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Abstract. In this paper, a two-grid finite element scheme for semilinear par-
abolic integro-differential equations is proposed. In the two-grid scheme, con-

tinuous linear element is used for spatial discretization, while Crank-Nicolson

scheme and Leap-Frog scheme are ultilized for temporal discretization. Based
on the combination of the interpolation and Ritz projection technique, some

superclose estimates between the interpolation and the numerical solution in

the H1-norm are derived. Notice that we only need to solve nonlinear problem
once in the two-grid scheme, namely, the first time step on the coarse-grid

space. A numerical example is presented to verify the effectiveness of the pro-
posed two-grid scheme.

1. Introduction. In this paper, we consider the following semilinear parabolic
integro-differential equations:

ut −4u+

∫ t

0

4u(s)ds = f(u), X ∈ Ω, t ∈ J, (1)

u(X, t) = 0, X ∈ ∂Ω, t ∈ J, (2)

u(X, 0) = u0(X), X ∈ Ω, (3)

where Ω ⊂ R2 is a rectangle with boundary ∂Ω, X = (x, y), J = (0, T ], f(·) is twice
continuously differentiable and u0 is a given function. We assume that

|f ′(y)|+ |f ′′(y)| ≤M, y ∈ R.

There exists a lot of numerical methods for solving nonlinear partial differential
equations in the literature. For example, Cannon and Lin [1] derived a priori error
estimates of semidiscrete and Crank-Nicolson finite element approximations to the
solution of the nonlinear diffusion equations with memory. Eriksson and Johnson [3]
used adaptive finite element method to solve nonlinear parabolic problems. Moore
[9] considered a posteriori error estimates for semi- and fully discrete finite element
methods using a degree polynomial basis for solving nonlinear parabolic equations.
Garcia [4] discussed a priori error estimates of fully discrete Raviart-Thomas mixed
finite element scheme for nonlinear parabolic equations.
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Two-grid method was first proposed by Xu [11, 12] as an efficient discretiza-
tion technique for solving the nonlinear and the nonsymmetric problems. Liu et
al. exploited the two kinds of two-grid algorithms for finite difference solutions of
semilinear parabolic equations in [8]. Chen et al. [2] presented a two-grid scheme of
mixed finite element method for fully nonlinear reaction-diffusion equations. Hou et
al. [5] presented a two-grid method of P 2

0 -P1 mixed finite element method combined
with Crank-Nicolson scheme for a class of nonlinear parabolic equations. Shi and
Mu [10] discussed some superclose results of a two-grid finite element method for
semilinear parabolic equations. Yang and Xing [13] discussed the convergence of
two-grid discontinuous Galerkin scheme for a kind of nonlinear parabolic problems.

This paper is motivated by the ideas of the works [10, 11], we present a two-grid
scheme for semilinear parabolic integro-differential equations discretized by finite
element method combined with Crank-Nicolson scheme. We mainly discuss the
superclose estimates between the numerical solution and the interpolation.

The plan of this paper is as follows. In Section 2, we give the Crank-Nicolson
scheme and deduce the superclose result of order O(h2 + (4t)2) in the H1-norm.
In Section 3, we present the two-grid method and derive the superclose estimates
of order O(H2 + (4t)2) and order O(h2 +H4 + (4t)2), respectively. In Section 4,
we present a numerical example to demonstrate the effectiveness of our method.

2. Superclose analysis of the Crank-Nicolson scheme. We adopt the stan-
dard notation Wm,p(Ω) for Sobolev spaces on Ω with a norm ‖ · ‖m,p given by
‖v‖pm,p =

∑
|α|≤m

‖Dαv‖pLp(Ω), a semi-norm |·|m,p given by |v|pm,p =
∑
|α|=m

‖Dαv‖pLp(Ω).

We set Wm,p
0 (Ω) = {v ∈ Wm,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) =

Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.
We denote by Ls(J ;Wm,p(Ω)) the Banach space of all Ls integrable functions

from J into Wm,p(Ω) with norm ‖v‖Ls(J;Wm,p(Ω)) =
( ∫ T

0
||v||sWm,p(Ω)dt

) 1
s

for s ∈
[1,∞), and the standard modification for s = ∞. For simplicity of presentation,
we denote ‖v‖Ls(J;Wm,p(Ω)) by ‖v‖Ls(Wm,p). Similarly, one can define the spaces

H1(J ;Wm,p(Ω)). In addition C denotes a general positive constant independent of
h and 4t, where h is the spatial mesh-size, and 4t is the time step.

Let Th be a uniform rectangular partition of Ω with mesh size h. Vh be the
bilinear finite element space with vanishes on ∂Ω. Let Ih and Rh be the associated
interpolation and Ritz projection operators on Vh, respectively(see[10]).

Then, for u ∈ H1
0 (Ω) ∩H3(Ω), from [10] we know that

‖u−Rhu‖+ h‖∇(u−Rhu)‖ ≤ Ch2‖u‖2, (4)

‖Ihu−Rhu‖1 ≤ Ch2‖u‖3, (5)

(∇(u− Ihu),∇vh) ≤ Ch2‖u‖3‖∇vh‖, (6)

(∇(u−Rhu),∇vh) = 0, ∀ vh ∈ Vh. (7)

The weak formulation of (1) is to find u : J → H1
0 (Ω), such that

(ut, v) + (∇u,∇v)−
∫ t

0

(∇u(s),∇v)ds = (f(u), v), ∀ v ∈ H1
0 (Ω). (8)

Let {tn|tn = n4t; 0 ≤ n ≤ N} be a uniform partition in time with time step 4t,
un = u(X, tn) and tn−1/2 = (tn−1 + tn)/2. For a sequence of functions {φn}Nn=0, we
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denote dtφ
n = (φn − φn−1)/4t, then the Crank-Nicolson scheme of (1) is to find

unh ∈ Vh for n = 1, 2, ..., N , such that

(dtu
n
h, vh)−

n−2∑
j=0

4t
2
∇(ujh + uj+1

h ) +
4t
8

(
3∇un−1

h +∇unh
)
,∇vh


= −

(
∇(unh + un−1

h )

2
,∇vh

)
+

(
f(unh) + f(un−1

h )

2
, vh

)
, ∀ vh ∈ Vh,

(9)

u0
h = Rhu0(X), X ∈ Ω. (10)

For the proof of existence and uniqueness of the solution for the nonlinear alge-
braic problem (9)-(10), please refer to [6].

Theorem 2.1. Let u and unh be the solutions of (8) and (9), respectively. Assume
that u ∈ L∞(H3), ut ∈ L2(H2), utt ∈ L2(L2), uttt ∈ L2(L2), ∇utt ∈ L2(H2) ∩
L∞(L2) and ∇uttt ∈ L2(L2), then, for n = 1, 2, . . . , N , we have

‖unh − Ihun‖1 ≤ C(h2 + (4t)2). (11)

Proof. Letting t = tn−1/2 and v = vh in (8), we get

(dtu
n, vh) +

(
∇(un + un−1)

2
,∇vh

)
−
∫ tn−1/2

0

(∇u(s),∇vh) ds

= (f(un−1/2), vh) + (Rn1 , vh) + (∇Rn2 ,∇vh), ∀ vh ∈ Vh,
(12)

where Rn1 = dtu
n − un−1/2

t , Rn2 = un+un−1

2 − un−1/2.
Setting un − unh = un − Rhun + Rhu

n − unh := ηn + ξn. Subtracting (9) from
(12), with the help of (7), we have

(dtξ
n, vh) +

(
∇(ξn + ξn−1)

2
,∇vh

)
=− (dtη

n, vh) +

(∫ tn−1/2

0

∇u(s)ds−
n−2∑
j=0

4t
2
∇(ujh + uj+1

h )

− 4t
8

(
3∇un−1

h +∇unh
)
,∇vh

)
+ (Rn1 , vh) + (∇Rn2 ,∇vh)

+

(
f(un−1/2)−

f(unh) + f(un−1
h )

2
, vh

)
, ∀ vh ∈ Vh.

(13)

Selecting vh = dtξ
n in (13), noting that(

∇(ξn + ξn−1)

2
, dt∇ξn

)
=

1

24t
(‖∇ξn‖2 − ‖∇ξn−1‖2), (14)

then multiplying (13) by 24t and summing from n = 1, ..., l(1 ≤ l ≤ N), we
conclude that

2

l∑
n=1

‖dtξn‖24t+ ‖∇ξl‖2 = −2

l∑
n=1

(dtη
n, dtξ

n)4t

+ 2

l∑
n=1

(∫ tn−1/2

0

∇u(s)ds−
n−2∑
j=0

4t
2
∇(uj + uj+1)
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− 4t
4
∇(un−1 + un−1/2),∇dtξn

)
4t+ 2

l∑
n=1

(
n−2∑
j=0

4t
2
∇(ξj + ξj+1)

+
4t
4
∇
(
ξn−1 +Rhu

n−1/2 −
unh + un−1

h

2

)
,∇dtξn

)
4t

+ 2

l∑
n=1

(
f(un−1/2)−

f(unh) + f(un−1
h )

2
, dtξ

n

)
4t+ 2

l∑
n=1

(Rn1 , dtξ
n)4t

+ 2

l∑
n=1

(∇Rn2 ,∇ξn −∇ξn−1) =:

6∑
i=1

Ii,

(15)

where we used (7) and ξ0 = 0.
Now, we estimate the right-hand terms of (15). For I1, it is easy to check that

‖dtηn‖2 ≤
1

4t

∫ tn

tn−1

‖ηt‖2ds,

which together with Cauchy inequality, Young’s inequality and (4) yields

I1 ≤ Ch4 ‖ut‖2L2(H2) +
1

8

l∑
n=1

‖dtξn‖24t. (16)

For I2, we decompose it as

I2 =2

l∑
n=1

(
n−2∑
j=0

∫ tj+1

tj

(
∇u(s)− ∇(uj + uj+1)

2

)
ds

+

∫ tn−1/2

tn−1

(
∇u(s)− ∇(un−1 + un−1/2)

2

)
ds,∇ξn −∇ξn−1

)

=2

l∑
n=2

n−2∑
j=0

∫ tj+1

tj

(
∇u(s)− ∇(uj + uj+1)

2

)
ds,∇ξn −∇ξn−1


+ 2

l∑
n=2

(∫ tn−1/2

tn−1

(
∇u(s)− ∇(un−1 + un−1/2)

2

)
ds,∇ξn −∇ξn−1

)

+ 2

(∫ t1/2

0

(
∇u(s)− ∇(u0 + u1/2)

2

)
ds,∇ξ1

)
=:

3∑
i=1

Ai.

(17)

Using Cauchy inequality and Young’s inequality, we see that

A1 =2

 l−2∑
j=0

∫ tj+1

tj

(
∇u(s)− ∇(uj + uj+1)

2

)
ds,∇ξl


− 2

(∫ t1

0

(
∇u(s)− ∇(u0 + u1)

2

)
ds,∇ξ1

)
− 2

l−1∑
n=2

(∫ tn

tn−1

(
∇u(s)− ∇(un + un−1)

2

)
ds,∇ξn

)

≤C(4t)4‖∇utt‖2L2(L2) + C

l∑
n=1

‖∇ξn‖24t+
1

8
‖∇ξl‖2,

(18)
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A2 =2

(∫ tl−1/2

tl−1

(
∇u(s)− ∇(ul−1 + ul−1/2)

2

)
ds,∇ξl

)

− 2

(∫ t3/2

t1

(
∇u(s)− ∇(u1 + u3/2)

2

)
ds,∇ξ1

)
− 2

l−1∑
n=2

(∫ tn+1/2

tn

(
∇u(s)− ∇(un + un+1/2)

2

)
ds

−
∫ tn−1/2

tn−1

(
∇u(s)− ∇(un−1 + un−1/2)

2

)
ds,∇ξn

)

≤C(4t)4‖∇utt‖2L2(L2) + C

l∑
n=1

‖∇ξn‖24t+
1

8
‖∇ξl‖2,

(19)

and

A3 ≤ C(4t)4‖∇utt‖2L2(L2) + C‖∇ξ1‖24t. (20)

Thus, we get

I2 ≤C(4t)4‖∇utt‖2L2(L2) + C

l∑
n=1

‖∇ξn‖24t+
1

4
‖∇ξl‖2. (21)

For I3, by virtue of Cauchy inequality and Young’s inequality, we have

I3 =2

l∑
n=2

n−2∑
j=0

4t
2

(
∇ξj +∇ξj+1

)
,∇ξn −∇ξn−1


+

l∑
n=1

(
4t
2

(
∇ξn−1 +∇

(
Rhu

n−1/2 −
unh + un−1

h

2

))
,∇ξn −∇ξn−1

)

=2

 l−2∑
j=0

4t
2

(
∇ξj +∇ξj+1

)
,∇ξl

− 2

(
l−1∑
n=1

4t
2

(
∇ξn−1 +∇ξn

)
,∇ξn

)

+ 2

(
4t
4

(
∇ξl−1 +∇

(
Rhu

l−1/2 −
ulh + ul−1

h

2

))
,∇ξl

)

− 2

l−1∑
n=1

(
4t
4

(
∇ξn +∇

(
Rhu

n+1/2 −
un+1
h + unh

2

))

− 4t
4

(
∇ξn−1 +∇

(
Rhu

n−1/2 −
unh + un−1

h

2

))
,∇ξn

)

≤C(4t)4 ‖∇utt‖2L2(H3) + C

l∑
n=1

‖∇ξn‖24t,

(22)

where we used the following estimate∥∥∥∥∇(Rhun−1/2 −
unh + un−1

h

2

)∥∥∥∥
=

∥∥∥∥∇(Rhun−1/2 − Rhu
n−1 +Rhu

n

2
+
Rhu

n−1 +Rhu
n

2
−
unh + un−1

h

2

)∥∥∥∥
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=
1

2
‖∇(Rhu

n−1 −Rhun−1/2) +∇(Rhu
n −Rhun−1/2) +∇ξn−1 +∇ξn‖

≤C‖∇Rhut(φn)(tn − tn−1/2) +∇Rhut(ψn)(tn−1 − tn−1/2)‖+ C‖∇ξn‖
+ C‖∇ξn−1‖
≤C‖4t∇Rhutt(λn)(φn − ψn)‖+ C‖∇ξn‖+ C‖∇ξn−1‖
≤C(4t)2‖∇Rhutt(λn)‖+ C‖∇ξn‖+ C‖∇ξn−1‖
≤C(4t)2(‖∇utt(λn)‖+ ‖∇utt(λn)−∇Rhutt(λn)‖) + C‖∇ξn‖+ C‖∇ξn−1‖
≤C(4t)2‖∇utt(λn)‖2 + C‖∇ξn‖+ C‖∇ξn−1‖,

(23)

where φn is located between tn and tn−1/2, ψn is located between tn−1/2 and tn−1,
λn is located between φn and ψn, and

|φn − ψn| ≤ |tn − tn−1| = 4t.

Next, we estimate I4. By use of mean value theorem and the assumption on f ,
we conclude that∥∥∥∥f(un−1/2)− f(un) + f(un−1)

2

∥∥∥∥
≤1

2
‖f ′(λn2 )(un−1/2 − un) + f ′(λn1 )(un−1/2 − un−1)‖

=
4t
4
‖f ′(λn1 )ut(θ

n
1 )− f ′(λn2 )ut(θ

n
2 )‖

=
4t
4
‖f ′(λn1 )ut(θ

n
1 )− f ′(λn1 )ut(θ

n
2 ) + f ′(λn1 )ut(θ

n
2 )− f ′(λn2 )ut(θ

n
2 )‖

=
4t
4
‖f ′(λn1 )utt(θ

n
3 )(θn2 − θn1 ) + f ′′(λn3 )(λn1 − λn2 )ut(θ

n
2 )‖

≤C(4t)2 (‖utt(θn3 )‖+ ‖ut(θn2 )‖) ,

(24)

where we also used

θn2 − θn1 ≤ tn − tn−1 = 4t

and

|λn2 − λn1 | ≤|un − λn1 |+ |un−1/2 − λn1 |

≤|un − un−1|+ |un − un−1/2|+ |un−1/2 − un−1|

≤2(|un − un−1/2|+ |un−1/2 − un−1|)
=2(|ut(θn1 )|+ |ut(θn2 )|)∆t,

where θn1 is located between tn−1 and tn−1/2, θn2 is located between tn−1/2 and tn,

θn3 is located between θn1 and θn2 , λn1 is located between un−1 and un−1/2, λn2 is
located between un−1/2 and un, λn3 is located between λn1 and λn2 .

Using (4), mean value theorem and the assumption on f , we easily get∥∥∥∥f(un) + f(un−1)

2
−
f(unh) + f(un−1

h )

2

∥∥∥∥
≤C(‖un − unh‖+ ‖un−1 − un−1

h ‖)
≤Ch2(‖un‖2 + ‖un−1‖2) + C(‖ξn‖+ ‖ξn−1‖).

(25)
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By use of Cauchy inequality, Young’s inequality and (24)-(25), we derive

I4 ≤C(4t)4(‖utt‖2L2(L2) + ‖ut‖2L2(L2)) + Ch4‖u‖2L2(H2)

+ C

l∑
n=1

‖∇ξn‖24t+
1

8

l∑
n=1

‖dtξn‖24t.
(26)

For I5, from Cauchy inequality, Young’s inequality and

‖Rn1 ‖ ≤ C(4t)2‖uttt(ρn)‖,

we have

I5 ≤ C(4t)4‖uttt‖2L2(L2) +
1

8

l∑
n=1

‖dtξn‖24t, (27)

where ρn is located between tn−1 and tn.
Notice that

l∑
n=1

(∇Rn2 ,∇dtξn)4t = (∇Rl2,∇ξl)−
l−1∑
n=1

(
∇Rn+1

2 −∇Rn2 ,∇ξn
)
. (28)

Using Taylor expansion, we know that

un = un+1/2 − un+1/2
t

4t
2

+ u
n+1/2
tt

(4t)2

8
− 1

48
uttt (βn) (4t)3, (29)

un+1 = un+1/2 + u
n+1/2
t

4t
2

+ u
n+1/2
tt

(4t)2

8
+

1

48
uttt (γn) (4t)3, (30)

where tn < βn < tn+1/2 < γn < tn+1.
Using Cauchy inequality, Young’s inequality, (29), (30) and mean value theorem,

we get

(∇Rl2,∇ξl) ≤ C(4t)4‖∇utt(λl)‖2 +
1

2
‖∇ξl‖2, (31)

l−1∑
n=1

(
∇Rn+1

2 −∇Rn2 ,∇ξn
)

=
1

96

l−1∑
n=1

(
∇uttt (γn) (4t)3 −∇uttt (βn) (4t)3,∇ξn

)
− 1

96

l−1∑
n=1

(
∇uttt

(
γn−1

)
(4t)3 −∇uttt

(
βn−1

)
(4t)3,∇ξn

)
+

l−1∑
n=1

(
∇
(
u
n+1/2
tt − un−1/2

tt

) (4t)2

8
,∇ξn

)

=
1

96

l−1∑
n=1

(
∇uttt (γn) (4t)3 −∇uttt (βn) (4t)3,∇ξn

)
− 1

96

l−1∑
n=1

(
∇uttt

(
γn−1

)
(4t)3 −∇uttt

(
βn−1

)
(4t)3,∇ξn

)
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+

l−1∑
n=1

(
(4t)2

8
∇uttt(δn)4t,∇ξn

)

≤C(4t)4 ‖∇uttt‖2L2(L2) + C

l∑
n=1

‖∇ξn‖24t,

(32)

where λl is located between tl−1 and tl, δ
n is located between tn−1/2 and tn+1/2.

For I6, combining Cauchy inequality, Young’s inequality, (28) with (31)-(32), we
derive

I6 ≤ C(4t)4(‖∇uttt‖2L2(L2) + ‖∇utt‖2L∞(L2)) + C

l∑
n=1

‖∇ξn‖24t+
1

2
‖∇ξl‖2. (33)

Now, substituting the estimates for I1-I6 into (15), then applying discrete Gron-
wall’s lemma, for sufficiently small 4t, we have

‖∇ξl‖ ≤Ch2(‖u‖2L2(H2) + ‖ut‖2L2(H2))
1/2 + C(4t)2(‖ut‖2L2(L2) + ‖utt‖2L2(L2)

+ ‖uttt‖2L2(L2) + ‖∇utt‖2L2(H3) + ‖∇utt‖2L∞(L2) + ‖∇uttt‖2L2(L2))
1/2,

(34)

which together with (5), Poincare’s inequality and triangle inequality yields (11).
We complete the proof of the theorem.

3. Superclose analysis of the two-grid scheme. In this section, we present the
main algorithm of the paper, which has the following two steps:

Step 1. On the coarse grid TH , compute u1
H ∈ VH to satisfy the following original

nonlinear system:

(dtu
1
H , vH)−

(
4t
8

(3∇u0
H +∇u1

H),∇vH
)

=−
(
∇(u1

H + u0
H)

2
,∇vH

)
+

(
f(u1

H) + f(u0
H)

2
, vH

)
, ∀ vH ∈ VH ,

(35)

u0
H = RHu0(X), X ∈ Ω. (36)

For n = 1, ..., N − 1, compute un+1
H ∈ VH to satisfy the following linear system:(

un+1
H − un−1

H

24t
, vH

)
−

 n∑
j=1

4t
2
∇(ujH + uj−1

H ),∇vH


=−

(
∇(un+1

H + un−1
H )

2
,∇vH

)
+ (f(unH), vH) , ∀ vH ∈ VH .

(37)

Step 2. On the fine grid Th, for n = 1, ..., N , compute ũnh ∈ Vh to satisfy the
following linear system:

(dtũ
n
h, vh)−

n−2∑
j=0

4t
2
∇(ũjh + ũj+1

h ) +
4t
8

(3∇ũn−1
h +∇ũnh),∇vh


+

(
∇(ũnh + ũn−1

h )

2
,∇vh

)
=

(
f(unH) + f ′(unH)(ũnh − unH)

2
, vh

)
+

(
f(un−1

H ) + f ′(un−1
H )(ũn−1

h − un−1
H )

2
, vh

)
, ∀ vh ∈ Vh,

(38)

ũ0
h = Rhu0(X), X ∈ Ω. (39)
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Now, we shall discuss the superclose estimates of the above two-grid algorithm
in the following theorem.

Theorem 3.1. Let u, unH and ũnh be the solutions of (8), (35)-(37) and (35)-(39),
respectively. Then under the conditions of Theorem 2.1, for n = 1, 2, . . . , N , we
have

‖unH − IHun‖1 ≤ C(H2 + (4t)2), (40)

‖ũnh − Ihun‖1 ≤ C(h2 +H4 + (4t)2). (41)

Proof. Setting un − unH = un − RHun + RHu
n − unH := ωn + ϕn. From Theorem

2.1, (40) is obvious for n = 1.
For n = 1, ..., N − 1, letting t = tn and v = vH in (8), we get(
un+1 − un−1

24t
, vH

)
+

(
∇(un+1 + un−1)

2
,∇vH

)
−
∫ tn

0

(∇u(s),∇vH) ds

= (f(un), vH) + (Rn3 , vH) + (∇Rn4 ,∇vH), ∀ vH ∈ VH ,
(42)

where Rn3 = un+1−un−1

24t − unt , Rn4 = un+1+un−1

2 − un.

Subtracting (37) from (42), with the help of (7), we have(
ϕn+1 − ϕn−1

24t
, vH

)
+

(
∇(ϕn+1 + ϕn−1)

2
,∇vH

)

=−
(
ωn+1 − ωn−1

24t
, vH

)
+

∫ tn

0

∇u(s)ds−
n∑
j=1

4t
2
∇(ujH + uj−1

H ),∇vH


+ (f(un)− f(unH), vH) + (Rn3 , vH) + (∇Rn4 ,∇vH), ∀ vH ∈ VH .

(43)

Selecting vH = ϕn+1−ϕn−1

4t in (43), using ϕ0 = 0 and the equality(
∇(ϕn+1 + ϕn−1)

2
,
∇(ϕn+1 − ϕn−1)

4t

)
=

1

24t
(‖∇ϕn+1‖2 + ‖∇ϕn‖2 − ‖∇ϕn‖2 − ‖∇ϕn−1‖2),

(44)

then multiplying the resulting equation by 24t and summing from n = 1, ..., l(1 ≤
l ≤ N − 1), we conclude that

l∑
n=1

∥∥∥∥ϕn+1 − ϕn−1

4t

∥∥∥∥2

4t+ ‖∇ϕl+1‖2 + ‖∇ϕl‖2

=−
l∑

n=1

(
ωn+1 − ωn−1

4t
,
ϕn+1 − ϕn−1

4t

)
4t

+ 2

l∑
n=1

∫ tn

0

∇u(s)ds−
n∑
j=1

4t
2
∇(uj + uj+1),∇ϕn+1 −∇ϕn−1


+ 2

l∑
n=1

 n∑
j=1

4t
2

(∇ϕj +∇ϕj−1),∇ϕn+1 −∇ϕn−1


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+ 2

l∑
n=1

(
f(un)− f(unH),

ϕn+1 − ϕn−1

4t

)
4t

+ 2

l∑
n=1

(
Rn3 ,

ϕn+1 − ϕn−1

4t

)
4t

+ 2

l∑
n=1

(∇Rn4 ,∇ϕn+1 −∇ϕn−1) + ‖∇ϕ1‖2 =:

7∑
i=1

Di,

(45)

where we used (7) and ϕ0 = 0.
Similar to the estimates of I1-I6, we can estimate D1-D6 as

D1 ≤ CH4‖ut‖2L2(H2) +
1

8

l∑
n=1

∥∥∥∥ϕn+1 − ϕn−1

4t

∥∥∥∥2

4t, (46)

D2 ≤ C(4t)4‖∇utt‖2L2(L2) + C

l∑
n=0

‖∇ϕn+1‖24t+
1

4
‖∇ϕl+1‖2, (47)

D3 ≤ C
l∑

n=0

‖∇ϕn+1‖24t, (48)

D4 ≤ CH4‖u‖2L2(H2) + C

l∑
n=1

‖∇ϕn‖24t+
1

8

l∑
n=1

∥∥∥∥ϕn+1 − ϕn−1

4t

∥∥∥∥2

4t, (49)

D5 ≤ C(4t)4‖uttt‖2L2(L2) +
1

8

l∑
n=1

∥∥∥∥ϕn+1 − ϕn−1

4t

∥∥∥∥2

4t, (50)

D6 ≤C(4t)4(‖∇uttt‖2L2(L2) + ‖∇utt‖2L∞(L2))

+ C

l∑
n=0

‖∇ϕn+1‖24t+
1

4
‖∇ϕl+1‖2.

(51)

At last, for D7, using (5), (40) and triangle inequality, we see that

D7 ≤ 2‖∇(IHu
1 −RHu1)‖2 + 2‖∇(IHu

1 − u1
H)‖2 ≤ C(H4 + (4t)4). (52)

Now, substituting the estimates forD1-D7 into (45), then applying discrete Gron-
wall’s lemma, for sufficiently small 4t, we have

‖∇ϕl+1‖ ≤CH2(‖u‖2L2(H2) + ‖ut‖2L2(H2))
1/2 + C(4t)2(‖uttt‖2L2(L2)

+ ‖∇utt‖2L2(H3) + ‖∇utt‖2L∞(L2) + ‖∇uttt‖2L2(L2))
1/2,

(53)

which together with (5), Poincare’s inequality and triangle inequality yields

‖unH − IHun‖1 ≤ ‖unH −RHun‖1 + ‖RHun − IHun‖1
≤CH2(‖u‖2L∞(H3) + ‖ut‖2L2(H2))

1/2 + C(4t)2(‖uttt‖2L2(L2)

+ ‖∇utt‖2L∞(L2) + ‖∇utt‖2L2(H3) + ‖∇uttt‖2L2(L2))
1/2, n ≥ 2.

(54)

Using Taylor expansion, we have

f(un) = f (unH) + f ′(unH)(un − unH) +
f ′′(αn)(un − unH)2

2
, (55)

where αn is located between un and unH .
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Setting Rhu
n−ũnh := ξ̃n. Subtracting (38) from (12), similar to (15), we conclude

that

2

l∑
n=1

‖dtξ̃n‖24t+ ‖∇ξ̃l‖2

=− 2

l∑
n=1

(dtη
n, dtξ̃

n)4t+ 2

l∑
n=1

(∫ tn−1/2

0

∇u(s)ds−
n−2∑
j=0

4t
2
∇(ũjh + ũj+1

h )

− 4t
8

(3∇ũn−1
h +∇ũnh),∇ξ̃n −∇ξ̃n−1

)

+ 2

l∑
n=1

(
f(un−1/2)− f(un) + f(un−1)

2
, dtξ̃

n

)
4t

+ 2

l∑
n=1

(
f ′(unH)(un − ũnh)

2
+
f ′′(αn)(un − unH)2

4
, dtξ̃

n

)
4t

+ 2

l∑
n=1

(
f ′(un−1

H )
(
un−1 − ũn−1

h

)
2

+
f ′′(αn−1)(un−1 − un−1

H )2

4
, dtξ̃

n

)
4t

+ 2

l∑
n=1

(Rn1 , dtξ̃
n)4t+ 2

l∑
n=1

(∇Rn2 ,∇ξ̃n −∇ξ̃n−1) =:

7∑
i=1

Bi.

(56)

Now, we estimate B1-B7, respectively. For B3, similar to (24), we know that

B3 ≤ C(4t)4‖utt‖2L2(L2) +
1

8

l∑
n=1

‖dtξ̃n‖24t. (57)

For B4, we find from Cauchy inequality and the assumption on f that

B4 ≤
1

2

l∑
n=1

(
2‖f ′(unH)(un − ũnh)‖+ ‖f ′′(αn)(un − unH)2‖

)
· ‖dtξ̃n‖4t

≤ C
l∑

n=1

‖un − ũnh‖ · ‖dtξ̃n‖4t+ C

l∑
n=1

‖(un − unH)2‖ · ‖dtξ̃n‖4t

=: G1 +G2.

(58)

Using Young’s inequality and (4), we know that

G1 ≤ Ch4‖u‖2L2(H2) + C

l∑
n=1

‖ξ̃n‖24t+
1

8

l∑
n=1

‖dtξ̃n‖24t. (59)

Combining (40), Cauchy inequality, Young’s inequality and interpolation theory
with H1 ↪→ L4, we derive

G2 ≤
l∑

n=1

(‖un − IHun‖20,4 + ‖IHun − unH‖20,4)‖dtξ̃n‖4t

≤C
l∑

n=1

(H4‖un‖22,4 + ‖IHun − unH‖21)‖dtξ̃n‖4t
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≤C((4t)4 +H8) +
1

8

l∑
n=1

‖dtξ̃n‖24t. (60)

Now, from (59)-(60), we find that

B4 ≤ C
l∑

n=1

‖ξ̃n‖24t+ C(h4 + (4t)4 +H8) +
1

4

l∑
n=1

‖dtξ̃n‖24t. (61)

Similarly, we can estimate B5 as

B5 ≤ C
l∑

n=1

‖ξ̃n−1‖24t+ C(h4 + (4t)4 +H8) +
1

4

l∑
n=1

‖dtξ̃n‖24t. (62)

Similar to (16), (21), (27) and (33), we easily have

|B1 +B2 +B6 +B7| ≤Ch4‖ut‖2L2(H2) + C
l∑

n=1

‖ξ̃n‖24t+
1

2
‖∇ξ̃n‖2

+
1

8

l∑
n=1

‖dtξ̃n‖24t+ C(4t)4(‖uttt‖2L2(L2)

+ ‖∇utt‖2L2(L2) + ‖∇uttt‖2L2(L2)).

(63)

It follows from (56)-(57), (61)-(63) and Poincare’s inequality that

‖∇ξ̃l‖2 ≤ C(h4 +H8 + (4t)4) + C

l∑
n=1

‖∇ξ̃n‖24t. (64)

Thus, for sufficiently small 4t, using discrete Gronwall’s lemma and Poincare’s
inequality, we arrive at

‖ξ̃l‖1 ≤ C(h2 +H4 + (4t)2), (65)

which together with (5) and triangle inequality yields

‖ũnh − Ihun‖1 ≤ ‖ũnh −Rhun‖1 + ‖Rhun − Ihun‖1 ≤ C(h2 +H4 + (4t)2). (66)

The proof is complete.

4. Numerical experiments. In this section, we are going to validate the super-
close estimates for two-grid discretization method for semilinear parabolic integro-
differential equations by a concrete numerical example.

We consider the following semi-linear parabolic integro-differential equations

ut −4u+

∫ t

0

4u(s)ds = −u3 + g(X, t), X ∈ Ω, t ∈ J, (67)

u(X, t) = 0, X ∈ ∂Ω, t ∈ J, (68)

u(X, 0) = u0(X), X ∈ Ω, (69)

where Ω = (0, 1)2 and J = (0, 1]. We choose u(X, t) = sin(πt) sin(πx1) sin(πx2) as
the exact solution. Then, the explicit formulation of g(X, t) is

g(X, t) = (π cos(πt) + 2π2 sin(πt) + 2π(cos(πt)− 1)) sin(πx1) sin(πx2) + (u(X, t))3.

We first test the example for the Crank-Nicolson scheme. The error and the
convergence order of ‖unh − Ihu

n‖1 at t = 0.125 with h = ∆t are presented in
Table 1. Obviously, it is the same with the result in Theorem 2.1. Next, the two-
grid scheme is tested. The error and the convergence order of ‖unH − IHun‖1 and
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‖ũnh − Ihun‖1 are provided in Table 2 and Table 3. We find from these two tables
that the result coincides with that in Theorem 3.1. Finally, we show the efficiency
of the two-grid method by comparing the cpu time in Table 4.

h ‖unh − Ihun‖1 order
1/32 9.6461e-04 -
1/64 2.4062e-04 2.00
1/128 6.0130e-05 2.00
1/256 1.5037e-05 2.00

Table 1. The error and the convergence order of ‖unh − Ihun‖1 at t = 0.125 with
h = ∆t.

H ‖unH − IHun‖1 order
1/16 1.9302e-02 -
1/32 4.8349e-03 2.00
1/64 1.2096e-03 2.00
1/128 3.0244e-04 2.00

Table 2. The error and the convergence order of ‖unH − IHun‖1 at t = 0.0625 with
H = ∆t.

H ‖ũnh − Ihun‖1 order
1/2 8.7973e-04 -
1/4 7.1420e-05 3.51
1/8 4.6798e-06 3.91
1/16 2.9328e-07 3.99

Table 3. The error and the convergence order of ‖ũnh − Ihun‖1 at t = 0.001 with
∆t = 0.0001 and h = H2.

(H,h) two-grid time (s) Crank-Nicolson time (s)
(1/4, 1/16) 0.0998 0.1164
(1/8, 1/64) 0.9118 1.2019

(1/16, 1/256) 13.6126 17.9624

Table 4. The cpu time of two-grid scheme and Crank-Nicolson scheme for each
time step (h = ∆t).
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