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ABSTRACT. In the note we study the multipoint Seshadri constants of Opz2 (1)
C

centered at singular loci of certain curve arrangements in the complex pro-
jective plane. Our first aim is to show that the values of Seshadri constants
can be approximated with use of a combinatorial invariant which we call the
configurational Seshadri constant. We study specific examples of point-curve
configurations for which we provide actual values of the associated Seshadri
constants. In particular, we provide an example based on Hesse point-conic
configuration for which the associated Seshadri constant is computed by a line.
This shows that multipoint Seshadri constants are not purely combinatorial.

1. Introduction. In the present note we study multipoint Seshadri constants of
OP%(I) centered at singular loci of a certain class of curve arrangements in the
complex projective plane. This path of studies was initiated by the second author
in [7] in the context of line arrangements and special singular curves in the complex
projective plane. Before we present the main goal of our paper, let us present
basics on the multipoint Seshadri constants. Let X be a complex projective variety
of dimension dim X = n and let L be a nef line bundle. The multipoint Seshadri
constant of L at » > 1 points x1, ..., z, € X is defined as
. L-C
e(X,L; 1y .oy ) = {ml,...,lxri%ﬂc‘;ﬂl) —22:1 mult,, C’
where the infimum is taken over all irreducible and reduced curves C' on X, and as
usually mult,, (C) denotes the multiplicity of C' at x;. There exists an upper-bound
on the multipoint Seshadri constant, namely we have
n
e(X,L; 21, .ymy) < LT

It is well-known that the multipoint Seshadri constant of L, treated as a function
of points 1, ..., z, as variables, attains its maximal value at a set of generic points,
see [6].

If we restrict our attention to the case when X = ]P’?C, then the Seshadri constant
of Op2 (1) centered at r generic points is governed by the celebrated Nagata conjec-
ture, 50 we have, at least, a conjectural picture of what can happen in this scenario
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[10]. On the other side, we do not know much about a potential or even hypothet-
ical behaviour of the multipoint Seshadri constants if we allow to consider special
point configurations in the complex projective plane. The Leitmotif of our investi-
gations is oriented by the following question of the second author that recently has
attracted the attention of researchers [1].

Question 1.1. Let Z be the set of all singular points of an arrangement of lines
L C P2 which is not a pencil of lines. Is it true that the multipoint Seshadri constant
is equal to

L
mpl(Z)’

where mpl(Z) is the mazimal number of collinear points in Z %

5(P(2C7 OP%(I)v Z) =

In other words, in this question we ask whether the combinatorics of the line ar-
rangement £ would be enough to compute the multipoint Seshadri constants Opz (1)
centered at the singular locus of £. This approach sits on the boundary of the com-
binatorics and algebraic geometry, and it might lead to new developments in these
two areas. We predict that this question should not have an affirmative answer, but
somehow surprisingly it is difficult to verify it in the whole generality due to compli-
cations that occur when we study the geometry of line arrangements. On the other
side, it seems natural to extend such studies to a wider class of curve arrangements,
namely to the so-called d-arrangements of plane curves. This notion was introduced
in [8] in the context of Harbourne indices and the bounded negativity conjecture.
It turned out that it is more efficient to study the negativity phenomenon from a
viewpoint of curve arrangements instead of focusing on the case of irreducible curves
which are notoriously difficult to construct. Having this motivation, we decided to
introduce a new version of the multipoint Seshadri constants for reduced curves.

Definition 1.2. Let € = {C1,...,C)} C P2 be an arrangement of irreducible curves
and denote by Sing(€) the singular locus of C, i.e., the set of all singular points of
the components and points where two or more curves intersect. We define the
configurational Seshadri constant of C as

_ deg(€)
EPESing((?) multp(e) '

At the first glance this notion seems to be far away from the classical multipoint
Seshadri constants, but the example below shows something opposite.

ee(Op2(1))

Example 1.3. Let F = {¢1,...,¢3,} C PZ be the n-th Fermat arrangement of 3n
lines. This arrangement is given by the zeros of the following defining polynomial

Q(w,y,2) = (z" —y")(y" — 2")(z" — ™).

A simple check tells us that the arrangement has exactly n? intersection points of
multiplicity 3 and exactly 3 points of multiplicity n. It was shown in [7] that if
n > 2 one has

1

n+1

e(P, Opz (1); Sing(¥)) =

)

and we also have
3n 1

O () =g s~ as

so these two values coincide for every n > 2.
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Let us present briefly the content of the present note. In Section 2, we recall the
notion of d-arrangements € of plane curves and we provide for them a lower bound on
E@(OP% (1)). Our bound has some space for improvements, but the main advantage
of our approach is that the bound does not depend on the geometry of particular
curve arrangements and gives the correct order of the magnitude for the expected
values of €e. In Section 3, we provide actual values of the multipoint Seshadri
constants for some classes of curve arrangements and we compare them with the
associated values of ee. Our main result in Section 3 shows that there exists a
very specific arrangement of 12 conics, called both Chilean and Hesse arrangement,
such that the multipoint Seshadri constant for Opz (1) centered at the singular locus
consisting of 21 points is computed by a line. )

Notation. We are working exclusively over the complex numbers. If p is a point on
a curve C, then we denote by mult,(C) = m,(C) the multiplicity of C' at p, and if
it is clear from the context which curve is considered we abbreviate as m,. Abusing
the notation, we will consider a curve arrangement C both as a combinatorial object
and as a divisor hoping that it will not lead to confusion.

2. Configurational Seshadri constants for certain point-curve configura-
tions. In this section we will consider a special class of point-curve configurations,
the so-called d-arrangements.

Definition 2.1. Let € = {C4,...,Cx} C IP’% be an arrangement of k > 3 curves.
Then € is a d-arrangement with d > 1 if
e every C; is smooth of degree deg(C;) = d;
e all singular points of € are ordinary, i.e., they look locally as {z‘ = y‘} for
some £ > 2;
e there is no point where all the curves meet.

Such a class of point-curve configurations enjoys many algebro-combinatorial
properties that are highly desirable in many applications. Let us recall that for
d-arrangements we have the following combinatorial count

P2 (;“) _ ; (g) t, = pegé(e) (2’”) (1)

where ¢, denotes the number of r-fold points, m, denotes the multiplicity of a given
singular point p € Sing(€), and this number is equal to the number r, of analytic
branches passing through this point. Now, if C is a d-arrangement, then we can
easily show that restricting to each curve C; € C one has

dP(k—1) = Z (mp — 1),
p€ESing(C)NC;

so in particular if on C; the only singular points are double points, then we have
exactly d?(k — 1) such points. Moreover, we are going to use the following abbrevi-

ations:
fo=Y te, fi=)_tte= > m,

r>2 r>2 pESing(C)

For line arrangements we have the following celebrated inequality [4].
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Theorem 2.2 (Hirzebruch). Let £ C PZ be an arrangement of k > 6 lines such
that tp, = tp_1 = 0, then one has

totts >kt (r— 4.

r>4

If d > 2, then for such d-arrangements there exists a Hirzebruch-type inequality
proved by Pokora, Roulleau, and Szemberg in [8].

Theorem 2.3. Let C be a d-arrangement of k > 3 curves with d > 2. Assume that
ty =0, then

7 9
—d — — > g — 4)t,.
(Qd 2>dk+t2+t3 > r>4(’r )tr

As it was recalled in Introduction, the second author formulated a question about
the values of Seshadri constants for point-line arrangements in the complex pro-
jective plane. There is no logical constraint to restrict our attention only to line
arrangements in the plane since we can also study the multipoint Seshadri constants
from the viewpoint of curve arrangements and their combinatorial properties. Our
aim here is to generalize Question 1.1 to the class of d-arrangements of curves.

Definition 2.4. Let C = {Cy,...,Cy} C PZ be a d-arrangement of curves. Then we
define the base constant of C as

bs(€) := max{s|s = # C; N Sing(€), C; € C},

i.e., this constant is equal to the maximal number of singular points from Sing(C)
that is contained in some curve C; € C.

The first, naive, attempt to generalize Question 1.1 to d-arrangements could be
to ask whether for € one has

“(P2. 0r3(1):Sing(€)) = =15 @

This works in a number of examples. However, in Section 3, we show that equality
(2) fails in case of the so-called Hesse (or Chilean) arrangement of conics — [3, 5].
Thus, we put forward the following problem.

Question 2.5. Let C be a d-arrangement with k > 3 and d > 1 having singular
locus Sing(C). Is it true that

>_ 1
Ak —1)

and the equality holds if and only if there is a curves C; € C for which bs(C) =
d*(k—1)?

e(PZ, Opz(1); Sing(€))

There is a natural temptation to believe that the lowest possible value for the
Seshadri constants can be achieved by d-star configurations of curves.

Definition 2.6. We say that an arrangement C C P2 of k > 3 curves is called a
d-star configuration if this is an arrangement of k£ smooth curves, each of degree
d > 1, in generic position, i.e., the only intersection points are ordinary double
points.



ON SESHADRI CONSTANTS AND POINT-CURVE CONFIGURATIONS 799

If we consider the case d = 1, then we have at least two types of line arrangements
giving the Seshadri constant equal to ﬁ, namely star configurations and Hirze-
bruch quasi-pencil of lines, i.e., an arrangement of k > 4 lines such that ¢t 1 =1
and to = k — 1. This example shows that it might be difficult to have a general
classification of point-curve arrangements € which give the Seshadri constant equal
to ﬁ. Observe also that the assumption t; = 0 is essential in that picture. If
we consider the case k = 2 and d = 2, then we have a configuration of 4 double
intersection points P and the Seshadri constant can be computed by a line passing
through a pair of two distinct points from P - this is the case that we want to
exclude from our discussion due to triviality.

As a warming-up, we are going to show that d-star configurations are good
candidates for the actual lower bound in Question 2.5.

Proposition 2.7. If C; = {C1,...,Ci} is a d-star configuration with k > 3 and
d>1, then
1

e(PZ, Opz (1); Sing(€)) = k=1

Proof. Denote by P = {p1,...,ps, } the set of all double intersection points of C4
and C = C; + ... + C). Suppose that there exists an irreducible and reduced curve
D, different from each C; for i € {1, ..., k}, having degree e and at each point p € P
multiplicity m, (D) such that
e 1
< .
Y opermp(D) d(k—1)

It means that we have the following bound

(A): ed(k—1) <> my(D).

pEP

Now we are going to use Bézout’s theorem, we have

(%) N
edk = D.C = D.(Ci+...4+Cx) = > _my(D)-my(C) > 2 my(D) =

pEP peP

2ed(k—1),

where (*) comes from the fact that all the intersection points of C' are double points.
This leads to the following inequality:

0 > 2edk — 2ed — edk = edk — 2ed,

a contradiction since k > 3. O

Our next result tells us that d-arrangements are unique in a sense of the asso-
ciated linear series which means that ¢ can be viewed as an invariant of a given
arrangement C.

Proposition 2.8. Let € C P2 be a d-arrangement of k > 3 curves. Consider the
blowing up f : X — P% at Sing(C) with the exceptional divisors E1,...,Eg, and
H = f*(0p2(1)). Then the linear series

(3)

deg(@)H — Y my(C)E,
pESing(C)

contains exactly one member.
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Proof. Let us denote by C! the strict transform of C; under the blowing up f for
i € {1,....,k}. By the assumption that ¢, = 0 we can show that each curve C]
has the self-intersection number less than or equal to —1. This follows from the
fact that each curve C; contains at least d? + 1 points. Indeed, if not, then by
the assumption that all intersection points are ordinary the curve C; would contain
exactly d? intersection points, but it implies that all k curves C; meet exactly in
d? points, a contradiction. Now we are going to use the uniqueness of the Zariski
decomposition of ¢! = C{ + ... + C}, — it is an effective cycle such that for i # j
we have CJ .CJ( =0 and C] < —1, which means that the intersection matrix of this
cycle is negative definite, so we conclude that C’ is the unique member in linear
series (3). O

Remark 2.9. As it was pointed out by M. Dumnicki, one can relax the assumption
that for d-arrangements with d > 2 one should have t; = 0 — it is enough to assume
that on each curve there is at least one point of multiplicity less than k.

Our main contribution, from the viewpoint of Question 2.5, provides a lower
bound on configurational Seshadri constants.

Theorem 2.10. Let C be a d-arrangement of d > 1 with k > 3. In the case of
d =1 we assume additionally that ty_1 = 0. Then

1
>
= 2dk + 3d/2 — 9/2

ee(Op2(1))

Proof. Our strategy is based on the combinatorial features of C. Let us denote by
C=0C1+...+Cj. Then we can write
deg(C) dk
ce(Op (1) = B &, (4)
ZpGSing(G) My fi
Our goal here is to find a reasonable upper-bound on the number f; = > ., rt,.
In order to do so, we are going to use Theorem 2.3 and Hirzebruch’s inequality,
namely

(7d _ 9>dk —ty > Z(r —4)t. = f1 —4fo.

2 2
r>2

Since t9 > 0 we have

(72d — Z)dk+4fo > f1.
Obviously one always has
k< fo<d <§)
which leads to
f1 < 2d%k? + %ko — gdk,
so finally we get
dk dk 1

1 == — > = :
ce(Opz(1)) fi T 2d2k2 4 3d2k/2 — 9dk/2 ~ 2dk +3d/2 —9/2
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Remark 2.11. The punchline of the above result is that, abusing the O-notation,
for d-configurations one has

cel02(1) =0 1)

so we arrive at the predicted order of magnitude.

3. The multipoint Seshadri constants via d-arrangements. In this section
we are going to present a comparison between configurational Seshadri constants
and multipoint Seshadri constants centered at singular loci of d-arrangements. It is
clear that one always has
ce(0p(1)) > £(P2, 03 (1); Sing(©)).
First of all, our aim here is to study possible discrepancies between these constants.
We start with the so-called large pencils of lines for which the discrepancies are
rather significant — from a viewpoint of computations this stands against our intu-
ition.
Example 3.1. Let H be a Hirzebruch quasi-pencil, i.e., an arrangement which
consists of k > 4 lines with ¢,_1 = 1 and t3 = k — 1. It can be easily checked that
. 1
e(PZ, Opz (1); Sing(H)) = 1
On the other side
k k
e5c(Op2(1)) = =
3(Op2 (1)) 2. (k—1)+k—1 3k—3

which shows that in general we have e4¢ > ¢.

Example 3.2. Let us consider arrangements of k > 5 lines having t;_o = 1. There
are two types of such arrangements, namely either

o tp_o=1and ty, =2k — 3, or

oty o=1t3=1,1ty =2k —6.
Let us consider the first case (the second one is analogous) and denote the associated
arrangement by HL. Among all lines we can take a line passing thought exactly
k — 1 double points. An easy inspection shows that this line computes the Seshadri
constant which is equal to k—il On the other side,

k k
(2k—3)+k—2 5k—8

Now, we would like to begin our comparison for more complicated arrangements
from a viewpoint of combinatorics. We made our comparison with respect to a very
interesting class of line arrangements, namely simplicial line arrangements. Let us
recall that £ C P§ is simplicial if M (L) := P§ \ Uyc H the complement of £
in P2 consists of the union of disjoint triangles. Our wide computer experiments
suggest that the configurational Seshadri constants are more accurate when given
line arrangements are symmetric, which can be understood both from a viewpoint
of the multiplicities of singular points and the symmetry groups of arrangements.
From this perspective simplicial arrangements have both mentioned features. Since
our computations are rather cumbersome, we decided to present a short table of 11
simplicial line arrangements for which we provide the actual values of the Seshadri
constants and the corresponding values of the configurational Seshadri constants.

e3ce (Opz(1)) = o
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Here by Aj(n) we denote, according to Cuntz’s list [2], a simplicial arrangement of
n lines of type k.

C=Ai(n) | t = (to, t3,ta,...) | €c | €
A1(6) (3,4) % %
AL (7) (3,6) =11
Ai(8) (4,6,1) i | 1
A1(9) (6,4,3) 101
A1(10) (5,10,0,1) 21
As(10) (6,7,3) R
As3(10) (6,7,3) 2|3
Aq(11) (7,8,4) =%
A1 (12) (6,15,0,0,1) 5 | &
As(12) (8,10,3,1) 211
As3(12) (9,7,6) =12

From now on, we would like to focus on d-arrangements. We must emphasize
in this point that there are not many examples of such arrangements in literature,
and we are going to look at those that are interesting for our considerations. We
start with d-star configurations.

Example 3.3. Consider d-star arrangements C; with d > 1 and k > 3 curves. We
have shown in Proposition 2.7 that one always has

1
dk —1)

Now we compute the configurational Seshadri constant of C;. We have exactly

£(P2, 052 (1): Sing(€,)) =

_ 2. (k’=k) ; : ;
ta = d* - ~==— double intersection points, hence

dk dk 1

2y Ph(k—1) dk—1)

e, (Op2(1)) =

Example 3.4. Let us now consider a symmetric (65, 65)-arrangement PC which is
an arrangement of 6 conics such that ¢t5 = 6. The arrangement is constructed by
fixing 6 points in general position, and then we take all the conics passing through
5 points from the set of mentioned 6 points (and in fact it works over the reals).
Obviously the Seshadri constant is equal to % since 6 points are not contained in a

conic, and we have
2

Eg:e(o]p%(l)) = 5

The next arrangement has been discovered recently by Dolgachev, Laface, Pers-
son, and Urzia in [3], and also independently by Kohel, Roulleau and Sarti in
[5].

Example 3.5 (The Hesse arrangement of conics). We would like to take Kohel-
Roulleau-Sarti’s description. It is well-known that the dual curve to a smooth
elliptic curve € is an irreducible sextic curve having exactly 9 cusps — these cusps
correspond to the set of 9 flex points of €. It turns out that there are exactly
12 irreducible conics such that each conic is passing through a subset of exactly 6
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points of the set of 9 points determined by the cusps. The resulting point-conic
configuration CL is (9s, 126)-configuration, i.e., we have exactly 9 points of multi-
plicity 8, and there are also exactly 12 nodes. Even more is true, these 12 nodes
are exactly the triple intersection points of the dual Hesse arrangement of 9 lines.
Using a combinatorial count we know that on each conic we have exactly 6 points
of multiplicity 8 and exactly 2 nodes. First of all,
24 1

cee O () = 577 = 1
Now we are going to look at potential curves which might compute the Seshadri
ratio. Firstly, taking any conic from the arrangement, passing through 8 singular
points, we obtain the ratio equal to i. On the other side, since the twelve points
are the triple intersection points of the dual Hesse arrangement, any line from the
dual Hesse arrangement is passing through exactly 4 points from the set of 12 nodes
and one additional point which turns out to be one of the points of multiplicity 8.
Such a line gives us the ratio equal to % Now we are going to show that indeed one
has

. 1
£(P2, 052 (1);Sing(€£)) = 7.

We will argue in a standard way, but we must use a very specific property of
the set of all singular points of the arrangement that is not combinatorial at all.
Suppose that there exists an irreducible and reduced plane curve D of degree e,
different from each line contained in the dual Hesse arrangement of lines passing
through the nodes and different from each conic in €£, having the property that

e 1
<

Z?i1 myp, (D) 5’

which means that
21
e < Z my, (D).
i=1

The position of singular points implies the existence of a very specific curve, namely
there exists a plane quintic curve passing through all the 21 singular points, which
can be easily checked with use of Singular script, see Appendix. Let us denote this
quintic curve by Q. In fact, @ is reducible and it can be taken as a sum of 3 lines
from the dual Hesse arrangement and an irreducible conic from Hesse arrangement
of conics. Observe that

21 21
5e = DQ Z me(D) mpz(Q) Z Zmlh(D) > 56?
i=1

i=1

a contradiction.

Remark 3.6. The Hesse arrangement of 12 conics, due to its very specific geometry,
should be in fact considered as a conic-line arrangement. If we consider 12 conics
and 9 lines we get an arrangement HCL consisting of 21 curves and having the
following intersection points

to =09, t5=12, t5="T2.

The arrangement HCL is described in [3, 9].



804 MAREK JANASZ AND PIOTR POKORA

Acknowledgments. We would like to warmly thank Marcin Dumnicki and Hal-
szka Tutaj-Gasinska for useful comments that allowed to improve the note, and to
Grzegorz Malara for useful discussions. The second author was partially supported
by National Science Center (Poland) Sonata Grant Nr 2018/31/D/ST1/00177.
Finally, we would like to warmly thank an anonymous referee for all useful comments
and suggestions.

Appendix. Here we present our Singular script that verifies the existence of a
plane quintic passing though the singular locus of the Hesse arrangement of 12
conics. We provide, en passant, the coordinates of all singular points of the Hesse
arrangement of conics.

ring R=(0,u), (x,y,2z),dp;

minpoly=31+36*u+27*u2-4*u3+9*ud+ub;

ideal P(1)=90xy+(-4ub+u4-40u3+26u2-92u-91)*z,x-z;

ideal P(2)=36*y+(ub-ud+10u3-20u2+29u-11)*z, 10*x+(-u2+2u+11) *y+(-4u2-4u-6) *z;
ideal P(3)=60*y+(ub+ud+10u3d+16u2+13u+79)*z,6%x+(u2+2u-11) *y+(-4u2+4u-10) *z;
ideal P(4)=90xy+(ub-4u4+10u3-29u2+53u-11)*z,x-y;

ideal P(5)=60*y+(ub+ud+bud+u2-2u+44)*z,6xx+(-4u2+4u-10) *xy+(u2+2u-11) *z;
ideal P(6)=36%y+(-ub+ud-7u3d+11u2-20u-22)*z, 10*x+(-4u2-4u-6) *y+(-u2+2u+11) *z;
ideal P(7)=y-z,90*x+(-4ub+ud-40u3+26u2-92u-91)*z;

ideal P(8)=180*y+(4u5-ud4+40u3-26u2+182u+181)*z,x+(-u-1)*y+(-u+l)*z;
ideal P(9)=180*y+(-4ub+u4-40u3+26u2-182u-1)*z,x+(-u+l)*y+(-u-1)*z;
ideal P(10)=z,x;

ideal P(11)=y,x;

ideal P(12)=z,y;

ideal P(13)=y-z,x-z;

ideal P(14)=180*y+(4ub-ud4+40u3-26u2+182u+181)*z,

180*x+ (-4ub+ud-40u3+26u2-182u-1) *z;

ideal P(15)=180*y+(-4ub+u4-40u3+26u2-182u-1)*z,

180*x+ (4u5-ud+40u3-26u2+182u+181) *z;

ideal P(16)=180*y+(4ub-ud4+40u3-26u2+182u+181)*z,x-z;

ideal P(17)=180%y+(-4u5+u4-40u3+26u2-182u-1)+*z,

180*x+ (-4ub5+ud-40u3+26u2-182u-1) *z;

ideal P(18)=y-z,180*x+(4ub-u4+40u3-26u2+182u+181)*z;

ideal P(19)=180*y+(-4ub+u4-40u3+26u2-182u-1)*z,x-z;

ideal P(20)=y-z,180%x+(-4ub5+u4-40u3+26u2-182u-1)*z;

ideal P(21)=180*y+(4ub5-ud4+40u3-26u2+182u+181)*z,

180*x+ (4ub-ud+40u3-26u2+182u+181) *z;

ideal I=1;int i;

for(i=1;i<=21;i++){

I=intersect(I,P(i));

}

I=std(I);

I[1];
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