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Abstract. In this paper, our goal is to improve the local well-posedness theory
for certain generalized Boussinesq equations by revisiting bilinear estimates

related to the Schrödinger equation. Moreover, we propose a novel, automated

procedure to handle the summation argument for these bounds.

1. Introduction. The focus of this article is to develop a local well-posedness1

(LWP) theory for the Cauchy problem given by utt −∆u+ ∆2u±∆(u2) = 0, u = u(x, t) : Rn × I → R,

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(1)

where 0 ∈ I ⊆ R is an open interval and (u0, u1) ∈ Hs(Rn)×Hs−2(Rn). The differ-
ential equation above belongs to a family of equations called generalized Boussinesq
equations, with the 1+1-dimensional version being known as the “good” Boussinesq
equation.

In fact, the 1+1-dimensional Cauchy problem is the best understood so far, with
Kishimoto [6] showing that it is LWP for s ≥ −1/2 and ill-posed (IP) for s < −1/2.
This result capped a sustained drive for this problem with contributors like Bona-
Sachs [1], Linares [8], Fang-Grillakis [3], Farah [5], and Kishimoto-Tsugawa [7].
Thus, our interest here is in investigating the high-dimensional (i.e., n ≥ 2) case of
1, for which, to our knowledge, the only available results are due to Farah [4] and
Okamoto [9].

The former states that 1 is LWP for u0 ∈ Hs(Rn), u1 = ∆φ with φ ∈ Hs(Rn),
and

s ≥ max

{
0,
n− 4

2

}
.

We make the remark that the index (n−4)/2 appears naturally in connection to our
problem since, by ignoring the lower order term ∆u, the equation is scale-invariant
under the transformation

u 7→ uλ(x, t) = λ−2u(λ−1x, λ−2t)
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and one has

‖uλ(0)‖Ḣs(Rn) = λ
n−4
2 −s‖u0‖Ḣs(Rn).

For the second result, Okamoto proved that 1 is IP for (u0, u1) ∈ Hs(Rn)×Hs−2(Rn)
when s < −1/2, in the sense that norm inflation occurs and, as a consequence, the
associated flow map is discontinuous everywhere. Hence, based on this picture, one
is naturally led to study what happens in the regime when

−1

2
≤ s < max

{
0,
n− 4

2

}
.

In particular, is it the case that 1 is LWP for (u0, u1) ∈ Hs(Rn)×Hs−2(Rn) with
s < 0 when n ≥ 2? Our main result provides a partial positive answer to this
question.

Theorem 1.1. If n = 2 or n = 3, then 1 is LWP for (u0, u1) ∈ Hs(Rn)×Hs−2(Rn)
with −1/4 < s < 0.

The argument for this theorem is inspired by an approach due to Kishimoto-
Tsugawa [7] (see also [6] and [9]), in which the first step consists in reformulating
1 as the Cauchy problem for a nonlinear Schrödinger equation with initial data
in Hs(Rn). This is followed by setting up a contraction scheme for the integral
version of this new Cauchy problem, where we use Bourgain functional spaces and
corresponding linear and bilinear estimates.

The structure of the paper is as follows. In the next section, we start by intro-
ducing the notation and terminology used throughout the article and by performing
the reformulation step. Also there, we detail the contraction scheme and reduce it
to the proof of a family of bilinear estimates related to the Schrödinger equation. In
section 3, we revisit work by Colliander-Delort-Kenig-Staffilani [2] and Tao [11] for
this type of bounds, provide a unitary framework to tackle them, and derive results
in previously unknown scenarios. In the final section, we discuss an innovative, au-
tomated method, based on a Python code, to deal with the summation component
of the proof for the bilinear estimates, which might also be of independent interest.

2. Preliminaries.

2.1. Notational conventions and terminology. First, we agree to write A . B
in a certain setting when A ≤ CB and C > 0 is a constant depending only upon
fixed parameters which may change from one setting to another. Moreover, we
write A ∼ B to denote that both A . B and B . A are valid. Next, we recall the
notations 〈a〉 = (1 + |a|2)1/2 (for any a ∈ Rn),

ẑ(ξ) =

∫
Rn
e−ixξ z(x) dx and ŵ(ξ, τ) =

∫
Rn×R

e−i(xξ+tτ) w(x, t) dx dt,

the last two representing the Fourier transform of z = z(x) and the spacetime
Fourier transform of w = w(x, t), respectively. Finally, we let ϕ = ϕ(t) denote
the classical, smooth cutoff function ϕ : R → R satisfying ϕ ≡ 1 on [−1, 1] and
supp(ϕ) ⊆ [−2, 2].
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Following this, we define the Sobolev and Bourgain norms2

‖z‖Hs(Rn) := ‖〈ξ〉sẑ(ξ)‖L2
ξ(Rn), (2)

‖w‖Xs,θ(Rn×R) :=‖〈ξ〉s〈τ − |ξ|2〉θŵ(ξ, τ)‖L2
ξ,τ (Rn×R), (3)

for arbitrary s, θ ∈ R. For T > 0, we will also use the truncated norm

‖z‖Xs,θT := inf
w=z on [0,T ]

‖w‖Xs,θ .

Working directly with these norms, one can easily prove the classical bound

‖w‖L∞t Hsx . ‖w‖Xs,θ (4)

and the inclusion Xs,θ ⊂ C(R, Hs), both for all s ∈ R and θ > 1/2.

2.2. Reformulation step. As mentioned in the introduction, we start the ar-
gument for Theorem 1.1 by rewriting 1 in the form of a Cauchy problem for a
Schrödinger equation. For this purpose, we define as in [7]

v := u− i(1−∆)−1ut and v0 := u0 − i(1−∆)−1u1.

Straightforward calculations reveal that ivt −∆v = H(v, v) := v−v
2 ± ω(D)

(
v+v

2

)2
, v = v(x, t) : Rn × I → C,

v(x, 0) = v0(x),

(5)

where ω = ω(D) is the spatial multiplier operator with symbol

ω(ξ) =
|ξ|2

1 + |ξ|2
.

Moreover, for an arbitrary T > 0, the map (u, u0, u1) 7→ (v, v0) from

U := (C([0, T ], Hs) ∩ C1([0, T ], Hs−2))×Hs ×Hs−2

to

V := C([0, T ];Hs)×Hs

is Lipschitz continuous. Conversely, if v and v0 satisfy 5, then, by letting

u =
v + v

2
, u0 =

v0 + v0

2
, and u1 = (1−∆)

(
v0 − v0

2i

)
,

it is easy to check that that u, u0, and u1 are all real-valued and they satisfy 1.
Furthermore, noticing that

−2iut = (1−∆)(v − v),

one deduces that the map (v, v0) ∈ V 7→ (u, u0, u1) ∈ U is also Lipschitz continuous.
Thus, LWP in Hs ×Hs−2 for 1 is equivalent to LWP in Hs for 5.

2From here on out, for a functional space Y , we write either Y = Y (Rn) or Y = Y (Rn ×R) as
the majority of such norms refers to these two particular situations.
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2.3. Setting up the contraction argument and reducing it to the proof of
bilinear Schrödinger estimates. In proving that 5 is LWP for v0 ∈ Hs, we adopt
the standard procedure and, using Duhamel’s formula, write its integral version

v(t) = S(t)v0 − i
∫ t

0

S(t− t′)H(v(t′), v(t′)) dt′, (6)

for which we set up a contraction argument using suitable Xs,θ spaces. Above,
S(t) = e−it∆ is the propagator for the linear Schrödinger equation iwt −∆w = 0,
i.e.,

w(t) = S(t)w(0), (∀) t ∈ R.

Remark 1. By comparison, Farah [4] writes the main equation as

utt + ∆2u = ∆(u∓ u2)

and, using the Fourier transform and Duhamel’s formula, derives

u(t) =
S(t) + S(−t)

2
u(0) +

S(t)− S(−t)
−2i∆

ut(0)

+

∫ t

0

S(t− t′)− S(−t+ t′)

2i
(−u(t′)± u2(t′)) dt′.

Following this, he proves LWP for 1 by running a contraction argument for this
integral formulation in functional spaces related to Strichartz-type estimates for
the Schrödinger group (S(t))t∈R.

The next statement is our LWP result for 5, which, as we argued, implies Theorem
1.1.

Theorem 2.1. For n = 2 or n = 3, if θ > 1/2, (θ − 1)/2 < s < 0, and r ≥ 1,

then, for any ‖v0‖Hs ≤ r, there exist T ∼ r−4/(2s−n+4) and v ∈ Xs,θ
T ∩C([0, T ], Hs)

solving the integral equation 6 on [0, T ] with the data-to-solution map

v0 ∈ {z; ‖z‖Hs ≤ r} 7→ v ∈ C([0, T ], Hs) ∩Xs,θ
T

being Lipschitz continuous. Moreover, this solution is unique in the class of Xs,θ
T ∩

C([0, T ], Hs) solutions for 6.

As is always the case with this type of results, they are the joint outcome of a set
of estimates which are used in the context of a contraction scheme. For the above
theorem, these bounds are

‖zλ‖Hs . λ
n
2−s−2‖z‖Hs , (7)

‖w‖Xs,θ−1 + ‖w‖Xs,θ−1 . ‖w‖Xs,θ , (8)∥∥∥∥ϕ(t)

(
S(t)z − i

∫ t

0

S(t− t′)F (·, t′) dt′
)∥∥∥∥

Xs,θ
. ‖z‖Hs + ‖F‖Xs,θ−1 , (9)

and

‖ωλ(D)(u v)‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (10)

‖ωλ(D)(u v)‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (11)

‖ωλ(D)(u v)‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (12)

where λ ≥ 1 is an arbitrary scaling parameter, zλ = zλ(x) = λ−2z(λ−1x), and
the multiplier operator ωλ = ωλ(D) has the symbol ωλ(ξ) = ω(λξ). With the
exception of the bilinear estimates, the other ones are by now somewhat classical
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with 7 and 8 being directly argued from 2 and 3, while 9 appeared in a more
general setting in Tao’s monograph [12] (Proposition 2.12). Furthermore, the way
in which we combine 7-12 to derive Theorem 2.1 mirrors closely the path followed by
Kishimoto-Tsugawa in [7] to prove their respective results. This is why we provide
here only an outline of the argument for Theorem 2.1 and refer the interested reader
to [7] for more details.

Sketch of proof for Theorem 2.1. By letting λ ≥ 1 denote an arbitrary scaling pa-
rameter and taking

vλ(x, t) = λ−2v(λ−1x, λ−2t) and v0λ(x) = λ−2v0(λ−1x),

it follows that

vλ(t) = S(t)v0λ − i
∫ t

0

S(t− t′)Hλ(vλ(t′), vλ(t′)) dt′, (13)

where

Hλ(w,w) := λ−2 w − w
2
± ωλ(D)

(
w + w

2

)2

.

It is clear that v solves 6 on the interval [0, T ] if and only if vλ solves 13 on [0, λ2T ].
The goal is to show that 13 admits a unique local solution on the time interval [0, 1]
if λ is chosen sufficiently large.

For this reason, one works with the following modified version of 13,

vλ(t) = ϕ(t)S(t)v0λ − iϕ(t)

∫ t

0

S(t− t′)Hλ(vλ(t′), vλ(t′)) dt′, (14)

and proves that it has a unique global-in-time solution. If we denote the right-hand
side of this integral equation, with v0λ fixed, by Iλ = Iλ(vλ), then an application of
8-12 yields

‖Iλ(vλ)‖Xs,θ
. ‖v0λ‖Hs + ‖Hλ(vλ, vλ)‖Xs,θ−1

. ‖v0λ‖Hs + λ−2 (‖vλ‖Xs,θ−1 + ‖vλ‖Xs,θ−1) +
∥∥∥ωλ(D) (vλ + vλ)

2
∥∥∥
Xs,θ−1

. ‖v0λ‖Hs + λ−2‖vλ‖Xs,θ + ‖vλ‖2Xs,θ .

Similarly, one obtains

‖Iλ(vλ)− Iλ(wλ)‖Xs,θ .
(
λ−2 + ‖vλ‖Xs,θ + ‖wλ‖Xs,θ

)
‖vλ − wλ‖Xs,θ .

Based on these two estimates, we argue that for R ∼ ‖v0λ‖Hs the mapping

Iλ : {‖w‖Xs,θ ≤ R} → {‖w‖Xs,θ ≤ R}

is a contraction if we can choose λ large enough and, at the same time, have3

‖v0λ‖Hs . 1. This is feasible by taking λ ∼ r2/(2s−n+4) and using 7. Moreover,
with this choice, we also obtain that the time of existence for solutions to 6 satisfies
T ∼ λ−2 ∼ r−4/(2s−n+4).

The uniqueness claim follows by comparable arguments (also relying on 4), for
which we point to the proof of Proposition 4.1 in [7].

3It is precisely the role of the scaling procedure to make the size of ‖v0λ‖Hs small enough to
be amenable for the contraction argument.
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3. Bilinear estimates. In this section, we focus our attention on proving 10-12
and, for this purpose, we first revisit related results obtained by Colliander-Delort-
Kenig-Staffilani [2] (see also earlier work addressing similar issues by Staffilani [10])
and Tao [11]. The former paper provided a sharp geometric analysis for bilinear
bounds of the type

‖u v‖Xσ,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (15)

‖u v‖Xσ,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (16)

‖u v‖Xσ,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (17)

on R2+1 and then used them in the context of LWP for Schrödinger equations
with quadratic nonlinearities. The article by Tao took up the more general issue of
multilinear estimates for arbitrary Xs,θ spaces and developed an abstract framework
for proving them, which is now referred to in the literature as the [k;Z]-multiplier
norm method. As an application of this method, the same paper established the
bilinear estimate

‖u v‖Xs,−1/2+ε . ‖u‖Xs,1/2−ε‖v‖Xs,1/2−ε (18)

on Rn+1 with 1 ≤ n ≤ 3, ε > 0, and ε . s + 1/4 ≤ 1/4, and made the claim that
similar arguments lead to

‖u v‖Xs,−1/2+ε . ‖u‖Xs,1/2−ε‖v‖Xs,1/2−ε , (19)

‖uv‖Xs,−1/2+ε . ‖u‖Xs,1/2−ε‖v‖Xs,1/2−ε , (20)

on Rn+1 when either n = 2 and s+ 3/4 & ε or n = 3 and s+ 1/2 & ε.
In line with our main goal, we investigate the validity of 10-12 on Rn+1 with

n = 2 or 3 for pairs of indices (s, θ) satisfying s < 0 and θ > 1/2. Using the trivial
observation ∣∣∣ ̂ωλ(D)w(τ, ξ)

∣∣∣ =
λ2|ξ|2

1 + λ2|ξ|2
|ŵ(τ, ξ)| ≤ |ŵ(τ, ξ)| ,

which yields
‖ωλ(D)w‖X s̃,θ̃ ≤ ‖w‖X s̃,θ̃

for an arbitrary pair (s̃, θ̃), it follows that it is enough to look at

‖u v‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (21)

‖u v‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (22)

‖u v‖Xs,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ , (23)

under the same conditions for n, s and θ.
Even though one can argue that whatever is needed for proving Theorem 1.1

in terms of bilinear estimates is already covered by 15-17 and 18-20, we choose to
provide a stand-alone proof of 21-23 for a number of reasons. One is that we have
a unitary argument for both n = 2 and n = 3. Another is that we are able to prove
15-16 for indices σ, s, and θ not covered in [2]. Finally, our proof suggests that,
in principle, the pairs of indices (s, θ) for which 10-12 hold true coincide with the
ones available for the validity of 21-23. Thus, it is very likely that the functional
spaces on which we run the contraction argument need to be modified in order for
the Sobolev regularity in Theorem 1.1 to be lowered.

In arguing for 21-23, we rely on Tao’s methodology, which is directly specialized
to our setting. We denote

Γ3(Rn×R) = {((ξ1, τ1), (ξ2, τ2), (ξ3, τ3)) ∈ (Rn×R)3; (ξ1, τ1)+(ξ2, τ2)+(ξ3, τ3) = 0}
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and define∫
Γ3(Rn×R)

f :=

∫
(Rn×R)2

f((ξ1, τ1), (ξ2, τ2), (−ξ1 − ξ2,−τ1 − τ2)) dξ1dτ1dξ2dτ2.

Any function m : Γ3(Rn × R) → C is called a [3;Rn × R]-multiplier and we let
‖m‖[3;Rn×R] denote the best constant for which∣∣∣∣ ∫

Γ3(Rn×R)

m((ξ1, τ1),(ξ2, τ2), (ξ3, τ3))f1(ξ1, τ1)f2(ξ2, τ2)f3(ξ3, τ3)

∣∣∣∣
≤‖m‖[3;Rn×R]‖f1‖L2(Rn×R)‖f2‖L2(Rn×R)‖f3‖L2(Rn×R)

is valid for all test functions (fi)1≤i≤3 on Rn × R.
If we take for example 21, then, by applying duality and Plancherel’s theorem,

we can rewrite it equivalently as∣∣∣∣ ∫
Γ3(Rn×R)

û(ξ1, τ1)v̂(ξ2,τ2)ŵ(ξ3, τ3)

∣∣∣∣
∼
∣∣∣∣∫

Rn×R
u(x, t)v(x, t)w(x, t) dxdt

∣∣∣∣
. ‖u‖Xs,θ‖v‖Xs,θ‖w‖X−s,1−θ
= ‖〈ξ〉s〈τ − |ξ|2〉θû(ξ, τ)‖L2

ξ,τ
‖〈ξ〉s〈τ − |ξ|2〉θv̂(ξ, τ)‖L2

ξ,τ

· ‖〈ξ〉−s〈τ − |ξ|2〉1−θŵ(ξ, τ)‖L2
ξ,τ
,

which can be easily turned into∣∣∣∣ ∫
Γ3(Rn×R)

〈ξ3〉s〈τ3 + |ξ3|2〉θ−1

〈ξ1〉s〈τ1 + |ξ1|2〉θ〈ξ2〉s〈τ2 + |ξ2|2〉θ
f1(ξ1, τ1)f2(ξ2, τ2)f3(ξ3, τ3)

∣∣∣∣
. ‖f1‖L2(Rn×R)‖f2‖L2(Rn×R)‖f3‖L2(Rn×R).

Thus, according to the above definitions, proving 21 is identical to showing that∥∥∥∥ 〈ξ3〉s〈τ3 + |ξ3|2〉θ−1

〈ξ1〉s〈τ1 + |ξ1|2〉θ〈ξ2〉s〈τ2 + |ξ2|2〉θ

∥∥∥∥
[3,Rn×R]

. 1 (24)

holds true, with similar multiplier-norm estimates being available for both 22 and
23. In fact, these new bounds can be stated generically in the form∥∥∥∥ 〈ξ1〉−s〈ξ2〉−s〈ξ3〉s

〈τ1 − h1(ξ1)〉θ〈τ2 − h2(ξ2)〉θ〈τ3 − h3(ξ3)〉1−θ

∥∥∥∥
[3,Rn×R]

. 1, (25)

where hi(ξ) = ±|ξ|2 for all 1 ≤ i ≤ 3.
At this point, Tao introduces the notation

λi = τi − hi(ξi), 1 ≤ i ≤ 3,

and defines the resonance function h : Γ3(Rn)→ R by

h(ξ1, ξ2, ξ3) := h1(ξ1) + h2(ξ2) + h3(ξ3). (26)

It is easy to see that on the support of the multiplier in 25 we have

ξ1 + ξ2 + ξ3 = 0 and λ1 + λ2 + λ3 + h(ξ1, ξ2, ξ3) = 0. (27)

Next, it is argued that one can reduce the proof of 25 to the case when

min{|λ1|, |λ2|, |λ3|} & 1 and max{|ξ1|, |ξ2|, |ξ3|} & 1.
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Following this, a dyadic decomposition for (ξi)1≤i≤3, (λi)1≤i≤3, and h is performed
and one infers

(LHS) of 25

.

∥∥∥∥∥∥
∑

maxNi&1

∑
H

∑
minLi&1

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

XN1,N2,N3;H;L1,L2,L3

∥∥∥∥∥∥
[3,Rn×R]

where

XN1,N2,N3;H;L1,L2,L3
= XN1,N2,N3;H;L1,L2,L3

((ξ1, τ1), (ξ2, τ2), (ξ3, τ3))

:= χ|h(ξ1,ξ2,ξ3)|∼H
∏

1≤i≤3

(
χ|ξi|∼Niχ|λi|∼Li

) (28)

and (Ni)1≤i≤3, (Li)1≤i≤3, and H ∈ 2Z. If we let Nmax ≥ Nmed ≥ Nmin denote the
values of N1, N2, and N3 in decreasing order, with a similar notation for the values
of L1, L2, and L3, then, based on 27, we deduce that

Nmax ∼ Nmed and Lmax ∼ max{H,Lmed} (29)

need to be valid in order for XN1,N2,N3;H;L1,L2,L3
not to vanish.

Using also the relative orthogonality of the dyadic decomposition, Tao is able to
derive initially that

(LHS) of 25

. sup
N&1

∥∥∥∥∥ ∑
Nmax∼Nmed∼N

∑
H

∑
Lmax∼max{H,Lmed}

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

·XN1,N2,N3;H;L1,L2,L3

∥∥∥∥∥
[3,Rn×R]

where the summation in the inner and the outer sums is in fact performed over all
Li’s and Ni’s, respectively, obeying the restriction listed under the sums4. Jointly
with the triangle inequality, this implies that, for some N & 1, at least one of the
estimates

(LHS) of 25 .
∑

Nmax∼Nmed∼N

∑
Lmin&1

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

· ‖XN1,N2,N3;Lmax;L1,L2,L3‖[3,Rn×R]

and

(LHS) of 25 .
∑

Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H�Lmax

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

· ‖XN1,N2,N3;H;L1,L2,L3‖[3,Rn×R]

holds true. In this way, 25 would follow if one shows that∑
Nmax∼Nmed∼N

∑
Lmin&1

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

· ‖XN1,N2,N3;Lmax;L1,L2,L3
‖[3,Rn×R] . 1

(30)

4Similar summation conventions are used throughout this section. See also Section 2 in [11].
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and ∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H�Lmax

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

· ‖XN1,N2,N3;H;L1,L2,L3
‖[3,Rn×R] . 1,

(31)

for all values of N & 1. Tao calls the setting of the first bound (i.e., H ∼ Lmax) the
low modulation case and the one for the second bound (i.e., Lmax ∼ Lmed � H)
the high modulation case.

The first part of the argument for proving 30 and 31 consists in estimating the
two multiplier norms and this has been achieved by Tao in a sharp manner. Given
26, 28, and the existing symmetries, the analysis is reduced to two scenarios. The
so-called (+ + +) case happens when h1(ξ) = h2(ξ) = h3(ξ) = |ξ|2 and, hence,

H ∼ |h| = |ξ1|2 + |ξ2|2 + |ξ3|2 ∼ N2
max. (32)

The other instance, named the (+ + −) case, takes place when h1(ξ) = h2(ξ) =
−h3(ξ) = |ξ|2 and, due to 27, one has

H ∼ |h| =
∣∣|ξ1|2 + |ξ2|2 − |ξ3|2

∣∣ = 2|ξ1 · ξ2| . N1N2. (33)

The following are the combined outcomes of Propositions 11.1 and 11.2 in [11] when
n ≥ 2.

Lemma 3.1. Let n ≥ 2 and take N1, N2, N3, L1, L2, L3, and H to be positive
numbers satisfying 29.

• (+ + +) case: both 32 and

‖XN1,N2,N3;H;L1,L2,L3
‖[3,Rn×R] . L

1
2
minN

− 1
2

maxN
n−1
2

min min{NmaxNmin, Lmed}
1
2 (34)

are valid.
• (+ +−) case: 33 holds true and

1. if N1 ∼ N2 � N3, the multiplier norm vanishes unless H ∼ N2
1 and, in

this situation,

‖XN1,N2,N3;H;L1,L2,L3
‖[3,Rn×R] . L

1
2
minN

− 1
2

maxN
n−1
2

min min{NmaxNmin, Lmed}
1
2 (35)

is valid;
2. if N1 ∼ N3 � N2 and H ∼ L2 � L1, L3, N

2
2 , then

‖XN1,N2,N3;H;L1,L2,L3‖[3,Rn×R] . L
1
2
minN

− 1
2

maxN
n−1
2

min min

{
H,

H

N2
min

Lmed

} 1
2

(36)

is valid. The same estimate holds true if the roles of indices 1 and 2 are
reversed. This is also called the coherence subcase;

3. in all other instances not covered above and for ε > 0,

‖XN1,N2,N3;H;L1,L2,L3
‖[3,Rn×R] .L

1
2
minN

− 1
2

maxN
n−1
2

min

·min {H,Lmed}
1
2 min

{
1,

H

N2
min

} 1
2−ε (37)

is valid, with the implicit constant depending on ε. If n = 2, ε can be
removed.
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The second part of the proof for 30 and 31 consists in using the multiplier norm
bounds from the previous lemma and performing the two summations. This is
where we start, in earnest, our own argument. The following definition describes
the indices s and θ relevant to our analysis.

Definition 3.2. We say that the triplet (n, s, θ) is admissible if either

n = 2,
1

2
< θ 6= 3

4
, max

{
θ − 5

4
, 2θ − 2

}
≤ s < 0, (38)

or

n = 2, θ =
3

4
, −1

2
< s < 0, (39)

or

n = 3, θ >
1

2
, 2θ − 3

2
≤ s < 0. (40)

Remark 2. It is easy to verify that if (n, s, θ) is admissible then

s ≥ 2θ +
n− 6

2
>
n− 4

2
. (41)

Moreover, if

n = 2 or n = 3, θ > 1/2,
θ − 1

2
< s < 0, (42)

then a direct argument shows that (n, s, θ) is admissible.

Proposition 1. The bilinear estimate 21 is valid if (n, s, θ) is admissible.

Proof. As argued before, the bound to be proven is equivalent to 24 which, by using
the compatible transformation (τ1, τ2, τ3) 7→ (−τ1,−τ2,−τ3), becomes∥∥∥∥ 〈ξ3〉s〈τ3 − |ξ3|2〉θ−1

〈ξ1〉s〈τ1 − |ξ1|2〉θ〈ξ2〉s〈τ2 − |ξ2|2〉θ

∥∥∥∥
[3,Rn×R]

. 1.

We are in the (+ + +) case and we would be done if we show that 30 and 31 hold
true in this setting. According to 32, we can assume H ∼ N2

max ∼ N2 and, since
s < 0 and θ > 1/2, we deduce

〈N1〉−s〈N2〉−s〈N3〉s

Lθ1L
θ
2L

1−θ
3

.
N−2s〈Nmin〉s

LθminL
θ
medL

1−θ
max

. (43)

We treat first 30, for which one has Lmax ∼ H ∼ N2. If we take advantage
jointly of 34, 43, and θ > 1/2, then we can estimate the left-hand side of 30 by

(LHS) of 30

. N−2s+2θ− 5
2

∑
Nmin.N

∑
1.Lmin≤Lmed.N2

(
〈Nmin〉sN

n−1
2

min

· L
1
2−θ
minL

−θ
med min{NNmin, Lmed}

1
2

)
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. N−2s+2θ−2
∑

Nmin.N−1

∑
1.Lmed.N2

N
n
2
minL

−θ
med

+N−2s+2θ− 5
2

∑
N−1.Nmin.N

∑
1.Lmed.NNmin

〈Nmin〉sN
n−1
2

min L
1
2−θ
med

+N−2s+2θ−2
∑

N−1.Nmin.N

∑
NNmin.Lmed.N2

〈Nmin〉sN
n
2
minL

−θ
med

. N−2s+2θ−2−n2 +N−2s+2θ− 5
2

∑
N−1.Nmin.N

〈Nmin〉sN
n−1
2

min

(
1 + (NNmin)

1
2−θ
)

∼ N−2s+2θ− 5
2

1 +
∑

1.Nmin.N

N
s+n−1

2
min

 .

A simple analysis based on how s+ (n− 1)/2 compares to 0 yields that

N−2s+2θ− 5
2

1 +
∑

1.Nmin.N

N
s+n−1

2
min

 . 1

if and only if (n, s, θ) is admissible.
Next, we address 31, for which we work with Lmax ∼ Lmed � H ∼ N2. This

implies

NNmin . N2 � Lmed, (44)

which leads to

min{NNmin, Lmed} ∼ NNmin. (45)

Together with 34,43, and θ > 1/2, this fact allows us to infer

(LHS) of 31

. N−2s
∑

Nmin.N

∑
1.Lmin≤Lmed∼Lmax

N2�Lmax

〈Nmin〉sN
n
2
minL

1
2−θ
minL

−1
max

. N−2s−2
∑

Nmin.N

〈Nmin〉sN
n
2
min ∼ N

−2s−2

1 +
∑

1.Nmin.N

N
s+n

2
min

 .

Using now 41, we deduce

N−2s−2

1 +
∑

1.Nmin.N

N
s+n

2
min

 ∼ N−s+n−4
2 . 1

and the argument is concluded.

Proposition 2. The bilinear estimate 22 is valid if (n, s, θ) is admissible.

Proof. Following the blueprint of deriving 24, we argue first that 22 is equivalent to∥∥∥∥ 〈ξ3〉s〈τ3 + |ξ3|2〉θ−1

〈ξ1〉s〈τ1 − |ξ1|2〉θ〈ξ2〉s〈τ2 − |ξ2|2〉θ

∥∥∥∥
[3,Rn×R]

. 1.

Thus, we need to prove that both 30 and 31 hold true in the (+ + −) case. We
know that we can rely on 33 and, for each of the bounds, we have to go through all
the three subcases covered in Lemma 3.1.
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We start with the analysis for 30 and consider first the instance when N1 ∼ N2 �
N3, which also forces H ∼ N2

1 . Then, based on 35, we see that we can estimate the
left-hand side of 30 in identical fashion to the way we estimated it in the previous
proposition. Hence, we obtain

(LHS) of 30

. N−2s+2θ− 5
2

∑
Nmin.N

∑
1.Lmin≤Lmed.N2

(
〈Nmin〉sN

n−1
2

min

· L
1
2−θ
minL

−θ
med min{NNmin, Lmed}

1
2

)
. N−2s+2θ− 5

2

1 +
∑

1.Nmin.N

N
s+n−1

2
min


and, consequently, 30 is valid in this instance if (n, s, θ) is admissible.

If we are in the second scenario of Lemma 3.1, by the symmetry of 30 in the
indices 1 and 2, it is enough to work under the assumption that N1 ∼ N3 � N2

and H ∼ L2 � L1, L3, N2
2 . Using 36, 1/2 < θ < 1, and 41, we infer

(LHS) of 30

. N−
1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax
N2
min�Lmax.NNmin

(
〈Nmin〉−sN

n−1
2

min

· L
1
2−θ
minL

θ−1
medL

1
2−θ
max min

{
1,
Lmed
N2
min

} 1
2
)

. N−
1
2

∑
N−1.Nmin.1

∑
1.Lmed≤Lmax.NNmin

N
n−1
2

min L
θ−1
medL

1
2−θ
max

+N−
1
2

∑
1.Nmin.N

∑
1.Lmed.N

2
min

N2
min�Lmax.NNmin

N
−s+n−3

2
min L

θ− 1
2

medL
1
2−θ
max

+N−
1
2

∑
1.Nmin.N

∑
N2
min

.Lmed≤Lmax
N2
min�Lmax.NNmin

N
−s+n−1

2
min Lθ−1

medL
1
2−θ
max

. N−
1
2

1 +
∑

1.Nmin.N

N
−s+n−3

2
min

 . N−
1
2 +

∑
1.Nmin.N

N
−s+n−4

2
min ∼ 1,

which proves 30 in this scenario.
To finish the argument for 30, we need to consider the third subcase of the

(+ + −) case in Lemma 3.1, which, reduced by symmetry, comes down to either
N1 ∼ N2 ∼ N3 or N1 ∼ N3 & N2. For each of them, since H ∼ Lmax, we have

min{H,Lmed} ∼ Lmed and min

{
1,

H

N2
min

}
∼ min

{
1,
Lmax
N2
min

}
. (46)

Moreover, since θ > 1/2, it follows that

1

Lθ1L
θ
2L

1−θ
3

≤ 1

LθminL
θ
medL

1−θ
max

. (47)
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Therefore, when N1 ∼ N2 ∼ N3, these two facts together with 37 and θ > 1/2 allow
us to deduce that

(LHS) of 30 . N−s+
n−4
2 +2ε

∑
1.Lmin≤Lmed≤Lmax.N2

L
1
2−θ
minL

1
2−θ
medL

θ− 1
2−ε

max

. N−s+
n−4
2 +2ε

∑
1.Lmax.N2

L
θ− 1

2−ε
max .

By choosing 0 < ε < θ − 1/2, we argue based on 41 that

N−s+
n−4
2 +2ε

∑
1.Lmax.N2

L
θ− 1

2−ε
max ∼ N−s+2θ+n−6

2 . 1,

which yields the desired result.
On the other hand, if we have N1 ∼ N3 & N2, then, on the basis of 46, 47, 37,

1/2 < θ < 1, and with the same choice for ε, we obtain

(LHS) of 30

. N−
1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax

Lmax.NNmin

(
〈Nmin〉−sN

n−1
2

min

· L
1
2−θ
minL

1
2−θ
medL

θ−1
max min

{
1,
Lmax
N2
min

} 1
2−ε)

. N−
1
2

∑
N−1.Nmin.N

∑
〈Nmin〉2.Lmax.NNmin

〈Nmin〉−sN
n−1
2

min L
θ−1
max

+N−
1
2

∑
1.Nmin.N

∑
1.Lmax.N2

min

N
−s+n−3

2 +2ε
min L

θ− 1
2−ε

max

. N−
1
2

 ∑
N−1.Nmin.N

〈Nmin〉−s+2θ−2N
n−1
2

min +
∑

1.Nmin.N

N
−s+2θ+n−5

2
min


∼ N− 1

2

1 +
∑

1.Nmin.N

N
−s+2θ+n−5

2
min

 .

It can be checked easily that if (n, s, θ) is admissible, then −s+ 2θ+ (n− 5)/2 6= 0.
Thus, we derive

N−
1
2

1 +
∑

1.Nmin.N

N
−s+2θ+n−5

2
min

 . N−
1
2 +N−s+2θ+n−6

2 . 1, (48)

where the last bound follows according to 41. This finishes the proof of 30.
Next, we address 31, for which the scenario N1 ∼ N2 � N3 and H ∼ N2

1 implies
44 and, hence, 45. Then, we can estimate the left-hand side of 31 in exactly the
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same way as we estimated it in the previous proposition. Thus, we infer

(LHS) of 31 . N−2s
∑

Nmin.N

∑
1.Lmin≤Lmed∼Lmax

N2�Lmax

〈Nmin〉sN
n
2
minL

1
2−θ
minL

−1
max

. N−2s−2

1 +
∑

1.Nmin.N

N
s+n

2
min

 ∼ N−s+n−4
2 . 1.

The second subcase of the (++−) case in Lemma 3.1 does not apply here because
H � Lmax. The last one can be reduced by symmetry to the instances when either
N1 ∼ N2 ∼ N3 or N1 ∼ N3 & N2. For each of them, we have

min{H,Lmed} ∼ H, (49)

while for the former we can also rely on

min

{
1,

H

N2
min

}
∼ H

N2
min

, (50)

due to 33. Thus, when N1 ∼ N2 ∼ N3, we argue based on 37, applicable to
0 < ε < θ − 1/2, and 41 that

(LHS) of 31

. N−s+
n−4
2 +2ε

∑
1.Lmin≤Lmed∼Lmax

∑
H.min{Lmax,N2}

L
1
2−θ
minL

−1
maxH

1−ε

. N−s+
n−4
2 +2ε

∑
H.N2

∑
〈H〉.Lmax

L−1
maxH

1−ε

. N−s+
n−4
2 +2ε

∑
H.N2

〈H〉−1H1−ε ∼ N−s+
n−4
2 +2ε . N−s+2θ+n−6

2 . 1.

For the case when N1 ∼ N3 & N2, we use again 37 with 0 < ε < θ − 1/2 and 48
to deduce

(LHS) of 31

. N−
1
2

∑
Nmin.N

∑
1.Lmin≤Lmed∼Lmax

∑
H.min{Lmax,NNmin}

(
〈Nmin〉−sN

n−1
2

min L
1
2−θ
min

· L−1
maxH

1
2 min

{
1,

H

N2
min

} 1
2−ε)

. N−
1
2

∑
Nmin.N

∑
H.NNmin

∑
〈H〉.Lmax

〈Nmin〉−sN
n−1
2

min L
−1
maxH

1
2 min

{
1,

H

N2
min

} 1
2−ε

. N−
1
2

∑
Nmin.N

∑
H.NNmin

〈Nmin〉−sN
n−1
2

min 〈H〉
−1H

1
2 min

{
1,

H

N2
min

} 1
2−ε
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. N−
1
2

∑
Nmin.N−1

N
n−1
2

min

( ∑
H.N2

min

H1−ε

N1−2ε
min

+
∑

N2
min.H.NNmin

H
1
2

)

+N−
1
2

∑
N−1.Nmin.1

N
n−1
2

min

( ∑
H.N2

min

H1−ε

N1−2ε
min

+
∑

N2
min.H.1

H
1
2

+
∑

1.H.NNmin

H−
1
2

)

+N−
1
2

∑
1.Nmin.N

N
−s+n−1

2
min

(∑
H.1

H1−ε

N1−2ε
min

+
∑

1.H.N2
min

H−ε

N1−2ε
min

+
∑

N2
min.H.NNmin

H−
1
2

)

.
∑

Nmin.N−1

N
n
2
min +N−

1
2

 ∑
N−1.Nmin.1

N
n−1
2

min +
∑

1.Nmin.N

N
−s+n−3

2 +2ε
min


. N−

1
2

1 +
∑

1.Nmin.N

N
−s+2θ+n−5

2
min

 . 1.

This finishes the proof of this proposition.

Remark 3. Following up on our rationale to argue for 21-23, by comparison to
what is proved in [2] for 15-16, one can see that Propositions 1 and 2 cover the
previously unknown case for which

1

2
< θ 6= 3

4
and σ = s = max

{
θ − 5

4
, 2θ − 2

}
< 0.

Proposition 3. The bilinear estimate 23 is valid if (n, s, θ) satisfy 42.

Proof. As in the case of the previous two results, one recognizes first that the above
claim is equivalent to the multiplier norm bound∥∥∥∥ 〈ξ3〉s〈τ3 + |ξ3|2〉θ−1

〈ξ1〉s〈τ1 + |ξ1|2〉θ〈ξ2〉s〈τ2 − |ξ2|2〉θ

∥∥∥∥
[3,Rn×R]

. 1.

By using the compatible transformation (τ1, τ2, τ3) 7→ (−τ1,−τ2,−τ3) and relabeling
the indices according to (1, 2, 3) 7→ (1, 3, 2), this can be rewritten as∥∥∥∥ 〈ξ3〉−s〈τ3 + |ξ3|2〉−θ

〈ξ1〉s〈τ1 − |ξ1|2〉θ〈ξ2〉−s〈τ2 − |ξ2|2〉1−θ

∥∥∥∥
[3,Rn×R]

. 1. (51)

As in the derivation of 30 and 31, the previous estimate would follow if we show
that ∑

Nmax∼Nmed∼N

∑
L1,L2,L3&1

〈N1〉−s〈N2〉s〈N3〉−s

Lθ1L
1−θ
2 Lθ3

· ‖XN1,N2,N3;Lmax;L1,L2,L3‖[3,Rn×R] . 1

(52)
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and

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H�Lmax

〈N1〉−s〈N2〉s〈N3〉−s

Lθ1L
1−θ
2 Lθ3

· ‖XN1,N2,N3;H;L1,L2,L3‖[3,Rn×R] . 1

(53)

hold true for any N & 1.
From 51, we see that we operate in the (+ + −) case and, as such, we can rely

on 33 and we perform an analysis based on the subcases described in Lemma 3.1.
Furthermore, due to 42 and Remark 2, we can also take advantage of 41.

For the low modulation estimate 52, if we are in the N1 ∼ N2 � N3 scenario,
we also have that H ∼ Lmax ∼ N2

1 . Thus, based on 35, 1/2 < θ < 1, s < 0, and 41,
we infer

(LHS) of 52

. N2θ− 5
2

∑
Nmin.N

∑
1.Lmin≤Lmed.N2

(
〈Nmin〉−sN

n−1
2

min

· L
1
2−θ
minL

−θ
med min{NNmin, Lmed}

1
2

)
. N2θ−2

∑
Nmin.N−1

∑
1.Lmed.N2

N
n
2
minL

−θ
med

+N2θ− 5
2

∑
N−1.Nmin.N

∑
1.Lmed.NNmin

〈Nmin〉−sN
n−1
2

min L
1
2−θ
med

+N2θ−2
∑

N−1.Nmin.N

∑
NNmin.Lmed.N2

〈Nmin〉−sN
n
2
minL

−θ
med

. N2θ−n+4
2 +N2θ− 5

2

∑
N−1.Nmin.N

〈Nmin〉−sN
n−1
2

min

(
1 + (NNmin)

1
2−θ
)

∼ N2θ−n+4
2 +N−s+2θ+n−6

2 . 1.

Next, if N1 ∼ N3 � N2 and H ∼ L2 � L1, L3, N2
2 , then, using 36 and θ > 1/2,

we derive that

(LHS) of 52

. N−2s− 1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax
N2
min�Lmax.NNmin

(
〈Nmin〉sN

n−1
2

min

· L
1
2−θ
minL

−θ
medL

θ− 1
2

max min

{
1,
Lmed
N2
min

} 1
2
)

. N−2s− 1
2

∑
N−1.Nmin.1

∑
1.Lmed≤Lmax.NNmin

N
n−1
2

min L
−θ
medL

θ− 1
2

max

+N−2s− 1
2

∑
1.Nmin.N

∑
1.Lmed.N

2
min

N2
min�Lmax.NNmin

N
s+n−3

2
min L

1
2−θ
medL

θ− 1
2

max
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+N−2s− 1
2

∑
1.Nmin.N

∑
N2
min

.Lmed≤Lmax
N2
min�Lmax.NNmin

N
s+n−1

2
min L−θmedL

θ− 1
2

max

. N−2s+θ−1

1 +
∑

1.Nmin.N

N
s+θ+n−4

2
min

 .

When n = 2, we argue that s < 0 and θ < 1 imply

s+ θ +
n− 4

2
< 0

and, thus, 52 is valid if s ≥ (θ − 1)/2. When n = 3 and (n, s, θ) is admissible, it
is easy to check that s+ θ + (n− 4)/2 can be either negative, positive, or equal to
zero. If it is negative, then, as above, s ≥ (θ − 1)/2 is a sufficient condition for 52
to hold true. If it is positive, then we deduce with the help of 41 that

(LHS) of 52 . N−2s+θ−1 +N−s+2θ+n−6
2 . N−2s+θ−1 + 1

and, yet again, 52 is valid if s ≥ (θ − 1)/2. If s + θ + (n− 4)/2 = 0, then we infer
that

(LHS) of 52 . N−2s+θ−1 lnN

and we need to impose the stricter condition s > (θ − 1)/2 for 52 to hold true.
Given that, unlike 30, 52 is not symmetric in the indices 1 and 2, we also need

to consider the scenario when N2 ∼ N3 � N1 and H ∼ L1 � L2, L3, N2
1 . In this

situation, an application of 36 yields

(LHS) of 52

. N−
1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax
N2
min�Lmax.NNmin

(
〈Nmin〉−sN

n−1
2

min

· L
1
2−θ
minL

θ−1
medL

1
2−θ
max min

{
1,
Lmed
N2
min

} 1
2
)
,

which is identical with the estimate satisfied by the left-hand side of 30 for the
subcase when N1 ∼ N3 � N2 and H ∼ L2 � L1, L3, N2

2 . Hence,

(LHS) of 52 . N−
1
2 +

∑
1.Nmin.N

N
−s+n−4

2
min ∼ 1.

In order to conclude the proof of 52, we need to investigate the third subcase,
which can be reduced to N1 ∼ N2 ∼ N3, N2 ∼ N3 & N1, and N1 ∼ N3 & N2,
without making extra assumptions. As in the previous proposition, in addition to
Lmax ∼ H . N1N2, we can rely on 46 and, since θ > 1/2, on

1

Lθ1L
1−θ
2 Lθ3

≤ 1

LθminL
θ
medL

1−θ
max

(54)

for either of these scenarios.
If N1 ∼ N2 ∼ N3, then 37 implies

(LHS) of 52 . N−s+
n−4
2 +2ε

∑
1.Lmin≤Lmed≤Lmax.N2

L
1
2−θ
minL

1
2−θ
medL

θ− 1
2−ε

max ,
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which coincides with the initial bound satisfied by the left-hand side of 30 in the
same situation. Thus, with the appropriate choice for ε (i.e., 0 < ε < θ − 1/2), we
obtain

(LHS) of 52 . N−s+2θ+n−6
2 . 1.

When N2 ∼ N3 & N1, we use 46, 54, and 37 to derive that

(LHS) of 52 . N−
1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax

Lmax.NNmin

(
〈Nmin〉−sN

n−1
2

min

· L
1
2−θ
minL

1
2−θ
medL

θ−1
max min

{
1,
Lmax
N2
min

} 1
2−ε)

.

This estimate is identical to the one satisfied by the left-hand side of 30 when
N1 ∼ N3 & N2 and, thus, 52 holds true if (n, s, θ) is admissible.

If N1 ∼ N3 & N2, then we can apply 46, 54, 37, and 1/2 < θ < 1, and take
0 < ε < θ − 1/2 to argue that

(LHS) of 52

. N−2s− 1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax

Lmax.NNmin

(
〈Nmin〉sN

n−1
2

min

· L
1
2−θ
minL

1
2−θ
medL

θ−1
max min

{
1,
Lmax
N2
min

} 1
2−ε)

. N−2s− 1
2

∑
N−1.Nmin.N

∑
〈Nmin〉2.Lmax.NNmin

〈Nmin〉sN
n−1
2

min L
θ−1
max

+N−2s− 1
2

∑
1.Nmin.N

∑
1.Lmax.N2

min

N
s+n−3

2 +2ε
min L

θ− 1
2−ε

max

. N−2s− 1
2

 ∑
N−1.Nmin.N

〈Nmin〉s+2θ−2N
n−1
2

min +
∑

1.Nmin.N

N
s+2θ+n−5

2
min


∼ N−2s− 1

2

1 +
∑

1.Nmin.N

N
s+2θ+n−5

2
min

 .

It is easy to verify that, when (n, s, θ) is admissible, s+ 2θ+ (n−5)/2 can be either
positive, negative, or equal to zero. As such

N−2s− 1
2

1 +
∑

1.Nmin.N

N
s+2θ+n−5

2
min

 ∼ N−s+2θ+n−6
2 , N−2s− 1

2 , or N−2s− 1
2 lnN,

respectively. Due to 41, we see that 52 would be valid in this case if we ask for
s > −1/4, which is a weaker condition than s > (θ − 1)/2 imposed before. With
this, the argument for 52 is finished.

Next, we turn to the proof of 53, which is quite similar to the one for 31. If
N1 ∼ N2 � N3 and, hence, H ∼ N2

1 , then we can rely on 45. Jointly with 54, 35,
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θ > 1/2, and 41, it yields

(LHS) of 53 .
∑

Nmin.N

∑
1.Lmin≤Lmed∼Lmax

N2�Lmax

〈Nmin〉−sN
n
2
minL

1
2−θ
minL

−1
max

. N−2

1 +
∑

1.Nmin.N

N
−s+n

2
min

 ∼ N−s+n−4
2 . 1.

We have no coherence case to explore since H � Lmax. Thus, all we are left
to analyze is the stand-alone scenarios N1 ∼ N2 ∼ N3, N2 ∼ N3 & N1, and
N1 ∼ N3 & N2. First, we note that we can use 49 in all three of these cases. When
N1 ∼ N2 ∼ N3, 50 is also available. If we bring 54 and 37 into the mix, then we
deduce

(LHS) of 53

. N−s+
n−4
2 +2ε

∑
1.Lmin≤Lmed∼Lmax

∑
H.min{Lmax,N2}

L
1
2−θ
minL

−1
maxH

1−ε,

which coincides with the estimate satisfied by the left-hand side of 31 in the same
situation. Accordingly, by choosing 0 < ε < θ − 1/2 and applying 41, we infer that
53 holds true in this instance.

If N2 ∼ N3 & N1, then, with the help of 54, 37, and 49, we obtain

(LHS) of 53

. N−
1
2

∑
Nmin.N

∑
1.Lmin≤Lmed∼Lmax

∑
H.min{Lmax,NNmin}

(
〈Nmin〉−sN

n−1
2

min L
1
2−θ
min

· L−1
maxH

1
2 min

{
1,

H

N2
min

} 1
2−ε)

.

This is identical to the bound satisfied by the left-hand side of 31 when N1 ∼ N3 &
N2 and, hence, 53 is seen to be valid by taking ε as above and relying on 48.

When N1 ∼ N3 & N2, a very similar argument leads to

(LHS) of 53

. N−2s− 1
2

∑
Nmin.N

∑
1.Lmin≤Lmed∼Lmax

∑
H.min{Lmax,NNmin}

(
〈Nmin〉sN

n−1
2

min L
1
2−θ
min

· L−1
maxH

1
2 min

{
1,

H

N2
min

} 1
2−ε)

. N−2s− 1
2

∑
Nmin.N

∑
H.NNmin

∑
〈H〉.Lmax

〈Nmin〉sN
n−1
2

min L
−1
maxH

1
2 min

{
1,

H

N2
min

} 1
2−ε

. N−2s− 1
2

∑
Nmin.N

∑
H.NNmin

〈Nmin〉sN
n−1
2

min 〈H〉
−1H

1
2 min

{
1,

H

N2
min

} 1
2−ε

. N−2s− 1
2

∑
Nmin.N−1

N
n−1
2

min

( ∑
H.N2

min

H1−ε

N1−2ε
min

+
∑

N2
min.H.NNmin

H
1
2

)
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+N−2s− 1
2

∑
N−1.Nmin.1

N
n−1
2

min

( ∑
H.N2

min

H1−ε

N1−2ε
min

+
∑

N2
min.H.1

H
1
2

+
∑

1.H.NNmin

H−
1
2

)

+N−2s− 1
2

∑
1.Nmin.N

N
s+n−1

2
min

(∑
H.1

H1−ε

N1−2ε
min

+
∑

1.H.N2
min

H−ε

N1−2ε
min

+
∑

N2
min.H.NNmin

H−
1
2

)

. N−2s
∑

Nmin.N−1

N
n
2
min +N−2s− 1

2

 ∑
N−1.Nmin.1

N
n−1
2

min +
∑

1.Nmin.N

N
s+n−3

2 +2ε
min


. N−2s− 1

2

1 +
∑

1.Nmin.N

N
s+2θ+n−5

2
min

 ,

which coincides with the estimate derived for 52 in the same scenario. It follows
that 53 holds true if we impose s > −1/4. This concludes the proof of 53 and of
the entire proposition.

For the purpose of obtaining LWP results using the framework in our paper, we
notice that both 21 and 22 require s > −3/4 and s > −1/2 when n = 2 and n = 3,
respectively. On the other hand, 23 asks for s > −1/4 when either n = 2 or n = 3.
Hence, a natural question is whether the actual bilinear estimates needed for the
fixed point argument (i.e., 10-12) would be valid for lower values of s than the ones
above. We next address comments made earlier that, in our judgement, this is not
the case. We take a look at 12 with λ = 1 chosen for convenience, which, arguing
as in the derivation of 51, is equivalent to∥∥∥∥ |ξ2|2〈ξ3〉−s〈τ3 + |ξ3|2〉−θ

〈ξ1〉s〈τ1 − |ξ1|2〉θ〈ξ2〉2−s〈τ2 − |ξ2|2〉1−θ

∥∥∥∥
[3,Rn×R]

. 1.

The corresponding low modulation estimate is given by∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

〈N1〉−sN2
2 〈N2〉s−2〈N3〉−s

Lθ1L
1−θ
2 Lθ3

· ‖XN1,N2,N3;Lmax;L1,L2,L3‖[3,Rn×R] . 1

(55)

and we consider the coherence scenario where, in addition to 33, one has N1 ∼
N3 � N2 and H ∼ L2 � L1, L3, N2

2 . By applying 36 and θ > 1/2, we derive that

(LHS) of 55

. N−2s− 1
2

∑
N−1.Nmin.N

∑
1.Lmin≤Lmed≤Lmax
N2
min�Lmax.NNmin

(
〈Nmin〉s−2N

n+3
2

min

· L
1
2−θ
minL

−θ
medL

θ− 1
2

max min

{
1,
Lmed
N2
min

} 1
2
)
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. N−2s− 1
2

∑
N−1.Nmin.1

∑
1.Lmed≤Lmax.NNmin

N
n+3
2

min L
−θ
medL

θ− 1
2

max

+N−2s− 1
2

∑
1.Nmin.N

∑
1.Lmed.N

2
min

N2
min�Lmax.NNmin

N
s+n−3

2
min L

1
2−θ
medL

θ− 1
2

max

+N−2s− 1
2

∑
1.Nmin.N

∑
N2
min

.Lmed≤Lmax
N2
min�Lmax.NNmin

N
s+n−1

2
min L−θmedL

θ− 1
2

max

. N−2s+θ−1

1 +
∑

1.Nmin.N

N
s+θ+n−4

2
min

 ,

which coincides with the bound obtained in the same setting in the previous propo-
sition. As argued there, one would still need to impose s > (θ − 1)/2 (and, thus,
s > −1/4) for 55 to hold true.

4. Alternative method for the summation argument. In this section, we
propose an alternative way to perform the summation component for the proofs of
30 and 31 (as well as for the ones of 52 and 53). It is based on a Python code
which streamlines the summation process and, in our opinion, has the potential to
be readily adaptable to other similar problems.

In order to explain the idea behind this method, let us discuss first some ele-
mentary examples. As in the previous section, we adopt the convention that all
variables involved in summations assume only dyadic values. Clearly, for B fixed,
one has ∑

A.B

A ∼ B.

However, when slightly more involved conditional inequalities are introduced in the
summation, e.g., ∑

A

∑
B.min{1,A−2}

AB,

the situation is less straightforward. In fact, for the above sum, one needs to split it
into two pieces corresponding to the two possible values of the minimum. As such,
it follows that∑

A

∑
B.min{1,A−2}

AB =
∑
A≤1

∑
B.1

B

A+
∑
A>1

 ∑
B.A−2

B

A

∼
∑
A≤1

A+
∑
A>1

A−1 ∼ 1.

What we want to stress here is that in order to perform the summation in B, we
had to split the values of A into two complementary sets.

When dealing with a summation like the one in 31, which is performed over
seven variables (i.e., (Ni)1≤i≤3, (Li)1≤i≤3, and H), with each one being involved
in at least one conditional inequality, the process is obviously much more complex.
This is why a computer-assisted analysis makes sense in this type of situation. The
way in which we conduct the analysis is as follows:

1. write the full summation as an iterated summation over each present variable;
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2. allow first for the variables to vary independently;
3. let the computer perform the summation;
4. in case the summation yields an infinite result, use one or more conditional

inequalities to impose restrictions on the ranges of the variables and repeat
the previous step.

To illustrate the efficacy of this procedure, we take as a case study the low
modulation scenario for 21 with (n, s, θ) = (2,−1/2, 5/8). Hence, the variables
involved in 30 satisfy the conditional inequalities

Nmax ∼ Nmed & 1 & Nmin, (56)

Nmax ∼ N, (57)

Lmax � Lmed ≥ Lmin & 1, (58)

H ∼ N2
max ∼ Lmax, (59)

while, according to 34,

‖XN1,N2,N3;H;L1,L2,L3‖[3,R2×R] . L
1
2
minN

− 1
2

maxN
1
2
min min{NmaxNmin, Lmed}

1
2 .

To be able to work with a summand which is as explicit as possible, we make two
assumptions. First, we let

min{NmaxNmin, Lmed} = Lmed. (60)

Secondly, by taking into account 43, we specialize to the more challenging case when
Nmin = N3 and Lmax = L3. Thus, the summand has the formula

S = 〈Nmin〉−
1
2N

1
2
min〈Nmed〉

1
2 〈Nmax〉

1
2N
− 1

2
maxL

− 1
8

minL
− 1

8

medL
− 3

8
max.

This is the moment when we initiate the procedure described above, for which
the first iteration trivially yields that

∞∑
Nmax=0

∞∑
Nmed=0

∞∑
Nmin=0

∞∑
Lmax=0

∞∑
Lmed=0

∞∑
Lmin=0

∞∑
H=0

S =∞.

Next, we implement 56 and 58 jointly with H ∼ Lmax to infer that

S ∼ N
1
2
minN

1
2
maxL

− 1
8

minL
− 1

8

medL
− 3

8
max

and write the summation as

∞∑
Nmax=2

Nmax∑
Nmed=Nmax

2

1∑
Nmin=0

∞∑
Lmax=8

Lmax
8∑

Lmed=1

Lmed∑
Lmin=1

2Lmax∑
H=Lmax

2

S.

However, another iteration of the third step in the procedure still produces an
infinite sum. Following this, we use 59 and 60 to argue that NmaxNmin is a better
upper bound for Lmed than Lmax/8. Since Lmed ≥ 1, this change also brings
about N−1

max and NmaxNmin as new, improved lower bounds for Nmin and Lmax.
Consequently, the summation takes the form

∞∑
Nmax=2

Nmax∑
Nmed=Nmax

2

1∑
Nmin=N−1

max

∞∑
Lmax=NmaxNmin

NmaxNmin∑
Lmed=1

Lmed∑
Lmin=1

2Lmax∑
H=Lmax

2

S.

Unfortunately, by running again the computation step, we obtain infinity for an
answer. Finally, if we rely on the unused part of 59 (i.e., Lmax ∼ N2

max), we can
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modify, with better lower and upper bounds, the sums with respect to Lmax and
H. Hence, we are dealing with

∞∑
Nmax=2

Nmax∑
Nmed=Nmax

2

1∑
Nmin=N−1

max

2N2
max∑

Lmax=
N2
max
2

NmaxNmin∑
Lmed=1

Lmed∑
Lmin=1

4N2
max∑

H=
N2
max
4

S

and another iteration of the third step in our procedure yields a result which is both
finite and comparable to 1. It is worth noticing that we did not make use of 57 in
the process.

As final comments, let us say that our code is easily adapted to cover the sum-
mation arguments for the other types of bilinear estimates proved by Tao in [11]
(e.g., bounds related to the KdV and wave equations). Moreover, we see no reason
not to believe that it can accommodate even general multilinear estimates involving
dyadic decompositions.
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