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ABSTRACT. In this paper, our goal is to improve the local well-posedness theory
for certain generalized Boussinesq equations by revisiting bilinear estimates
related to the Schrodinger equation. Moreover, we propose a novel, automated
procedure to handle the summation argument for these bounds.

1. Introduction. The focus of this article is to develop a local well-posedness®
(LWP) theory for the Cauchy problem given by

ug — Au+ A%u £ A(u?) =0, u=u(z,t): R"x I - R,

(1)

u(z,0) = ug(x), ug(x,0) = uy(x),
where 0 € I C R is an open interval and (ug,u;) € H*(R") x H*~2(R"). The differ-
ential equation above belongs to a family of equations called generalized Boussinesq
equations, with the 1+ 1-dimensional version being known as the “good” Boussinesq
equation.

In fact, the 1+ 1-dimensional Cauchy problem is the best understood so far, with
Kishimoto [6] showing that it is LWP for s > —1/2 and ill-posed (IP) for s < —1/2.
This result capped a sustained drive for this problem with contributors like Bona-
Sachs [1], Linares [8], Fang-Grillakis [3], Farah [5], and Kishimoto-Tsugawa [7].
Thus, our interest here is in investigating the high-dimensional (i.e., n > 2) case of
1, for which, to our knowledge, the only available results are due to Farah [4] and
Okamoto [9].

The former states that 1 is LWP for ug € H*(R"™), uy = A¢ with ¢ € H*(R"™),

and
n—4
s>max{0,2}.

We make the remark that the index (n—4)/2 appears naturally in connection to our
problem since, by ignoring the lower order term Aw, the equation is scale-invariant
under the transformation

w s uy(z,t) = A 2u(A e, A7)
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IHere, well-posedness is meant in the Hadamard sense: existence, uniqueness, and continuity
of the data-to-solution map in appropriate topologies.
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and one has
n—4_g
[ux(O)ll sy = A7 lwoll e gy

For the second result, Okamoto proved that 1 is IP for (ug,u;) € H*(R™)x H5~2(R")
when s < —1/2, in the sense that norm inflation occurs and, as a consequence, the
associated flow map is discontinuous everywhere. Hence, based on this picture, one
is naturally led to study what happens in the regime when

n—4
<5<max{0,2 }

DN | =

In particular, is it the case that 1 is LWP for (ug,u1) € H*(R™) x H*~2(R") with
s < 0 when n > 2?7 Our main result provides a partial positive answer to this
question.

Theorem 1.1. Ifn =2 orn = 3, then 1 is LWP for (ug,u1) € H*(R™)x H*~2(R")
with —1/4 < s < 0.

The argument for this theorem is inspired by an approach due to Kishimoto-
Tsugawa [7] (see also [6] and [9]), in which the first step consists in reformulating
1 as the Cauchy problem for a nonlinear Schrédinger equation with initial data
in H*(R™). This is followed by setting up a contraction scheme for the integral
version of this new Cauchy problem, where we use Bourgain functional spaces and
corresponding linear and bilinear estimates.

The structure of the paper is as follows. In the next section, we start by intro-
ducing the notation and terminology used throughout the article and by performing
the reformulation step. Also there, we detail the contraction scheme and reduce it
to the proof of a family of bilinear estimates related to the Schrodinger equation. In
section 3, we revisit work by Colliander-Delort-Kenig-Staffilani [2] and Tao [11] for
this type of bounds, provide a unitary framework to tackle them, and derive results
in previously unknown scenarios. In the final section, we discuss an innovative, au-
tomated method, based on a Python code, to deal with the summation component
of the proof for the bilinear estimates, which might also be of independent interest.

2. Preliminaries.

2.1. Notational conventions and terminology. First, we agree to write A < B
in a certain setting when A < CB and C' > 0 is a constant depending only upon
fixed parameters which may change from one setting to another. Moreover, we
write A ~ B to denote that both A < B and B < A are valid. Next, we recall the
notations (a) = (1 + |a|?)'/2 (for any a € R™),

2(5):/ e ¢ 2(z)dr and @(577):/ e 71 @) 4y (2, 1) da dit,
n R™ xR

the last two representing the Fourier transform of z = z(x) and the spacetime
Fourier transform of w = w(x,t), respectively. Finally, we let ¢ = (t) denote
the classical, smooth cutoff function ¢ : R — R satisfying ¢ = 1 on [—1,1] and

supp(p) C [-2,2].
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Following this, we define the Sobolev and Bourgain norms?

121l @y == 1(€)°Z(E) | L2(mn), (2)
lwll ooty =11 (€D (7 = [€P)PB(E, T2z oty 3)
for arbitrary s, # € R. For T' > 0, we will also use the truncated norm

5,0 1= inf 0.
el e i= ,_inffuwlxes

Working directly with these norms, one can easily prove the classical bound
lwllzge s S llwllxee (4)

and the inclusion X*¢ C C(R, H®), both for all s € R and 6 > 1/2.

2.2. Reformulation step. As mentioned in the introduction, we start the ar-

gument for Theorem 1.1 by rewriting 1 in the form of a Cauchy problem for a
Schrodinger equation. For this purpose, we define as in [7]

vi=u—i(l—A)" 'y, and wvo:=wug —i(1 — A) " tu.
Straightforward calculations reveal that

ivy — Av = H(v,0) := 5% + w(D) (”+”)2, v=uv(z,t): R" x I - C,

2 2

(5)

v(z,0) = vo(x),

where w = w(D) is the spatial multiplier operator with symbol

5 2
o0 T g

Moreover, for an arbitrary T' > 0, the map (u, ug, u1) — (v,v9) from

U :=(C([0,T),H*) N C([0,T], H*2)) x H® x H*"?
to
V :=C([0,T); H*) x H®

is Lipschitz continuous. Conversely, if v and vg satisfy 5, then, by letting

u:erv’ uozw, and u; = (1—A) voivo ,
2 2 21

it is easy to check that that w, ug, and u; are all real-valued and they satisfy 1.
Furthermore, noticing that

—2iuy = (1 — A)(v — 1),
one deduces that the map (v,vg) € V +— (u,ug,u1) € U is also Lipschitz continuous.

Thus, LWP in H® x H*"2 for 1 is equivalent to LWP in H® for 5.

2From here on out, for a functional space Y, we write either Y = Y/(R™) or Y = Y (R" x R) as
the majority of such norms refers to these two particular situations.
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2.3. Setting up the contraction argument and reducing it to the proof of
bilinear Schrédinger estimates. In proving that 5 is LWP for vy € H®, we adopt
the standard procedure and, using Duhamel’s formula, write its integral version

o(t) = S(t)vo — i /0 S(t— ) H(u(t'), 5(t')) dt’, (6)

for which we set up a contraction argument using suitable X*¢ spaces. Above,
S(t) = e~"A is the propagator for the linear Schrodinger equation jw; — Aw = 0,
i.e.,

w(t) = SE)w(0), V)t eR.
Remark 1. By comparison, Farah [4] writes the main equation as
ugy + A%u = A(u F u?)

and, using the Fourier transform and Duhamel’s formula, derives

() +25(—t) w(0)+ S(t)_—zii(—t) 4£(0)

tS(t_t/)_S(_t+t/) ! 204/ !
+/O (—u(t) £ u?(t")) dt’.

21
Following this, he proves LWP for 1 by running a contraction argument for this
integral formulation in functional spaces related to Strichartz-type estimates for
the Schrodinger group (S(t)):er-

The next statement is our LWP result for 5, which, as we argued, implies Theorem
1.1.

Theorem 2.1. Forn =2 orn =340 >1/2, (0§ —-1)/2<s<0, andr > 1,
then, for any ||lvollss < r, there exist T ~ 7=/ Zs=n+4) qndy € X3°NC([0,T], H*)
solving the integral equation 6 on [0,T] with the data-to-solution map

vo € {z ||2]lms <7} v e C(0,T], HY) N X5°

being Lipschitz continuous. Moreover, this solution is unique in the class of X%’e N
C([0,T),H®) solutions for 6.

As is always the case with this type of results, they are the joint outcome of a set
of estimates which are used in the context of a contraction scheme. For the above
theorem, these bounds are

lzallers S A%z e (7)

[wllxs0-1 + [[W]|xs0-1 S [Jw]lxa0, (8)

Hw) (se-i [ - OFCO )| Sl 1o, ©)

HX5~9

and
[wa(D) (@) || x50-1 S Nlullxse0v] xs0, (10)
[wr(D)(wv)||xs0-1 S llullxsellv]xee, (11)
[wa(D) (@) || xs0-1 S Nlullxsovf xs0, (12)

where A > 1 is an arbitrary scaling parameter, zy = 2z)(r) = A" 2z(A"'z), and
the multiplier operator wy = wyx(D) has the symbol wy(§) = w(A). With the
exception of the bilinear estimates, the other ones are by now somewhat classical
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with 7 and 8 being directly argued from 2 and 3, while 9 appeared in a more
general setting in Tao’s monograph [12] (Proposition 2.12). Furthermore, the way
in which we combine 7-12 to derive Theorem 2.1 mirrors closely the path followed by
Kishimoto-Tsugawa in [7] to prove their respective results. This is why we provide
here only an outline of the argument for Theorem 2.1 and refer the interested reader
to [7] for more details.

Sketch of proof for Theorem 2.1. By letting A > 1 denote an arbitrary scaling pa-
rameter and taking

oa(z,t) = A 2o(N "tz A7) and  von(z) = A 2ug(A M),
it follows that

ox(t) = S(tyor —i /0 S(t — ) Ha(on(t'), T5(t")) dt, (13)

where

_ _\ 2
oW —w w + w
Hy(w,@) :== A2 ) +wy(D) ( ) )

It is clear that v solves 6 on the interval [0, 7] if and only if vy solves 13 on [0, \2T.
The goal is to show that 13 admits a unique local solution on the time interval [0, 1]
if X\ is chosen sufficiently large.

For this reason, one works with the following modified version of 13,

ox(t) = p()S(Hor — i (t) / S(t— ) Hy(ox(t).05(E)) d', (14)

and proves that it has a unique global-in-time solution. If we denote the right-hand
side of this integral equation, with vy fixed, by I = Ix(vy), then an application of
8-12 yields

[ENCVIP

S llvoallms + [ (vx, OX) [ x2.0-1

< owalla + A2 (onlcoos + [T5lLe 1)+ [sr (D) (or + 527,

< lvoallzrs + A7 [[oallxso + loallkeo-
Similarly, one obtains
13 (vx) = In(wn)llxs0 S (A2 4 floallxso + lwallxso) lox — wallxeo.
Based on these two estimates, we argue that for R ~ ||vgx|| gs the mapping
I {llwlxee < R} = {{lw]x-0 < R}

is a contraction if we can choose A large enough and, at the same time, have®
llvoxllzrs < 1. This is feasible by taking A ~ r2/(2s=7+4) and using 7. Moreover,
with this choice, we also obtain that the time of existence for solutions to 6 satisfies
T~ A2~ r—4/(25—n+4).

The uniqueness claim follows by comparable arguments (also relying on 4), for
which we point to the proof of Proposition 4.1 in [7]. O

31t is precisely the role of the scaling procedure to make the size of ||vgy||gs small enough to
be amenable for the contraction argument.
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3. Bilinear estimates. In this section, we focus our attention on proving 10-12
and, for this purpose, we first revisit related results obtained by Colliander-Delort-
Kenig-Staffilani [2] (see also earlier work addressing similar issues by Staffilani [10])
and Tao [11]. The former paper provided a sharp geometric analysis for bilinear
bounds of the type

[@]|xe0-1 S llullxsollvllxe-0, (15)
[wvllxeo-r S llullxaollvflxeo, (16)
[@vllxeo-r S llullxso vl xe0, (17)

on R?*! and then used them in the context of LWP for Schrédinger equations
with quadratic nonlinearities. The article by Tao took up the more general issue of
multilinear estimates for arbitrary X ¢ spaces and developed an abstract framework
for proving them, which is now referred to in the literature as the [k; Z]-multiplier
norm method. As an application of this method, the same paper established the
bilinear estimate

U||X5,1/275 (18)

on R" with 1 <n <3, e>0,and € < s+ 1/4 < 1/4, and made the claim that
similar arguments lead to

[Tl xe-1/24e S llullxonre—-

/U”Xs,l/Zfe, (19)
U||Xs,1/27e, (20)
on R™"*! when either n =2 and s +3/4 > corn=3 and s +1/2 > e.

In line with our main goal, we investigate the validity of 10-12 on R"*! with

n = 2 or 3 for pairs of indices (s, ) satisfying s < 0 and 6 > 1/2. Using the trivial
observation

@] xo-1/24e S llullxonr2-

[uvll xs.-1/24 S lull xs1/2-

@ure)] = L a0 o) < o o)
B = Tepep Ol = 1wl Ol
which yields
(D)l es < ol s

for an arbitrary pair (3,0), it follows that it is enough to look at

2] xa0-2 < llullxeolollxee, (21)
luvllxeo-1 S llullx=ellvllxa0, (22)
[@vllxeo-r S llullxeellvllxso, (23)

under the same conditions for n, s and 6.

Even though one can argue that whatever is needed for proving Theorem 1.1
in terms of bilinear estimates is already covered by 15-17 and 18-20, we choose to
provide a stand-alone proof of 21-23 for a number of reasons. One is that we have
a unitary argument for both n = 2 and n = 3. Another is that we are able to prove
15-16 for indices o, s, and @ not covered in [2]. Finally, our proof suggests that,
in principle, the pairs of indices (s, ) for which 10-12 hold true coincide with the
ones available for the validity of 21-23. Thus, it is very likely that the functional
spaces on which we run the contraction argument need to be modified in order for
the Sobolev regularity in Theorem 1.1 to be lowered.

In arguing for 21-23, we rely on Tao’s methodology, which is directly specialized
to our setting. We denote

T3(R"XR) = {((&1,71), (€2, 72), (£3,73)) € (R"XR)?; (&1, 71)+ (&2, 72) + (€3, 73) = 0}
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and define
/ fi= / f((&1, 1), (&2, 72), (&1 — &2, —T1 — T2)) d&ydTidEadTs.
I3 (R™xR) (R xR)?

Any function m : I's(R™ x R) — C is called a [3;R™ x R]-multiplier and we let
[lm]|[3;rn xr] denote the best constant for which

/ m((&1,71),(&25 72), (€35 73)) f1 (€1, 71) f2(€2, T2) f3(€3, 73)
T3 (R" xR)

<|Imlzre xry | 11l 22 &n xr) | f2 ]| 2 (&7 <) | F3]] 22 (87 < R)

is valid for all test functions (f;)i1<i<3 on R” x R.
If we take for example 21, then, by applying duality and Plancherel’s theorem,
we can rewrite it equivalently as

‘/ (&1, 71)0(Ea,ma)W(Es, T3)
T's(R™ xR)

~

/ u(z, t)v(z, t)w(x,t) dedt
R7 xR

Sllullxee

[oll o ool x oo

= |{€)*(m — 1€1%)7a(e, 7z _1(€)*(r — 1€1%)°0(&, Tl 2
Y — 6P B e
which can be easily turned into

‘ / (&3)% (T3 + |€3]%)0
Ty @ xR) (§1)%(T1 + [€1[2)0(62) (T2 + |€2/)

S I fallee e xry 1 foll 22 e <) | 3]l 2 (R xR) -

5 [1(&1,71) f2(€2, 72) f3(€3, 73)

Thus, according to the above definitions, proving 21 is identical to showing that

’ (€3)% (T3 + |&3]%)0 "
(€)% (T + &%) (E2) (12 + |&2]?)?

holds true, with similar multiplier-norm estimates being available for both 22 and
23. In fact, these new bounds can be stated generically in the form

‘ (1) 7°(62) "% (63)°
(11— h1(&1))0(12 — ha(&2)) (3 — h3(&3))1 77

where h;(£) = £[¢|? for all 1 < i < 3.
At this point, Tao introduces the notation

Ai =1 — hi(&), 1<4<3,
and defines the resonance function h: I's(R™) — R by
h(&1,82,83) = ha(§1) + ha(82) + ha(Ss). (26)
It is easy to see that on the support of the multiplier in 25 we have
§1+&+8 =0  and AL+ A2+ A3+ h(61,82,83) = 0. (27)
Next, it is argued that one can reduce the proof of 25 to the case when

min{[A], Aol [Asl} 21 and - max{|&i], [&2], (€]} 2 1.

<1 (24)

~

[3,R™ xR]

S L (25)
[3,R" xR]
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Following this, a dyadic decomposition for (§;)1<i<3, (Ai)1<i<3, and h is performed
and one infers

(LHS) of 25

—S —SN S
<l oS s D) TN N s

0r011-0
max N; 21 H minL;2>1 L1L2L3

[3,R" xR]
where

XNy Na N3 H; Ly, Lo, Ls = XNy, N, Ng; H; Ly, Lo, Ls (€1, 1), (§2, 72), (€3, 73))
(28)

= X eoe)lod || (XjedoniXin~L.)
1<i<3

and (N;)1<i<s, (Li)1<i<3, and H € 2% 1f we let Nppaw = Noped = Noin denote the
values of Ny, Ny, and N3 in decreasing order, with a similar notation for the values
of Ly, Lo, and L3, then, based on 27, we deduce that

Nmam ~ IVmed and Lmam ~ maX{Hv Lmed} (29)

need to be valid in order for Xy, n, Ns:H:L,,L,,L5 DOt to vanish.
Using also the relative orthogonality of the dyadic decomposition, Tao is able to
derive initially that

(LHS) of 25

< sup
N>1

N1 _SNQ _SN3S
Yoy y S

Nyaz~Nmea~N H Lyae~max{H,Lmeca}

* XNy,No,N3;H;L1,Lo, Ly

[3,R™ xR]

where the summation in the inner and the outer sums is in fact performed over all
L;’s and N;’s, respectively, obeying the restriction listed under the sums®*. Jointly
with the triangle inequality, this implies that, for some N 2> 1, at least one of the
estimates

(LHS) of 25 < > Z (N)~ L9L9 No) <N3>

Nmaz~Nmed™~N Ly, in21

: ||XN17N2,N3;LnLam;L1 L2,L3 H [37R” XR]
and

(LHS) of 25 < > > Z L9L9L> (Ng)*

Nmaz~Nmed~N Lmaz~Lmed HL Lmaax

: ||XN1,N2,N3;H;L17L27L3”[B,R"XR}
holds true. In this way, 25 would follow if one shows that

(Ny) N
Z Z L9L9.2 < 3>

Nmaz~Nmea~N L

(30)

man

XN N2 Noi Lnaes L Lo L [l 3 gy S 1

4Similar summation conventions are used throughout this section. See also Section 2 in [11].
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and

N-
) > oy W;H

Noaz~Nomed~N Lias~Lmed HE Lnas (31)

N XNy No NasHi Ly Lo, Ls 3 me sy S 1

for all values of N 2 1. Tao calls the setting of the first bound (i.e., H ~ L;4,) the
low modulation case and the one for the second bound (i.e., Lyaw ~ Lmed > H)
the high modulation case.

The first part of the argument for proving 30 and 31 consists in estimating the
two multiplier norms and this has been achieved by Tao in a sharp manner. Given
26, 28, and the existing symmetries, the analysis is reduced to two scenarios. The
so-called (+ -+ +) case happens when hy (&) = ho(€) = h3(€) = |€|? and, hence,

H ~ |h] = [&1]” + &2l + [&]* ~ N7 ga- (32)

The other instance, named the (+ 4+ —) case, takes place when hq(§) = ha(§) =
—h3(€) = |€)? and, due to 27, one has

H ~ |h| = |G + |&]* — |&]7] = 2/&1 - &| S NiNa. (33)

The following are the combined outcomes of Propositions 11.1 and 11.2 in [11] when
n > 2.

Lemma 3.1. Let n > 2 and take N1, No, N3, Ly, Lo, L3, and H to be positive
numbers satisfying 29.

o (+++) case: both 32 and

||XN17N2,N3HL17L27L3” [3,R™ XR] ~ LﬁunNmaszm mln{Nmwammv med}2 (34)

are valid.
o (++4 —) case: 33 holds true and
1. if Ny ~ Ny > N3, the multiplier norm vanishes unless H ~ N and, in
this situation,

||XN1,N2,N3,H L17L27L3|| [3,R" xR] ~ LernNmafﬂNmm min{ Nz Nrmin, med}2 (35)

is valid;
2. Zle ~ N3 >> N2 and H ~ L2 >> Ll, Lg, N22} then

. H :
[ XNy N N Hs Ly Lo L | (3 e ) S L Nun N2 mln{H N2 Lmed} (36)

min

is valid. The same estimate holds true if the roles of indices 1 and 2 are
reversed. This is also called the coherence subcase;
3. in all other instances not covered above and for € > 0,

2 2
||XN1,N2,N3‘-,H;L1,L2,L3 [ [3,R" xR] ~ meNmawNmm

Ng };_e (37)

min

-min {H, Lmed}% min {

18 valid, with the implicit constant depending on €. If n = 2, € can be
removed.
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The second part of the proof for 30 and 31 consists in using the multiplier norm
bounds from the previous lemma and performing the two summations. This is
where we start, in earnest, our own argument. The following definition describes
the indices s and 6 relevant to our analysis.

Definition 3.2. We say that the triplet (n, s, #) is admissible if either

1 3 )
n =2, —<0# -, maxq6——,20—-2% <s<0, (38)
2 4 4
or
3
n=2, 0:1, —— <s<0, (39)
or
1
n =3, 0>§, 20— - <s<O. (40)

Remark 2. It is easy to verify that if (n, s, #) is admissible then

n—=~6 n—4
> 20 4+ —— > .
s=20+ 2

Moreover, if
-1
n=2orn=3, 0>1/2, T<s<07 (42)
then a direct argument shows that (n, s, ) is admissible.

Proposition 1. The bilinear estimate 21 is valid if (n, s, 8) is admissible.

Proof. As argued before, the bound to be proven is equivalent to 24 which, by using
the compatible transformation (71,72, 73) — (—71, —7T2, —73), becomes

H (€3)% (T3 — [&5]%)0!
(&) (m1 = [6112)0(&2)* (2 — |€2]2)?

We are in the (+ + +) case and we would be done if we show that 30 and 31 hold
true in this setting. According to 32, we can assume H ~ N2, ~ N? and, since
s < 0and 6> 1/2, we deduce

< 1.

~

[3,R™ xR]

<N1>_S<N2>_S<N3>s < N_23<Nmin>s
LILyri=* ~Le L0 Lbh

min—"med

(43)

We treat first 30, for which one has L. ~ H ~ N2. If we take advantage
jointly of 34, 43, and 6 > 1/2, then we can estimate the left-hand side of 30 by

(LHS) of 30
n—1
< N72S+297% Z Z <<len>stz2n
N7ninSN 1S,Lmin SLmedS,NQ

. L%feL—G

min —“med

. 1
mln{NNmiru Lmed} 2 )
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—2s54260—-2 E § 2 —
S N NmmLmed
NminS,N_l 1S,L1nedS,N2
—254+20—3 Z Z
+ N ot 2 <Nm17‘b> Nmfn erned
N=1<NpminSN 1<LpmeaSNNmin
—25+260—2 2 2 -
+ N s <N77li"> Nn%LGLmed

N='SNminSN NNpmin SLmea SN2

5 N_2s+29_2_% + N_28+20_% Z <Nmzn> N, o (1 + (NNmzn)%_e)

min
N=1'<NpminSN

n—

—254+20—3 s+
~ N 2 | 14 E Nmm
1SNmin SN

A simple analysis based on how s+ (n — 1)/2 compares to 0 yields that

—2s5+20—5 s+
N ot 2 1 + Z Nmzn 5 1
1SNpmin SN
if and only if (n, s, d) is admissible.
Next, we address 31, for which we work with Lypas ~ Lmeq > H ~ N2. This
implies

NNmzn ~ N < Lm?d’ (44)
which leads to
mln{Nlen, Lmed} ~ NNmzn (45)
Together with 34,43, and 6 > 1/2, this fact allows us to infer
(LHS) of 31
5 N_2s Z Z <Nmzn> Nr?nnernzn Lr_naz
NminSN 150 in<Lmed~Lmaz
N2<<Lmaa:

—25—2 Z ) p) —25—2 Z st
5 N (N’fm’ﬂ> len ~N I+ Nmzn
Ninin SN 1<NminSN

Using now 41, we deduce

N2 1 Y NEE | o N

mwn
1S,N7ninsN

<1

and the argument is concluded. O
Proposition 2. The bilinear estimate 22 is valid if (n,s,0) is admissible.

Proof. Following the blueprint of deriving 24, we argue first that 22 is equivalent to

H (€3)° (13 + |3[%)°~
(€5 (m — &2 (&) (12 — &1 [l 3 rrxr) ~
Thus, we need to prove that both 30 and 31 hold true in the (+ + —) case. We

know that we can rely on 33 and, for each of the bounds, we have to go through all
the three subcases covered in Lemma 3.1.

< 1.
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We start with the analysis for 30 and consider first the instance when N1 ~ Ny >
N3, which also forces H ~ N?. Then, based on 35, we see that we can estimate the
left-hand side of 30 in identical fashion to the way we estimated it in the previous
proposition. Hence, we obtain

(LHS) of 30

< N-2sH20-3 Z Z <<Nmm> Nmfn

NiminSN 1<SLmin<Lmea SN2

min ~—“med

I min{NNmm,Lmed}%)

§N_23+20_% 1+ Z Ns+

min
1SNpin SN

and, consequently, 30 is valid in this instance if (n, s, 6) is admissible.

If we are in the second scenario of Lemma 3.1, by the symmetry of 30 in the
indices 1 and 2, it is enough to work under the assumption that Ny ~ N3 > N,
and H ~ Ly > Ly, L3, N2. Using 36, 1/2 < § < 1, and 41, we infer

(LHS) of 30

<Nt Y 3 (<Nmm>wms;

NﬁlSaninSN 1SLmin<Lmed <Lmax

m7n<<Lmaa:sNNm17l
L 1
2
4 6—1713% med
LmlanedLmalmln{l N2 } )
min
1
_1 3 0—-17132
§N 2 § Nmzn LmedLmaz
N=1<Npmin<S1 1SLmea<Lmaz SN Nmin
_1 AR ST
vt Y T N e
1§Nm,7‘,n§N 1<L771€‘d~Nr2rLL!L
min<Lmae SN Nmin
1 s+ 1 0-1 13
+ 2 § E Nmzn 2 Lm,ed‘[”%’““lc
1SNmin SN N2, <L,..q<Lmax
Niin<Lmaz SN Nmin
< N3 S —st < N3 —etigt
NN z |14 Nmzn NN z + Z Nmzn ~1,

<N7nzn5N <Nmzn§N

which proves 30 in this scenario.

To finish the argument for 30, we need to consider the third subcase of the
(+ + —) case in Lemma 3.1, which, reduced by symmetry, comes down to either
Ny ~ Ny ~ N3 or Ny ~ N3 2 Ns. For each of them, since H ~ L., we have

H Lmafl?
min{H, Lyeqa} ~ Limed and min {1 N? } ~ min {1 N2 } . (46)

Moreover, since § > 1/2, it follows that
1 1
LIL§Ly = — =TI Yo

min’“med

(47)
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Therefore, when Ny ~ Ny ~ Nj, these two facts together with 37 and 6 > 1/2 allow
us to deduce that

0 ,0— *—6
2 2
(LHS) of 30 < N~ E Lmzn Lmed Linai
1§LminSL7ned§L'mam§N2
n—4 9—1_

_ 2 €

S NSt e E Lmaz -
1<Limas SN2

By choosing 0 < € < § — 1/2, we argue based on 41 that

_ n—4 9_1_ _ n—=6
N s+ 75— +2e § Lma% ENN s+20+ > 5 17

15L7nam SNZ

which yields the desired result.
On the other hand, if we have N3 ~ N3 2 N, then, on the basis of 46, 47, 37,
1/2 < 6 < 1, and with the same choice for €, we obtain

(LHS) of 30

<Nt Y ) <<Nmm>annj;

N_l,SN'minS,N lsLm7n<Lmed<L’maI
LnLaT NNpmin

L2 L2 L9 1 Lmaw %76
min ~“med ' maz min 1 N2

min

1 § : s 5 6—1
5 N 2 § <Nmi”> Nmzn Lmaw
N-1<NpinSN (Nmin>2§LmazSNNmin
_1 —s+253 42, 0—3—¢
+ N7z E E Noin ° Limnaz
1SNmin SN 1SLimaa SN,
1 5+20—2 A1 75 —s4+20+255
SN 2 § <Nm’i7l> Nmzn + E : Nmzn
N=1<NpminSN 1SNmin SN

~NTE(14 YD N

mwn
1SNmin SN

It can be checked easily that if (n,s,6) is admissible, then —s + 20 + (n —5)/2 # 0.
Thus, we derive

N‘% 1+ Z N;::20+% 5 N—% 4+ N™ s+20+ 252 < 1, (48)
1SNmin SN

where the last bound follows according to 41. This finishes the proof of 30.
Next, we address 31, for which the scenario Ni ~ Ny > N3 and H ~ N7 implies
44 and, hence, 45. Then, we can estimate the left-hand side of 31 in exactly the
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same way as we estimated it in the previous proposition. Thus, we infer

(LHS) of 31 SN2 37 S Nain) N L Lk
Nimin SN 1SLimin<Lyca~Lmaz
N2<LLmax

SN2 14 Y NP o N S

mn
1§N'm'in S,N

The second subcase of the (++ —) case in Lemma 3.1 does not apply here because
H < Lyqz. The last one can be reduced by symmetry to the instances when either
Ny ~ Ny ~ N3 or N; ~ N3 2 Ns. For each of them, we have

min{H, Lyeq} ~ H, (49)

while for the former we can also rely on

. o H
min N2 ~NT (50)

min min

due to 33. Thus, when Ny ~ Ns ~ N3, we argue based on 37, applicable to
0<e<@—1/2, and 41 that

(LHS) of 31

<NSJr

D> > ik

1<L7’n’in<Lmed'\’L7nan H<min{L7naw7N}

<N s+" 4.1 9¢ Z Z Lmale—e

HSN? SLmaz
< N~ s+2=242¢ Z <H>—1H1—e ~ N— —54+20+22 < 1.
H<N?

For the case when Ny ~ N3 2 N, we use again 37 with 0 < e < 8 — 1/2 and 48
to deduce

(LHS) of 31

5 N_% Z Z Z <<Nm1’ﬂ>_gNmfn Lﬁun

NminSN 1SLmin<Lmea~Lmaz HISmin{Lmaz,NNmin}

1
H 27¢
Lm}nhﬁ mln{l 2} )
Nmin
1

_1 - 1ol H \*°
S S Wi N Lo i {1, |
NiinSN HSNNpmin (H)SLmax

1 1 H E_E
SN Y (Nonin)™ SNmfn<H>—1H2min{ S }

min
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< n-1 n—1 ol 1

Nonin SN=1 HSNZ,, ~ min N2 in SHISNNmin
n—1 Hl €
_1 5 1
+ 2 E Nmzn ( z : N172e + : : He
N-1ENin Sl HENZ,, B min N2 <<
_1
+ Y md
1SHSNNpin
N—l N_'S+n;1 Hl—e H—¢
+ min Nl—'2e + Nl—_2e
1SNmin SN H<1 - min 1SHSNZ,, ~— nmun
_1
+ > H™ 2
N'rzn'in,SHrgNN"'vi"
< Ng N—% Nn,;l N_S+n,;3+25
Npin SN—1 N-1<Npin<1 1SNpmin SN

_1 —s+20++75
SN2+ D N, > | <1
1SN77L1'7LSN

This finishes the proof of this proposition. O

Remark 3. Following up on our rationale to argue for 21-23, by comparison to
what is proved in [2] for 15-16, one can see that Propositions 1 and 2 cover the
previously unknown case for which

1 3 5
§<07é1 and J—S—max{9—4,29—2}<0.

Proposition 3. The bilinear estimate 23 is valid if (n,s,0) satisfy 42.

Proof. As in the case of the previous two results, one recognizes first that the above
claim is equivalent to the multiplier norm bound

H (€3)° (3 4 |€3[2)° !
(1) (1 + 16112)0(&2) (12 — |€2]2)?

[3,R" xR]
By using the compatible transformation (71, 72, 73) — (—71, —72, —73) and relabeling
the indices according to (1,2,3) — (1,3,2), this can be rewritten as
H (&)~ (s + [&3)°)~°
(€)5(m — [&]?)0(&2) 5 (2 — &)1 7

As in the derivation of 30 and 31, the previous estimate would follow if we show
that

<1 (51)

~

[3,R" xR]

Np)=5(No)s(N3) 8
)3 3 (N1)~*(N2)*(N3)

orl-9rto
Nmaz~Nmea~N L17L2,L321 L1L2 L3 (52)

: ||XN1,N2,N3;Lm,az;L17L27L3H[S’RnXR] Sl
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and

N3
O I D

Nonaw~Nomea~N Linaz~Lmea H Lnas (53)

N XNy No N H L Lo Ll 3 e ) S 1

hold true for any N 2> 1.

From 51, we see that we operate in the (+ + —) case and, as such, we can rely
on 33 and we perform an analysis based on the subcases described in Lemma 3.1.
Furthermore, due to 42 and Remark 2, we can also take advantage of 41.

For the low modulation estimate 52, if we are in the Ny ~ Ny > N3 scenario,
we also have that H ~ Ly, ~ NZ. Thus, based on 35, 1/2 < 0 < 1, s < 0, and 41,
we infer

(LHS) of 52

S NQG—% Z Z (<le’ﬂ> stfn

N'm,in sN 15Lmin SL”med §N2

i "dmin{NNmm,Lmed}%)

min “me
2602 Z Z T -0
S; N Nmianed
Nm,in ,SN71 1SL'rned,SN2
20— 5 —s P 2
+N 2 § E <Nmzn> Nmzn Lmed
N=1<NpinSN 1<LpmeaSNNmin
20—2 S\ —s Pl —
+N E E <Nm1n> N’manmed

N_1<Nmzn~N NN’NLL7LSL7TLEd<NZ

SNYTELNTTE S (Nin) Ny (14 (VNin) 1)
N-1<NminSN
~ N2 p N0 <

Next, lf N1 ~ N3 > N2 and H ~ LQ > Ll, Lg, N22, then, using 3() and 9 > 1/27
we derive that

(LHS) of 52

S N7257% Z Z <<Nmin> Nmzzn

N7 'SNminSN  15L1min<Lmeq<Lmaz

N2 in<Lmas SN Nmin
I 1
,_9 0 med | °
2
-L2 Lmedme mln{l N2 } )
min
_9g—1 2 -0
5 N 2 E g Nmzn LmedL“MLm
N-1<Nmin<1 15Lmea<Lmaz SN Numin
-2s—1 E : stE57 pa 005
+N 3 § Nmin Lm(,dLmax
1§Nmzn§N lsLm,edSN?nin

Nv?nin <<Lmaz SNN'm'in
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D> S N

ISNminSN N2, <Lcq<Lmax
N2

rin<Lmaz SN Nimin

5 N_2s+9_1 1 + Z Ns—&-9+nT_4

min
1SNmin SN

When n = 2, we argue that s < 0 and 6§ < 1 imply
—4
S+9+nT<O

and, thus, 52 is valid if s > (# — 1)/2. When n = 3 and (n, s,0) is admissible, it
is easy to check that s+ 6 + (n — 4)/2 can be either negative, positive, or equal to
zero. If it is negative, then, as above, s > (§ — 1)/2 is a sufficient condition for 52
to hold true. If it is positive, then we deduce with the help of 41 that

n—=6

(LHS) of 52 5 N—23+9_1 + N—S+29+ > S N_28+9_1 11

and, yet again, 52 is valid if s > (0 —1)/2. If s +60 4 (n —4)/2 = 0, then we infer
that
(LHS) of 52 < N=25H0=1p v
and we need to impose the stricter condition s > (6 — 1)/2 for 52 to hold true.
Given that, unlike 30, 52 is not symmetric in the indices 1 and 2, we also need
to consider the scenario when Ny ~ N3 > N; and H ~ L1 > Lo, Lg, N12. In this
situation, an application of 36 yields

(LHS) of 52
vty S (W

N-'SNpminSN 150y in<Lpmeq<Lmaz
N2

min

<<Lmam S,NNmzn

1
10 _9_1,1-0 . Lmed 2
2 2

L2 L g Linaz min 1,N2 ,

min

which is identical with the estimate satisfied by the left-hand side of 30 for the
subcase when N1 ~ N3 > Ny and H ~ Ly > L1, Lg, N22. Hence,

n—4

(LHS) of 52 SN"2 + Y N o077 ~ 1L

min
1< Nmin <N
In order to conclude the proof of 52, we need to investigate the third subcase,
which can be reduced to N1 ~ N2 ~ ]\737 N2 ~ N3 Z Nl, and N1 ~ N3 Z N27

without making extra assumptions. As in the previous proposition, in addition to
Lz ~ H < N1Na, we can rely on 46 and, since 6 > 1/2, on

1 1
<
LOLYOLg = Lo, L8 Lhd

min“med

(54)

for either of these scenarios.
If Ny ~ Ny ~ N3, then 37 implies

)

ne 1.9 1. 9 g-1_¢
(LHS) of 52 S N=*+H*7"+2¢ 3 Lo Lo Linad

min “med
1SLmin<Lmed<Lmaz SN?
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which coincides with the initial bound satisfied by the left-hand side of 30 in the
same situation. Thus, with the appropriate choice for € (i.e., 0 < e < 8 —1/2), we
obtain

n—=6
2

(LHS) of 52 < N—s+20+5%57 <1,

When Ny ~ N3 2 Ny, we use 46, 54, and 37 to derive that

1 _ n—1
(LHS) of 52 < N™2 E E (Npmin) "N, 2.
N_l,SN?ninSN 1SLmin<Lmed <Lmax
Lm,aw,SNNwzin

i i_ Lmaa: %76
L2 0ra 0o min{l, s } )
This estimate is identical to the one satisfied by the left-hand side of 30 when
Nj ~ N3 2 Ny and, thus, 52 holds true if (n, s, #) is admissible.

If Ny ~ N3 2 N, then we can apply 46, 54, 37, and 1/2 < 6 < 1, and take
0 <e<@—1/2 to argue that

(LHS) of 52

<Ny )3 (<Nmm>szv;f;

N='SNminSN 15Lin<Lmea<Lmaz
Lm,az ,SNNWLin

1
5— 5— Lma:v 27¢
L2 0pE 0ot min{l } )

min “med ~max 7N2

min
n—1
—2s—1 saT 2 760-1
'S N : Z Z <Nm"b> Nmzzn Lmaw
N=1<NminSN (Nmin)?2S<Lmas SNNmin
_9g—1 s+2=3492¢ -1 ¢
+ N™*572 E E Nmz'n 2 Lma?p

1,§N7ninSN lsLmaz §N2

min

n—1 n—>5
—2s5—1 Z s+20—2 A7 5 Z s+20+ 25>
5 N 2 <Nmzn> Nmin + Nmin
N-1'<NminSN 1SNmin <N

1 s n—>5
~N72573 [ 14+ Z NEE2OH

min
1<SNumin SN

It is easy to verify that, when (n, s, 0) is admissible, s+ 260 + (n — 5)/2 can be either
positive, negative, or equal to zero. As such

_oe_ 1 42041255 _s n—6 _og_1 _9g_1
N7 (14 > N, 2| A~ NTEPEET NT25m op NT2573 N,

min
15Nm,in,§N

respectively. Due to 41, we see that 52 would be valid in this case if we ask for
s > —1/4, which is a weaker condition than s > (# — 1)/2 imposed before. With
this, the argument for 52 is finished.

Next, we turn to the proof of 53, which is quite similar to the one for 31. If
N; ~ Ny > N3 and, hence, H ~ N2, then we can rely on 45. Jointly with 54, 35,



BILINEAR ESTIMATES WITH APPLICATIONS TO BOUSSINESQ EQUATIONS 645

0 > 1/2, and 41, it yields

_ z i 9. __
= z : } : SN2 2 1
NininSN 1SLmin<Lmed~Lmaz
N2& Lmaax

_ —s54+ 2 _ n—4
SN21+ > NP | ~NTTE S
1SNmin SN

We have no coherence case to explore since H < L4, Thus, all we are left
to analyze is the stand-alone scenarios Ny ~ Ny ~ N3, Ny ~ N3 2 Nj, and
N1 ~ N3 2 Ns. First, we note that we can use 49 in all three of these cases. When
N; ~ Ny ~ N3, 50 is also available. If we bring 54 and 37 into the mix, then we
deduce

(LHS) of 53

n—4 1_9
—s+ +2e 2 —1 1—e
<N 2 g E L. Lo o.H
1<Lmin<Lmea~Lmaz H<min{Lmas, N2}

which coincides with the estimate satisfied by the left-hand side of 31 in the same
situation. Accordingly, by choosing 0 < € < § — 1/2 and applying 41, we infer that
53 holds true in this instance.

If Ny ~ N3 2 Ny, then, with the help of 54, 37, and 49, we obtain

(LHS) of 53

<Nt Y 3 3 (<Nmm>—SNJLf$ o

Ninin SN 1SLmin<Lmed~Lmaz HSmin{Lmaz,NNmin}
1
3—€
-1 1 . H
'LmaxH2 mln{l,m} >
min

This is identical to the bound satisfied by the left-hand side of 31 when Ny ~ N3 2>
Ny and, hence, 53 is seen to be valid by taking € as above and relying on 48.
When Ny ~ N3 2 No, a very similar argument leads to

(LHS) of 53

S N72sf% Z Z Z <<Nmin>SNn7;zz‘riL7%zir?

Nmin SN 1SLmin<Lmed~Lmaz HSmin{Lpaz,NNmin}

1
H ¢
L7 H? min{l,NQ} )

min

~2s—3% P H ¢
SN ’ Z Z Z <Nmm> Nmianaasz min LNT

Nuin<SN HSNNpin (H)SLimaa min

1_e
—2s—-1 s nd —lgrd . H :

N1n'in S,N HSNNﬂ‘L’i’!L mn

n—1 H1l-¢
_9g—1 o) 1
SN 2 E Npin < E , iz + E : H>
Npnin SN—1 H<N2 min N2 <H<NNpin

~*'min min~>
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eve . NE( Y G o

N='SNpmin Sl HSNZ,, =™ N2, SHSI
_1
+ E H™2
1SHS,NNmin
n—1 Hl-¢ H~¢
_9g—41 s+—3
2 . _— —5
+N Z Nmzn Z N1—2€ + Z N1—26
LS Nmin SN HSLmin ISHENE,, —
_1
+ § H™2
erni,nSHgNNmin
< N2 NE, + N3 NoZT 4+ N
~ min min min
Nppin SN-1 N=1<Npin<1 1SNmin SN

SN2 (1 S N

~ min
1SN7nin SN

which coincides with the estimate derived for 52 in the same scenario. It follows
that 53 holds true if we impose s > —1/4. This concludes the proof of 53 and of
the entire proposition. O

For the purpose of obtaining LWP results using the framework in our paper, we
notice that both 21 and 22 require s > —3/4 and s > —1/2 when n =2 and n = 3,
respectively. On the other hand, 23 asks for s > —1/4 when either n =2 or n = 3.
Hence, a natural question is whether the actual bilinear estimates needed for the
fixed point argument (i.e., 10-12) would be valid for lower values of s than the ones
above. We next address comments made earlier that, in our judgement, this is not
the case. We take a look at 12 with A = 1 chosen for convenience, which, arguing
as in the derivation of 51, is equivalent to

H |62l (&3) % (15 + 1&51*) 7 <1
(€)5(m — 6] (62)> % (12 = [E21) P ll s mr sy ~
The corresponding low modulation estimate is given by
) ) (N1)75N3(Ng)**(N3)~*
Noaz~Nmea~N Ly Lz, Ls>1 LLy™"L (55)

XNy N2 N LonaasLa Lo, Ls 3 g ey S 1

and we consider the coherence scenario where, in addition to 33, one has Ny ~
N3 > Ny and H ~ Ly > Ly, L3, N3. By applying 36 and 6 > 1/2, we derive that

(LHS) of 55

< N-2-% > > ((Nminy_szZ%;

N-'SNminSN 15Lmin<Lmeqd<Lmaz
N2 <<Lma1£NNm,in

1
16 __p ,0-1 . Limed | 2
P 2 2
L2 Lo i Lmaz min < 1, N2
min
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< 2ot N2 L0 L
< min ““med"~Mmar
N=1<Nin<1 1SLmea<Lmaz SNNomin
—2s—1 } : sHEgt a0 60—
+ N 2 E Nmin Lmed Limaz
1SNmin SN 1SLimed SN2 i
N;‘:Lm<<LmaxN<,NNmi"
—2s5—1 } : st =0 103
+ N 2 E Nmm LmedLm‘m

lsNrn'inS,N N.,zninSLmedngam
N2 <<Lma.7:,§,NN7n'in

25461 s+
/S N7 1+ Z Nmin : )
lstinS,N
which coincides with the bound obtained in the same setting in the previous propo-
sition. As argued there, one would still need to impose s > (§ — 1)/2 (and, thus,
s> —1/4) for 55 to hold true.

4. Alternative method for the summation argument. In this section, we
propose an alternative way to perform the summation component for the proofs of
30 and 31 (as well as for the ones of 52 and 53). It is based on a Python code
which streamlines the summation process and, in our opinion, has the potential to
be readily adaptable to other similar problems.

In order to explain the idea behind this method, let us discuss first some ele-
mentary examples. As in the previous section, we adopt the convention that all
variables involved in summations assume only dyadic values. Clearly, for B fixed,

one has
> A~B.
A<B
However, when slightly more involved conditional inequalities are introduced in the

summation, e.g.,
> > AB,

A B<min{1,A-2}
the situation is less straightforward. In fact, for the above sum, one needs to split it

into two pieces corresponding to the two possible values of the minimum. As such,
it follows that

> Yoo AB=> Y. B|lA+> | Y B|A

A B<min{1,A-2} A<1 \BXZ1 A>1 \B<A-2
~Y ALY AT~
A<1 A>1

What we want to stress here is that in order to perform the summation in B, we
had to split the values of A into two complementary sets.

When dealing with a summation like the one in 31, which is performed over
seven variables (i.e., (N;)1<i<3, (Li)1<i<3, and H), with each one being involved
in at least one conditional inequality, the process is obviously much more complex.
This is why a computer-assisted analysis makes sense in this type of situation. The
way in which we conduct the analysis is as follows:

1. write the full summation as an iterated summation over each present variable;
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2. allow first for the variables to vary independently;

let the computer perform the summation;

4. in case the summation yields an infinite result, use one or more conditional
inequalities to impose restrictions on the ranges of the variables and repeat
the previous step.

iad

To illustrate the efficacy of this procedure, we take as a case study the low
modulation scenario for 21 with (n,s,0) = (2,—1/2,5/8). Hence, the variables
involved in 30 satisfy the conditional inequalities

Niaz ~ Nmed 2 1 2 Nimin,
Nimaz ~ N,

Loz > Limed > Limin 21,
H ~ Ny ~ Linaa,

while, according to 34,

XNy Vo NasHi L Lo, Ls 3 ey S L2 Nk N2 min{ N Nonins L}

To be able to work with a summand which is as explicit as possible, we make two
assumptions. First, we let

min{NmawNmina Lmed} = Lmed- (60)

Secondly, by taking into account 43, we specialize to the more challenging case when
Npin = N3 and L4 = L3. Thus, the summand has the formula
1

S = <Nm1n>7%N% <Nm,ed>§<Nmaac>%N7:u%zL H L Lmam

min min med

This is the moment when we initiate the procedure described above, for which
the first iteration trivially yields that
o0 o0 o0 o0 o0 oo o0
)IEEDDEED DEED DD DEND DI DE AL
Ninaz=0 Nmei=0 Npmin=0 Lpmas=0 Lpmeq=0 Lymin=0 H=0

Next, we implement 56 and 58 jointly with H ~ Lmax to infer that
1
S N2 N’I’?Q'LQQZL 8 L Lmaw

min min med

and write the summation as

LmaT
Nmaz Lmed 2Lmax

SIS SIS D DD SHED DI DI

Nipaz=2 N, N"QLL”— Nimin=0 Lmax=8 Lmed=1 Lmin=1 H:L'"é‘“:

med=

However, another iteration of the third step in the procedure still produces an
infinite sum. Following this, we use 59 and 60 to argue that Ny,q.Nmin is a better
upper bound for Leq than Liq./8. Since Lpjeq > 1, this change also brings
about N,;! and Nz Nmin as new, improved lower bounds for Nyin and Lyaq-
Consequently, the summation takes the form

Nmas 1 o NmaoNmin  Lmea  2Lmax
> Y 0 2 22X xS
Nmaz=2 N, ,=Nmae Np,=Nnb, Lmax=NmazNmin Lmed=1 Lmin=1 p=Lmaz

Unfortunately, by running again the computation step, we obtain infinity for an

answer. Finally, if we rely on the unused part of 59 (i.e., Loz ~ N2,.), We can
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modify, with better lower and upper bounds, the sums with respect to L, and
H. Hence, we are dealing with

2 2
0o Nomax 1 2N a0 NmazNmin  Lmed AN7ax

D R VD DD DD

Npmaz=2 N. Lpea=1 Lpmin=1 H

N, —1 2
med="3%% Nmin=Nmas [, =Vnaee

and another iteration of the third step in our procedure yields a result which is both
finite and comparable to 1. It is worth noticing that we did not make use of 57 in
the process.

As final comments, let us say that our code is easily adapted to cover the sum-
mation arguments for the other types of bilinear estimates proved by Tao in [11]
(e.g., bounds related to the KdV and wave equations). Moreover, we see no reason
not to believe that it can accommodate even general multilinear estimates involving
dyadic decompositions.
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