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ABSTRACT. In this paper, we consider the nonlinear Schrédinger equation on
RN N > 1,
Oru = iAu + Au|%u,

with HZ2-subcritical nonlinearities: o > 0, (N — 4)a < 4 and ReX > 0. For
any given compact set K C RN, we construct H? solutions that are defined
on (—T,0) for some T > 0, and blow up exactly on K at t = 0. We generalize
the range of the power « in the result of Cazenave, Han and Martel [5]. The
proof is based on the energy estimates and compactness arguments.

1. Introduction. In this paper, we consider the nonlinear Schrédinger equation
with the power nonlinearity

O = iAu + A|u|%u (1.1)
on RN, where
N>1, a>0, (N—-4)a<4, (1.2)
and A € C such that
0, if1<N <3,
ReA > { allm)|, if N >4, (1.3)

Under the assumption (1.2), the equation (1.1) is H2-subcritical, so that the cor-
responding Cauchy problem is locally well posed in H?(RY), see [12] and [21]. It
is well-known that if o < % and the equation (1.1) has a dissipative nonlinearity,
i.e. Rel < 0, then all H! solutions are global, see [2]. If & < 2 and the nonlin-
earity is not dissipative, i.e. ReX > 0, it is proved in [2] that the equation (1.1)
has no global in time H' solution that remains bounded in H'. The question of
the finite-time blow-up is still open. With the restriction o > 2, it is proved in [6]
that under the assumption that (N — 2)a < 4 and ReA = 1, finite time blowup
occurs. The construction is based on an appropriate ansatz. This result is extended
in [13] to the case @ > 1 and (a + 2)ReA > «a|\|. Moreover, by refining the initial
ansatz (2.7) inductively, the blow-up result is extended to the whole range of H'!
subcritical powers and arbitrary Re\ > 0 in [5]. There are some similarly results
for the focusing energy subcritical nonlinear wave equation, see [7, 8].
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In this paper, we extend the previous blow-up result in [5] to the H2-subcritical
case under the additional technical assumptions (1.3).

Theorem 1.1. Under the conditions (1.2) and (1.3), for any nonempty compact
subset K C RYN | there exist S € (—1,0) and a solution u € C([S,0), H*(RY)) N
C1([S,0), L2(RY)) of the equation (1.1) which blows up at time 0 ezactly on K in
the following sense.

(1) If zg € K then for any r > 0,

tim [[u(t)]| 2 (o —ao|<r) = 00 (1.4)

(2) If Uis a open subset of RN such that K C U, then

(3) If Q is a open subset of RN such that QN K = O, then

sup ||u(t)|| a2y < oo (1.6)
te(S,0]
Remark 1.1. Under the assumptions that o > 0, (N — 2)a < 4 and ReX > 0,
Cazenave-Han-Martel [5] proved that given any nonempty compact subset K of
RY, there exists a H' solution of (1.1) which blows up exactly on K when t = 0.
We generalize the range of a to the H2-subcritical case, following the technique
developed in [6]. For technical reasons, we require that Rel > §|ImA| when the

dimension N > 4, which is used in the proof of the estimates of ||0:en |12, see
(3.29)-(3.41).

Remark 1.2. It follows from (1.4) and (1.5) that both |[u(¢)||2, ||Vu(t)|]2 and
[|Au(t)||2 blow up when ¢ 1 0.

Remark 1.3. The estimate (1.4) can be refined. More precisely, it follows from
(4.8) that

1
S w2 (a—ao<r S (=)
where k > Na is given by (2.2).

We prove Theorem 1.1 by the strategy of [1]. More precisely, we consider the
sequence {uy},>1 of solutions of (1.1) with the initial datum u,(—1) = U;(-1),
where Uj; is a refined blowup profile defined in Lemma 2.3. It follows that w, is
defined on (s, —+) for some s, < —+. Letting e, (t) = u,(t) — U;(t), following the
ideas of [5, 15], we show that {e,},>1 is uniformly bounded in L>((S,7), H?) N
Wheo((S, 1), L?) (S is given by Proposition 3.1) for any 7 € (S,0) by the energy
arguments. Moreover, by the compactness argument, we find € € L>((S,0), H?) N
W1eo((S,0), L?) and a subsequence of {e,},>1 weakly converges to . Therefore,
setting u(t) = Uy (t) + (t), we see that u is a H? solution of (1.1). Finally, note
that ¢ is bounded in H?(RY) and U; blows up at time 0 exactly on K, we deduce
that u(t) also blows up at time 0 exactly on K.

The solution u given by Theorem 1.1 blows up at ¢ = 0 like the function Uj
defined in Lemma 2.3 . Since the function Uy defined by (2.7) satistying Uy =
MU|*U, and Uy is a refinement of Uy, we see that the solution u displays an ODE-
type blowup. We recall that there are many ODE-type blowup results for several
other nonlinear equations, refer to [10, 17, 20] for results in the parabolic context,
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refer to [1, 18, 23] for the nonlinear wave equations. Recently, there are many well-
posedness results for the nonlinear Schréodinger equation, see [9, 14, 24, 25] and
references therein.

The rest of the paper is organized as follows. In Section 2, we introduce the
blow-up ansatz and the corresponding estimates which are from [5], and recall some
useful estimates. Section 3 is devoted to the construction of a sequence of solutions
of (1.1) close to the blow-up ansatz and some a priori estimates of the approximate
solutions. Finally, we complete the proof of Theorem 1.1 in Section 4 by passing to
the limit in the approximate solutions.

2. The blow-up ansatz. In this section, we introduce the blow-up ansatz con-
structed in [5].

The first candidate Uy is defined by (2.7) below, which is a solution of the ordinary
differential equation U; = A|Up|“Uy. Since the error term ¢AUj is not integrable in
time near the singularity when « is small, the method used in [1] does not applicable
to the case 0 < a < 1. To treat any subcritical @ and any A € C with Re\ > 0,
Cazenave-Han-Martel [5] refine the blow-up ansatz inductively, using only ODE
techniques, see (2.18)-(2.22) for more details. Throughout this section, we choose
two integers

J = {2+40} +1 (2.1)
o
and
k =max{2J +4 16 Nao ! } (2.2)
= X Y o ) vy 7o 3 N .
3vo (1- %’y)a
with
1 « 4
— mind = — 2.
4
o = max{—, (2T + 4 +4K))(a + 1)|]A|M(aReX) '}, (2.4)
Y

where M is given by Lemma 2.4 and K1 = [ReA—§[ImA[|'=* (4(a+1)[A[M)*~ 1. Let
K be any nonempty compact set of RY included in the ball of center 0 and radius
R > 0. Tt is well-known that there exists a smooth function Z : R¥ — [0, 00) which
vanishes exactly on K (see Lemma 1.4 in [19]). Define the function 4 : RN — [0, c0)
by

A(z) = (Z@)x(le) + (1 - x(l)lz)* (25)
where
veo ®m), xe={ 5 15T vesosxe st sz0
N

It follows that the function A € C*~! (R R)7 vanishes exactly on K, satisfies

A>0and [9PA] S AF, on RN for || < k-1, (2.6)
A(z) = |z|*, for x € RN, |z| > 2R. '
Set 1 1 - ImA
Up(t,z) = (ReX) "o (—at + A(z)) "= farex, t < 0,2 € RV, (2.7)

From (1.2), (2.2) and (2.6), we have
Uy is C* int<0and CF ! inxeRN,
Uy = NUo|*Uy, t<0,2 RV, (2.8)
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1

Uo| = (ReX) ™= (—at + A(z)) ™ < (aRe\) "= (—t) "=, (2.9)
and
Or |Uo| = ReA|Up | > 0. (2.10)

Next we estimate the profile Uy given by (2.7). We collect the estimates on Uy
which are from [5] and slight modifications.

Lemma 2.1. Under the conditions (1.2), (2.2) and (2.6), then we have

_1
0ol e < (—1) "= (2.11)
forallp>1 and —1 <t < 0. In addition, for every p e R, € N and |8] <k —1,

|0L02U| < UGt 71 < (—) =% |y, (2.12)
a _ 18l

102 (1U61")| S 10T+ < (=)= % [U)”, (2.13)

0% (0o s ) | S Uo7 S (=)= % U, (2.14)

10:02 |Uo|* U| S (=)~ & [Up|*H, (2.15)

for allz € RNt <0, and
Uy € C™ ((—00,0), H* 1 (RY)). (2.16)

Furthermore, for any xo € RN such that A (x) =0, for anyr >0,—1 <t <0 and
I<p<oo,
14N
Crp(—t)"= T8 < ||Up(2)

where the constant C,.,, depends on r and p.

(2.17)

||LP(\;c—x0|<r) ’

Proof. Estimates (2.11)-(2.14) and the property (2.16) follows by the calculation in

[5].

Note that |Up| is positive for any time t < 0, we have

o+ 2
2

It follows from Leibnitz’s formula, (2.12)-(2.14) that
020:(1Uol°Uo)l S D 102 Uo|" 02000l + > 102 (10l ~*U5) 070,

9 (|Uo|*Uo) =

Uo|*0,Uy + %|UO\“—2U§at70.

Bi1+B2=p5 Bi1+B2=p

_ 181l _q_ B2l _q_ 18l
S S )T ()R U] S ()R [T,
B1+B2=p5

which proves (2.15).
To prove (2.17), we set 2o € RY such that A (z¢) = 0. For any fixed z € RY
satisfying |z — x| < r, choosing z1 € RY satisfying |21 — zo| < |z — 20| and

|A(z1)] = e ‘IA(y)I‘

y—zo|<|z—x0
From (2.6), we have,
[A(z1)] = |A(z1) — A(zo)| = [VA(mzy + (1 =)o) - (21 — o)
< ClAMmay + (1 = n)ao)|*"F |21 — 20| < ClA(21) " F a1 — o,

for some 7 € [0, 1], and
|A(1}1)| < C|$1 - ,’L‘olk.
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Then, we have

|A(2)] < |A(x1)| < Clay — xo\k < Clz —ac0|k, Ve —xo| <y

and
/ |Uo|pdx5/ (=t + & — zo*) Fde
lx—zo|<T lx—xo|<T
207EE [ @yl 2 C(-p B
lyl<r
This completes the proof of (2.17). O

Next, we introduce a procedure to reduce the singularity of the error term at any
order of (—t) by refining the approximate solution. We consider the linearization of
the equation (2.8),

2 _
Dy = AO‘; Vol w+ A5 0| Ui (2.18)

The equation (2.18) has two solutions w = iUy and w = 0;Uy = X |Up|” Uy. By

means of variation of constants, it is not hard to see that the corresponding nonho-

mogeneous equation

o+ 2
2

has the solution w = P(G), where

3tw = )\(

|Uo|®w + %|U0|0‘*2U§@) +G (2.19)

P@) = oy 100" U [ [100] Re(@i)] (5 "

o1 t 9 .
iz Uy /0 (1067 I (ATG6)] (5)ds

We define U;, w;, E; by
wo = iUy, & = —0 Uy + AUy + A|Up|“Uy = i1AUy (2.21)
and then recursively
wj =P(Ei-1), U;j=Uj-1+w; & =—-0U; +iAU; + NU;|°U; (2.22)

for j > 1, as long as they make sense. We will see that for j < %, P(E;—1) is well
defined at each step, on a sufficiently small time interval. From similar arguments
in Lemma 3.2 in [5], by Lemma 2.1 and Faa di Bruno’s formula (see Corollary 2.10
in [11]), we have the following estimates. For the convenience of the reader, we
briefly sketch the proof.

Lemma 2.2. Under the conditions (1.2), (2.2) and (2.6), then there exists —1 <
T < 0 such that the following estimates hold for all 0 < j < %.
(1) If0 < |B| < k—1—2j, then

0%w;| S (—)/ ()% ||, T<t<0zeRY, (2.23)
108 (U; — Up)| S (=)' "% " [Up|, T<t<0,zeRY, (2.24)
10,08w,;| < (—)"HO-D= 1y T <t<0,zeRV. (2.25)

(2) 10 < (8] < k— 32, then
088 < (—ty =)= 1|, T<t<0,2ecRY (2.26)
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Moreover
1
5|U0|g|Uj|§2|UO\, T<t<0,xecRY, (2.27)
U; € C* ((T,0), H* 127 (RN)), (2.28)
0.U;| < (=) HUo|, T<t<0,zcR", (2.29)
0, S (=) OBy, T<t<0,z€RYN, (2.30)

Proof. The proof is based on the induction on j. From (2.12), we get that (2.23)-
(2.30) hold with j = 0.

Assume (2.23)-(2.30) hold with j < n. Then, we only prove (2.25), (2.29) and
(2.30) with j = n+ 1, and the other estimates with j = n + 1, follows from Lemma
3.2 in [5).

In view of (2.20) and (2.22), we see that

(07

+2 o O e
8twn+1 = /\( 5 |U0| Wn4+1 + §|U0| 2U§wn+1) +&,. (2.31)

It follows from Leibnitz’s formula, (2.9), (2.13)-(2.14), (2.23) with j = n+ 1 and
(2.26) with j = n that

_14(n _2y_l8l
10,08 wn 11| S (=) HHFDA=D = g |

which implies (2.25) with j =n + 1.
Next by (2.22), we see that
Un+1:Un+wn+1:"':wn+1+wn+"'+w1+U07 (232)

so that |0,Up+1| < (=t)71|Up| by (2.12) and (2.25) with j < n + 1. Then (2.29)
holds with j =n + 1.
Finally, we prove (2.30) with j = n+ 1. Since U,,11 — U,, = wy41, it follows from
(2.19), (2.20) and (2.22) that
5n+1 - gn - *atwn+1 + iAwn—i—l + )\(|Un+1|aUn+1 - |Un|aUn)
= _gn + Z'Awn+1 + )\(lUn+1|a n+l — |Un|aUn

a+2 o « o
=~ [Uol*wn 41 = 5 |Uo] 2Ugwnr1).
Writing
g
Unr|*Unss — U], = / U+ Buna | (U + B} d8
0

1
o+ 2 o _ -
_ / 2 4 [0+ U A Bua | (U + O T,
0

we have

1
2
gn+1 = iAwn+1 + )\/ a —2"_
0

Api (t,0)wnr + %Bnﬂ(t, O)wrds,  (2.33)
where
An+1(t79) = |U7L + 0wn+1|a - |U0|aa

Bi1(t,0) = |Up + 0wy 1| 2(Uy + Owpy1)? — |Up|*2UZ.
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By the directly computation, one can get

1
d
Apsa(t,0) = / *d8|Uo + 5gn+1(0)|*ds
0 (2.34)

1
_ / aRe [[Un + 5gn41(0)[*2(Uo + $gu11(0))7r1(6)] ds
0
where gn+1(0) = U, + 0wy11 — Up. From (2.12), (2.23) with j =n + 1, (2.24) with
j=mn, (2.25) with j =n+ 1, (2.32), choosing T satisfying
1

CoT' ™% < 5, (2.35)
we obtain .
[9n+1(8)] < Co(=t)'" % |Uo| < 5[], (2.36)
104gn+1(0)] < (=)~ F|Un, (2.37)
10:(Uo + 8gn+1(0))| < (=) U (2.38)
It follows from (2.34)-(2.38) and Leibnitz’s formula that
(A1 (0,0)] S ()7, 840 (8,0)] S (—1) 71 E. (2.39)
Similarly, using Leibnitz’s formula, we see that
1Bur1(t,0)] S (—1) %, |8:Buga(t,0)] < (—t) 717 F. (2.40)

Now it follows from (2.25) with j = n + 1, (2.33), (2.39)-(2.40) and Leibnitz’s
formula that

1
O] < 0wy ] + / (Anir] + [ Bosa]) [Brtw4]d6
0

1
+ / 10 Anar| + 10 Bor )10
0
S (=)D Ry,

which implies (2.30) with j = n + 1. Thus (2.23)-(2.30) hold for all 0 < j < -4 by
the induction. O

Then, we get the following lemma immediately.

Lemma 2.3. Under the conditions in Lemma 2.2, we have

102 (U = Up)| S ()% [Us], 0<|Bl<k—1-2J, (2.41)
0285 S (=0’ REE ], 0<|Bl<k-3-2),  (242)
1
5 10l < Us] < 2100l (2.43)
Uy € C* ((T,0), H* 1727 (RY)), (2.44)
10:U5] S (=)~ U, (2.45)
05| S (—t) IR [Ty, (2.46)
Er= —atUJ-i-iAUJ-i-/\‘UJ‘aUJ, (2.47)

where T <t <0,z €RN, T € (-1,0).

Finally, we introduce some useful estimates, which will be used in Section 3.
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Lemma 2.4. There exists a constant M > 1 such that

[l + 0] = [o]*] < M(Jul® + Lo ul[v]*7), (2.48)
[+ 072w+ v)? = [o]*720%| < M(Jul® + Lo |ul[o]*71), (2.49)
[ul*u — oo < M([u]* + [0]*)|u = v], (2.50)
and if 0 < a <1,
[+ 0] = |+ JJu+ 0|72 (u+ 0)* = |u]* 70 < Mu|* o], (2.51)

for all u,v € C, where

0, if0<a<l,
1a>1: .
1, ifa>1.

Proof. From (2.10) in [4], we can get (2.48) and (2.49), (also see formulas (2.26)-
(2.27) in [3]). By the directly computation, one can get (2.50) easily, and omit the
details. We prove (2.51) for completeness. Let z € C,|z| > 1. From |z|* < C|z|,
(2.48) and (2.49) we have

142" =1+ |[1+2]*2(1+2)® = 1| < CJ2|* < CJ2]. (2.52)
For |z| < , writing
14 2|* = 1+ |1+ 2[**(1 + 2)* — 1]
1
d
_ / I+ 0a = 1]+ 140121+ 02)° — 1] o, (259)
0
we get
d
’d@ [T+ 62|* — 1| + ||1 + 02/*7*(1 + 62)> — 1]

< C(min |14 02))* Yz < Cz, (2.54)
0<6<1

which yields (2.52). Now let u,v € C with u # 0, setting z = v/u in (2.52), we
obtain that the inequality (2.51) by choosing M larger enough. O
Lemma 2.5. Assume that A € C,0 < a, (N —4)a < 4, I C R is a compact interval
and v € C(I, H*(RN)) N CY(I, L?) is a strong H? solution of the equation

Oru = 1Au + Nu|%u,
then we have

2N
N+

o L2(I, L% (RY)), if2< (N —2)a,
OhlJul*u) € { L2(I, L*(RY)), if (N —2)a < 2.

Proof. Firstly we recall that u is bounded in Wh4(I, L"(RN)) N LY(I, H?>" (RY))
for every admissible pair (g,r) € A where
2 N N
A = {(Q7T) : 2 S q,T S 0, 5 + 7 = 57(Q7T7N) 75 (2aooa2)}a
see [12, 21].

Then if 2 < (N — 2)a, we choose two real numbers r = 2N(atl) . _dlatl)

Nt2(at1)' 9= (N—2)a—2
such that % = % + 5073, and (g,7) € A. By Holder’s inequality and note that
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2<r, (N—-2)r<2N,q>2, H> — L?**2? we deduce that

10l ., , 225 oy, < NO6tl ey ey 20t

< MullFoo (1, 2@y l|0rul L2 (1,2 )
< CD)ullFoo (1, pr2@ayl1Osull La(r,Lr@ay) < +oo.

In the case (N —2)a < 2, we may choose ¢ = 4(10\‘,721) > 2 such that (¢, 2a+2) € A.

Thus, by Holder’s inequality and H? — L?**2_ we deduce that
10 (Jul* W)l 21, L2®y)) < NlOpullp2o+z@m) 1ullF 202 @y | L2(r)
< Ol Foo (1,2 w100l L2(1, 20 +2RN))
< C(I)HUH([X,OO(LHQ(RN))||atuHL‘1(“>(I,L2a+2(RN)) < +o0.
O

3. Construction and estimates of approximate solutions. In this section, we
construct a sequence of solutions w,, of (1.1), close to the ansatz U; in Lemma 2.3,
which will eventually converge to the blowing-up solution of Theorem 1.1. We will
estimate €, = u,, — Uy by the energy method. More precisely, we estimate

(=6) " llenlla + (=)= =87 | Venlls + (=) 7| Ay o + (1) "2 renlls

for some appropriate parameters 7y, o given in (2.3) and (2.4).

Let the ansatz Uy and T < 0 be given in Lemma 2.3. From 2J < k—4 by (2.2),
Us(—L1) € H*(RY) by (2.2) and (2.28), we obtain that there exist s, < —2
and a unique solution u,, € C' ((sn, —%] ,H? (RN)) NCt ((sn, —%] ,L? (]RN)) of the
following nonlinear Schrodinger equation

{ Oy, = iAUy, + N |up | Up,
1 1
un (=3) = Us (=3);
defined on the maximal interval (sn, —%] , with the blow-up alternative that if s,, >
—00, then

(3.1)

e () 22 7 oo (3.2)

Sn

see [12]. Letting &, € C(I,, H*(RN)) N C(I,, L*(RY)) be defined by
wn = Uy +&n, (3.3)

with I, = (max{s,, T}, — 1], we have the following estimate.

Proposition 3.1. There exist T < S < 0 and ng > —% such that s, < S, for all
n > ng. Moreover,

len(®)llz2 < (<07, IVea(®)l 2 < (—0) 7577, (3-4)
1Aen (2 < (=077, den(®)]lze < (=) 727, (3.5)

for all n > ng and t € [S,—2].

n

Proof. Throughout the proof, we write ¢ instead of &,. Moreover, C' denotes a
constant that may change from line to line, but is independent of n and ¢. Unless
otherwise specified, all integrals are over RY. Using (2.22) and (3.3), we have

Oe = 1A+ MUy +¢|*(Uy +¢) = |Us|?*Uy) + €,
(=) =0.

n

(3.6)
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Let
1
7, = inf { te [max{T, Snt —} ille($)llre < (—s)7,
n
IVe(s)lz2 < (=) 787, [|Ae(s)]z2 < (=)0,
5 1
18se(8)|l 2 < (=)= forall t < s < ‘E}' (3.7)

Since 5(7%) =0, we see that T'< 7, < f%. Moreover, it follows from the blow-up
alternative (3.2) that s, < 7,.

We first estimate |e(t)||L2. Multiplying (3.6) by € and taking the real part, we
obtain

1d
§£H€(t)||%z = Re <)\/[|UJ +el*(Uy+¢) — |UJ|QUJ]€> +Re/8J§.
Using Lemma 2.4, we deduce that
1d o o
> e = M [+ e = el el (39

By (2.9) and (2.43), we have
[0 < 20 aRen) T (=) el (3.9)
In addition, by Gagliardo-Nirenberg’s inequality and (3.7), we get
[ et < el acF T < et < ceperae (sa0)
Next, by (2.42), we obtain

1512 lell e < C(—0)? (mR)=E=4e = ()= UD0-R) =2+ (3.11)
By (2.1), (2.2) and (2.3), we have

2 1 1
D(1-2)-Z4o>=(Jt+1)——40>
(J+)( k) ~+o>5(J+1) + 0 > 30,
(a+2)(1—7)o > 20, (3.12)
and
M [ Il 52 elze < O-2)%, (313)
where T' € (—1,0) and o > 1 by (2.4). It follows from (3.8), (3.9) and (3.13) that
ZlE@Zz = =22 (aReA) " AM (=) 7 le]72 — C(—t)?
and
d —o 2 —o—1 2 —o d 2
5 (O Ne@llze) = o (=) le@)llze + (=) 7 =)z

=0
> [0 = 20T (aReX) THAIM] (=) 7 e(®)lI72 — O(=1)°.
Using (2.4), we obtain

& (07 Ie®)R2) > ~O(-1)".

Integrating on (t,—1) and using e(—1) = 0, we deduce that

le(®)]|zz < Ci(—t)7+3 (3.14)
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for all t € (7, —2).
Multiplying the equation (3.6) by —AZ and taking the real part, we obtain after
integrating by parts

2dtnvfnm _ Re/\/V(|UJ+6|°“(UJ+a)—\UJ|°‘UJ—|E|%)-V§ (3.15)

+Re)\/V(|€|a5) -Ve+ Re/Vé'J -Vé:= N1+ Nz + Ns.
By Holder’s and Gagliardo-Nirenberg’s inequality, and note that
2
V(je|"s) = %\eww + Slel 2 ve

we deduce that

at2
ot atl 2at+2
IN| < c/ e[|vel2 < ¢ </|s|2“+2> (/IV5|43++2)> (3.16)

< 0”5”?2_2 < C(-t) (a+2)(1-7)o < C(—t)~ 120,

where (N — 4)(2a + 2) < 2N and 4(N — 2)(a+ 1)/(a + 2) < 2N by (1.2), (o +
2)(1 =)o > =1+ 20 by (3.12). Next by (2.42) and (3.7), we see that
)-

INs| < IVE)llp2 [Vellze < (=) =R =% g s | Ve 2

3.17
< Ot/ (=)= E=E+0-E00 < o(_py-1420, (3.17)
where
2y _3_ 1 2\ 1 1 3
J( k) e TUmge +<J+>< k) F oot (=g
J+1 1 1 3
14— === 1-=
> -1+ 3 . a+( 87)0
1
>*1+20*E+(1f§7)0271+20

by (2.1) and (2.2). We now estimate N;. By the directly computation, we have

V(|Uy +|(Uy +¢) — |Us|*Uy — |e|%)
+2 -
= 25Uy €| — |e[*)Ve + 2 (\UJ+s|a 2Uy +¢)? — |e]*2e%) Ve

O[+2 o oa— a— TT .
+ (1Us +el* = |Us|*)VU; + (|UJ+5\ Uy +e)* = |Us*72U3)VUy,

and
Ny < (a+1)|)\|(/Bl|V5|2+/BQ|VUJV5|) (3.18)
with
Br = Uy +el® = [e|*| + [|Us +[*72(Us + ) — ]|,
By = ||Us +e|® = |Us|*| + |Us +€|* Uy +¢)* — |U|* U7 .
It follows from Lemma 2.4 and (2.43) that
By < 2°M|Up|* 4 2M 1451 e|* ™ Uo). (3.20)
If « > 1, then |g|*7YUp| < |e|™ + |Up|®, so that
By < (2% 4+ 2)M |Up|™ + Cle|*. (3.21)

(3.19)
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Then, from (3.20)-(3.21), we obtain
/Bl|V5\2 < (2 +2)M(aReN) " (—t) 7| Ve||32 +C/|s|a|vs\2

< (2 +2)M(aRed) L (—t) Y| Ve|2e + C(—t) T2 (3.22)

by (2.9) and (3.16).
Next we estimate Bs, separately the cases a < 1 and @ > 1. When a < 1, using
(2.9), (2.12), (2.41), (3.7) and Lemma 2.4, we deduce that

/ BoVU,Ve| < C / U2 Y e[V U, || Ve]
< C(=t) TV E e g2 | Vel 12
< O(—t) 1 EHE=Ee (3.23)

When o > 1, we deduce from Lemma 2.4 and (2.41) that

/ By|VU,Ve| < C / (TS + e[ Y[l VT| V]

IN

ClUs IS VUl llell2lVellz + ClIVU | sollelly ] Vell2
C(—t)~ 1I—4+(2— 7)0_,_0(_) =g +(a—aF (3—g5)MNo+(1-§v)o . (3.24)

IN

where ||]|2o < Cle ||2 ||A5|| F(3750) by Gagliardo-Nirenberg’s inequality.

Note that N1 . N
A (i Yyl =(a—1)(1 = —y) >
Rt B CE I
by (2.3) and o > 1 we deduce that fBQ|VUJVE| < C(=t)~ 1_’"’(2 £ More-

over, we see that —3 + (2 — 37)o > 2(1 — 24)o + 22 by k > % in (2.2), hence

/ Bo|VU,Ve| < C(—t)~1+20-3 v>0+3””, (3.25)
so that

(a+1)(2% +2)
aReA(—t)

Combining (3.15)-(3.17), (3.26) and —1 420 > —1 +2(1 — $7)o + 3176", we obtain

M) No
Ny| < A e, + o rea-tnere (306

d o _ _
—Ve®)3 = —2(a+ 1)(2% + 2)M(aReX) (=) [ Ve[ 72
—C(—t)” 1+2(1-§)o+ 237

Using (2.4), we deduce that

L [0 IVeIF] = o~ T + (1) L IVeI

> (0 = 2(a+1)(2* + 2)[AIM (aReX) ™) (=) 77| Ve[3

C(—t )1+ (1=3)o+%4g

—C(—t)" AN
Integrating on (, —7) using e(— l) = 0, and multiplying by (—¢)?, we obtain
[Ve(®)llz < Co(—t)1—E7+55 (3.27)

forall 7, <t < —%.
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Thus, multiplying the equation (3.6) by A& and taking the imaginary part, we
obtain

1Ae]l3 <|A] / V(U +&l*(Us +¢) = [Us|°Us — %) Vel

+ |Al / IV (le|%e)||Ve| + / |VE;Ve| + / |OreAc|
<C(N1 + N2 + N3) + (|0 2[| A 12
Sc(_t)—l—i-Q(l—%'y)a +C(_t)(2—'y—%)a
<Ot

where —1+2(1— 2y)o > 2(1 — )0 + %7 by (2.4), and the (3.16), (3.17), (3.26) for
the estimates of N1, No, N3. So we deduce that

|Ae]lz < Cy(—t) =+ (3.28)

Finally, we estimate ||0:e||z2, which is similarly to ||Vel|z2 and slight modifica-

tions. We choose p € C5°(RY) with [pdz = 1, and ps(z) = p(%)6~N(6 > 0).

Applying time derivative 9; to the equation (3.6), taking convolution with ps and

then multiplying it by 0;€  ps, taking the real part, we obtain after integrating by
parts

1d

2 dt

= Re[/\/(atﬂUJ +e|l*(Us +e) = |Us|*Uy + E5) * ps) - (9e€ * ps)].

01 * psll2 (3.29)

Multiplying the equation (3.29) by (—¢)~?, and then integrating it on the interval
(t,—1), we obtain

Lo sl = / (s (Re[x / @ (|Us + (U +e)

2 ¢
—|U U + &) * ps) - (04 * ps)] +%(—3)_1||3t5 * Pé||2L2) ds,

(3.30)

where s, <t < —%. Now by Lemma 2.5, (2.11), (2.41)-(2.42) and (2.45)-(2.46), we
have that 9 (|Uy +¢|*(Uy +¢) — U |*U;+&5) is bounded in L2([T, — 1], L¥%2 (RV))
if 2 < (N — 2)a or bounded in L?([T,—1] L*(RY)) if (N — 2)a < 2 for any
sn < T < —L. Note also that 9,2 is bounded in LQ([T,—%],LI\gg RM)(N >
3) N L2([T,—1],L2(RYN)) for any s, < T < —2x. Then, for ae. t € (sp,—2), we
deduce that

2N

(U +e|*(Uy +¢) — |Us|°Uy + £5) € L¥5 (RN), 0,2 € L¥2,if 2 < (N — 2)a,

or

O(|Uy +¢|®(Uy+¢) = |Us|*Us + E5) € LA(RY), 0,5 € L?if (N — 2)a < 2.

By Young’s and Hélder’s inequality we deduce that for a.e. t € (s, —%)
Reld [ @0(1U + £[*(Us +2) = [Us|°Us + £1) ) - (91 ps)

(3.31)

§—0+

. Re[/\/(&gﬂUJ FelO Uy + &) — [Us|°Uy + £7)) - 08,
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and the left hand side of (3.31) is dominated by the integrable function

(MBI +e[*(Us +€) = [Us[*Us + EN | 2, @&

)||3t5_||L13§2 &Y’

if 2 < (N —2)a, or dominated by
IAN0:(JUs +€l*(Ug +€) = [Us|"Us + EN) L2 @m) |0l L2 vy,

if (N —2)a < 2. In both cases, the domainated function is integrable on interval

[T, —2] for any s, < T < —L. Thus, we can passing the limit § — 0 in (3.30) to
get that

1 —0
—5(—75) [|0:e]|7 2

1

/t_;(—s)—a (Re[)\/(at(UJ (U +€) — |Us|°Ty — |e]*e)

FO0(1el”e) + W] - (012) + 5 () Dhel32 ) ds.

1

_ / T(=) 7 [My + My + My + 2 (—s) " Duel 3]s (3.32)
t

We first estimate Ms. If N > 4, then
M;

RG[A / 8,:(\5\“6)&5‘]

(ReA)Re/@t(|e|as)8t§fIm/\~Im/8t(|s|“5)8t§

v

Re)\/|5|a|8t5|2 —Im)\%lm/|s|a_252(8t§)2
« «@ 2 [e% 2
> (ReA— o fmA) / el0rel? = / 1£]°(Bye2. (3.33)

where p1 = ReA — §[ImA|, and

Re/@t(|5|a5)8t§: O‘;2/|e|a|ats|2+Re%/|a|a*2a2(atg)2 > /|s|a|ata|2.

When 1 < N < 3, we deduce that

| M|

IN

C/ le|*[0eel* < CllellSN0kell3 < Clellg |0l

C(—s)(EN+U=ma)o < O(_g)~1+20-F)o+7F (3.34)

IN

by Sobolev’s embedding H?(RY) < L>°(RY) and (2.3), (3.7).
Next we estimate Mj3. By using (2.46), (3.7) and note that —1+ J(1—2) — 2 +
(1-3o—12>-1+2(1-3)o+ 2L by (2.1) and (2.2), we see that

|Ms| = |Re/8th.atg‘ < C(—s) /OB =2+ (1=F)o—5

IN

C(—s) 1+20=3)0+F (3.35)
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We now estimate M;. By the directly computation, we have

O (|Us +e|l*(Us +¢) = |Us Uy — |g]e)

2
:“ (U + 2] — [e]*)ape + & (\UJ+s|a 20U + )% — |e|*262),¢

a+2

+ Uy +e|* = |Us|*)oU; + — (|UJ+5\°* 2Uy+e) — U 1> U 0,Uy,

and

IMy| < (a+ 1)\)\|(/Bl\ats|2 +/32\atUJate|). (3.36)

If @ > 1, then [e|*71|Up| < ;L(4(oz+1)|/\\M)*1\5\0‘+K1\U0|‘1 by Young’s inequality,
where Kl |u' =% (4(a + 1)|A|M)*~L. By the inequality (2.48), we get

20 1 2K, )M
B 2 < ( 2 / 2 .
[ vt < S ol + 5L el @)
Moreover, if 1 < N < 3, we have by (3.34) that
2“ + 2K -
/Bl\atsﬁ Y 1)) |0se|22 + C(—s) "1 H20=2)0+37 (3.38)

Next we estimate By term, separately the cases @« < 1 and @ > 1. When a < 1,
from Lemma 2.4, (2.9), (2.43), (2.45) and (3.7), we get that

/Bg|atUJate| < c/ U510 el |0 ||0ue] < (=)o (3.39)
When « > 1, we deduce from Lemma 2.4, (2.9), (2.43), (2.45) and (3.7), that
[ Balovsviel < ¢ [ Uy + el ellaw] o]

< C(=5)2|lell 210wl 2 + C(—5)2[lelI5, 10se ]2
< C(—s5)72TR=3)7 4 O(—g)~2HemaF Gas)mMot(1-3)0

(3.40)

< C(-s)

where =2+ (@ —af (3 — L)y)o+(1—2)o > -2+ (2— 3)o by a > 1 and (2.3).
Combining (3.32)-(3.40), and note that —2 + (2 —3)o>—-142(1—- 7)o+ by
(2.4), we obtain for all N > 1
1 —0
09

> /t_ﬁ(—s)fafl[% — (2% + 2K1) (e + 1)|A| M (aReX) '] - [|0ce]|3ds

1

70/ n(i ),1+(17v)0+%d5

)

> _O/ii —1+(1—y)o+2Z ds > C( )(1*7)0"5’%

which implies that
l0e()]l2 < Ca(—) 727+ (3.41)
forall 7, <t < f%.
By (3.14), (3.27), (3.28), and (3.41), there exists S € [T,0) satisfying

Ci(=8)% <1, Co(=5)F <1, C3(-8)F <1, Cu)(-S)F <1,  (3.42)
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such that for n sufficiently large such that S < f%,
lellze < (=), [Vellze < (=)0 7577, [ Ae| 2 < (=) 77, [|9he]| 2 < (—)72)7

for all 7, < t < —1 such that ¢t > S. By the definition (3.7) of 7, this implies that
Tn < S. Using the blow-up alternative (3.2), we conclude that s, < S, (3.4) and
(3.5) hold. O

4. Proof of Theorem 1.1. Using estimate (3.4) and (3.5), we deduce that {e,, },,> 1
is bounded in L*([S, 7], H2(RN)) n We°([S, 7], L2(RY)) for any given T € (S, 0).
Therefore, there exists ¢ € L°([S, 7], H2(RY)) N W°([S, 7], L>(RY)) such that
(after extracting a subsequence)
en — €, weak *in L™ ([S, 7], H* (RY)),
n— oo
Oen — Ope, weak ™ in L™ ([S, 7], L* (RY)). (4.1)
n—oo
Moreover, note that for any bounded domain © C RY, we have the embedding
relation H?(Q) << L?>T*(Q) — L*(Q). Since {e,},>1 is uniformly bounded in
L>=([S, 7], H3(Q)) N WLeo([S, 7], L3(Q)), then we have (after extracting a subse-
quence),
en — ein L®([S, 7], L*T3(Q)) (4.2)

n—roo
by Aubin-Lions Theorem, see Simon [22]. Moreover, using L>(Q) < L*T2(Q), we
see that
en — € in LOT2([S, 7] x Q)). (4.3)

n—oo
By the arbitrariness of 7, a standard argument of diagonal extraction shows that
there exists e € L ([S,0), H2(RN)) N W°([S,0), L2(RN)), such that (after ex-

loc loc

tracting a subsequence) (4.1)-(4.3) hold for all S < 7 < 0, and
o -3y
le®llLe < (=1)7, IVe(®)]g2 < (=117, (4.4)
1A= < ()07, [@ee(@)llze < (1) 727, (4.5)

for all S < ¢t < 0. Moreover, it follows easily from (3.6) and the convergence
properties (4.1)-(4.3) that

Ore = iAe + AUy +¢|*(Uy +¢) — [Us|*Uy) + &5, in L32.([S,0), L*(RY)). (4.6)

Therefore, setting

u(t) =U;(t) +e(t), S<t<O0, (4.7)
we see that u € LS ([S,0), H2 (RV)) n W, ([S,0), L? (RV)) and that

Opu = iAu + Nu|®u, in L2([S,0), L2(RY)),
by (2.47), (4.6) and (4.7). From the local existence in H?(R") and the uniqueness
in L°H2, we conclude that u € C([S,0), H*(RY)) N C([S,0), L2(RY)).

We now prove (1.4)-(1.6) in Theorem 1.1. Let Q be an open subset of RY such
that QN K = 0. It follows from (2.5) that A > 0 on Q and A(z) = |z|* when
|z| > 2R; and so there exists a constant ¢ > 0, such that A(z) > ¢(1 + |z[)* on Q.
Moreover using (2.6), (2.7) and (2.9), we deduce that
Us| < C(1+]z|)"*, |VUs| < C(1+]z|)" % and |AU| < C(1+|z|)"5~2, on Q.
Since (1 + |z|)~& € L2(RY) by (2.2), applying (2.41) and (2.43), we conclude that

limsup [|Us|| g2 () < 00.
10
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Then the estimate (1.6) follows from (4.7) and the L>([S,0), H2(R")) boundedness
of € (4.4)-(4.5). Let now xo € K and r > 0, it follows from (2.11), (2.17) and (2.43)
that

_1.N 1
(=t)7= "2 S U (O)lz2(o—aol<r) S (=) 77 (4.8)
Using (4.7) and the embedding H?(|z — xo| < r) < L?(|z — x| < r), we deduce

that
[w(®)| 2 (je—wol<r) = NUT#) || L2 (je—a0)<r) = NE@ L2 (1220 | <r)

> (—t)" % — Olle(t)l| g2y,

~

which proves the estimate (1.4) in Theorem 1.1. Next, we prove the estimate (1.5)
in Theorem 1.1. Since k satisfies (2 + 42)(N — 2) < 2N by (2.2), we fix a real
number p satisfying

4
p>2+ ?O‘ and p(N — 2) < 2N. (4.9)
We apply (2.11), (2.17), (2.43) and Gagliardo-Nirenberg’s inequality to obtain
—at SG=) G
(=t)"=" S U S 11AUS Ul
A e O Ll
. i+l NG=3) 0 1-NG=3)
(=)= S U S IVUSl = 27U !

< VU T (cay 0N G,
which implies that
(—t)p 2GR aatma) S |[AU |5, (—t)72 G 2at5) < VU, |2.
From (4.9), we have

1 1 n 1 - 1 1 N 1 <0
pk  2a  pa pk  da  2pa
and

li — lim||A - 0.
ggIIVUJllz tlTrgll Usll2 = o0

Combining (4.7) and (4.4)-(4.5), we have the estimate (1.5), and finish the proof of
Theorem 1.1. |
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