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ABSTRACT. Utilizing some properties of multivariate Baskakov—Kantorovich
operators and using K-functional and a decomposition technique, the authors
find two equivalent theorems between the K-functional and modulus of smooth-
ness, and obtain a direct theorem in the Orlicz spaces.

1. Motivations. For proceeding smoothly, we recall from [31] some definitions and

related results.
A continuous convex function ®(¢) on [0,00) is called a Young function if it

satisfies
lim % =0 and lim w
t—0+ ¢ t—oo t
For a Young function ®(t), its complementary Young function is denoted by ¥(¢).
It is clear that the convexity of ®(¢) can lead to ®(at) < a®(t) for a € [0,1]. In
particular, one has ®(at) < a®(t) for « € (0,1).
A Young function ®(t) is said to satisfy the As-condition, denoted by ® € As,
if there exist top > 0 and C > 1 such that ®(2t) < C®(t) for t > to.
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Throughout the paper, we shall use the following standard notations:

={0,1,2,...}, N={1,2,3,...}, meN,

x = (r1,22,...,2m) ER™, |x|= Zx,, = (k1,ka,..., km) € N{',

m

(0) = oy 2= 3

= k1=0 k=0 km=0

m
xh = ahghe gk Rl = k) k), |k|=Zk¢7

Ry ={x=(z1,22,...,2) ER™: 0 < z; < 00,1 <i<m},
67’
D* = D{'Dy?---Dkn, DI =
1 2 m [ axr

l

for r € N.
Let ®(t) be a Young function. We define the Orlicz class Ly (Rf?) as the collection
of all Lebesgue measurable functions f(x) on R{" such that

p(r2) = | a(f@))de <.

We also define the Orlicz space L} (Rg") as the collection of all Lebesgue measurable
functions f(x) on R} such that me (Jaf(z)|)dz < oo for some a > 0. The Orlicz

space L (RY) is a Banach space under the Luxemburg norm

1l = mf{A : p(ﬁ,q») < 1}.

The Orlicz norm ||f|l¢ on L% (R§Y), which is equivalent to the Luxemburg norm on
L3 (Ry), is given by

f(x)g(z)dz

Ry

[flle = sup
p(g,¥)<1

and satisfies

1@y < [1flle < 2([fll()- (1)

Throughout this paper, we use C' to denote a constant, which may be not neces-
sarily the same in different cases, independent of n and x.

For x € Ry, we introduce weight functions ¢(z) = /(1 + ) for m = 1 and
vi(x) = Va;(1+|z|) form>1and 1 <i<m. We also deﬁne weighted Sobolev
space

WoPRy) = {f € Ly(Ry") : D*f € ACiloc(RE'), i D} € Ly (RE") },

where |k| < r and R is the interior of R}
The Peetre K-functional is defined in [6] by

Ko (£t lnf{Ilf g||<1>+tTZIISD’”DTgH<I> 9€WT¢(R’”)}

1=1
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for t > 0. Now we define the modified K-functional as

Krg(fi1) g
lnf{Ilf glle +1" Z ler Diglle +* Y IDiglle : g € WQ’Q(R?)}

i=1 i=1
for ¢t > 0.
For any vector e € R™, we write

T

 fz) = 3 (:) (—1)if(x +ihe), z,x+rhe € RT

he i=0
0, otherwise

for the rth forward difference of a function f in the direction of e. We define the
modulus of smoothness of f € L% (Rf") as

wrp(fit)e = sup > (1AL, flle-

0<h<t’i—{
Let i
n+k—1 T
DPni(T) = ( & )W’ x €]0,00), neN.

The well known Baskakov operators [3] were defined by

r) = ]ipn,k(x)f(D

which can be used to approximate any function f defined on [0,00). In order to
consider the approximation in L,[0, 00), Ditzian and Totik [8] modified the form of
the Baskakov operators as

(k+1)/n

nl f7 ank /k f(u)du

/n

which are called Baskakovaantorowch s operators. There are many approximation
results about one variable operator of the Baskakov type in C[0,00) or L,[0, c0).
See [1, 2, 3, 8, 9, 10, 11, 13, 14, 15, 26, 33, 34, 35] and closely related references
therein.

The multivariate Baskakov—Kantorovich’s operators [5] were defined by

nm fa ank: an: f)
_(n+]kl -1 xk
poate) = (")t

(k14+1)/n p(k2+1)/n (km~+1)/n
Quap) = [ [ ]
ki/n k2 /n km /m0

flur,ug, ... Uy )durdus - - - dug,

(k+1)/n
= nm/ f(uw)du.
k/n

where

and
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There are few results about multivariate Baskakov type operators. Cao and An
introduced in [4] multivariate Baskakov—Durrmeyer operators and obtained a direct
inequality in L, [0, 00). Cao and Ding [5] established a direct theorem of multivariate
Baskakov—Kantorovich operators in L,[0, 00) as

V() =l < c[MW(f, nl/) .\ ||J;p}
p

For more information on approximation properties for operators in the Orlicz,
Morrey, Baskakov—Durrmeyer—Stancu, or other type spaces, we recommend three
groups of references, [21, 22, 23, 24, 25], [16, 17, 18, 19, 20], [12, 27, 28, 29, 30], to
interested readers.

In this paper, basing on the above conclusions, utilizing K-functional and a de-
composition technique, considering properties of multivariate Baskakov—Kantorovich
operators in the form of Lemmas 2.1 to 2.4 in Section 2, we establish two equiv-
alent theorems, Theorems 3.1 and 3.2 in Section 3, between the K-functional and
modulus of smoothness, and obtain a direct theorem, Theorem 4.1 in Section 4, in
the Orlicz spaces L} (Rf").

2. Lemmas. In order to prove the direct theorem, we need several lemmas below.
Lemma 2.1. Let f € LE(RY), n > m. Then
Vam(Flle < Cllflle-

Proof. By the decomposition formula

-> BEETSS -
n m f, P,k £C1 / duy Pn+ky ko <)
k1—=0 ki/n k2—0 142
(k2+1)/n z
XN dus m
/k2/n kz_:opn""kl"l‘ Ak — 11 m (1 + x1 + + l'ml)

(km+1)/
X’I’L/ f(u17u27"' aum)dun“m

km /n

Jensen’s inequality, and the double inequality (1), we obtain

IMMAM@S%%m(W

(k1+1)/n
=2 inf " d
e kz_op N
(k2+1)/n
X pn+k1k< ) / dug - - -
kzzo 2 1+ 2 ka/n

(o)
T
x Z Prthitthm—1,km <1 + 1z + - +x 1)
-

km=0
) de <1 }

(km+1)/n
XTL/ f(ulau27"' vum)dum
(k1+1)/n T
<9
_2>1\r>1%{ /m ankl xl /k:l/n dU1 an+kl k2<1+x1>

km/n
0 k1=0 ko=0
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(k2+1)/n 0 Ton
xXn du2 Pr+tki++km— ,km< )
/k ka::O e ' Ltz 4+ +xm

2/n
(km"l‘l)/n 1
xn/ <I>(|f(u1,u2,~--,um)>dumda:§1
km /m A
o 0 (k141)/n ol
= 2)1\1’;% A Z /0 Dk (21)(1 +$1)d$1n/k " duq Z
k1=0 1 ko=0

0o (k2+1)/n
T2 T2
" —_° )1 d dus - - -
></0 p +k1,k2<1+x1)( + 21 + X2) (Hrl)n/’wn U

oo o]
Tm—1
x Prtky k2 ko ( >(1+$1 +ot Tpet)
kZ_o/o o P\l 2+ T "

o0

(km—-1+1)/n
Tm—1
d n dty,— E
(1+SC1+"'—|—I”L_2> A !

m—1 /n k=0

" /°° Tm q Tm
0 Prothat--+hm—1,km 1_|":51_|""_|':Em—1 1+JL'1 + -+ T

(km+1)/n 1
xn/ @(Af(ul,uz,~-~,um)|)dum§1
k

m/n

(k1+1)/n

oo "’Lm
=2inf{ \: d
irio{ zﬁz::o n—1)-(n—m) /,ﬁ/n "
XZ/ duQ~~Z/ >dum§1}
ko—=0 " k2/n s

o0 o0 o0 C
<2infd A: Y <1
< igo{/\ /O du1/0 dus /0 ()\f(umm ,um)|>dum_ }

=C|fl@ < Clfla.
The proof of Lemma 2.1 is complete. O

(ka+1)/n (km+1)/n

1
(p(ALf(ul)uQ?"' aum)

m/n

Lemma 2.2 ([24]). For f € L%[0,00) and ¥ € Ag, we have
10(H)lls < Cllflle,

where

t
0(f,x) = ngg@[t_lm/ f(U)dU}
Tt *

is the Hardy-Littlewood function of f(x).
Lemma 2.3. Let f € L}[0,00). Then

Balf. )~ £(@)| < S0(6215", ).
Proof. By Taylor’s formula
ft) = f@) + f/(x)(t — x)
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a Low-r "
+/0 (a:+T)(1+x+7_)($+7')(1+$+7')f (5E+T)d7'

and the inequality
4t — x|

t>% e<1
) Z 50T >
t—ax—71 z(1+2) 2
1 2|t —
(x+7)14+2+7) | m|’ O§t<£,x>1
z(1+1) 2

in [32, Eq. (6.1)], one acquires

s = o) < 08, (G maf 1 22 Yo7

x) 1+t

g 2| g1t
< —0(e°| "], ),

where we used

B,(l,2) =1, Bu(t—z,2)=0, B,(t—2)%z)= @2@)7

2
B, (t—2) maxq 1, L+ x| < g
©2(x) 1+t n

The proof of Lemma 2.3 is complete.

and

Lemma 2.4. Let f € L} (RZ) and ¥ € Ay. Then

C 2
Va2(f) = fllo < <||f|<1> +> ||<P?D?f||q>>.

i=1
Proof. Let
T2
2= o and gy, (£) = f(u1, (1 +u1)t)
for 0 <t < oco. Utilizing the decomposition formula
i (k1+1)/n T
2
i = St [ S 25)
k1:0 1 ICQZO

(k2+1)/[n(1+u1)]
xn/ f(ul,(l+u1)u2)(1+u1)du2du1
k2 /[n(14+wu1)]

in [5] concludes

o (k1+1)/n
Voo(fow) = f(@) = Y puk, (xl)n/ > Prtkrka (20
k1=0 kl/n ko=0
(k2+1)/[n(14u1)]
x / [0 (£) = gun (2 (1 + )ty
ka/[n(1+wuy)]

142
é]1+J27 0<u < .

+Vn,1(f(uh(1+m) 2 ))f(l’hﬂ?z)
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d(t), it follows

[ [ o(Gjamen= [ [7o(3

Z T ( ) (k2+1)/[n(14wu1)]
Dntk,k ( ) 14w /
1,R2 1 + k

Jea=0 1 2/ [n(1+4u1)]

— (kat1)/n
< Dk (T n/
[ pesiten [

Now we start out to estimate J;. Using Jensen’s inequality and the convexity of

(k1+1)/n
z Prs (1)1 /

k1=0 k1/n
>d$1d$2

2
an+k1,k2(1+ ) (1+U1)

[9u, () = gu, (2)]dtduy

k1=0 1/n kz 0 T
(k2+1)/[n(14wu1)]
<[ g (8) = g0, (] | durdrad
ko/[n(14uq)]
oo oo 20 (k1+1)/n
/ / 2 Pra(@)(14 xl)n/ Z Prtker ke (2)0(1 + 1)
0 0 k1:0 kl/n k72 0
(k2+1)/[n(14wu1)]
<[ 9 (8) — g0, ()] ) sy
ko/[n(14u1)]
© ki+1)/n
n(n + k1 — 1) /( 1 /
- (n—1(n—-2) Ptk ke (2)0(1 4+ uy)
]ﬂZ::O (n—=1)(n—2) Ji,/n kQX:O 1:k2
(k2+1)/[n(14u1)]
ka/[n(14uy)]

n(n+k —1) /<k1+1>/ /
= Dtk ko (2)1(1 4+ u1)
Z n_l ’I’L-2) k:l/n kZO tha, 2
L) o s
X Gu — Guy (2 +/ G (s ds}dt dzduy
ka/[n(14u1)] "\n+k ' Ra/(ndky)
Ll nlntk—1) /““1“)/"/00
5 n z)2n(1
2 Z: (n—1)(n—2) k1 /m ZP ki ke (2)20(1 +ua)
)
X Gu — Gu, (R dt| |+
a/[n(14u1)] \n+k
o0 (ka+1)/[n ()]t
Z Dtk ks (2)20(1 + ul)/ /k G, (s)dsdt| | bdzduy
ko
2| 9u
k2(2) |:g 1(7’L+k1>
(k2+1)/[n(1+u1)]
Z Ptk ks (2)20(1 +u1)/

ko /[n(14u1)]
ko=0 kQ/[n(1+ul)]

> 1 (k1+1)/n  poo 1
_1 Z (”+k1 ) / / of
. (4)
X / G, (s)dsdt > }dzdul Jir + Jia.
k

(3]

2/(n+k1)

)
2/(n+k1)
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Employing Lemmas 2.2 and 2.3 yields

1 < n(n + k1 1) [Un+D/n poo ro
D) o -|B —
Jn 2 XZ:O (n -9 /k /n /O A | n+k1 (gu1 ) Z) Gu, (Z)| dzduq

)
3 n(n+k1—1) ’““V"/OO <1 C oL, )
- 0 ,2) |dzdu
Z (n —-2) kr /n o A1+ ky (v |9u1| ) 1
)

_|_
1 < n(n + k1 _ 1) Rt/ oo c

On the other hand, by definition, we can deduce
¢ (t)gu, (1) =t + 1) (1 +w1)* D3 fur, (1 +wr)t) = (93D5f) (ua, (1 +u)t)

and
J < 1 = (TL+ ]fl — 1) (k1+1)/n e}
n=g Z (n_l)(n_Q)/lﬁ/n /0
(I)()\(nikl)’(@%l)gf) (“17(1+U1)Z)’>dzdu1
N Gt h)/m oo C 212
S]glzo/kl/ﬂ \/O 1+U1(I)<)\TL|((P2D2f)(U1’(1+u1)z)|)d((1+u1)z)du1
/ / ( 2D2f)(u1,u2)|>du1du2, (5)

Using Jensen’s inequality, we derive

1 & nn+k —1 (k1+1)/n  poo
szaz%/ /
(n=1)(n—=2) Jy,/n

k1=0

(k2+1)/[n(1+u1)] pt
X / / 2¢,,, (s)dsdt| | dzduy
k2 /[n(14u1)] ka/(n+k1)

n(n+k —1) (ki+1)/n poo 20
< Z - /k /0 Z Dl ko (2)1(1 + 1)

IN

IN

Z pn-‘rk?l,kz +u1)

& (=D =2) Jiyn k=0
(ka4 )/In(un)] 1| pt
X_/ ‘P( / 2g,,, (s)ds )dtdzdm
ka/[n(14u1)] A ko /(n+k1)
> (ka+1)/n 20
=) TS n(1+u)
2002 A
(ka4 /el 1| pt
X/ <I>( / 2g,,, (s)ds )dtdul
k2 /[n(14u1)] A ko/(n+k1)
> 'I'l2 (k141)/n o0
<Y / ST (1 +w)
2002 o
(k2+1)/[n(1+u1)] 1] pk2t1)/n(+un)]
X/ ‘p( / 2g,,, (s)ds >dtdu1
ko /[n(14u1)] Mk (ntk)
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(k2+1)/[n(14wu1)]
/ 24, (s)ds
k

(k1+1)/n 2 4 1
o

klz_:o (n—1)(n-2) /Icl/n ka0 A ks (ntky)
2 (k1+1)/n 2©
< Z 1” 2 / nth
P TR V=) I A S
(k2+1)/(n+k1) 2d’
x/ <I><|g“1(s)| )dsdm
ka/(n+k1) Aln + k1)
/(kﬁ'l)/" > /(k2+1)/("+k’1) ( om | , (®)
< O ——————— g, (s )dsdu1
=0 ki 120 ke /() Aln —1)(n—2)""
(k14+1)/n oo (ka+1)/(n+k1) C
Z/ / @(Ag;1(5)>dsdu1
k10 k1/n kye0 V K2/ (ntk1) n

// < |90, U2)|>dquu1.

From Lemma 2.3 in [25], we obtain

7 a( ot Jave < [ (Sl 0o )

By the above inequalities and
¢*(5)gu, (s) = s(L+ 8) (1 +u1)? D3 f (ur, (1 +w)s) = (D3 f) (ur, (1 +ur)s)

we obtain

nas [T ol ) + (oo (un)] ) |auadus

// (ful,u2)|>du1du2
// ( 2 “1’“2>D2f(“1>u2)l>du1du2.

Combining the above inequality with (4) and (5) acquires

// <|J1>d:c1da:2 // (|fu1,uQ)|)du1du2
+2// (|<P2UhUz)D2f(u1,uz)f)du1du2.

Now we can start off to estimate J>. Let

hun) =) = £ (. (L4 ) 2 ) 0w <ox,

From [5, 8], we obtain

Vaa(f,2) = f@)] < —(If' @)+ ¢*(@)|f" ()])-

3\Q

+/0 ‘I’<is02<uQ>|gzl<uQ>|)du2.

(6)
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Using inequalities (3) and (7), Lemma 2.2, and the convexity of ®(¢) arrives at

/RQ (|J2>d‘”—/ / ( ()aiﬂl)—h($1)|>dx1dx2
< [o[s (et geome) |as
< ;Ag@<;|h/(x1)|>dm+;Ag@(;¢2(x1)|h”(xl)|>dw

< /Rg @(i|h(m1)|>daz + /Ra @(Sl<p2(x1)h”(m1)|)daz.

When denoting ¢12() = @o1(x) 2 /T122, D?y = m, and D3, = #;Tl, we
can write
W] = |ul1 +0)| D2 + 2 Dbl + 2 DA
IEQ X2
7D 1
+( —‘rl‘) 22f:|<u7( +U)1+$1>‘

14+21+ 22

1 + 21
_ <¢?fo DNt DS

u X9 2 2 X9
D 1 .
+1+u1+m1+x2<p2 2f>(u,( +U})]—+x1)‘

By virtue of the facts that p12(x) is not bigger than ¢1(x) or @2(x) and that
| Diaf ()| < sup{|D1f ()|, | D3 f(2)[}

in [7, Lemma 2.1], we obtain

C . C
[ 2 (e mn ) < /R@<M ;I¢?D5f|>dw
and

1 1 c C <
o~ <-[| o= o — 2D?
/Rg <A|J2|>dw_2/kg (Anﬂxl,xzﬂ)dw/m (M;:li\% J!)dw,

where we used the convexity of ®(¢). Combining these two inequalities with (3)
and (6) and paying attention to computation of norm and the inequality (1) yield

Va2 (f) = flle < [[/1lle + (| 2]l0 < — <||f|<1> + Z ||<P2D2f||<1>>-

i=1

The proof of Lemma 2.4 is complete. O

3. Equivalent theorems. There exist the following equivalent theorems between
the modulus of smoothness and the K-functional.

Theorem 3.1. Let f € L (RY') and r € N. Then there exist some constants C
and tg such that

w”‘a‘ﬂ(f’ t)@

O S Kr,cp(f7 tT)CD S er,@(fa t)<I>7 0 <t S tO- (8)
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Proof. We shall reduce the proof to the one dimension. Some ideas come from [6].

For ¢ = (z1,22,...,%y) € RY, we write * = (22,...,2p) and R = {z* : & =

(x1,2*) € R} Let r] = ( + |x*])z for 0 < z < oo and F(z) = F(z,z*) =
F((1+ |2}z, 2"). Then

. . F)(» . .
e1(e) = (L4 [ o) DUF@) = o o Al tare F@) = Al F2)
It was shown in [25] that
i o CEGINY . F € L3[0,00);
/m‘b('Ahw(z)F(z))dz _ ) A
b\ — o) T (r)
0 / @(C“L Ld (?F (Z)|>dz, F e W50, 00).
0

Consequently, it follows that, for f € L} (RJY),

||A2Lp1e1f||(q>) = inf

{ 0 <
:ir;%{)\:/ﬂ%n (1+x*)/ooo ( A 2 )\)dzdw*g}
{A:/Rm(l+|az*|)/ooo <§:F(z)|)dzdm* < 1}

:if;%{ /m/ <|F >dx1d:c*<1}

=Cllflle
For f € WZ®(Rf"), we arrive at

||A2Lplelf||(<l>) = )1\1;%{ /W dz* / ( hm (@)e lf(:r,)|>dx1 < 1}
C
: * ror (r) *
_gfo{)\./am(1+|cc |)/0 <)\h " (2)F (z))dzdaz < 1}
_)1\1;0 : o Jo )\ Y11 T1,X r1dxr =

Ch"ller Di(f)ll(@)-

IN
=
=4

A

Similarly, for ¢« = 2,3,...,m, we have

| TP e Lyp®Ry);
(I) - T,
( WDy (llay, | € WER(RE).

||Ah4p181

Adding these inequalities and applying (1) yields the lower bound in (8).

To estimate the upper bound in (8), we shall again reduce it to the one-dimen-
sional case. First we note that, for fixed * and ¢ > 0, there exists a function
Gy € W2P(R}) such that

/Oooq><i|F() Gi(z >d2<// ( )F(z)odsz
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/OOO ( |77 ( G (2 )dz<// ( w(Z)F(z)|>dsz,

where G; depends on F' continuously. See [25]. Accordingly, for F(z) = F(z,x*),
we have G¢(z) = G¢(z,x*) as well. Let

@) =G

and

T x € Ry
1+|a:*| ) 0

Then g, € W;@(R()”

)
17 =l = e [ i [T a(51re) - G Jazia <1}

I
>
YE,

>

T
H
g
+
8
*
=
o~
[}
3
=+ Q
o\
>
/\
l>
'G
O
2
:
N

o

ﬁ

o

Q

o

8

A

—_

R’_/

IA

. c .,
ey " ‘I’<A|Aww)elf “””)dw < 1}

=ClAT o @e fll@), 0<m <t

and

t"|1 D1 gell (@) = m%{)\ /6”*(1 + |af3*|)/0OO <|<,0 G'(7 (2 )|>dzdm* < 1}
< ir;fo{)\:/Rm*(l—Hw*DC/t /Oo¢<C|A:@(Z)F(z)|>dzd7dw* < 1}

iﬁfo{A : /Rm 1+ |z*|) / / ( ¢(Z)F(z)|>drdzdac* < 1}

o 0 [ (G o <1

= Air;fo{)\ : /m (\Anm m)elf(a:)’)da: < 1}

- CHAlel(m)elf”(q))? 0 S T1 S t.

IN

Similarly, we can prove that, for each i and ¢t > 0, there are functions g; € W;"I’(R(’{’)
and 7; € [0,¢] such that

1f = gtll@) < CIAT 4, @)e; fll@ and 7@ Digell@) < CIAL . (@)e. [ ll(@)-
By the double inequality (1), we obtain
If —gelle < ClIAT fle and  t"[l@; Digille < C[|A7 (9)
Adding these inequalities results in the upper bound in (8). O

Tigi(x)e; Tipi(x)e;

Remark 3.1. For m = 1, Theorem 3.1 coincides with corresponding 1-dimensional
one in [25].
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Theorem 3.2. Let f € L[0,00) and r € N. Then there exist some constants C
and tg such that

wr,@(f? t)<I>
C

Proof. Since K, ,(f,t")o < K, ,(f,t")s, we only need to prove the upper estimate.
By those inequalities in (9), we only need to prove

12D} gill (@) < ClIAL 4, (e, fll (@)

S KT,L,O(f? tr)<1> S er,go(fa t)@v 0<t S tO' (10)

for each 1.
In [23], it was obtained that

0o 1 o () C t 00 C i,

For F(z) = F(z,2*), we have G1(z) = G¢(z,x*) as well. Let

Z1
1+ |x*|

gt(:c):Gt< ,az*), x € R{.

Then g, € W2®(Rf") and
27| DT gy || (o) = inf { A : (1+ |z*]) T o 1|t2TG(T)(z)| dedz* < 1
1@ = 320 Ry o A g -

cC [t[*_(C
< i . * r * <
< )1\1;%{)\ /R(T*(l + |z |)—t /0 /0 <I><>\ |AW(Z)F(2)|>dszdw < 1}

C
< s . * _ "’l * <
< /{I;%{/\ /R(T*(1+|ac |)/0 @(A}ATM(Z)F(z)Ddzdx < 1}
:OHZS:{gOl(fE)ﬁf”(‘I’)’ OST{St

Similarly, we can prove that, for each ¢ and ¢ > 0, there are functions g; € W;’q’(Rg’)
and 7/ € [0,t] such that

7 1D7 gell @) < ClAT G, @), fll@)-
Using (1), it follows that
21D} gelle < ClAL, (@), fllo-

Combining this inequality with (9) and adding these inequalities lead to (10). The
proof of Theorem 3.2 is complete. O

Remark 3.2. For m = 1, Theorem 3.2 coincides with corresponding 1-dimensional
one in [23].

4. A direct theorem. We now in a position to state and prove the direct theorem.
Theorem 4.1 (Direct theorem). Let f € L5 (RyY), n > m, and U € Ay. Then

]

n

Vo5 = Fllo < Clone (1.1 ) + (1)
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Proof. Our proof is based on induction on the dimension m and on a decomposi-
tion for Baskakov—Kantorovich’s operator. For m = 1, the inequality (11) can be
rewritten as

Vo) = fle < Con (£r) < Clone(faz) +
[e3]

which has been proved in [21].
For m > 2, the proof of Theorem 4.1 follows from combining Lemmas 2.1 and 2.4
with the estimates

=

n

£l /€ Ly (R
Vnm _ SC m 12
Vo) = £l 1<2||¢202f|¢+||f||¢>, ewzemy). P

The first estimate in (12) can be derived from Lemma 2.1.
By (2), the second estimate in (12) is valid for m = 2. If the second estimate
n (12) is valid for m = r > 2, that is,

C T
[V (f) = flle < n(Z ||<P?Di2f||c1>+|f||<1>>, (13)
i=1

then we have to further verify its validity for m = r + 1. We claim that the
decomposition formula

(at1)/n 2 -
nr—i—l fa Z Pn,ky 131 / Zopn-i-kl,k:* <1 —l—l‘l)nr

k1=0 ku/n k=

(k*+1)/n
x/ fug, v )du*duy

s (k1+1)/n > T
= Z Dn,ky (ml)n/ ZOPnJrkl,k* (M)TLT

k1 =0 ki/n k =

(k" +1)/[n(1+u1)]
X / f(ul,(l +u1)u*)(1 + up)du*duy
k* /[n(1+u1)]

is valid, where &* = (22, 23, ...,Zr41), * = (21, 2*) € R6+1, k* = (ko k3, ..., kiy1),
k= (ki k") € Ng™, and Y00 = S0 (> - 300 - This formula can
be directly checked up and will take an important role in the following proof. Let

Guy (1) £ flur, (1 +up)t), 0<t<oo

z= (21,2 2) = T2 s Epl )\ _ T
19425 .. %r 1+$1’1+$1, ’1+1'1 1+$1

From the formula (14), it follows that

and

*

(k1+1)/n

Va r+1(f; Z Pnkq xl / [Vn+/~c1,r (gul(')az) — Gu, (Z)} duy

k1=0 k1i/n
+ [Vn,1(h('),$1) — h(l‘l)] = T1 + Tg, (15)

where
%

x
142

h(ul)éh(uhm)éf(uh(l-i-m) >7 0 <up <oo.



APPROXIMATION IN ORLICZ SPACES 735

[ #(5¥ertro) - @) ae
/ ( Z| (202 ) )dw+/ o( i) )ae

which can be obtained from (13), and Jensen’s inequality, we arrive at
1 1| &
o = T1|>da: :/ o = Pk (T1)N
/]RSH ()\ R A klz::() !
(k1+1)/n
X/k [Vn+k1,r(9u1(')az) - gul('z)]dul de

1/n
0 (k1+1)/n 1
< — . _
< [ X restoun | (5 Wi (001 ):2) = g ()] )

1/n

By the inequality

(k1+1)/n

= Z/ Pk, (71) 1+$1)dx1n/ duy

k'l 0 kl/n

1
0 )
0o - (k1+1)/n T
< Z n(n+ ky 1)/ / & L
= (=1 =2) S, m s\ A+ k) =

+ /6 (I)(A(n(ikl)gul (Z)I)d21 duy.

On the other hand, by definition, we can deduce
¢} (®) D} gu, (x) = :(1 + &) (1 + u1) Dy f (ur, (1 + ur))
(gpz-‘rlDz-ﬁ-lf) (Ul, (1 + U;l)w)

(safD?gul)(zM) dz

So, we obtain

1 L n(n+ky—1) [HatD/n
O —|T; < - =
/ (A' 1')‘1””— 2 D=2 //

k1=0

C
J f’(mw
r+1
X Z|(9012Di2f)(ul,(1+u1)z)|>dz
i=1
C
Jr/6‘I’<)\(n+kl)|f(u1,(1+u1)z)>dz
RZ (n+k)(n—1)(n—-2)A
r+1

(kit1)/n 4
<
> Z /kl/n 1+wu
XZ [(p2D?f) ul,(1+u1)z)|>d((1+u1)z)

du1

k1=0
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Cn(n+k —1)
+/ @<<n Fay Ty o) UAGL g ul)z)>d((l ! ul)z)] "

o (k14+1)/n r+1
< Z/k/n /O<I>< )\Zl ul,(1+u1)z)|>d((1+ul)z)

k1=0

(16)
C
JF/ ‘I’<n)\|f(’u1, (1+ ul)Z)I)(i((l +u1)z)] duy
r+1 C’
/RT+1 < )\Z| )du+/0+l¢(m|f(u)|>du
By Lemma 2.2, the inequality (7), and the convexity of ®(t), we acquire
1
( )dw = Jen @(Alvn»l(hm,xl) - h(:vl)l)dw
<[ o e = (@) )dz
1 C 1 C
< = K - 2 "
<3 /Rgﬂ <I><n)\|h (x1)|>dm+ 5 /Rg“ @(n)\go (z1)|h (x1)|)da:
C c
< o — ol — 2 " )
< /}RT+1 (n)\|h(x1)|)dw+/Rg+1 (n)\w (x1)|h (x1)|)da:
Denoting ¢;;(x) = VZTizy for 1 <i<j<r+1and D (%8(% , we have
r+1 r+1
@*(w)h" (u) = u(l + u) DQf"'Z - lzf+z 1_|_ iZIf
r+1r+1 s m*
i J
+ZZ ](u’(1+u)l+m1)
1=2 j= 2
1+ r+1 r+1 r+1
= D2 D D
<1+|w| 1f+Z‘P1z 1zf+12;g07,1 zlf‘i'zl_'_ul_i_‘w'(pz zf

r4+1 %
u £
2 TPl f)(“’(l+“)1+x1>'

1,j=2,1#]

Recalling that ¢;;(x) is not bigger than ¢;(x) or ¢;(x) and the fact

D} f(x)| < sup |D}f(z)|
1<i<r+1

in [7, Lemma 2.1], we obtain

1 1 C
o =|T <= il
/R (A' 2')“‘ 2/Rg+1q)<m'f(w)')dw

r+1
/RM (AZI (92D2f) >dw (17)

Combining (15), (16), and (17) and paying attention to computation of norm and
the inequality (1), we obtain the second estimate of (12) for any m > 2.
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For g € W2®(R§"), combining (12) with Lemma 2.1 and Theorem 3.1 gives
WVam(f) = Fllo < Vam(f) = Vam(@)lle + [Vam(9) — glle + If — glle

C m
<ClIf = glle+ | llglle + > leiDigle
=1

1 — C
<ClIf =gllo + =D I¢iD2glle ) + Il llo

i=1

1 1
< Clons(.527) + 71010
The proof of Theorem 4.1 is complete. O

5. Conclusions. In this paper, using K-functional and a decomposition technique
and considering some properties of multivariate Baskakov—Kantorovich operators in
the form of Lemmas 2.1 to 2.4, we presented two equivalent theorems, Theorems 3.1
and 3.2, between the K-functional and modulus of smoothness, and obtained a
direct theorem, Theorem 4.1, in the Orlicz spaces L} (Rf").

Acknowledgments. The authors are thankful to anonymous referees for their
helpful suggestions and valuable comments on the original version of this paper.
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