tpir

903

(26)

(28)

(29)

(30)

Using Cauchy inequality, Young’s inequality, (29), (30) and mean value theorem,

we get

1
(VRy, VE') < C(ADH[Vur N [* + S VE|,

-1
> (VRS — VRy, VE")
n=1
1 -1
=% (Ve (7") (At)? — Vg (B™) (At)%,VE™)
n=1
-1
- % (Vuttt ('}/nil) (At)B — Vg (anl) (At)37 vgn)
n=1
\- n e At
+ ngl (V (UttJrl/Q — Uy 1/2) ( 8) V§n>
1 -1
:% (Vum ('Yn) (At)B — Vuttt (ﬂn) (At)B, vgn)
n=1
-1

| =

(Vum (’}/n_l) (At)S — Vum <5n—1) (At)37 an)

1

Nel
(=}

n

(31)
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-1 9
+> <(A8t) vuttt((s")m,vg”>
n=1

l (32)
<C(A)* |V |722) + C D IVE A,

n=1
where M is located between ¢;_1 and t;, 6™ is located between tn—1/2 and &, 412
For I, combining Cauchy inequality, Young’s inequality, (28) with (31)-(32), we
derive
l
1
Is < C(AD (Ve T2 g2y + |Vl Foo 12) + C Y IVEP P AL+ §\|V£lll2~ (33)
n=1
Now, substituting the estimates for I;-Ig into (15), then applying discrete Gron-
wall’s lemma, for sufficiently small At, we have
IVE ] <CR*(|[ull7z(az) + luellZzaa)? + OO (uelFa 2y + sl 22 (34)
+ el 22y + IVl T sy + Vel o g2y + 1 VuelF22))
which together with (5), Poincare’s inequality and triangle inequality yields (11).
We complete the proof of the theorem. O

3. Superclose analysis of the two-grid scheme. In this section, we present the
main algorithm of the paper, which has the following two steps:

Step 1. On the coarse grid Ty, compute u}; € Vi to satisfy the following original
nonlinear system:

At
(dyuky,vpr) — (8(3Vu%[ + Vu), VUH>

35)
1 0 1 0 (
_ (V(UH;' uH),Vv;;) i (f(“H) ‘; f(“H>7UH) Yoy €V,
uly = Rpug(X), X € Q. (36)
Forn=1,...,N — 1, compute u?frl € Vi to satisfy the following linear system:
un+1 _ unfl n At ) -
< H AT H,UH> P 7V(u}{ +uy ), Vo
J=1 (37)

n+1 n—1
- <V(UH;_UH),VUH) + (f(u'y),vg), Yoy € V.

Step 2. On the fine grid 7, for n = 1,...,N, compute uj € V}, to satisfy the
following linear system:

~n = At ~J ~j+1 At ~n—1 ~n
(et vn) — | D - V(@ + @) + - (VT + Vi), Vo
§=0
\v4 ~n+~n71 ny Iom \(om _ . n
n ( (uj, 2“h ),Vvh> _ <f(uH) / (U2H)(uh “H)’Uh> (38)
n—1 1, m—1\~n—1 _  n—1
+(f(uH )+f(UH2 ) (1, Upy ),Uh>, Yoy, € Vi,

uy = Rpup(X), X € Q. (39)
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Now, we shall discuss the superclose estimates of the above two-grid algorithm
in the following theorem.

Theorem 3.1. Let u, u%; and @} be the solutions of (8), (35)-(57) and (35)-(39),

respectively. Then under the conditions of Theorem 2.1, for n = 1,2,... N, we
have
upy — Igu™(|y < C(H? 4 (At)?), (40)
|y — Iyu™|y < O(R* + H* + (At)?). (41)

Proof. Setting u™ — uf; = v — Rgu"™ + Rpu" — v}y := w"™ + ¢". From Theorem
2.1, (40) is obvious for n = 1.
Forn=1,..,N — 1, letting t = ¢, and v = vy in (8), we get

un—i—l _ un—l ) (v(un+1 + un—l) > /tn
— g |+ | —————, Vv — Vu(s), Vog)ds
( 2/t H 2 " 0 (Vuls), Vor)

= (f(u"),vag)+ (Ry,vg) + (VR]},Vog), ¥V vg € Vg,

(42)

nt+l_ n—1 n41,  n—1
where Ry = “—<4— QA? —uy, R =*+—"~F4— J2r“ — ™.

Subtracting (37) from (42), with the help of (7), we have

n+1 n—1 n+1 n—1
e — V(" + ")
( N ’“H) + ( 2 ’WH)

43)

n+l _  n—1 tn n A\t . .
- (wme) * /o Vu(e)ds - 30 5Tl + ) o | ¢
j=1

+ (f(u") = f(uly),vm) + (R, vu) + (VRY, Vo), Vo € V.

Selecting vy = % in (43), using ¢° = 0 and the equality
(v(@n—i-l + 4,0”_1) v(@n—l-l _ (pn—l))
2 ’ At
1 (44)

— vn+12 VnQ_vnQ_vn712’

S (196 + [V |2 = [V = [Vt )

then multiplying the resulting equation by 2At¢ and summing from n = 1,...,{(1 <
I < N —1), we conclude that

l 2

At + [V 2 + (| V!

n—1

"t — @
At

l n+l _ ,,n—1 n+l _  n-—1
-3 (S
At At

l tn

+2 Z Vu(s)ds — Jzz:l %V(uj + ), Ve tt — vt

0

l n

At ‘
+2) (D5 (Ve + V), vt — v

n=1 \j=1



906 CHANGLING XU AND TIANLIANG HOU

l n n (pn—i-l - @n_l
#2357 () stu), )

l n+l _  n—1
+2)° (Rg, “"At‘p> At (45)
n=1
l 7
+2) (VR V" = V" ) + |[Ve! | = ) Di,
n=1 i=1

where we used (7) and ¢" = 0.
Similar to the estimates of I1-Ig, we can estimate D1-Dg as

l 2

1 (Pn-ﬁ-l _ (lpn—l
4 2
D1 S CH ||ut||L2(H2) + g nz::l T At, (46)
: 1
Dy < C(A)[Vuse |22y +C Y Ve P At + Ve, (47)
n=0
l
Dy <C) |IVe™|Pat, (48)
n=0
l 1 l §0n+1 ‘pnfl 2
4 2 n|2 _
Dy < CHY[ul[32pp) + 0; Ve ot + ¢ n; ~ At,  (49)
l 2
1 <)On+1 _ Q0n71
4 2
D5 < C(At) ||uttt||L2(L2) + g Z T At, (50)

n=1
Dg <C(A) ([ Vuretl|72p2y + [IVause |7 oo 2y)

l
. 1 (51)
+CY Vet P AL+ 1IVe ™

n=0

At last, for D7, using (5), (40) and triangle inequality, we see that
D7 <2||V(Igu' — Ryu")||? +2|[V(Igu' —uy)||® < C(H* + (At)*). (52)

Now, substituting the estimates for D1-Dy into (45), then applying discrete Gron-
wall’s lemma, for sufficiently small At, we have

IV SCH?(ull 2 g2y + el Zacay) ' + C(A8) (lusutl| 72 12

12 (53)

Vel T gy + 11Vl 7 e o) + [ Vatgeel|72(2))
which together with (5), Poincare’s inequality and triangle inequality yields
lupy = Tnu”(|y < |lufy — Reu®|ly + | Rgu™ — Ipu® |
<SCH?(Jullgoo (pr2y + el Z2(ar2)) 2 + COE (luguel | 12 (54)
F IVuellF oo 2y + Vel 2 sy + [ Vet |32 (029) % 0> 2.
Using Taylor expansion, we have

LI — )

FQu) = f (ugp) + () (u” = uiy) 5 ;

where o is located between u™ and u’;.

(55)
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Setting Rpu™—uj = €". Subtracting (38) from (12), similar to (15), we conclude
that

l
2) [l d" P2t + | VE

n=1
l B l tn_1/2 n—2 At -
=—9 n MYAL -+ 2 _ [l v Aot B
;(dm A EM A+ nz::l /O Vu(s)ds 25 V@, +
At U ~ ~ ~
- §(3Vu2 Lyvay), ver — Vf“‘l)
n n—1 -

' Z (f/(u;z)(;w ST S - u%){dtgn) o

+QZ< un 1)( n—1 ~n 1) f//( n— 1)( n—1 UT;I 1) ’dtg”>At

2 4

l
+2 Z( LA AL+2Y (VRy, VE" - VE ) = 3 B..
n=1

n=1 i=1
Now, we estimate B;-By, respectively. For Bs, similar to (24), we know that
1
1 -
Bs < C(A)*Jug|| 212y + 3 > lldg" P At (57)
n=1

For By, we find from Cauchy inequality and the assumption on f that

1 ! ~ 1! n n n NTL
By < 53 QU7 ) = @)+ 17 (0™ — w21 - 4™t
n=1

1 _ l - 58)
<CY |l =g - de™ | At +C Y |I(u" = ufy)?|| - [|def™ || At
n=1 n=1
=: G1 + Gs.
Using Young’s inequality and (4), we know that
1 !
~TL 1 Nn
Gr < OW ulagrsy + O D2 N8P0 + 1 D A (59)

n=1 n=1

Combining (40), Cauchy inequality, Young’s inequality and interpolation theory
with H! < L*, we derive

l
2 < (" = L[+ = sl ) i€ | ot

n=1

l
Z HY w34 + [ Trru™ — w1 llde€™ [ At
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<C((At)* + H®) + ZHdg [2At. (60)

Now, from (59)-(60), we find that
By < ci €712 At + C(R* + (At)* + H) + i: | d €72 At (61)
Similarly, we cz::lestimate Bs as -
Bs < CEI: €712 At + C(h* + (A1) + H®) + Z |de&” 2Nt (62)

n=1

Similar to (16), (21), (27) and (33), we easily have

l
~ 1~
By + Bz + Bo + Brl <Chluslaas) + C Y €2t + 5 V€72

n=1
1
1 - (63)
+3 Dl P At + C(AD* (luull72(12)
+ ||VuttH%2(L2) + ||Vuttt||%2(L2))-
It follows from (56)-(57), (61)-(63) and Poincare’s inequality that
1
IVE? < C(h* + HE + (At)*) + C Y | VE"|*At. (64)

n=1
Thus, for sufficiently small At, using discrete Gronwall’s lemma and Poincare’s
inequality, we arrive at
1€ < C(n* + H* + (A1)?), (65)
which together with (5) and triangle inequality yields
[ — Inu™|ly < [[@h — Row"|ly + | Rpu™ — Inu™|s < C(h* + H' + (At)%). (66)
The proof is complete. O

4. Numerical experiments. In this section, we are going to validate the super-
close estimates for two-grid discretization method for semilinear parabolic integro-
differential equations by a concrete numerical example.

We consider the following semi-linear parabolic integro-differential equations

t

up — Au +/ Au(s)ds = —u + g(X,t), X €Q, t € J, (67)
0

w(X,t) =0, X €9Q, t € J, (68)

w(X,0) =up(X), X € Q, (69)

where 2 = (0,1)% and J = (0,1]. We choose u(X,t) = sin(rt) sin(7z1) sin(7xs) a;
the exact solution. Then, the explicit formulation of g(X,t) is
g(X,t) = (mcos(mt) + 2m? sin(nt) + 27 (cos(mt) — 1)) sin(mwx1) sin(rxs) + (u(X,1))3.

We first test the example for the Crank-Nicolson scheme. The error and the
convergence order of ||up — Ipu™||y at t = 0.125 with h = At are presented in
Table 1. Obviously, it is the same with the result in Theorem 2.1. Next, the two-
grid scheme is tested. The error and the convergence order of ||u};, — Iyu™||; and

»n
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|af — Inu™|]y are provided in Table 2 and Table 3. We find from these two tables
that the result coincides with that in Theorem 3.1. Finally, we show the efficiency
of the two-grid method by comparing the cpu time in Table 4.

h llup — Inu™||1 | order
1/32 | 9.6461e-04 | -
1/64 2.4062e-04 2.00
1/128 | 6.0130e-05 2.00
1/256 | 1.5037e-05 | 2.00

Table 1. The error and the convergence order of ||u} — Inu™||; at t = 0.125 with
h = At.

H | ||u}y — Igu™||1 | order
1/16 1.9302e-02 -
1/32 4.8349e-03 2.00
1/64 1.2096e-03 2.00
1/128 3.0244e-04 2.00

Table 2. The error and the convergence order of ||u}, — Igu™||; at ¢t = 0.0625 with
H = At.

H | |luy — Iyu™|1 | order
1/2 | 8.7973e.04 | -
1/4 7.1420e-05 3.51
1/8 4.6798e-06 3.91
1/16 | 2.9328e-07 | 3.99

Table 3. The error and the convergence order of ||u} — Inu™||; at ¢ = 0.001 with
At = 0.0001 and h = H?.

(H,h) two-grid time (s) | Crank-Nicolson time (s)
(1/4,1/16) 0.0998 0.1164
(1/8,1/64) 0.9118 1.2019

(1/16,1/256) 13.6126 17.9624

Table 4. The cpu time of two-grid scheme and Crank-Nicolson scheme for each
time step (h = At).
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