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Abstract. Utilizing some properties of multivariate Baskakov–Kantorovich
operators and using K-functional and a decomposition technique, the authors

find two equivalent theorems between the K-functional and modulus of smooth-
ness, and obtain a direct theorem in the Orlicz spaces.

1. Motivations. For proceeding smoothly, we recall from [31] some definitions and
related results.

A continuous convex function Φ(t) on [0,∞) is called a Young function if it
satisfies

lim
t→0+

Φ(t)

t
= 0 and lim

t→∞

Φ(t)

t
=∞.

For a Young function Φ(t), its complementary Young function is denoted by Ψ(t).
It is clear that the convexity of Φ(t) can lead to Φ(αt) ≤ αΦ(t) for α ∈ [0, 1]. In

particular, one has Φ(αt) < αΦ(t) for α ∈ (0, 1).
A Young function Φ(t) is said to satisfy the ∆2-condition, denoted by Φ ∈ ∆2,

if there exist t0 ≥ 0 and C ≥ 1 such that Φ(2t) ≤ CΦ(t) for t ≥ t0.
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Throughout the paper, we shall use the following standard notations:

N0 = {0, 1, 2, . . . }, N = {1, 2, 3, . . . }, m ∈ N,

x = (x1, x2, . . . , xm) ∈ Rm, |x| =
m∑
i=1

xi, k = (k1, k2, . . . , km) ∈ Nm0 ,

xk = xk11 x
k2
2 · · ·xkmm , k! = k1!k2! · · · km!, |k| =

m∑
i=1

ki,(
n

k

)
=

n!

k!(n− |k|)!
,

∞∑
k=0

=

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

km=0

,

Rm0 = {x = (x1, x2, . . . , xm) ∈ Rm : 0 ≤ xi <∞, 1 ≤ i ≤ m},

Dk = Dk1
1 Dk2

2 · · ·Dkm
m , Dr

i =
∂r

∂xri

for r ∈ N.
Let Φ(t) be a Young function. We define the Orlicz class LΦ(Rm0 ) as the collection

of all Lebesgue measurable functions f(x) on Rm0 such that

ρ(f,Φ) =

∫
Rm

0

Φ(|f(x)|)dx <∞.

We also define the Orlicz space L∗Φ(Rm0 ) as the collection of all Lebesgue measurable
functions f(x) on Rm0 such that

∫
Rm

0
Φ(|αf(x)|)dx <∞ for some α > 0. The Orlicz

space L∗Φ(Rm0 ) is a Banach space under the Luxemburg norm

‖f‖(Φ) = inf
λ>0

{
λ : ρ

(
f

λ
,Φ

)
≤ 1

}
.

The Orlicz norm ‖f‖Φ on L∗Φ(Rm0 ), which is equivalent to the Luxemburg norm on
L∗Φ(Rm0 ), is given by

‖f‖Φ = sup
ρ(g,Ψ)≤1

∣∣∣∣∫
Rm

0

f(x)g(x)dx

∣∣∣∣
and satisfies

‖f‖(Φ) ≤ ‖f‖Φ ≤ 2‖f‖(Φ). (1)

Throughout this paper, we use C to denote a constant, which may be not neces-
sarily the same in different cases, independent of n and x.

For x ∈ Rm0 , we introduce weight functions ϕ(x) =
√
x(1 + x) for m = 1 and

ϕi(x) =
√
xi(1 + |x|) for m > 1 and 1 ≤ i ≤ m. We also define weighted Sobolev

space

W r,Φ
ϕ (Rm0 ) =

{
f ∈ L∗Φ(Rm0 ) : Dkf ∈ A.C.loc

( ◦
Rm0
)
, ϕriD

r
i f ∈ L∗Φ(Rm0 )

}
,

where |k| ≤ r and
◦

Rm0 is the interior of Rm0 .
The Peetre K-functional is defined in [6] by

Kr,ϕ

(
f, tr

)
Φ

= inf

{
‖f − g‖Φ + tr

m∑
i=1

‖ϕriDr
i g‖Φ : g ∈W r,Φ

ϕ (Rm0 )

}
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for t > 0. Now we define the modified K-functional as

Kr,ϕ

(
f, tr

)
Φ

= inf

{
‖f − g‖Φ + tr

m∑
i=1

‖ϕriDr
i g‖Φ + t2r

m∑
i=1

‖Dr
i g‖Φ : g ∈W r,Φ

ϕ (Rm0 )

}
for t > 0.

For any vector e ∈ Rm, we write

∆r
hef(x) =


r∑
i=0

(
r

i

)
(−1)if(x + ihe), x,x + rhe ∈ Rm0

0, otherwise

for the rth forward difference of a function f in the direction of e. We define the
modulus of smoothness of f ∈ L∗Φ(Rm0 ) as

ωr,ϕ(f, t)Φ = sup
0<h≤t

m∑
i=1

‖∆r
hϕiei

f‖Φ.

Let

pn,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
, x ∈ [0,∞), n ∈ N.

The well known Baskakov operators [3] were defined by

Bn(f, x) =

∞∑
k=0

pn,k(x)f

(
k

n

)
which can be used to approximate any function f defined on [0,∞). In order to
consider the approximation in Lp[0,∞), Ditzian and Totik [8] modified the form of
the Baskakov operators as

Vn,1(f, x) =

∞∑
k=0

pn,k(x)n

∫ (k+1)/n

k/n

f(u)du

which are called Baskakov–Kantorovich’s operators. There are many approximation
results about one variable operator of the Baskakov type in C[0,∞) or Lp[0,∞).
See [1, 2, 3, 8, 9, 10, 11, 13, 14, 15, 26, 33, 34, 35] and closely related references
therein.

The multivariate Baskakov–Kantorovich’s operators [5] were defined by

Vn,m(f,x) =

∞∑
k=0

pn,k(x)Qn,k(f),

where

pn,k(x) =

(
n+ |k| − 1

k

)
xk

(1 + |x|)n+|k|

and

Qn,k(f) = nm
∫ (k1+1)/n

k1/n

∫ (k2+1)/n

k2/n

· · ·
∫ (km+1)/n

km/n

f(u1, u2, . . . , um)du1du2 · · · dum

, nm
∫ (k+1)/n

k/n

f(u)du.
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There are few results about multivariate Baskakov type operators. Cao and An
introduced in [4] multivariate Baskakov–Durrmeyer operators and obtained a direct
inequality in Lp[0,∞). Cao and Ding [5] established a direct theorem of multivariate
Baskakov–Kantorovich operators in Lp[0,∞) as

‖Vn,m(f)− f‖p ≤ C
[
ω2,ϕ

(
f,

1

n1/2

)
p

+
‖f‖p
n

]
.

For more information on approximation properties for operators in the Orlicz,
Morrey, Baskakov–Durrmeyer–Stancu, or other type spaces, we recommend three
groups of references, [21, 22, 23, 24, 25], [16, 17, 18, 19, 20], [12, 27, 28, 29, 30], to
interested readers.

In this paper, basing on the above conclusions, utilizing K-functional and a de-
composition technique, considering properties of multivariate Baskakov–Kantorovich
operators in the form of Lemmas 2.1 to 2.4 in Section 2, we establish two equiv-
alent theorems, Theorems 3.1 and 3.2 in Section 3, between the K-functional and
modulus of smoothness, and obtain a direct theorem, Theorem 4.1 in Section 4, in
the Orlicz spaces L∗Φ(Rm0 ).

2. Lemmas. In order to prove the direct theorem, we need several lemmas below.

Lemma 2.1. Let f ∈ L∗Φ(Rm0 ), n > m. Then

‖Vn,m(f)‖Φ ≤ C‖f‖Φ.

Proof. By the decomposition formula

Vn,m(f,x) =

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

du1

∞∑
k2=0

pn+k1,k2

(
x2

1 + x1

)

×n
∫ (k2+1)/n

k2/n

du2 · · ·
∞∑

km=0

pn+k1+···+km−1,km

(
xm

1 + x1 + · · ·+ xm−1

)

×n
∫ (km+1)/n

km/n

f(u1, u2, · · · , um)dum,

Jensen’s inequality, and the double inequality (1), we obtain

‖Vn,m(f)‖Φ ≤ 2‖Vn,m(f)‖(Φ)

= 2 inf
λ>0

{
λ :

∫
Rm

0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

du1

×
∞∑
k2=0

pn+k1,k2

(
x2

1 + x1

)
n

∫ (k2+1)/n

k2/n

du2 · · ·

×
∞∑

km=0

pn+k1+···+km−1,km

(
xm

1 + x1 + · · ·+ xm−1

)

×n
∫ (km+1)/n

km/n

f(u1, u2, · · · , um)dum

∣∣∣∣∣
)

dx ≤ 1

}

≤ 2 inf
λ>0

{
λ :

∫
Rm

0

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

du1

∞∑
k2=0

pn+k1,k2

(
x2

1 + x1

)



APPROXIMATION IN ORLICZ SPACES 725

×n
∫ (k2+1)/n

k2/n

du2 · · ·
∞∑

km=0

pn+k1+···+km−1,km

(
xm

1 + x1 + · · ·+ xm−1

)

×n
∫ (km+1)/n

km/n

Φ

(
1

λ
|f(u1, u2, · · · , um)|

)
dumdx ≤ 1

}

= 2 inf
λ>0

{
λ :

∞∑
k1=0

∫ ∞
0

pn,k1(x1)(1 + x1)dx1n

∫ (k1+1)/n

k1/n

du1

∞∑
k2=0

×
∫ ∞

0

pn+k1,k2

(
x2

1 + x1

)
(1 + x1 + x2)d

(
x2

1 + x1

)
n

∫ (k2+1)/n

k2/n

du2 · · ·

×
∞∑

km−1=0

∫ ∞
0

pn+k1+···+km−2,km−1

(
xm−1

1 + x1 + · · ·+ xm−2

)
(1 + x1 + · · ·+ xm−1)

×d

(
xm−1

1 + x1 + · · ·+ xm−2

)
n

∫ (km−1+1)/n

km−1/n

dum−1

∞∑
km=0

×
∫ ∞

0

pn+k1+···+km−1,km

(
xm

1 + x1 + · · ·+ xm−1

)
d

(
xm

1 + x1 + · · ·+ xm−1

)
×n
∫ (km+1)/n

km/n

Φ

(
1

λ
|f(u1, u2, · · · , um)|

)
dum ≤ 1

}

= 2 inf
λ>0

{
λ :

∞∑
k1=0

nm

(n− 1) · · · (n−m)

∫ (k1+1)/n

k1/n

du1

×
∞∑
k2=0

∫ (k2+1)/n

k2/n

du2 · · ·
∞∑

km=0

∫ (km+1)/n

km/n

Φ

(
1

λ
|f(u1, u2, · · · , um)|

)
dum ≤ 1

}

≤ 2 inf
λ>0

{
λ :

∫ ∞
0

du1

∫ ∞
0

du2 · · ·
∫ ∞

0

Φ

(
C

λ
|f(u1, u2, · · · , um)|

)
dum ≤ 1

}
= C‖f‖(Φ) ≤ C‖f‖Φ.

The proof of Lemma 2.1 is complete.

Lemma 2.2 ([24]). For f ∈ L∗Φ[0,∞) and Ψ ∈ ∆2, we have

‖θ(f)‖Φ ≤ C‖f‖Φ,

where

θ(f, x) = sup
0≤t<∞
t6=x

[
1

t− x

∫ t

x

f(u)du

]
is the Hardy-Littlewood function of f(x).

Lemma 2.3. Let f ∈ L∗Φ[0,∞). Then

|Bn(f, x)− f(x)| ≤ C

n
θ
(
ϕ2|f ′′|, x

)
.

Proof. By Taylor’s formula

f(t) = f(x) + f ′(x)(t− x)
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+

∫ t−x

0

t− x− τ
(x+ τ)(1 + x+ τ)

(x+ τ)(1 + x+ τ)f ′′(x+ τ)dτ

and the inequality

∣∣∣∣ t− x− τ
(x+ τ)(1 + x+ τ)

∣∣∣∣ ≤


4|t− x|
x(1 + x)

, t ≥ x

2
, x ≤ 1

2|t− x|
x(1 + t)

, 0 ≤ t < x

2
, x > 1

in [32, Eq. (6.1)], one acquires

|Bn(f, x)− f(x)| ≤ CBn
(

(t− x)2

ϕ2(x)
max

{
1,

1 + x

1 + t

}
, x

)
θ
(
ϕ2|f ′′|, x

)
≤ C

n
θ
(
ϕ2|f ′′|, x

)
,

where we used

Bn(1, x) = 1, Bn(t− x, x) = 0, Bn
(
(t− x)2, x

)
=
ϕ2(x)

n
,

and

Bn

(
(t− x)2

ϕ2(x)
max

{
1,

1 + x

1 + t

}
, x

)
≤ C

n
.

The proof of Lemma 2.3 is complete.

Lemma 2.4. Let f ∈ L∗Φ(R2
0) and Ψ ∈ ∆2. Then

‖Vn,2(f)− f‖Φ ≤
C

n

(
‖f‖Φ +

2∑
i=1

‖ϕ2
iD

2
i f‖Φ

)
. (2)

Proof. Let

z =
x2

1 + x1
and gu1

(t) = f
(
u1, (1 + u1)t

)
for 0 ≤ t <∞. Utilizing the decomposition formula

Vn,2(f,x) =

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

∞∑
k2=0

pn+k1,k2

( x2

1 + x1

)
×n
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

f
(
u1, (1 + u1)u2

)
(1 + u1)du2du1

in [5] concludes

Vn,2(f,x)− f(x) =

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

∞∑
k2=0

pn+k1,k2(z)n

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[gu1
(t)− gu1

(z)](1 + u1)dtdu1

+Vn,1

(
f
(
u1, (1 + u1)

x2

1 + x1

))
− f(x1, x2)

, J1 + J2, 0 ≤ u1 <∞.

(3)
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Now we start out to estimate J1. Using Jensen’s inequality and the convexity of
Φ(t), it follows

∫ ∞
0

∫ ∞
0

Φ

(
1

λ
|J1|
)

dx1dx2 =

∫ ∞
0

∫ ∞
0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

∞∑
k2=0

pn+k1,k2

( x2

1 + x1

)
n(1 + u1)

∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[gu1(t)− gu1(z)]dtdu1

∣∣∣∣∣
)

dx1dx2

≤
∫ ∞

0

∫ ∞
0

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2

( x2

1 + x1

)
n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[gu1
(t)− gu1

(z)]dt

∣∣∣∣∣
)

du1dx1dx2

=

∫ ∞
0

∫ ∞
0

∞∑
k1=0

pn,k1(x1)(1 + x1)n

∫ (k1+1)/n

k1/n

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[gu1(t)− gu1(z)]dt

∣∣∣∣∣
)

du1dx1dz

=

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[gu1
(t)− gu1

(z)]dt

∣∣∣∣∣
)

dzdu1

=

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[
gu1

(
k2

n+ k1

)
− gu1(z) +

∫ t

k2/(n+k1)

g′u1
(s)ds

]
dt

∣∣∣∣∣
)

dzdu1

≤ 1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

{
Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)2n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

[
gu1

(
k2

n+ k1

)
− gu1

(z)

]
dt

∣∣∣∣∣
)

+

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)2n(1 + u1)

∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

∫ t

k2/(n+k1)

g′u1
(s)dsdt

∣∣∣∣∣
)}

dzdu1

=
1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

{
Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)2

[
gu1

(
k2

n+ k1

)

−gu1
(z)

]∣∣∣∣∣
)

+ Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)2n(1 + u1)

∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

×
∫ t

k2/(n+k1)

g′u1
(s)dsdt

∣∣∣∣∣
)}

dzdu1 , J11 + J12.

(4)



728 LING-XIONG HAN, WEN-HUI LI AND FENG QI

Employing Lemmas 2.2 and 2.3 yields

J11 =
1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
2

λ
|Bn+k1(gu1

, z)− gu1
(z)|
)

dzdu1

≤ 1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
1

λ

C

n+ k1
θ(ϕ2|g′′u1

|, z)
)

dzdu1

≤ 1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
C

λ(n+ k1)
ϕ2(z)|g′′u1

(z)|
)

dzdu1.

On the other hand, by definition, we can deduce

ϕ2(t)g′′u1
(t) = t(1 + t)(1 + u1)2D2

2f(u1, (1 + u1)t) =
(
ϕ2

2D
2
2f
)(
u1, (1 + u1)t

)
and

J11 ≤
1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
C

λ(n+ k1)

∣∣(ϕ2
2D

2
2f
)(
u1, (1 + u1)z

)∣∣)dzdu1

≤
∞∑
k1=0

∫ (k1+1)/n

k1/n

∫ ∞
0

1

1 + u1
Φ

(
C

λn

∣∣(ϕ2
2D

2
2f
)(
u1, (1 + u1)z

)∣∣)d
(
(1 + u1)z

)
du1

≤
∫ ∞

0

∫ ∞
0

Φ

(
C

λn

∣∣(ϕ2
2D

2
2f
)
(u1, u2)

∣∣)du1du2. (5)

Using Jensen’s inequality, we derive

J12 =
1

2

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k2=0

pn+k1,k2(z)n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

∫ t

k2/(n+k1)

2g′u1
(s)dsdt

∣∣∣∣∣
)

dzdu1

≤
∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∫ ∞
0

∞∑
k2=0

pn+k1,k2(z)n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

Φ

(
1

λ

∣∣∣∣∫ t

k2/(n+k1)

2g′u1
(s)ds

∣∣∣∣)dtdzdu1

=

∞∑
k1=0

n

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∞∑
k2=0

n(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

Φ

(
1

λ

∣∣∣∣∫ t

k2/(n+k1)

2g′u1
(s)ds

∣∣∣∣)dtdu1

≤
∞∑
k1=0

n2

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∞∑
k2=0

(1 + u1)

×
∫ (k2+1)/[n(1+u1)]

k2/[n(1+u1)]

Φ

(
1

λ

∣∣∣∣∫ (k2+1)/[n(1+u1)]

k2/(n+k1)

2g′u1
(s)ds

∣∣∣∣)dtdu1
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=

∞∑
k1=0

n2

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∞∑
k2=0

1

n
Φ

(
1

λ

∣∣∣∣∫ (k2+1)/[n(1+u1)]

k2/(n+k1)

2g′u1
(s)ds

∣∣∣∣)du1

≤
∞∑
k1=0

n2

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

∞∑
k2=0

n+ k1

n

×
∫ (k2+1)/(n+k1)

k2/(n+k1)

Φ

(
2|g′u1

(s)|
λ(n+ k1)

)
dsdu1

≤
∞∑
k1=0

∫ (k1+1)/n

k1/n

∞∑
k2=0

∫ (k2+1)/(n+k1)

k2/(n+k1)

Φ

(
2n

λ(n− 1)(n− 2)
|g′u1

(s)|
)

dsdu1

≤
∞∑
k1=0

∫ (k1+1)/n

k1/n

∞∑
k2=0

∫ (k2+1)/(n+k1)

k2/(n+k1)

Φ

(
C

λn
|g′u1

(s)|
)

dsdu1

≤
∫ ∞

0

∫ ∞
0

Φ

(
C

λn
|g′u1

(u2)|
)

du2du1.

From Lemma 2.3 in [25], we obtain∫ ∞
0

Φ

(
1

λ
|g′u1

(u2)|
)

du2 ≤
∫ ∞

0

Φ

(
1

λ
|gu1

(u2)|
)

du2

+

∫ ∞
0

Φ

(
1

λ
ϕ2(u2)|g′′u1

(u2)|
)

du2.

By the above inequalities and

ϕ2(s)g′′u1
(s) = s(1 + s)(1 + u1)2D2

2f
(
u1, (1 + u1)s

)
=
(
ϕ2D2

2f
)(
u1, (1 + u1)s

)
,

we obtain

J12 ≤
∫ ∞

0

∫ ∞
0

[
Φ

(
C

λn
|gu1(u2)|

)
+ Φ

(
C

λn
ϕ2(u2)|g′′u1

(u2)|
)]

du2du1

≤
∫ ∞

0

∫ ∞
0

Φ

(
C

λn
|f(u1, u2)|

)
du1du2

+

∫ ∞
0

∫ ∞
0

Φ

(
C

λn

∣∣ϕ2
2(u1, u2)D2

2f(u1, u2)
∣∣)du1du2.

Combining the above inequality with (4) and (5) acquires∫ ∞
0

∫ ∞
0

Φ

(
1

λ
|J1|
)

dx1dx2 ≤
∫ ∞

0

∫ ∞
0

Φ

(
C

λn
|f(u1, u2)|

)
du1du2

+2

∫ ∞
0

∫ ∞
0

Φ

(
C

λn

∣∣ϕ2
2(u1, u2)D2

2f(u1, u2)
∣∣)du1du2.

(6)

Now we can start off to estimate J2. Let

h(u1) = h(u1,x) = f

(
u1, (1 + u1)

x2

1 + x1

)
, 0 ≤ u1 <∞.

From [5, 8], we obtain

|Vn,1(f, x)− f(x)| ≤ C

n

(
|f ′(x)|+ ϕ2(x)|f ′′(x)|

)
. (7)
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Using inequalities (3) and (7), Lemma 2.2, and the convexity of Φ(t) arrives at∫
R2

0

Φ

(
1

λ
|J2|
)

dx =

∫ ∞
0

∫ ∞
0

Φ

(
1

λ

∣∣Vn,1(h(·), x1

)
− h(x1)

∣∣)dx1dx2

≤
∫
R2

0

Φ

[
C

λn

(
|h′(x1)|+ ϕ2(x1)|h′′(x1)|

)]
dx

≤ 1

2

∫
R2

0

Φ

(
C

λn
|h′(x1)|

)
dx +

1

2

∫
R2

0

Φ

(
C

λn
ϕ2(x1)|h′′(x1)|

)
dx

≤
∫
R2

0

Φ

(
C

λn
|h(x1)|

)
dx +

∫
R2

0

Φ

(
C

λn
ϕ2(x1)|h′′(x1)|

)
dx.

When denoting ϕ12(x) = ϕ21(x) ,
√
x1x2 , D2

12 = ∂2

∂x1∂x2
, and D2

21 = ∂2

∂x2∂x1
, we

can write

|ϕ2(u)h′′(u)| =
∣∣∣∣u(1 + u)

[
D2

1f +
x2

1 + x1
D2

12f +
x2

1 + x1
D2

21f

+
x2

2

(1 + x1)2
D2

22f

](
u, (1 + u)

x2

1 + x1

)∣∣∣∣
=

∣∣∣∣( 1 + x1

1 + x1 + x2
ϕ2

1D
2
1f + ϕ2

12D
2
12f + ϕ2

21D
2
21f

+
u

1 + u

x2

1 + x1 + x2
ϕ2

2D
2
2f

)(
u, (1 + u)

x2

1 + x1

)∣∣∣∣.
By virtue of the facts that ϕ12(x) is not bigger than ϕ1(x) or ϕ2(x) and that∣∣D2

12f(x)
∣∣ ≤ sup

{∣∣D2
1f(x)

∣∣, ∣∣D2
2f(x)

∣∣}
in [7, Lemma 2.1], we obtain∫

R2
0

Φ

(
C

λn
(ϕ2(x1)|h′′(x1)|)

)
dx ≤

∫
R2

0

Φ

(
C

λn

2∑
i=1

∣∣ϕ2
iD

2
i f
∣∣)dx

and∫
R2

0

Φ

(
1

λ
|J2|
)

dx ≤ 1

2

∫
R2

0

Φ

(
C

λn
|f(x1, x2)|

)
dx +

∫
R2

0

Φ

(
C

λn

2∑
i=1

∣∣ϕ2
iD

2
i f
∣∣)dx,

where we used the convexity of Φ(t). Combining these two inequalities with (3)
and (6) and paying attention to computation of norm and the inequality (1) yield

‖Vn,2(f)− f‖Φ ≤ ‖J1‖Φ + ‖J2‖Φ ≤
C

n

(
‖f‖Φ +

2∑
i=1

‖ϕ2
iD

2
i f‖Φ

)
.

The proof of Lemma 2.4 is complete.

3. Equivalent theorems. There exist the following equivalent theorems between
the modulus of smoothness and the K-functional.

Theorem 3.1. Let f ∈ L∗Φ(Rm0 ) and r ∈ N. Then there exist some constants C
and t0 such that

ωr,ϕ(f, t)Φ

C
≤ Kr,ϕ(f, tr)Φ ≤ Cωr,ϕ(f, t)Φ, 0 < t ≤ t0. (8)
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Proof. We shall reduce the proof to the one dimension. Some ideas come from [6].
For x = (x1, x2, . . . , xm) ∈ Rm0 , we write x∗ = (x2, . . . , xm) and Rm∗0 = {x∗ : x =
(x1,x

∗) ∈ Rm0 }. Let x1 = (1 + |x∗|)z for 0 ≤ z < ∞ and F (z) = F (z,x∗) =
f
(
(1 + |x∗|)z,x∗

)
. Then

ϕ1(x) = (1 + |x∗|)ϕ(z), Dr
1f(x) =

F (r)(z)

(1 + |x∗|)r
, ∆r

hϕ1(x)e1
f(x) = ∆r

hϕ(z)F (z).

It was shown in [25] that

∫ ∞
0

Φ

( |∆r
hϕ(z)F (z)|

λ

)
dz ≤


∫ ∞

0

Φ

(
C|F (z)|

λ

)
dz, F ∈ L∗Φ[0,∞);∫ ∞

0

Φ

(
C|hrϕr(z)F (r)(z)|

λ

)
dz, F ∈W r,Φ

ϕ [0,∞).

Consequently, it follows that, for f ∈ L∗Φ(Rm0 ),

‖∆r
hϕ1e1

f‖(Φ) = inf
λ>0

{
λ :

∫
Rm∗

0

dx∗
∫ ∞

0

Φ

(
1

λ

∣∣∆r
hϕ1(x)e1

f(x)
∣∣)dx1 ≤ 1

}

= inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
1

λ

∣∣∆r
hϕ(z)F (z)

∣∣)dzdx∗ ≤ 1

}

≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
C

λ
|F (z)|

)
dzdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm∗

0

∫ ∞
0

Φ

(
C

λ
|F (z)|

)
dx1dx∗ ≤ 1

}
= C‖f‖(Φ).

For f ∈W r,Φ
ϕ (Rm0 ), we arrive at

‖∆r
hϕ1e1

f‖(Φ) = inf
λ>0

{
λ :

∫
Rm∗

0

dx∗
∫ ∞

0

Φ

(
1

λ

∣∣∆r
hϕ1(x)e1

f(x)
∣∣)dx1 ≤ 1

}

≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
C

λ
hr|ϕr(z)F (r)(z)|

)
dzdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm∗

0

∫ ∞
0

Φ

(
C

λ
hr|(ϕr1Dr

1)f(x1,x
∗)|
)

dx1dx∗ ≤ 1

}
= Chr‖ϕr1Dr

1(f)‖(Φ).

Similarly, for i = 2, 3, . . . ,m, we have

‖∆r
hϕiei

f‖(Φ) ≤ C

{
‖f‖(Φ), f ∈ L∗Φ(Rm0 );

hr‖ϕriDr
i (f)‖(Φ), f ∈W r,Φ

ϕ (Rm0 ).

Adding these inequalities and applying (1) yields the lower bound in (8).
To estimate the upper bound in (8), we shall again reduce it to the one-dimen-

sional case. First we note that, for fixed x∗ and t > 0, there exists a function
Gt ∈W r,Φ

ϕ (R1
0) such that∫ ∞

0

Φ

(
1

λ
|F (z)−Gt(z)|

)
dz ≤ C

t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτ
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and ∫ ∞
0

Φ

(
1

λ

∣∣trϕr(z)G(r)
t (z)

∣∣)dz ≤ C

t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτ,

where Gt depends on F continuously. See [25]. Accordingly, for F (z) = F (z,x∗),
we have Gt(z) = Gt(z,x

∗) as well. Let

gt(x) = Gt

(
x1

1 + |x∗|
,x∗
)
, x ∈ Rm0 .

Then gt ∈W r,Φ
ϕ (Rm0 ) and

‖f − gt‖(Φ) = inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
1

λ
|F (z)−Gt(z)|

)
dzdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)C
t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

C

t

∫ t

0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dτdzdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

CΦ

(
C

λ

∣∣∆r
τ1ϕ(z)F (z)

∣∣)dzdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm

0

Φ

(
C

λ

∣∣∆r
τ1ϕ1(x)e1

f(x)
∣∣)dx ≤ 1

}
= C‖∆r

τ1ϕ1(x)e1
f‖(Φ), 0 ≤ τ1 ≤ t

and

tr‖ϕr1Dr
1gt‖(Φ) = inf

λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
tr

λ

∣∣ϕr(z)G(r)
t (z)

∣∣)dzdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)C
t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

C

t

∫ t

0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dτdzdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
C

λ

∣∣∆r
τ1ϕ(z)F (z)

∣∣)dzdx∗ ≤ 1

}
= inf
λ>0

{
λ :

∫
Rm

0

Φ

(
C

λ

∣∣∆r
τ1ϕ1(x)e1

f(x)
∣∣)dx ≤ 1

}
= C‖∆r

τ1ϕ1(x)e1
f‖(Φ), 0 ≤ τ1 ≤ t.

Similarly, we can prove that, for each i and t > 0, there are functions gt ∈W r,Φ
ϕ (Rm0 )

and τi ∈ [0, t] such that

‖f − gt‖(Φ) ≤ C‖∆r
τiϕi(x)ei

f‖(Φ) and tr‖ϕriDr
i gt‖(Φ) ≤ C‖∆r

τiϕi(x)ei
f‖(Φ).

By the double inequality (1), we obtain

‖f − gt‖Φ ≤ C‖∆r
τiϕi(x)ei

f‖Φ and tr‖ϕriDr
i gt‖Φ ≤ C‖∆r

τiϕi(x)ei
f‖Φ. (9)

Adding these inequalities results in the upper bound in (8).

Remark 3.1. For m = 1, Theorem 3.1 coincides with corresponding 1-dimensional
one in [25].
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Theorem 3.2. Let f ∈ L∗Φ[0,∞) and r ∈ N. Then there exist some constants C
and t0 such that

ωr,ϕ(f, t)Φ

C
≤ K̄r,ϕ(f, tr)Φ ≤ Cωr,ϕ(f, t)Φ, 0 < t ≤ t0. (10)

Proof. Since Kr,ϕ(f, tr)Φ ≤ Kr,ϕ(f, tr)Φ, we only need to prove the upper estimate.
By those inequalities in (9), we only need to prove

t2r‖Dr
i gt‖(Φ) ≤ C‖∆r

τ ′iϕi(x)ei
f‖(Φ)

for each i.
In [23], it was obtained that∫ ∞

0

Φ

(
1

λ

∣∣t2rG(r)
t (z)

∣∣)dz ≤ C

t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτ.

For F (z) = F (z,x∗), we have Gt(z) = Gt(z,x
∗) as well. Let

gt(x) = Gt

(
x1

1 + |x∗|
,x∗
)
, x ∈ Rm0 .

Then gt ∈W r,Φ
ϕ (Rm0 ) and

t2r‖Dr
1gt‖(Φ) = inf

λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
1

λ

∣∣t2rG(r)
t (z)

∣∣)dzdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)C
t

∫ t

0

∫ ∞
0

Φ

(
C

λ

∣∣∆r
τϕ(z)F (z)

∣∣)dzdτdx∗ ≤ 1

}
≤ inf
λ>0

{
λ :

∫
Rm∗

0

(1 + |x∗|)
∫ ∞

0

Φ

(
C

λ

∣∣∆r
τ ′1ϕ(z)F (z)

∣∣)dzdx∗ ≤ 1

}
= C‖∆r

τ ′1ϕ1(x)e1
f‖(Φ), 0 ≤ τ ′1 ≤ t.

Similarly, we can prove that, for each i and t > 0, there are functions gt ∈W r,Φ
ϕ (Rm0 )

and τ ′i ∈ [0, t] such that

t2r‖Dr
i gt‖(Φ) ≤ C‖∆r

τ ′iϕi(x)ei
f‖(Φ).

Using (1), it follows that

t2r‖Dr
i gt‖Φ ≤ C‖∆r

τ ′iϕi(x)ei
f‖Φ.

Combining this inequality with (9) and adding these inequalities lead to (10). The
proof of Theorem 3.2 is complete.

Remark 3.2. For m = 1, Theorem 3.2 coincides with corresponding 1-dimensional
one in [23].

4. A direct theorem. We now in a position to state and prove the direct theorem.

Theorem 4.1 (Direct theorem). Let f ∈ L∗Φ(Rm0 ), n > m, and Ψ ∈ ∆2. Then

‖Vn,m(f)− f‖Φ ≤ C
[
ω2,ϕ

(
f,

1

n1/2

)
Φ

+
‖f‖Φ
n

]
. (11)
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Proof. Our proof is based on induction on the dimension m and on a decomposi-
tion for Baskakov–Kantorovich’s operator. For m = 1, the inequality (11) can be
rewritten as

‖Vn,1(f)− f‖Φ ≤ Cω2,ϕ

(
f,

1

n1/2

)
Φ

≤ C
[
ω2,ϕ

(
f,

1

n1/2

)
Φ

+
‖f‖Φ
n

]
which has been proved in [21].

For m ≥ 2, the proof of Theorem 4.1 follows from combining Lemmas 2.1 and 2.4
with the estimates

∥∥Vn,m(f)− f
∥∥

Φ
≤ C


‖f‖Φ, f ∈ L∗Φ(Rm0 );

1

n

(
m∑
i=1

‖ϕ2
iD

2
i f‖Φ + ‖f‖Φ

)
, f ∈W 2,Φ

ϕ (Rm0 ).
(12)

The first estimate in (12) can be derived from Lemma 2.1.
By (2), the second estimate in (12) is valid for m = 2. If the second estimate

in (12) is valid for m = r ≥ 2, that is,

‖Vn,r(f)− f‖Φ ≤
C

n

(
r∑
i=1

‖ϕ2
iD

2
i f‖Φ + ‖f‖Φ

)
, (13)

then we have to further verify its validity for m = r + 1. We claim that the
decomposition formula

Vn,r+1(f,x) =

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

∞∑
k∗=0

pn+k1,k∗

(
x∗

1 + x1

)
nr

×
∫ (k∗+1)/n

k∗/n

f(u1,u
∗)du∗du1

=

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

∞∑
k∗=0

pn+k1,k∗

(
x∗

1 + x1

)
nr

×
∫ (k∗+1)/[n(1+u1)]

k∗/[n(1+u1)]

f
(
u1, (1 + u1)u∗

)
(1 + u1)du∗du1

(14)

is valid, where x∗ = (x2, x3, . . . , xr+1), x = (x1,x
∗) ∈ Rr+1

0 , k∗ = (k2, k3, . . . , kr+1),
k = (k1,k

∗) ∈ Nr+1
0 , and

∑∞
k∗=0 =

∑∞
k2=0

∑∞
k3=0 · · ·

∑∞
kr+1=0. This formula can

be directly checked up and will take an important role in the following proof. Let

gu1(t) , f
(
u1, (1 + u1)t

)
, 0 ≤ t <∞

and

z = (z1, z2, . . . , zr) =

(
x2

1 + x1
,

x3

1 + x1
, · · · , xr+1

1 + x1

)
=

x∗

1 + x1
.

From the formula (14), it follows that

Vn,r+1(f,x)− f(x) =

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

[
Vn+k1,r

(
gu1(·), z

)
− gu1(z)

]
du1

+
[
Vn,1

(
h(·), x1

)
− h(x1)

]
, T1 + T2, (15)

where

h(u1) , h(u1,x) , f

(
u1, (1 + u1)

x∗

1 + x1

)
, 0 ≤ u1 <∞.
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By the inequality ∫
Rr

0

Φ

(
1

λ
|Vn,r(f,x)− f(x)|

)
dx

≤
∫
Rr

0

Φ

(
C

λn

r∑
i=1

|(ϕ2
iD

2
i f)(x)|

)
dx +

∫
Rr

0

Φ

(
C

λn
|f(x)|

)
dx,

which can be obtained from (13), and Jensen’s inequality, we arrive at∫
Rr+1

0

Φ

(
1

λ
|T1|

)
dx =

∫
Rr+1

0

Φ

(
1

λ

∣∣∣∣∣
∞∑
k1=0

pn,k1(x1)n

×
∫ (k1+1)/n

k1/n

[
Vn+k1,r

(
gu1(·), z

)
− gu1(z)

]
du1

∣∣∣∣∣
)

dx

≤
∫
Rr+1

0

∞∑
k1=0

pn,k1(x1)n

∫ (k1+1)/n

k1/n

Φ

(
1

λ

∣∣Vn+k1,r

(
gu1(·), z

)
− gu1(z)

∣∣)du1dx

=

∞∑
k1=0

∫ ∞
0

pn,k1(x1)(1 + x1)dx1n

∫ (k1+1)/n

k1/n

du1

×
∫
Rr

0

Φ

(
1

λ
|Vn+k1,r

(
gu1(·), z

)
− gu1(z)

∣∣)dz

≤
∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

[∫
Rr

0

Φ

(
C

λ(n+ k1)

r∑
i=1

|(ϕ2
iD

2
i gu1)(z)|

)
dz

+

∫
Rr

0

Φ

(
C

λ(n+ k1)
|gu1(z)|

)
dz

]
du1.

On the other hand, by definition, we can deduce

ϕ2
i (x)D2

i gu1
(x) = xi(1 + |x|)(1 + u1)D2

i+1f
(
u1, (1 + u1)x

)
= (ϕ2

i+1D
2
i+1f)

(
u1, (1 + u1)x

)
.

So, we obtain∫
Rr+1

0

Φ

(
1

λ
|T1|

)
dx ≤

∞∑
k1=0

n(n+ k1 − 1)

(n− 1)(n− 2)

∫ (k1+1)/n

k1/n

[∫
Rr

0

Φ

(
C

λ(n+ k1)

×
r+1∑
i=1

|(ϕ2
iD

2
i f)
(
u1, (1 + u1)z

)
|

)
dz

+

∫
Rr

0

Φ

(
C

λ(n+ k1)
|f
(
u1, (1 + u1)z

)
|
)

dz

]
du1

≤
∞∑
k1=0

∫ (k1+1)/n

k1/n

1

1 + u1

[∫
Rr

0

Φ

(
Cn(n+ k1 − 1)

(n+ k1)(n− 1)(n− 2)λ

×
r+1∑
i=1

|(ϕ2
iD

2
i f)
(
u1, (1 + u1)z

)
|

)
d
(
(1 + u1)z

)
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+

∫
Rr

0

Φ

(
Cn(n+ k1 − 1)

(n+ k1)(n− 1)(n− 2)λ
|f
(
u1, (1 + u1)z

)
|

)
d
(
(1 + u1)z

)]
du1

≤
∞∑
k1=0

∫ (k1+1)/n

k1/n

[∫
Rr

0

Φ

(
C

nλ

r+1∑
i=1

|(ϕ2
iD

2
i f)
(
u1, (1 + u1)z

)
|

)
d
(
(1 + u1)z

)
+

∫
Rr

0

Φ

(
C

nλ
|f
(
u1, (1 + u1)z

)
|
)

d
(
(1 + u1)z

)]
du1

≤
∫
Rr+1

0

Φ

(
C

nλ

r+1∑
i=1

|(ϕ2
iD

2
i f)(u)|

)
du +

∫
Rr+1

0

Φ

(
C

nλ
|f(u)|

)
du.

(16)

By Lemma 2.2, the inequality (7), and the convexity of Φ(t), we acquire∫
Rr+1

0

Φ

(
1

λ
|T2|

)
dx =

∫
Rr+1

0

Φ

(
1

λ
|Vn,1

(
h(·), x1

)
− h(x1)|

)
dx

≤
∫
Rr+1

0

Φ

(
C

nλ

(
|h′(x1)|+ ϕ2(x1)|h′′(x1)|

))
dx

≤ 1

2

∫
Rr+1

0

Φ

(
C

nλ
|h′(x1)|

)
dx +

1

2

∫
Rr+1

0

Φ

(
C

nλ
ϕ2(x1)|h′′(x1)|

)
dx

≤
∫
Rr+1

0

Φ

(
C

nλ
|h(x1)|

)
dx +

∫
Rr+1

0

Φ

(
C

nλ
ϕ2(x1)|h′′(x1)|

)
dx.

Denoting ϕij(x) =
√
xixj for 1 ≤ i < j < r + 1 and D2

ij = ∂2

∂xi∂xj
, we have

ϕ2(u)h′′(u) = u(1 + u)

[
D2

1f +

r+1∑
i=2

xi
1 + x1

D2
1if +

r+1∑
i=2

xi
1 + x1

D2
i1f

+

r+1∑
i=2

r+1∑
j=2

xixj
(1 + x1)2

D2
ijf

](
u, (1 + u)

x∗

1 + x1

)

=

(
1 + x1

1 + |x|
ϕ2

1D
2
1f +

r+1∑
i=2

ϕ2
1iD

2
1if +

r+1∑
i=2

ϕ2
i1D

2
i1f +

r+1∑
i=2

u

1 + u

xi
1 + |x|

ϕ2
iD

2
i f

+

r+1∑
i,j=2,i6=j

u

1 + u
ϕ2
ijD

2
ijf

)(
u, (1 + u)

x∗

1 + x1

)
.

Recalling that ϕij(x) is not bigger than ϕi(x) or ϕj(x) and the fact

|D2
ijf(x)| ≤ sup

1≤i≤r+1
|D2

i f(x)|

in [7, Lemma 2.1], we obtain∫
Rr+1

0

Φ

(
1

λ
|T2|

)
dx ≤ 1

2

∫
Rr+1

0

Φ

(
C

nλ
|f(x)|

)
dx

+

∫
Rr+1

0

Φ

(
C

nλ

r+1∑
i=1

|(ϕ2
iD

2
i f)(x)|

)
dx. (17)

Combining (15), (16), and (17) and paying attention to computation of norm and
the inequality (1), we obtain the second estimate of (12) for any m ≥ 2.
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For g ∈W 2,Φ
ϕ (Rm0 ), combining (12) with Lemma 2.1 and Theorem 3.1 gives

‖Vn,m(f)− f‖Φ ≤ ‖Vn,m(f)− Vn,m(g)‖Φ + ‖Vn,m(g)− g‖Φ + ‖f − g‖Φ

≤ C‖f − g‖Φ +
C

n

(
‖g‖Φ +

m∑
i=1

‖ϕ2
iD

2
i g‖Φ

)

≤ C

(
‖f − g‖Φ +

1

n

m∑
i=1

‖ϕ2
iD

2
i g‖Φ

)
+
C

n
‖f‖Φ

≤ C
[
ω2,ϕ

(
f,

1

n1/2

)
Φ

+
1

n
‖f‖Φ

]
.

The proof of Theorem 4.1 is complete.

5. Conclusions. In this paper, using K-functional and a decomposition technique
and considering some properties of multivariate Baskakov–Kantorovich operators in
the form of Lemmas 2.1 to 2.4, we presented two equivalent theorems, Theorems 3.1
and 3.2, between the K-functional and modulus of smoothness, and obtained a
direct theorem, Theorem 4.1, in the Orlicz spaces L∗Φ(Rm0 ).

Acknowledgments. The authors are thankful to anonymous referees for their
helpful suggestions and valuable comments on the original version of this paper.
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