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Abstract. In this paper, we consider the nonlinear Schrödinger equation on

RN , N ≥ 1,
∂tu = i∆u+ λ|u|αu,

with H2-subcritical nonlinearities: α > 0, (N − 4)α < 4 and Reλ > 0. For

any given compact set K ⊂ RN , we construct H2 solutions that are defined

on (−T, 0) for some T > 0, and blow up exactly on K at t = 0. We generalize
the range of the power α in the result of Cazenave, Han and Martel [5]. The

proof is based on the energy estimates and compactness arguments.

1. Introduction. In this paper, we consider the nonlinear Schrödinger equation
with the power nonlinearity

∂tu = i∆u+ λ|u|αu (1.1)

on RN , where

N ≥ 1, α > 0, (N − 4)α < 4, (1.2)

and λ ∈ C such that

Reλ >

{
0, if 1 ≤ N ≤ 3,
α
2 |Imλ|, if N ≥ 4.

(1.3)

Under the assumption (1.2), the equation (1.1) is H2-subcritical, so that the cor-
responding Cauchy problem is locally well posed in H2(RN ), see [12] and [21]. It
is well-known that if α < 4

N and the equation (1.1) has a dissipative nonlinearity,

i.e. Reλ < 0, then all H1 solutions are global, see [2]. If α < 2
N and the nonlin-

earity is not dissipative, i.e. Reλ > 0, it is proved in [2] that the equation (1.1)
has no global in time H1 solution that remains bounded in H1. The question of
the finite-time blow-up is still open. With the restriction α ≥ 2, it is proved in [6]
that under the assumption that (N − 2)α ≤ 4 and Reλ = 1, finite time blowup
occurs. The construction is based on an appropriate ansatz. This result is extended
in [13] to the case α > 1 and (α + 2)Reλ ≥ α|λ|. Moreover, by refining the initial
ansatz (2.7) inductively, the blow-up result is extended to the whole range of H1

subcritical powers and arbitrary Reλ > 0 in [5]. There are some similarly results
for the focusing energy subcritical nonlinear wave equation, see [7, 8].
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In this paper, we extend the previous blow-up result in [5] to the H2-subcritical
case under the additional technical assumptions (1.3).

Theorem 1.1. Under the conditions (1.2) and (1.3), for any nonempty compact
subset K ⊂ RN , there exist S ∈ (−1, 0) and a solution u ∈ C([S, 0), H2(RN )) ∩
C1([S, 0), L2(RN )) of the equation (1.1) which blows up at time 0 exactly on K in
the following sense.
(1) If x0 ∈ K then for any r > 0,

lim
t↑0
‖u(t)‖L2(|x−x0|<r) =∞. (1.4)

(2) If U is a open subset of RN such that K ⊂ U , then

lim
t↑0
‖∇u(t)‖L2(U) =∞, and lim

t↑0
‖∆u(t)‖L2(U) =∞. (1.5)

(3) If Ω is a open subset of RN such that Ω ∩K = Ø, then

sup
t∈(S,0]

‖u(t)‖H2(Ω) <∞. (1.6)

Remark 1.1. Under the assumptions that α > 0, (N − 2)α ≤ 4 and Reλ > 0,
Cazenave-Han-Martel [5] proved that given any nonempty compact subset K of
RN , there exists a H1 solution of (1.1) which blows up exactly on K when t = 0.
We generalize the range of α to the H2-subcritical case, following the technique
developed in [6]. For technical reasons, we require that Reλ > α

2 |Imλ| when the
dimension N ≥ 4, which is used in the proof of the estimates of ‖∂tεn‖L2 , see
(3.29)-(3.41).

Remark 1.2. It follows from (1.4) and (1.5) that both ‖u(t)‖2, ‖∇u(t)‖2 and
‖∆u(t)‖2 blow up when t ↑ 0.

Remark 1.3. The estimate (1.4) can be refined. More precisely, it follows from
(4.8) that

(−t)− 1
α+ N

2k . ‖u(t)‖L2(|x−x0|<r) . (−t)− 1
α

where k > Nα is given by (2.2).

We prove Theorem 1.1 by the strategy of [1]. More precisely, we consider the
sequence {un}n≥1 of solutions of (1.1) with the initial datum un(− 1

n ) = UJ(− 1
n ),

where UJ is a refined blowup profile defined in Lemma 2.3. It follows that un is
defined on (sn,− 1

n ) for some sn < − 1
n . Letting εn(t) = un(t)−UJ(t), following the

ideas of [5, 15], we show that {εn}n≥1 is uniformly bounded in L∞((S, τ), H2) ∩
W 1,∞((S, τ), L2) (S is given by Proposition 3.1) for any τ ∈ (S, 0) by the energy
arguments. Moreover, by the compactness argument, we find ε ∈ L∞((S, 0), H2) ∩
W 1,∞((S, 0), L2) and a subsequence of {εn}n≥1 weakly converges to ε. Therefore,
setting u(t) = UJ(t) + ε(t), we see that u is a H2 solution of (1.1). Finally, note
that ε is bounded in H2(RN ) and UJ blows up at time 0 exactly on K, we deduce
that u(t) also blows up at time 0 exactly on K.

The solution u given by Theorem 1.1 blows up at t = 0 like the function UJ
defined in Lemma 2.3 . Since the function U0 defined by (2.7) satisfying Ut =
λ|U |αU , and UJ is a refinement of U0, we see that the solution u displays an ODE-
type blowup. We recall that there are many ODE-type blowup results for several
other nonlinear equations, refer to [10, 17, 20] for results in the parabolic context,
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refer to [1, 18, 23] for the nonlinear wave equations. Recently, there are many well-
posedness results for the nonlinear Schrödinger equation, see [9, 14, 24, 25] and
references therein.

The rest of the paper is organized as follows. In Section 2, we introduce the
blow-up ansatz and the corresponding estimates which are from [5], and recall some
useful estimates. Section 3 is devoted to the construction of a sequence of solutions
of (1.1) close to the blow-up ansatz and some a priori estimates of the approximate
solutions. Finally, we complete the proof of Theorem 1.1 in Section 4 by passing to
the limit in the approximate solutions.

2. The blow-up ansatz. In this section, we introduce the blow-up ansatz con-
structed in [5].

The first candidate U0 is defined by (2.7) below, which is a solution of the ordinary
differential equation Ut = λ|U0|αU0. Since the error term i∆U0 is not integrable in
time near the singularity when α is small, the method used in [1] does not applicable
to the case 0 < α ≤ 1. To treat any subcritical α and any λ ∈ C with Reλ > 0,
Cazenave-Han-Martel [5] refine the blow-up ansatz inductively, using only ODE
techniques, see (2.18)-(2.22) for more details. Throughout this section, we choose
two integers

J =

[
2

α
+ 4σ

]
+ 1 (2.1)

and

k = max{2J + 4,
16

3γσ
,Nα,

1

(1− 3
8γ)σ

} (2.2)

with

γ = min{1

2
,

α

α+ 2
,

4

N
}, (2.3)

σ = max{ 4

γ
, (2α+1 + 4 + 4K1)(α+ 1)|λ|M(αReλ)−1}, (2.4)

where M is given by Lemma 2.4 and K1 = |Reλ−α
2 |Imλ||

1−α(4(α+1)|λ|M)α−1. Let

K be any nonempty compact set of RN included in the ball of center 0 and radius
R > 0. It is well-known that there exists a smooth function Z : RN → [0,∞) which
vanishes exactly on K (see Lemma 1.4 in [19]). Define the function A : RN → [0,∞)
by

A(x) = (Z(x)χ(|x|) + (1− χ(|x|))|x|)k (2.5)

where

χ ∈ C∞(R,R), χ(s) =

{
1, 0 ≤ s ≤ R,
0, s ≥ 2R,

χ′(s) ≤ 0 ≤ χ(s) ≤ 1, s ≥ 0.

It follows that the function A ∈ Ck−1
(
RN ,R

)
, vanishes exactly on K, satisfies{

A ≥ 0 and
∣∣∂βxA∣∣ . A1− |β|k , on RN for |β| ≤ k − 1,

A(x) = |x|k, for x ∈ RN , |x| ≥ 2R.
(2.6)

Set
U0(t, x) = (Reλ)−

1
α (−αt+A(x))−

1
α−i

Imλ
αReλ , t < 0, x ∈ RN . (2.7)

From (1.2), (2.2) and (2.6), we have

U0 is C∞ in t < 0 and Ck−1 in x ∈ RN ,

∂tU0 = λ|U0|αU0, t < 0, x ∈ RN , (2.8)
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|U0| = (Reλ)−
1
α (−αt+A(x))−

1
α ≤ (αReλ)−

1
α (−t)− 1

α , (2.9)

and

∂t |U0| = Reλ|U0|α+1 ≥ 0. (2.10)

Next we estimate the profile U0 given by (2.7). We collect the estimates on U0

which are from [5] and slight modifications.

Lemma 2.1. Under the conditions (1.2), (2.2) and (2.6), then we have

‖U0(t)‖Lp . (−t)− 1
α (2.11)

for all p ≥ 1 and −1 ≤ t < 0. In addition, for every ρ ∈ R, ` ∈ N and |β| ≤ k − 1,∣∣∂`t∂βxU0

∣∣ . |U0|1+`α+α
k |β| . (−t)−`−

|β|
k |U0| , (2.12)∣∣∂βx (|U0|ρ)

∣∣ . |U0|ρ+
α
k |β| . (−t)−

|β|
k |U0|ρ , (2.13)∣∣∣∂βx (|U0|ρ−1

U0

)∣∣∣ . |U0|ρ+
α
k |β| . (−t)−

|β|
k |U0|ρ , (2.14)∣∣∂t∂βx |U0|α U0

∣∣ . (−t)−1− |β|k |U0|α+1, (2.15)

for all x ∈ RN , t < 0, and

U0 ∈ C∞
(
(−∞, 0), Hk−1

(
RN
))
. (2.16)

Furthermore, for any x0 ∈ RN such that A (x0) = 0, for any r > 0,−1 ≤ t < 0 and
1 ≤ p ≤ ∞,

Cr,p(−t)−
1
α+ N

pk ≤ ‖U0(t)‖Lp(|x−x0|<r) , (2.17)

where the constant Cr,p depends on r and p.

Proof. Estimates (2.11)-(2.14) and the property (2.16) follows by the calculation in
[5].

Note that |U0| is positive for any time t < 0, we have

∂t(|U0|αU0) =
α+ 2

2
|U0|α∂tU0 +

α

2
|U0|α−2U2

0∂tU0.

It follows from Leibnitz’s formula, (2.12)-(2.14) that

|∂βx∂t(|U0|αU0)| .
∑

β1+β2=β

|∂β1
x |U0|α∂β2

x ∂tU0|+
∑

β1+β2=β

|∂β1
x (|U0|α−2U2

0 )∂β2
x ∂tU0|

.
∑

β1+β2=β

(−t)−
|β1|
k |U0|α · (−t)−1− |β2|k |U0| . (−t)−1− |β|k |U0|α+1,

which proves (2.15).
To prove (2.17), we set x0 ∈ RN such that A (x0) = 0. For any fixed x ∈ RN

satisfying |x− x0| < r, choosing x1 ∈ RN satisfying |x1 − x0| ≤ |x− x0| and

|A(x1)| = max
|y−x0|≤|x−x0|

|A(y)|.

From (2.6), we have,

|A(x1)| = |A(x1)−A(x0)| = |∇A(ηx1 + (1− η)x0) · (x1 − x0)|
≤ C|A(ηx1 + (1− η)x0)|1− 1

k |x1 − x0| ≤ C|A(x1)|1− 1
k |x1 − x0|,

for some η ∈ [0, 1], and

|A(x1)| ≤ C|x1 − x0|k.
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Then, we have

|A(x)| ≤ |A(x1)| ≤ C|x1 − x0|k ≤ C|x− x0|k, ∀ |x− x0| < r,

and ∫
|x−x0|<r

|U0|pdx &
∫
|x−x0|<r

(−t+ |x− x0|k)−
p
α dx

& (−t)−
p
α+N

k

∫
|y|<r

(1 + |y|k)−
p
α dy ≥ Cr,p(−t)−

p
α+N

k .

This completes the proof of (2.17).

Next, we introduce a procedure to reduce the singularity of the error term at any
order of (−t) by refining the approximate solution. We consider the linearization of
the equation (2.8),

∂tw = λ
α+ 2

2
|U0|α w + λ

α

2
|U0|α−2

U2
0w (2.18)

The equation (2.18) has two solutions w = iU0 and w = ∂tU0 = λ |U0|α U0. By
means of variation of constants, it is not hard to see that the corresponding nonho-
mogeneous equation

∂tw = λ(
α+ 2

2
|U0|αw +

α

2
|U0|α−2U2

0w) +G (2.19)

has the solution w = P(G), where

P(G) =
λ

Reλ
|U0|α U0

∫ t

0

[
|U0|−α−2

Re(U0G)
]

(s)ds

+ i
1

Reλ
U0

∫ t

0

[
|U0|−2

Im(λU0G)
]

(s)ds

(2.20)

We define Uj , wj , Ej by

w0 = iU0, E0 = −∂tU0 + i∆U0 + λ|U0|αU0 = i∆U0 (2.21)

and then recursively

wj = P (Ej−1) , Uj = Uj−1 + wj Ej = −∂tUj + i∆Uj + λ|Uj |αUj (2.22)

for j ≥ 1, as long as they make sense. We will see that for j ≤ k−4
2 ,P (Ej−1) is well

defined at each step, on a sufficiently small time interval. From similar arguments
in Lemma 3.2 in [5], by Lemma 2.1 and Faà di Bruno’s formula (see Corollary 2.10
in [11]), we have the following estimates. For the convenience of the reader, we
briefly sketch the proof.

Lemma 2.2. Under the conditions (1.2), (2.2) and (2.6), then there exists −1 <
T < 0 such that the following estimates hold for all 0 ≤ j ≤ k−4

2 .
(1) If 0 ≤ |β| ≤ k − 1− 2j, then∣∣∂βxwj∣∣ . (−t)j(1− 2

k )− |β|k |U0| , T ≤ t < 0, x ∈ RN , (2.23)∣∣∂βx (Uj − U0)
∣∣ . (−t)1− |β|+2

k |U0| , T ≤ t < 0, x ∈ RN , (2.24)

|∂t∂βxwj | . (−t)−1+j(1− 2
k )− |β|k |U0|, T ≤ t < 0, x ∈ RN . (2.25)

(2) If 0 ≤ |β| ≤ k − 3− 2j, then∣∣∂βxEj∣∣ . (−t)j(1− 2
k )− |β|+2

k |U0| , T ≤ t < 0, x ∈ RN . (2.26)
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Moreover
1

2
|U0| ≤ |Uj | ≤ 2 |U0| , T ≤ t < 0, x ∈ RN , (2.27)

Uj ∈ C1
(
(T, 0), Hk−1−2j

(
RN
))
, (2.28)

|∂tUj | . (−t)−1|U0|, T ≤ t < 0, x ∈ RN , (2.29)

|∂tEj | . (−t)−1+j(1− 2
k )− 2

k |U0|, T ≤ t < 0, x ∈ RN . (2.30)

Proof. The proof is based on the induction on j. From (2.12), we get that (2.23)-
(2.30) hold with j = 0.

Assume (2.23)-(2.30) hold with j ≤ n. Then, we only prove (2.25), (2.29) and
(2.30) with j = n+ 1, and the other estimates with j = n+ 1, follows from Lemma
3.2 in [5].

In view of (2.20) and (2.22), we see that

∂twn+1 = λ(
α+ 2

2
|U0|αwn+1 +

α

2
|U0|α−2U2

0wn+1) + En. (2.31)

It follows from Leibnitz’s formula, (2.9), (2.13)-(2.14), (2.23) with j = n + 1 and
(2.26) with j = n that

|∂t∂βxwn+1| . (−t)−1+(n+1)(1− 2
k )− |β|k |U0|,

which implies (2.25) with j = n+ 1.
Next by (2.22), we see that

Un+1 = Un + wn+1 = · · · = wn+1 + wn + · · ·+ w1 + U0, (2.32)

so that |∂tUn+1| . (−t)−1|U0| by (2.12) and (2.25) with j ≤ n + 1. Then (2.29)
holds with j = n+ 1.

Finally, we prove (2.30) with j = n+ 1. Since Un+1−Un = wn+1, it follows from
(2.19), (2.20) and (2.22) that

En+1 − En = −∂twn+1 + i∆wn+1 + λ(|Un+1|αUn+1 − |Un|αUn)

= −En + i∆wn+1 + λ(|Un+1|αUn+1 − |Un|αUn

− α+ 2

2
|U0|αwn+1 −

α

2
|U0|α−2U2

0wn+1).

Writing

|Un+1|αUn+1 − |Un|αUn =

∫ 1

0

d

dθ
[|Un + θwn+1|α(Un + θwn+1)]dθ

=

∫ 1

0

α+ 2

2
|Un + θwn+1|αwn+1 +

α

2
|Un + θwn+1|α−2(Un + θwn+1)2wn+1dθ,

we have

En+1 = i∆wn+1 + λ

∫ 1

0

α+ 2

2
An+1(t, θ)wn+1 +

α

2
Bn+1(t, θ)wn+1dθ, (2.33)

where

An+1(t, θ) = |Un + θwn+1|α − |U0|α,
Bn+1(t, θ) = |Un + θwn+1|α−2(Un + θwn+1)2 − |U0|α−2U2

0 .
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By the directly computation, one can get

An+1(t, θ) =

∫ 1

0

d

ds
|U0 + sgn+1(θ)|αds

=

∫ 1

0

αRe
[
|U0 + sgn+1(θ)|α−2(U0 + sgn+1(θ))gn+1(θ)

]
ds

(2.34)

where gn+1(θ) = Un + θwn+1 −U0. From (2.12), (2.23) with j = n+ 1, (2.24) with
j = n, (2.25) with j = n+ 1, (2.32), choosing T satisfying

C0T
1− 2

k ≤ 1

2
, (2.35)

we obtain

|gn+1(θ)| ≤ C0(−t)1− 2
k |U0| ≤

1

2
|U0|, (2.36)

|∂tgn+1(θ)| . (−t)− 2
k |U0|, (2.37)

|∂t(U0 + sgn+1(θ))| . (−t)−1|U0|. (2.38)

It follows from (2.34)-(2.38) and Leibnitz’s formula that

|An+1(t, θ)| . (−t)− 2
k , |∂tAn+1(t, θ)| . (−t)−1− 2

k . (2.39)

Similarly, using Leibnitz’s formula, we see that

|Bn+1(t, θ)| . (−t)− 2
k , |∂tBn+1(t, θ)| . (−t)−1− 2

k . (2.40)

Now it follows from (2.25) with j = n + 1, (2.33), (2.39)-(2.40) and Leibnitz’s
formula that

|∂tEn+1| . |∂t∆wn+1|+
∫ 1

0

(|An+1|+ |Bn+1|) |∂twn+1|dθ

+

∫ 1

0

(|∂tAn+1|+ |∂tBn+1|)|wn+1|dθ

. (−t)−1+(n+1)(1− 2
k )− 2

k |U0|,

which implies (2.30) with j = n+ 1. Thus (2.23)-(2.30) hold for all 0 ≤ j ≤ k−4
2 by

the induction.

Then, we get the following lemma immediately.

Lemma 2.3. Under the conditions in Lemma 2.2, we have∣∣∂βx (UJ − U0)
∣∣ . (−t)1− |β|+2

k |U0| , 0 ≤ |β| ≤ k − 1− 2J, (2.41)∣∣∂βxEJ ∣∣ . (−t)J(1− 2
k )− |β|+2

k |U0| , 0 ≤ |β| ≤ k − 3− 2J, (2.42)

1

2
|U0| ≤ |UJ | ≤ 2 |U0| , (2.43)

UJ ∈ C1
(
(T, 0), Hk−1−2J

(
RN
))
, (2.44)

|∂tUJ | . (−t)−1|U0|, (2.45)

|∂tEJ | . (−t)−1+J(1− 2
k )− 2

k |U0|, (2.46)

EJ = −∂tUJ + i∆UJ + λ|UJ |αUJ , (2.47)

where T ≤ t < 0, x ∈ RN , T ∈ (−1, 0).

Finally, we introduce some useful estimates, which will be used in Section 3.
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Lemma 2.4. There exists a constant M ≥ 1 such that

||u+ v|α − |v|α| ≤M(|u|α + 1α>1|u||v|α−1), (2.48)

||u+ v|α−2(u+ v)2 − |v|α−2v2| ≤M(|u|α + 1α>1|u||v|α−1), (2.49)

||u|αu− |v|αv| ≤M(|u|α + |v|α)|u− v|, (2.50)

and if 0 < α ≤ 1,

||u+ v|α − |u|α|+ ||u+ v|α−2(u+ v)2 − |u|α−2u2| ≤M |u|α−1|v|, (2.51)

for all u, v ∈ C, where

1α>1 =

{
0, if 0 < α ≤ 1,

1, if α > 1.

Proof. From (2.10) in [4], we can get (2.48) and (2.49), (also see formulas (2.26)-
(2.27) in [3]). By the directly computation, one can get (2.50) easily, and omit the
details. We prove (2.51) for completeness. Let z ∈ C, |z| ≥ 1

2 . From |z|α ≤ C|z|,
(2.48) and (2.49) we have

||1 + z|α − 1|+
∣∣|1 + z|α−2(1 + z)2 − 1

∣∣ ≤ C|z|α ≤ C|z|. (2.52)

For |z| ≤ 1
2 , writing

||1 + z|α − 1|+
∣∣|1 + z|α−2(1 + z)2 − 1

∣∣
=

∫ 1

0

d

dθ

[
||1 + θz|α − 1|+

∣∣|1 + θz|α−2(1 + θz)2 − 1
∣∣] dθ, (2.53)

we get ∣∣∣∣ ddθ [||1 + θz|α − 1|+
∣∣|1 + θz|α−2(1 + θz)2 − 1

∣∣]∣∣∣∣
≤ C( min

0≤θ≤1
|1 + θz|)α−1|z| ≤ C|z|, (2.54)

which yields (2.52). Now let u, v ∈ C with u 6= 0, setting z = v/u in (2.52), we
obtain that the inequality (2.51) by choosing M larger enough.

Lemma 2.5. Assume that λ ∈ C, 0 < α, (N −4)α < 4, I ⊂ R is a compact interval
and u ∈ C(I,H2(RN )) ∩ C1(I, L2) is a strong H2 solution of the equation

∂tu = i∆u+ λ|u|αu,

then we have

∂t(|u|αu) ∈
{
L2(I, L

2N
N+2 (RN )), if 2 ≤ (N − 2)α,

L2(I, L2(RN )), if (N − 2)α < 2.

Proof. Firstly we recall that u is bounded in W 1,q(I, Lr(RN )) ∩ Lq(I,H2,r(RN ))
for every admissible pair (q, r) ∈ Λ where

Λ = {(q, r) : 2 ≤ q, r ≤ ∞, 2

q
+
N

r
=
N

2
, (q, r,N) 6= (2,∞, 2)},

see [12, 21].

Then if 2 ≤ (N − 2)α, we choose two real numbers r = 2N(α+1)
N+2(α+1) , q = 4(α+1)

(N−2)α−2

such that N+2
2N = 1

r + α
2α+2 , and (q, r) ∈ Λ. By Hölder’s inequality and note that
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2 ≤ r, (N − 2)r < 2N , q ≥ 2, H2 ↪→ L2α+2, we deduce that

‖∂t(|u|αu)‖
L2(I,L

2N
N+2 (RN ))

≤ ‖‖∂tu‖Lr(RN )‖u‖αL2α+2(RN )‖L2(I)

≤ ‖u‖αL∞(I,H2(RN ))‖∂tu‖L2(I,Lr(RN ))

≤ C(I)‖u‖αL∞(I,H2(RN ))‖∂tu‖Lq(I,Lr(RN )) < +∞.

In the case (N−2)α < 2, we may choose q = 4(α+1)
Nα > 2 such that (q, 2α+2) ∈ Λ.

Thus, by Hölder’s inequality and H2 ↪→ L2α+2, we deduce that

‖∂t(|u|αu)‖L2(I,L2(RN )) ≤ ‖‖∂tu‖L2α+2(RN )‖u‖αL2α+2(RN )‖L2(I)

≤ C(I)‖u‖αL∞(I,H2(RN ))‖∂tu‖L2(I,L2α+2(RN ))

≤ C(I)‖u‖αL∞(I,H2(RN ))‖∂tu‖Lq(α)(I,L2α+2(RN )) < +∞.

3. Construction and estimates of approximate solutions. In this section, we
construct a sequence of solutions un of (1.1), close to the ansatz UJ in Lemma 2.3,
which will eventually converge to the blowing-up solution of Theorem 1.1. We will
estimate εn = un − UJ by the energy method. More precisely, we estimate

(−t)−σ‖εn‖2 + (−t)−(1− 3
8γ)σ‖∇εn‖2 + (−t)−(1−γ)σ‖∆εn‖2 + (−t)−(1− γ2 )σ‖∂tεn‖2

for some appropriate parameters γ, σ given in (2.3) and (2.4).
Let the ansatz UJ and T < 0 be given in Lemma 2.3. From 2J ≤ k− 4 by (2.2),

UJ
(
− 1
n

)
∈ H2

(
RN
)

by (2.2) and (2.28), we obtain that there exist sn < − 1
n

and a unique solution un ∈ C
((
sn,− 1

n

]
, H2

(
RN
))
∩C1

((
sn,− 1

n

]
, L2

(
RN
))

of the
following nonlinear Schrödinger equation{

∂tun = i∆un + λ |un|α un,
un
(
− 1
n

)
= UJ

(
− 1
n

)
,

(3.1)

defined on the maximal interval
(
sn,− 1

n

]
, with the blow-up alternative that if sn >

−∞, then

‖un(t)‖H2 −→
t↓sn
∞. (3.2)

see [12]. Letting εn ∈ C(In, H
2(RN )) ∩ C1(In, L

2(RN )) be defined by

un = UJ + εn, (3.3)

with In = (max{sn, T},− 1
n ], we have the following estimate.

Proposition 3.1. There exist T ≤ S < 0 and n0 > − 1
S such that sn < S, for all

n ≥ n0. Moreover,

‖εn(t)‖L2 ≤ (−t)σ, ‖∇εn(t)‖L2 ≤ (−t)(1− 3
8γ)σ, (3.4)

‖∆εn(t)‖L2 ≤ (−t)(1−γ)σ, ‖∂tεn(t)‖L2 ≤ (−t)(1− γ2 )σ, (3.5)

for all n ≥ n0 and t ∈ [S,− 1
n ].

Proof. Throughout the proof, we write ε instead of εn. Moreover, C denotes a
constant that may change from line to line, but is independent of n and t. Unless
otherwise specified, all integrals are over RN . Using (2.22) and (3.3), we have{

∂tε = i∆ε+ λ(|UJ + ε|α(UJ + ε)− |UJ |αUJ) + EJ ,
ε(− 1

n ) = 0.
(3.6)
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Let

τn = inf
{

t ∈
[
max{T, sn},−

1

n

]
; ‖ε(s)‖L2 ≤ (−s)σ,

‖∇ε(s)‖L2 ≤ (−s)(1− 3
8γ)σ, ‖∆ε(s)‖L2 ≤ (−s)(1−γ)σ,

‖∂tε(s)‖L2 ≤ (−s)(1− γ2 )σ, for all t < s ≤ − 1

n

}
. (3.7)

Since ε(− 1
n ) = 0, we see that T ≤ τn < − 1

n . Moreover, it follows from the blow-up
alternative (3.2) that sn < τn.

We first estimate ‖ε(t)‖L2 . Multiplying (3.6) by ε and taking the real part, we
obtain

1

2

d

dt
‖ε(t)‖2L2 = Re

(
λ

∫
[|UJ + ε|α(UJ + ε)− |UJ |αUJ ]ε

)
+ Re

∫
EJ ε̄.

Using Lemma 2.4, we deduce that

1

2

d

dt
‖ε(t)‖2L2 ≥ −|λ|M

∫
(|UJ |α + |ε|α)|ε|2 − ‖EJ‖L2‖ε‖L2 . (3.8)

By (2.9) and (2.43), we have∫
|UJ |α|ε|2 ≤ 2α(αReλ)−1(−t)−1‖ε‖2L2 . (3.9)

In addition, by Gagliardo-Nirenberg’s inequality and (3.7), we get∫
|ε|α+2 ≤ C‖ε‖α+2−N4 α

2 ‖∆ε‖
N
4 α

2 ≤ C‖ε‖α+2
H2 ≤ C(−t)(α+2)(1−γ)σ. (3.10)

Next, by (2.42), we obtain

‖EJ‖L2 ‖ε‖L2 ≤ C(−t)J(1− 2
k )− 2

k−
1
α+σ = C(−t)−1+(J+1)(1− 2

k )− 1
α+σ. (3.11)

By (2.1), (2.2) and (2.3), we have

(J + 1)

(
1− 2

k

)
− 1

α
+ σ ≥ 1

2
(J + 1)− 1

α
+ σ ≥ 3σ,

(α+ 2)(1− γ)σ ≥ 2σ, (3.12)

and

|λ|M
∫
|ε|α+2 + ‖EJ‖L2 ‖ε‖L2 ≤ C(−t)2σ, (3.13)

where T ∈ (−1, 0) and σ > 1 by (2.4). It follows from (3.8), (3.9) and (3.13) that

d

dt
‖ε(t)‖2L2 ≥ −2α+1(αReλ)−1|λ|M(−t)−1‖ε‖2L2 − C(−t)2σ

and

d

dt

(
(−t)−σ‖ε(t)‖2L2

)
= σ(−t)−σ−1‖ε(t)‖2L2 + (−t)−σ d

dt
‖ε(t)‖2L2

≥
[
σ − 2α+1(αReλ)−1|λ|M

]
(−t)−σ−1‖ε(t)‖2L2 − C(−t)σ.

Using (2.4), we obtain

d

dt

(
(−t)−σ‖ε(t)‖2L2

)
≥ −C(−t)σ.

Integrating on (t,− 1
n ) and using ε(− 1

n ) = 0, we deduce that

‖ε(t)‖L2 ≤ C1(−t)σ+ 1
2 (3.14)
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for all t ∈ (τn,− 1
n ).

Multiplying the equation (3.6) by −∆ε̄ and taking the real part, we obtain after
integrating by parts

1

2

d

dt
‖∇ε‖2L2 = Reλ

∫
∇(|UJ + ε|α(UJ + ε)− |UJ |αUJ − |ε|αε) · ∇ε̄ (3.15)

+Reλ

∫
∇(|ε|αε) · ∇ε̄+ Re

∫
∇EJ · ∇ε̄ := N1 +N2 +N3.

By Hölder’s and Gagliardo-Nirenberg’s inequality, and note that

∇(|ε|αε) =
α+ 2

2
|ε|α∇ε+

α

2
|ε|α−2ε2∇ε̄

we deduce that

|N2| ≤ C
∫
|ε|α|∇ε|2 ≤ C

(∫
|ε|2α+2

) α
2α+2

(∫
|∇ε|

4(α+1)
α+2

) α+2
2α+2

≤ C‖ε‖α+2
H2 ≤ C(−t)(α+2)(1−γ)σ ≤ C(−t)−1+2σ,

(3.16)

where (N − 4)(2α + 2) < 2N and 4(N − 2)(α + 1)/(α + 2) < 2N by (1.2), (α +
2)(1− γ)σ ≥ −1 + 2σ by (3.12). Next by (2.42) and (3.7), we see that

|N3| ≤ ‖∇EJ‖L2 ‖∇ε‖L2 ≤ C(−t)J(1− 2
k )− 3

k ‖U0‖L2 ‖∇ε‖L2

≤ C(−t)J(1− 2
k )− 3

k−
1
α+(1− 3

8γ)σ ≤ C(−t)−1+2σ,
(3.17)

where

J

(
1− 2

k

)
− 3

k
− 1

α
+ (1− 3

8
γ)σ = −1 + (J + 1)

(
1− 2

k

)
− 1

k
− 1

α
+ (1− 3

8
γ)σ

> −1 +
J + 1

2
− 1

k
− 1

α
+ (1− 3

8
γ)σ

> −1 + 2σ − 1

k
+ (1− 3

8
γ)σ ≥ −1 + 2σ

by (2.1) and (2.2). We now estimate N1. By the directly computation, we have

∇(|UJ + ε|α(UJ + ε)− |UJ |αUJ − |ε|αε)

=
α+ 2

2
(|UJ + ε|α − |ε|α)∇ε+

α

2
(|UJ + ε|α−2(UJ + ε)2 − |ε|α−2ε2)∇ε̄

+
α+ 2

2
(|UJ + ε|α − |UJ |α)∇UJ +

α

2
(|UJ + ε|α−2(UJ + ε)2 − |UJ |α−2U2

J)∇UJ ,

and

|N1| ≤ (α+ 1)|λ|(
∫
B1|∇ε|2 +

∫
B2|∇UJ∇ε|) (3.18)

with

B1 = ||UJ + ε|α − |ε|α|+
∣∣|UJ + ε|α−2(UJ + ε)2 − |ε|α−2ε2

∣∣ ,
B2 = ||UJ + ε|α − |UJ |α|+

∣∣UJ + ε|α−2(UJ + ε)2 − |UJ |α−2U2
J

∣∣ . (3.19)

It follows from Lemma 2.4 and (2.43) that

B1 ≤ 2αM |U0|α + 2M1α>1|ε|α−1|U0|. (3.20)

If α > 1, then |ε|α−1|U0| ≤ |ε|α + |U0|α, so that

B1 ≤ (2α + 2)M |U0|α + C|ε|α. (3.21)
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Then, from (3.20)-(3.21), we obtain∫
B1|∇ε|2 ≤ (2α + 2)M(αReλ)−1(−t)−1‖∇ε‖2L2 + C

∫
|ε|α|∇ε|2

≤ (2α + 2)M(αReλ)−1(−t)−1‖∇ε‖2L2 + C(−t)−1+2σ (3.22)

by (2.9) and (3.16).
Next we estimate B2, separately the cases α ≤ 1 and α > 1. When α ≤ 1, using

(2.9), (2.12), (2.41), (3.7) and Lemma 2.4, we deduce that∫
B2|∇UJ∇ε| ≤ C

∫
|UJ |α−1|ε||∇UJ ||∇ε|

≤ C(−t)−1− 1
k ‖ε‖L2‖∇ε‖L2

≤ C(−t)−1− 1
k+(2− 3

8γ)σ. (3.23)

When α > 1, we deduce from Lemma 2.4 and (2.41) that∫
B2|∇UJ∇ε| ≤ C

∫
(|UJ |α−1 + |ε|α−1)|ε||∇UJ ||∇ε|

≤ C‖UJ‖α−1
∞ ‖∇UJ‖∞‖ε‖2‖∇ε‖2 + C‖∇UJ‖∞‖ε‖α2α‖∇ε‖2

≤ C(−t)−1− 1
k+(2− 3

8γ)σ + C(−t)−1− 1
k+(α−αN2 ( 1

2−
1
2α )γ)σ+(1− 3

8γ)σ, (3.24)

where ‖ε‖2α ≤ C‖ε‖1−
N
2 ( 1

2−
1
2α )

2 ‖∆ε‖
N
2 ( 1

2−
1
2α )

2 by Gagliardo-Nirenberg’s inequality.
Note that

α− αN
2

(
1

2
− 1

2α
)γ − 1 = (α− 1)(1− N

4
γ) ≥ 0

by (2.3) and α > 1, we deduce that
∫
B2|∇UJ∇ε| ≤ C(−t)−1− 1

k+(2− 3
8γ)σ. More-

over, we see that − 1
k + (2− 3

8γ)σ ≥ 2(1− 3
8γ)σ + 3γσ

16 by k > 16
3γσ in (2.2), hence∫

B2|∇UJ∇ε| ≤ C(−t)−1+2(1− 3
8γ)σ+ 3γσ

16 , (3.25)

so that

|N1| ≤
(α+ 1)(2α + 2)M |λ|

αReλ(−t)
‖∇ε‖2L2 + C(−t)−1+2(1− 3

8γ)σ+ 3γσ
16 . (3.26)

Combining (3.15)-(3.17), (3.26) and −1 + 2σ > −1 + 2(1− 3
8γ)σ + 3γσ

16 , we obtain

d

dt
‖∇ε(t)‖22 ≥ −2(α+ 1)(2α + 2)M(αReλ)−1|λ|(−t)−1‖∇ε‖2L2

− C(−t)−1+2(1− 3
8γ)σ+ 3γσ

16 .

Using (2.4), we deduce that

d

dt

[
(−t)−σ‖∇ε(t)‖22

]
= σ(−t)−σ−1‖∇ε(t)‖22 + (−t)−σ d

dt
‖∇ε(t)‖22

≥ (σ − 2(α+ 1)(2α + 2)|λ|M(αReλ)−1)(−t)−1−σ‖∇ε‖22
− C(−t)−1+(1− 3

4γ)σ+ 3γσ
16

≥ −C(−t)−1+(1− 3
4γ)σ+ 3γσ

16 .

Integrating on (t,− 1
n ), using ε(− 1

n ) = 0, and multiplying by (−t)σ, we obtain

‖∇ε(t)‖2 ≤ C2(−t)(1− 3
8γ)σ+ 3γσ

32 (3.27)

for all τn < t ≤ − 1
n .
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Thus, multiplying the equation (3.6) by ∆ε̄ and taking the imaginary part, we
obtain

‖∆ε‖22 ≤|λ|
∫
|∇(|UJ + ε|α(UJ + ε)− |UJ |αUJ − |ε|αε)||∇ε̄|

+ |λ|
∫
|∇(|ε|αε)||∇ε|+

∫
|∇EJ∇ε̄|+

∫
|∂tε∆ε|

≤C(N1 +N2 +N3) + ‖∂tε‖L2‖∆ε‖L2

≤C(−t)−1+2(1− 3
8γ)σ + C(−t)(2−γ− γ2 )σ

≤C(−t)2(1−γ)σ+ γσ
2

where −1 + 2(1− 3
8γ)σ ≥ 2(1− γ)σ+ γσ

2 by (2.4), and the (3.16), (3.17), (3.26) for
the estimates of N1, N2, N3. So we deduce that

‖∆ε‖2 ≤ C3(−t)(1−γ)σ+ γσ
4 . (3.28)

Finally, we estimate ‖∂tε‖L2 , which is similarly to ‖∇ε‖L2 and slight modifica-
tions. We choose ρ ∈ C∞0 (RN ) with

∫
ρdx = 1, and ρδ(x) = ρ(xδ )δ−N (δ > 0).

Applying time derivative ∂t to the equation (3.6), taking convolution with ρδ and
then multiplying it by ∂tε̄ ∗ ρδ, taking the real part, we obtain after integrating by
parts

1

2

d

dt
‖∂tε ∗ ρδ‖2L2 (3.29)

= Re[λ

∫
(∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ) ∗ ρδ) · (∂tε̄ ∗ ρδ)].

Multiplying the equation (3.29) by (−t)−σ, and then integrating it on the interval
(t,− 1

n ), we obtain

−1

2
(−t)−σ‖∂tε ∗ ρδ‖2L2 =

∫ − 1
n

t

(−s)−σ
(

Re[λ

∫
(∂t(|UJ + ε|α(UJ + ε)

−|UJ |αUJ + EJ) ∗ ρδ) · (∂tε̄ ∗ ρδ)] +
σ

2
(−s)−1‖∂tε ∗ ρδ‖2L2

)
ds,

(3.30)

where sn < t < − 1
n . Now by Lemma 2.5, (2.11), (2.41)-(2.42) and (2.45)-(2.46), we

have that ∂t(|UJ+ε|α(UJ+ε)−|UJ |αUJ+EJ) is bounded in L2([T,− 1
n ], L

2N
N+2 (RN ))

if 2 ≤ (N − 2)α or bounded in L2([T,− 1
n ], L2(RN )) if (N − 2)α < 2 for any

sn < T < − 1
n . Note also that ∂tε̄ is bounded in L2([T,− 1

n ], L
2N
N−2 (RN ))(N ≥

3) ∩ L2([T,− 1
n ], L2(RN )) for any sn < T < − 1

n . Then, for a.e. t ∈ (sn,− 1
n ), we

deduce that

∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ) ∈ L
2N
N+2 (RN ), ∂tε̄ ∈ L

2N
N−2 , if 2 ≤ (N − 2)α,

or

∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ) ∈ L2(RN ), ∂tε̄ ∈ L2, if (N − 2)α < 2.

By Young’s and Hölder’s inequality we deduce that for a.e. t ∈ (sn,− 1
n )

Re[λ

∫
(∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ) ∗ ρδ) · (∂tε̄ ∗ ρδ)]

−→
δ→0+

Re[λ

∫
(∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ)) · ∂tε̄],

(3.31)
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and the left hand side of (3.31) is dominated by the integrable function

|λ|‖∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ)‖
L

2N
N+2 (RN )

‖∂tε̄‖
L

2N
N−2 (RN )

,

if 2 ≤ (N − 2)α, or dominated by

|λ|‖∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ + EJ)‖L2(RN )‖∂tε̄‖L2(RN ),

if (N − 2)α < 2 . In both cases, the domainated function is integrable on interval
[T,− 1

n ] for any sn < T < − 1
n . Thus, we can passing the limit δ → 0 in (3.30) to

get that

−1

2
(−t)−σ‖∂tε‖2L2

=

∫ − 1
n

t

(−s)−σ
(

Re[λ

∫
(∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ − |ε|αε))

+∂t(|ε|αε) + ∂tEJ ] · (∂tε̄) +
σ

2
(−s)−1‖∂tε‖2L2

)
ds.

=

∫ − 1
n

t

(−s)−σ[M1 +M2 +M3 +
σ

2
(−s)−1‖∂tε‖2L2 ]ds (3.32)

We first estimate M2. If N ≥ 4, then

M2 = Re[λ

∫
∂t(|ε|αε)∂tε̄]

= (Reλ)Re

∫
∂t(|ε|αε)∂tε̄− Imλ · Im

∫
∂t(|ε|αε)∂tε̄

≥ Reλ

∫
|ε|α|∂tε|2 − Imλ

α

2
Im

∫
|ε|α−2ε2(∂tε̄)

2

≥ (Reλ− α

2
|Imλ|)

∫
|ε|α|∂tε|2 = µ

∫
|ε|α|∂tε|2. (3.33)

where µ = Reλ− α
2 |Imλ|, and

Re

∫
∂t(|ε|αε)∂tε =

α+ 2

2

∫
|ε|α|∂tε|2 + Re

α

2

∫
|ε|α−2ε2(∂tε)

2 ≥
∫
|ε|α|∂tε|2.

When 1 ≤ N ≤ 3, we deduce that

|M2| ≤ C

∫
|ε|α|∂tε|2 ≤ C‖ε‖α∞‖∂tε‖22 ≤ C‖ε‖αH2‖∂tε‖22

≤ C(−s)((2−γ)+(1−γ)α)σ ≤ C(−s)−1+2(1− γ2 )σ+ γσ
4 , (3.34)

by Sobolev’s embedding H2(RN ) ↪→ L∞(RN ) and (2.3), (3.7).
Next we estimate M3. By using (2.46), (3.7) and note that −1 + J(1− 2

k )− 2
k +

(1− γ
2 )σ − 1

α ≥ −1 + 2(1− γ
2 )σ + γσ

4 by (2.1) and (2.2), we see that

|M3| = |Re

∫
∂tEJ · ∂tε̄| ≤ C(−s)−1+J(1− 2

k )− 2
k+(1− γ2 )σ− 1

α

≤ C(−s)−1+2(1− γ2 )σ+ γσ
4 . (3.35)
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We now estimate M1. By the directly computation, we have

∂t(|UJ + ε|α(UJ + ε)− |UJ |αUJ − |ε|αε)

=
α+ 2

2
(|UJ + ε|α − |ε|α)∂tε+

α

2
(|UJ + ε|α−2(UJ + ε)2 − |ε|α−2ε2)∂tε̄

+
α+ 2

2
(|UJ + ε|α − |UJ |α)∂tUJ +

α

2
(|UJ + ε|α−2(UJ + ε)2 − |UJ |α−2U2

J)∂tUJ ,

and

|M1| ≤ (α+ 1)|λ|(
∫
B1|∂tε|2 +

∫
B2|∂tUJ∂tε|). (3.36)

If α > 1, then |ε|α−1|U0| ≤ µ(4(α+ 1)|λ|M)−1|ε|α+K1|U0|α by Young’s inequality,
where K1 = |µ|1−α(4(α+ 1)|λ|M)α−1. By the inequality (2.48), we get∫

B1|∂tε|2 ≤
(2α + 2K1)M

αReλ(−s)
‖∂tε‖2L2 +

µ

2(α+ 1)|λ|

∫
|ε|α|∂tε|2. (3.37)

Moreover, if 1 ≤ N ≤ 3, we have by (3.34) that∫
B1|∂tε|2 ≤

(2α + 2K1)M

αReλ(−s)
‖∂tε‖2L2 + C(−s)−1+2(1− γ2 )σ+ γσ

4 . (3.38)

Next we estimate B2 term, separately the cases α ≤ 1 and α > 1. When α ≤ 1,
from Lemma 2.4, (2.9), (2.43), (2.45) and (3.7), we get that∫

B2|∂tUJ∂tε| ≤ C
∫
|UJ |α−1|ε||∂tUJ ||∂tε| ≤ C(−s)−2+(2− γ2 )σ. (3.39)

When α > 1, we deduce from Lemma 2.4, (2.9), (2.43), (2.45) and (3.7), that∫
B2|∂tUJ∂tε| ≤ C

∫
(|UJ |α−1 + |ε|α−1)|ε||∂tUJ ||∂tε|

≤ C(−s)−2‖ε‖L2‖∂tε‖L2 + C(−s)−2‖ε‖α2α‖∂tε‖2
≤ C(−s)−2+(2− γ2 )σ + C(−s)−2+(α−αN2 ( 1

2−
1
2α )γ)σ+(1− γ2 )σ

≤ C(−s)−2+(2− γ2 )σ,

(3.40)

where −2 + (α− αN2 ( 1
2 −

1
2α )γ)σ + (1− γ

2 )σ ≥ −2 + (2− γ
2 )σ by α > 1 and (2.3).

Combining (3.32)-(3.40), and note that −2 + (2 − γ
2 )σ ≥ −1 + 2(1 − γ

2 )σ + γσ
4 by

(2.4), we obtain for all N ≥ 1

−1

2
(−t)−σ‖∂tε‖2L2

≥
∫ − 1

n

t

(−s)−σ−1[
σ

2
− (2α + 2K1)(α+ 1)|λ|M(αReλ)−1] · ‖∂tε‖22ds

−C
∫ − 1

n

t

(−s)−1+(1−γ)σ+ γσ
4 ds

≥ −C
∫ − 1

n

t

(−s)−1+(1−γ)σ+ γσ
4 ds ≥ −C(−t)(1−γ)σ+ γσ

4 ,

which implies that

‖∂tε(t)‖2 ≤ C4(−t)(1− γ2 )σ+ γσ
8 (3.41)

for all τn < t ≤ − 1
n .

By (3.14), (3.27), (3.28), and (3.41), there exists S ∈ [T, 0) satisfying

C1(−S)
1
2 ≤ 1, C2(−S)

3γσ
32 ≤ 1, C3(−S)

γσ
4 ≤ 1, C4(−S)

γσ
8 ≤ 1, (3.42)
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such that for n sufficiently large such that S < − 1
n ,

‖ε‖L2 ≤ (−t)σ, ‖∇ε‖L2 ≤ (−t)(1− 3
8γ)σ, ‖∆ε‖L2 ≤ (−t)(1−γ)σ, ‖∂tε‖L2 ≤ (−t)(1− γ2 )σ

for all τn < t < − 1
n such that t ≥ S. By the definition (3.7) of τn, this implies that

τn ≤ S. Using the blow-up alternative (3.2), we conclude that sn < S, (3.4) and
(3.5) hold.

4. Proof of Theorem 1.1. Using estimate (3.4) and (3.5), we deduce that {εn}n≥ 1
τ

is bounded in L∞([S, τ ], H2(RN )) ∩W 1,∞([S, τ ], L2(RN )) for any given τ ∈ (S, 0).
Therefore, there exists ε ∈ L∞([S, τ ], H2(RN )) ∩W 1,∞([S, τ ], L2(RN )) such that
(after extracting a subsequence)

εn −→
n→∞

ε, weak ? in L∞
(
[S, τ ], H2

(
RN
))
,

∂tεn −→
n→∞

∂tε, weak ? in L∞
(
[S, τ ], L2

(
RN
))
.

(4.1)

Moreover, note that for any bounded domain Ω ⊂ RN , we have the embedding
relation H2(Ω) ↪→↪→ L2+α(Ω) ↪→ L2(Ω). Since {εn}n≥ 1

τ
is uniformly bounded in

L∞([S, τ ], H2(Ω)) ∩ W 1,∞([S, τ ], L2(Ω)), then we have (after extracting a subse-
quence),

εn −→
n→∞

ε in L∞([S, τ ], Lα+2(Ω)) (4.2)

by Aubin-Lions Theorem, see Simon [22]. Moreover, using L∞(Ω) ↪→ Lα+2(Ω), we
see that

εn −→
n→∞

ε in Lα+2([S, τ ]× Ω)). (4.3)

By the arbitrariness of τ , a standard argument of diagonal extraction shows that
there exists ε ∈ L∞loc([S, 0), H2(RN )) ∩W 1,∞

loc ([S, 0), L2(RN )), such that (after ex-
tracting a subsequence) (4.1)-(4.3) hold for all S < τ < 0, and

‖ε(t)‖L2 ≤ (−t)σ, ‖∇ε(t)‖L2 ≤ (−t)(1− 3
8γ)σ, (4.4)

‖∆ε(t)‖L2 ≤ (−t)(1−γ)σ, ‖∂tε(t)‖L2 ≤ (−t)(1− γ2 )σ, (4.5)

for all S ≤ t < 0. Moreover, it follows easily from (3.6) and the convergence
properties (4.1)-(4.3) that

∂tε = i∆ε+ λ(|UJ + ε|α(UJ + ε)− |UJ |αUJ) + EJ , in L∞loc([S, 0), L2(RN )). (4.6)

Therefore, setting
u(t) = UJ(t) + ε(t), S ≤ t < 0, (4.7)

we see that u ∈ L∞loc

(
[S, 0), H2

(
RN
))
∩W 1,∞

loc

(
[S, 0), L2

(
RN
))

and that

∂tu = i∆u+ λ|u|αu, in L∞loc([S, 0), L2(RN )),

by (2.47), (4.6) and (4.7). From the local existence in H2(RN ) and the uniqueness
in L∞t H

2
x, we conclude that u ∈ C([S, 0), H2(RN )) ∩ C1([S, 0), L2(RN )).

We now prove (1.4)-(1.6) in Theorem 1.1. Let Ω be an open subset of RN such
that Ω ∩ K = ∅. It follows from (2.5) that A > 0 on Ω and A(x) = |x|k when
|x| > 2R; and so there exists a constant c > 0, such that A(x) ≥ c(1 + |x|)k on Ω.
Moreover using (2.6), (2.7) and (2.9), we deduce that

|U0| ≤ C(1+|x|)− kα , |∇U0| ≤ C(1+|x|)− kα−1 and |∆U0| ≤ C(1+|x|)− kα−2, on Ω.

Since (1 + |x|)− kα ∈ L2(RN ) by (2.2), applying (2.41) and (2.43), we conclude that

lim sup
t↑0

‖UJ‖H2(Ω) <∞.
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Then the estimate (1.6) follows from (4.7) and the L∞([S, 0), H2(RN )) boundedness
of ε (4.4)-(4.5). Let now x0 ∈ K and r > 0, it follows from (2.11), (2.17) and (2.43)
that

(−t)− 1
α+ N

2k . ‖UJ(t)‖L2(|x−x0|<r) . (−t)− 1
α . (4.8)

Using (4.7) and the embedding H2(|x − x0| < r) ↪→ L2(|x − x0| < r), we deduce
that

‖u(t)‖L2(|x−x0|<r) ≥ ‖UJ(t)‖L2(|x−x0|<r) − ‖ε(t)‖L2(|x−x0|<r)

& (−t)− 1
α+ N

2k − C‖ε(t)‖H2(RN ),

which proves the estimate (1.4) in Theorem 1.1. Next, we prove the estimate (1.5)
in Theorem 1.1. Since k satisfies (2 + 4α

k )(N − 2) < 2N by (2.2), we fix a real
number p satisfying

p > 2 +
4α

k
and p(N − 2) < 2N. (4.9)

We apply (2.11), (2.17), (2.43) and Gagliardo-Nirenberg’s inequality to obtain

(−t)−
1
α+ N

pk . ‖UJ‖p . ‖∆UJ‖
N
2 ( 1

2−
1
p )

2 ‖UJ‖
1−N2 ( 1

2−
1
p )

2

. ‖∆UJ‖
N
2 ( 1

2−
1
p )

2 (−t)−
1
α (1−N2 ( 1

2−
1
p ))

and

(−t)−
1
α+ N

pk . ‖UJ‖p . ‖∇UJ‖
N( 1

2−
1
p )

2 ‖UJ‖
1−N( 1

2−
1
p )

2

. ‖∇UJ‖
N( 1

2−
1
p )

2 (−t)−
1
α (1−N( 1

2−
1
p )),

which implies that

(−t)
4p
p−2 ( 1

pk−
1
4α+ 1

2pα ) . ‖∆UJ‖2, (−t)
2p
p−2 ( 1

pk−
1
2α+ 1

pα ) . ‖∇UJ‖2.
From (4.9), we have

1

pk
− 1

2α
+

1

pα
<

1

pk
− 1

4α
+

1

2pα
< 0

and

lim
t↑0
‖∇UJ‖2 = lim

t↑0
‖∆UJ‖2 =∞.

Combining (4.7) and (4.4)-(4.5), we have the estimate (1.5), and finish the proof of
Theorem 1.1. �
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