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ABSTRACT. In this paper, we generalize the Riemann-Liouville differential and
integral operators on the space of Henstock-Kurzweil integrable distributions,
Dy . We obtain new fundamental properties of the fractional derivatives and
integrals, a general version of the fundamental theorem of fractional calculus,
semigroup property for the Riemann-Liouville integral operators and relations
between the Riemann-Liouville integral and differential operators. Also, we
achieve a generalized characterization of the solution for the Abel integral
equation. Finally, we show relations for the Fourier transform of fractional
derivative and integral. These results are based on the properties of the distri-
butional Henstock-Kurzweil integral and convolution.

1. Introduction. Fractional calculus is devoted to studying the different possi-
bilities of defining the differential operator of arbitrary order, properties, possible
relations with the integral operator, and applications. There exist several classi-
cal definitions for fractional derivatives, for example, Caputo, Riemann-Liouville,
Marchaud, Hadamard and the Weyl derivatives, among others. In recent years
with the intention of solving some problems that the classical fractional deriva-
tives do not achieve and as a consequence of those, new fractional derivatives
have been defined combining power law, exponential decay and Mittag-LefHler ker-
nel; among them those of Liouville-Caputo, Atanga-Caputo, Atanga-Goémez and
Atanga-Baleanu derivatives, see [2], [3], [5], [6] and [16].

This branch of mathematics is one of the most powerful modeling tools applied in
many fields of science, physics, chemistry, biology, engineering, see e.g. [2], [3], [5],
[9], [15], [17], [23], [27] and [35]. In general, fractional calculus has been developed
in the context of the Lebesgue integral, see e.g. [12], [20], [22], [30] and [39].
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In this article, we use more general integrals than the Lebesgue integral, expand-
ing the space of functions where it is possible to apply fractional calculus. Although
our study is theoretical, we primarily pursue an aim partially similar to those de-
veloped in [3], [4], [7], [16] and [38]. For example, the use of generalized integration
helps us to recover the initial function, a fact searched in the above references.

The basic idea behind fractional calculus is the fundamental theorem of calculus
(FTC). First, we denote by J, the operator that maps a integrable function f (in
some sense, for example Riemann integrable in the compact interval [a, b]), onto its
primitive centered at a. We denote by D the operator that maps a differentiable
function onto its derivative, Df := f'(z). For n € N, J» and D™ denote the n-fold
iterates of J, and D, respectively. Therefore, using this notation the FTC reads as

DJ,f(z) = f(z) a.e. on [a,b],
and this implies that
D"J? f(z) = f(z) a.e. on [a,b, (1)

for n € N. Moreover, it is possible to obtain by induction that for any n € N and f
Riemann-integrable function, J7' is given as

ﬁvuw:mflﬂéﬂw—W1V@Mu

where a < x < b. Using the Riemann-Liuoville fractional derivative the equality
(1) holds for any n > 0, even non-integer, see e.g. [12], [20] and [30]. This means
that we have a version of the FTC in a fractional sense. Besides, according to this
fractional derivative, an arbitrary function does not need to be continuous nor be
differentiable in the usual sense. Thus, this definition is an excellent tool for the
description of memory and hereditary properties of several materials and processes,
[20], [30] and [39].

On the other hand, the integration theory continues developing. For example,
in the last century R. Henstock and J. Kurzweil introduced a generalized integral,
it is known as Henstock-Kurzweil integral, see e.g. [8] and [31]. Later, E. Talvila
obtained fundamental properties about the Fourier transform using the Henstock-
Kurzweil integral, see [33]. Moreover, the Henstock-Kurzweil integral can be gen-
eralized in various ways, for example, one can consider Henstock-Kurzweil-Stieljtes
type integrals, see [26]. Another possible direction is the distribution theory, in [32]
and [34] E. Talvila extended this integral in a distributional sense and achieved new
properties for the convolution in a generalized sense. Thus, with the introduction of
new integration theories, the possibility to extend fundamental results arises. The
following relations are well known,

L'a,b) C HK[a,b] € HK[a,}] = Dy, 2)

where [a,b] is any compact interval, the space of Lebesgue integrable functions
is denoted by L'[a,b] and the space of Henstock-Kurzweil integrable function by

HK]la,b]. HK]a,b] denotes the completion of HK]a,b] with respect to the Alex-
iewicz norm, and Dy g the space of all distributions each of which is the distribu-
tional derivative of a continuous function. The last relation in (2) means that the
completion of HK|a,b] is isometrically isomorphic to D, see [10] and [11]. The
subsets of integrable functions are strictly contained, and the values of the integrals
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coincide; see [21] , [24] and [25]. The Riemann, Lebesgue, Henstock-Kurzweil, Per-
ron, Denjoy, and improper integrals are special cases contained in the distributional
Henstock-Kurzweil integral. Moreover, it is valid on unbounded intervals, see [34].

Motivated by the suitability and applicability of the Riemann-Liouville fractional
derivative, and the generality offered by the distributional integral, we define the
Riemann-Liouville fractional integral and differential operators in the context of the
distributional Henstock-Kurzweil integral. Also, we extend fundamental properties
(see e.g., Theorem 3.2 and Theorem 3.3) and obtain new relations between the
fractional integral and differential operators, see Theorem 4.2. In particular, we
prove that the fractional differential operator inverts the fractional integral in a
distributional sense, see Theorem 4.6. Finally, we show some applications of the
fractional derivative, for example, a general characterization of the solution for the
Abel integral equation and new properties of the Fourier transform for the fractional
integral and derivative.

2. Preliminaries. Following the notation from [12], we introduce the Riemann-
Liouville integral and differential operators.
First, we recall that function I' : (0,00) — R, defined by

I(x) := /000 t* e tdt, (3)

is Euler’s Gamma function. Let n be a positive number. We define m = [n] as the
least integer greater than or equal to n.

Definition 2.1. Let n € R* U {0}. The operator J? is defined in L'[a, b] by

S = s [ -0 (4)

for a < x < b, is called the Riemann-Liouville fractional integral operator of order
n. For n =0, we set JO := I, the identity operator.

Note that for any f € L![a,b] and n € RT U {0}, the operator J f(x) exists for
almost every = € [a, b] and is also an element of L'[a, b], it means for any n € R

JiH (L a, b)) € L'[a, b],
see e.g. [12, Theorem 2.1].
Definition 2.2. Let n € RT U {0} and m = [n]. The operator D" is defined by
Dif = D, (5)

when D” f exists a.e. on [a, b] is called the Riemann-Liouville fractional differential
operator of order n, where D™ denotes the m—folds iterates of the derivative. For
n =0, we set DY := I, the identity operator.

Note than D f might not exist. However, there are sufficient conditions for
the existence of fractional derivatives provided e.g. in [12], [20] and [30]. In [12,
Theorem 2.14] it is shown that the Riemann-Liouville fractional differential operator
inverts the Riemann-Liouville fractional integral operator over L[a, b], where [a, b]
is any compact interval. This means that the FTC holds over L![a, b] considering the
Riemann-Liouville fractional derivative. This result is known as the fundamental
theorem of fractional calculus.
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Now we introduce the definition of the distributional Henstock-Kurzweil integral.
Recall, the Lebesgue integral is characterized in terms of absolutely continuous func-
tions, AC. In the case of Henstock-Kurzweil integral, there is an analogous charac-
terization in terms of generalized absolutely continuous functions in the restricted
sense ACG,. This means, F' € ACG, if and only if there exists f € HK]Ja,b] such
that F(z) = [ f+ F(a), hence F' = f a.e., see [18]. However, if F' is a continuous
function, then the generalized function and the distributional derivative are needed
because there are continuous functions that are differentiable nowhere.

Let (a,b) be an bounded open interval in R, we define

D(a,b) :={¢: (a,b) = R | ¢ € C* and ¢ has a compact support in (a,b)}.

Moreover, it is said that a sequence (¢,) C D(a,b) converges to ¢ € D(a,b) if there
is a compact set K C (a, b) such that all ¢,, have support in K and for each integer

m > 0, the sequence of derivatives ( %m)) converges to ¢("™) uniformly on K, see

e.g. [19].
The dual space of D(a,b) is denoted by D’(a,b) and is the space of continuous
linear functionals on D(a,b). This refers to the distributions on (a,b). Let

Co = {F € C[a,b] : F(a) = 0}.

It is well known that Cy is a Banach space with the uniform norm, ||F||ec :=

SUPte(a,b] |F(t)‘
We will follow the notation from [36] to introduce the distributional Henstock-
Kurzweil integral.

Definition 2.3. A distribution f € D’'(a,b) is said to be a Henstock-Kurzweil
integrable distribution on [a, b] if there exists a continuous function F' € C such that
F’ = f (the distributional derivative of F' is f). In other words, F is the primitive
of f. The distributional Henstock-Kurzweil integral of f on [a,b] is denoted by

b
/f@ﬁ:F@—F@.

We set DF := F’ in a distributional sense. The space of all the Henstock-
Kurzweil integrable distributions on [a, b] is denoted by Dyk. For f € Dyk, we
define the Alexiewicz norm in Dy as

11l = [[F oo

where DF' = f. In particular, if f € HK][a,b], then [|f[|a := sup,cq,y | [ fl. Now
let us consider f € Dy and (fx) C HK]a,b] such that ||fr — f||a — 0, as k — oo.
Let us denote for each k € N, F}, as the primitive of f (F}(z) = fr(x) a.e.). Since

(fx) C HK]a,b], then (fy, ¢) = f; fe(®)o(t) dt for all ¢ € D(a,b) and

b b
(fi, ®) 12/ fk(t)¢(t)dt:—/ Frg'.
On the other hand, since ||f — fx|la — 0, as k — oo, (F}) is a Cauchy sequence

in Cla,b]. Therefore, exists F' € Cla,b] such that Fi(z) — F(x) and for every
¢ € D(a,b)

b b
Tim (7, ¢) = — lim / P’ = — / F¢' = —(F,¢/) = (F, ).
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Thus, in the sense of distributions (fy) converges (weakly) to F’. Now, by Holder
inequality, [34, Theorem 7],

b
/(fk—f)¢ < 2[fi - fllalldllsv for each ¢ € D(a,b).

Hence f, — f, in the distributions sense. Therefore f = F”.

Note that it does not depend on the Cauchy sequence because the set of conti-
nuous functions with uniform norm is a Banach space. Moreover, if f € Dy, then
f has many primitives in Cf[a,b|, all differing by a constant. Nevertheless, f has
exactly one primitive in Cp, see [11, Theorem 6, ii)].

By [34, Theorem 2, Theorem 3|, Dpk is a Banach space and is a separable space
with respect to the Alexiewicz norm, respectively. On the other hand, in [10] and
[11] it is shown that the completion of the Henstock-Kurzweil integrable functions
space, Hf[a\,b], is isomorphic to Dyg. Furthermore, in [11], [34] and [37] the
following result is proved.

Theorem 2.4. Dy is isomorphic to the space Cy.

Another important fact is that the Banach dual of H KJa, b] is isomorphic to the
space BV [a, b] of all functions of bounded variations on [a, b]. Moreover, H K|a, b]* =
D3 = BV]a,b], see [1]. To consult the formal definitions, see [18]. Also there ex-
ists a version of FTC in the Henstock-Kurzweil distributional sense.

Theorem 2.5. ([34, Theorem 4] Fundamental theorem of calculus)
(i) Let f € Duk and F(x) := [ f. Then F € Cy and DF = f.
(i) Let F € Cla,b]. Then [ DF = F(z) — F(a) for all z € [a,}].

Definition 2.6. Let f and (fx) in Dyk.

(i) (fx) converges in Alexiewicz norm to f if ||fx — f||la — 0 as k — oo.
(i) (fx) converges weakly to f in D(a,b) if (fr—f, ¢) = f;(fkff)gb — 0 (k — o0)
for each ¢ € D(a,b).

(iii) (fx) converges weakly to f in BV if (fr — f,9) = ff(fk —fg—0 (k— o0)
for each g € BV |[a, b].

In [34] is proved the following result.

Theorem 2.7. We have
(i) Convergence in Alexiewicz norm implies weak convergence in D(a,b) and
BV]a,b].
(ii) Weak convergence in BV [a,b] implies weak convergence in D(a,b).
(#ii) Nevertheless, weak convergence in D(a,b) does not imply weak convergence
in BVa,b] or weak convergence in BV][a,b] does not imply convergence in
Alexiewicz norm.

Consider
D:={¢:R—>R | ¢eC™ and ¢ has a compact support on R}.

We say that a sequence (¢,) C D converges to ¢ € D if there is a compact set K
such that all ¢,, have support in K and for each integer m > 0, the sequence of

derivatives (¢5Lm)) converges to ¢("™) uniformly on K, see e.g. [19]. The space of
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distributions on D is denoted by D’. The space of Denjoy integrable distributions
is defined by
Ac:={f €D | f=Ffor F € Bc},
where
Bo:={F:R—R|FecC’R),F(—o0) = 0}.
We denote by C°(R) the continuous functions such that the limits lim, . F(z)
and lim,_, o F(z) exist in R. Setting F(£o00) := limy,_, 100 F(2).
Denote
BV :={¢g:R—>R|Vg<oo}
where Vg := sup X|g(z;)—g(y;)| and the supremum is taken over all disjoint intervals

{(zi,yi)}-
The convolution of g, f : B C R — R is defined by

g* f(z) = /Bg(w—y)f(y) dy (6)

always that the integral (6) exists in some sense. It is well known that if f, g € L!(R),
then the convolution of g and f belongs to L'(R), [29]. Also, the convolution of
g € BV and f € A, is defined with respect to the Henstock-Kurzweil distributional
integral. On the other hand, when g € L*(R) and f € A., and knowing that L'(R)
is dense in A, their convolution is defined by

g () = lim g fi(a)

where (f) C L'(R) such that ||fi — f||a — 0, as k — oo. Talvila [32, Theorem 2.1,
Theorem 3.4] proved the following result.

Theorem 2.8. Let (g, f) € BV x Ac. Then
(i) g f(x) ewists for each v € R and g * f belongs to C°(R);
(i) fxg(x) =gxf(x);
(i) [lg * flloo < [IfllallgllByv where [|g][pv := Vg + |g(—00)|.
Moreover, if (g, f) € L*(R) x Ac and h € L*(R), then
(i’) g* f € Ac;
(ii’) g * flla < |[fllallglli;
(i) hx (g f)(@) = (h+g) * f(x).

Note that, any f € Dy can be considered as an element in Ac,l)ecause of its
primitive F' € Cj can be continuously extended to a function in C°(R).

3. Riemann-Liouville fractional integral operator on Dpgg. In this sec-
tion, we extend the Riemann-Liouville fractional integral operator over Henstock-
Kurzweil integrable distributions and we prove fundamental properties, including
the semigroup property.

In accordance with the convolution definition we set the following definition.

Definition 3.1. Let n € RT U {0}, f € Dy and

wl if O<u<b—a,
on(u) = { 0 else. (7)
The Riemann-Liouville fractional integral operator of order n is defined as
n 1
Ta f (@) := == on * (),

I'(n)
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forn>1 .
¢n*fo)::‘/1(w-O”’lf@)du

and for0<n<1

O * f(x) := lim (x — )" L fr(t) dt,
k—oo [,
whereby a < 2 < b, (fx) C L'[a,b] such that ||fi — f||a — 0, as k — oco. For n = 0,
we set JOf := I, the identity operator.

Remark 1. Note that if n > 1, then ¢, is increasing, non-negative and bounded
on [0,b — a]. Thus, ¢, is a function of bounded variation on R. When 0 < n < 1,
the function ¢, belongs to L'(R), but it is not a bounded variation function (is
unbounded at u = 0). Observe that if f is in Ll[a,b], then J"f(z) = J2f(x),
since the distributional Henstock-Kurzweil integral contains the Lebesgue integral.
Via the Holder inequality, [34] and [37], it is easy to see that Jf is a temperate
distribution for any f € Dy and n > 0.

In case (a,b) = R, the fractional integral over the real axis is defined analogously,
see [30]. Note that for any n > 0, ¢,, is not Lebesgue integrable nor bounded on R.
Thus, convolution definition (Definition 3.1) is not suitable for f € A. and ¢,,. On
the other hand, ¢, € L}, .(R), then ¢,, defines a regular distribution,

loc
(To0) = [ ou@ota)da,
¢ € D(R). The convolution of two distributions S and T is defined as
(S*T,¢) = (5(¢),(T'(x), p(x — y))), (8)

see for example [14]. However, the inner pairing (T'(z), ¢(x — y)) produces a func-
tion of y which might not be a test function. Then the distributions must satisfy
one of the following conditions: (a) either S or T has bounded support, (b) the
supports of S and T are bounded on the same side. In the fractional integral case,
these constraints force the distribution f to have compact support. The Riemann-
Liouville fractional derivative defined as convolution of generalized functions with
the supports bounded on the same side is studied in [22]. Then, we will analyze the
Riemann-Liouville fractional integral in the sense of the distributional Henstock-
Kurzweil integral, according to Definition 3.1.

Now, we will prove some fundamental properties of Riemann-Liouville fractional
integrals.

Theorem 3.2. Let n € RT U{0}, f € Dyx and J"f(x) as in the Definition 3.1.
Then,
(i) J?: Dux — Duk;
(1) T is a bounded linear operator with respect to the Alexiewicz norm;
(iii) for (fr) C Dpx which converges in the Alexiewicz norm to f, we have that
(T fr) convergences in the Alexiewicz norm to JIf.
(iv) Moreover, if n > 1, then

T2 (@) = g Jim 60+ @)

on Dy and as well on Cla, b, where (fr) C L'[a,b] such that || fr.— f||la — 0,
as k — oo.
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Proof. In the case n = 0, claims 4),4i) and #¢) are trivial. Let n > 1 be fixed and
f € Dpgk. By Theorem 2.8 we have that J f(x) exists for every = € [a,b], and
J2f is an element in Cy, thus J.' : Dgx — Co C Dgr. Now we will show that
is a bounded linear operator with respect to the Alexiewicz norm. By Theorem 2.8

(iii)

IN

/ay T f(x)dx

Y
[ 172811

1
I(n)

< (Y —a)zllfllallénllBv-

Taking supreme when y € [a, b] we get
(b—a)
n < .
197211 < S5 1L alienllov
Now let 0 < n < 1 be fixed. From Definition 3.1 and Theorem 2.8 we have ¢, * f €
A.. Since f and ¢, have compact support, we get that J.' : Dgyx — Dgx. It is
clear that for any n € Rt J" is a linear operator on Dy, because of the linearity
of the integral. By [28, Theorem 1.32 | we have (4i7).

In the case n > 1, ¢, is of bounded variation on [0,b — a] and belongs to L!(R).
Let us take a sequence (fx) in L[a,b] such that ||fx — f|]la — 0, as k — co. By
Theorem 2.8 (ii¢) and (i'), we have

[@n * f— bn* frlla <||f — frllallgnlls  and

pn * f — b * frlloo < |If = frllallénllBy.
Therefore, (iv) holds. O

We will prove the semigroup property for the Riemann-Liouville fractional inte-
gral operators.
Theorem 3.3. Let m,n € RT U{0} and f € Dyg. Then
(i) JmJrf = Jmf in Dyg; Moreover, if m > 1 orn > 1, then the identity
holds everywhere in Cla,b];
(i) T I f = Ti I8 f in Darc;
(iii) the set {J" : Dyx — Dpk,n > 0} forms a commutative semigroup with
respect to concatenation. The identity operator J? is the neutral element of
this semigroup.

Proof. Let n € RY, f € Dyg. By Theorem 3.2 (4ii) we have
lim J;' fi = J5' [,
k—o0
where (fi) C L'[a, b] such that || f — fi||la — 0, as k — oco. For any n,m € RT, and
for each k£ € N we have
TI"T" fr(z) = T " fir.(z)  ae. on [a,b), (9)
and
Ja"Tq fe(@) = T3 T3" fr(x) ae. on [a,b], (10)

see [12]. Since the composition of bounded operators is bounded, by (9) we have
T T f=T" kILH;O Ta e = kILII;O Ta"Tq' fre = klilgo T =T f in Dk
If n > 1, then we have J f, 7""t" f, JmJ" f € Cla,b]. By Theorem 3.2 (iv)

T Ta f (@) = T f(x) on [a,b]
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and we obtain (7). Claim (i7) follows from (10) and the continuity condition (The-
orem 3.2 (i4i))
TIPS = lim JRTE = Jim T2T = TR n D
—00 —00
Finally (ii4) follows from the associative property (Theorem 2.8 (7). O

Analogously, let us define the right-sided Riemann-Liouville fractional integral
of order n on Dy .

Definition 3.4. Let n € RT U {0}, f € Dy and

(w0 < —u<b—a,
Yn(u) = { 0 else. (11)
The right-side fractional integral of order n is
1
n —

forn>1,
b

- ::/ (t — 2)"Lf (1) dt,

and for 0 < n < 1,
b
Yn * f(x) := lim (t — )" fi(t) dt,
k—oo [,
whereby a <z < b, (fx) C L'[a,b] such that ||fi — f||a — 0, as k — oco. For n = 0,
we set JP := I, the identity operator.

Remark 2. It is clear that if n > 1, then 1, is of bounded variation and belongs
to Ll(R) Thus, jbi : Dy — Cy C Dyk, and for any f € Dyg

T fl@) = lim T fila),

in Dy, where (fi) C L'[a,b] such that (fi) converges in Alexiewicz norm to f.
Analogously, we have || 7" flleo < [|fllalltn]lBv /T (1), when n > 1. Moreover, we
get that 7" is a bounded linear operator of Dy into Dy, because of || J* f|la <
|| flall¥n]l BV (b—a)/T(n). If0 < n < 1, then ¢,, € L'(R), and J;* : Dy — Dur;
by Theorem 2.8 we get that [J,' is a bounded linear operator with respect to
the Alexiewicz norm. Similarly, the semigroup property for the operators J;* is
obtained.

4. Riemann-Liouville fractional differential operator on Dy . Now, we will
extend the Riemann-Liouville differential operator (Definition 2.2) in distributional
sense to get new fundamental properties between the fractional integral and differ-
ential operators. Moreover, we shall prove the fundamental theorem of fractional
calculus on the space Dy .

Definition 4.1. Let n € R* U {0}, m := [n] and f € Dyg. The Riemann-
Liowville fractional differential operator of order n is

Dy f =D T,
where D™ denotes the m-fold iterates of the distributional derivative. For n = 0,
we set DY := I, the identity operator.
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Remark 3. Observe that the operator D} is well defined, since J;" " f € Dpk,
and the distributional derivative of a distribution is a distribution, see [19]. There-
fore, for any n € R,

DZ : DHK — D'(a,b).

Remark 4. The Caputo derivative on R is given as

x m—n—1
C rn o (x—1) (m)
D)= [ S (12)
where m := [n]. According to the convolution definition for distribution (8), if

f is any distribution with bounded support, the Caputo and Riemann-Liouville
derivatives define the same functional in distributional sense, see [22]; in particular
it is valid when f is induced by a function in C*°[a, b]. In our study any distribution
f in Dy is considered. This means that f might not be induced by a locally
Lebesgue integrable function.

We will show that for any n € R and f € Dyg, the Riemann-Liouville integral
operator can be written via the primitive of f. This is a new property even for
Lebesgue integrable functions.

Theorem 4.2. Let n € RTU{0} and f € Dyk. Then,
Ja'f = D(JJF), (13)

where F' € Cy and is the primitive of f. In consequence, for j € N and ¢ € D(a,b),
then

(D3 ), 6) = (=1 THITF, U TY). (14)
Moreover, if m = [n], then
DIf =DM gmE, (15)
For 0 <n <1, D}F is a temperate distribution and
DIF =J "f. (16)

Proof. The case n = 0 is trivial. Let n € R be fixed, f € Dyk and ¢ € D(a,b).
By Definition 3.1 and Theorem 3.2 (iii) we have

b
(TrF8) = / T (2)(e) de

1 b T .
= | [ @m0 s

- /ab lim /:(x — )" fir(t) () dt de,

I‘(n) k— o0

where (fi) C L'[a,b] such that || fx — f||a — oo, as k — oco. Since J fx converges
in the Alexiewicz norm to J f (Theorem 3.2), by Theorem 2.7, the Fubini Theorem
and integration by parts we have

1 ' 1 ’ n—1
o [ [ @0 o) dids
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1 b b
= lim —/ fk(t)/ (x — )" to(x) dx dt,
(n) a t
-1 b b — )"
— lim —)/ fk(t)/ =" ) d
a t

b T
klir{:om/(l (b(;v)/a Fp(t)(z —t)" " dtdx

b
= —klim &' (2) T} Fr(x) da.

a

where Fy(t) = fat fr(r)dr. Let € > 0, we have that for k, &’ large enough
1Fk = Firlloo = [1fx — firlla <e
Therefore, there exists F' € Cy such that limy_, o F.(z) = F(x) for z € [a, b] and for
a k large enough we have ||Fj, — F||s < €. We will show that ||T"F, — J"F||a < ¢,
for a k large enough.
Since (Fy) and F belong to Cp, we have

/y Fu(t) — F(t)dt

a

||Fr — F||la = sup
y€la,b]

Yy

< sup / 1B — Fllwdt < 2(b— a),
y€la,b] Ja

for a k large enough, i.e. F}j converges in the Alexiewicz norm to F. By the

continuity property (Theorem 3.2 (iii)) we get that J*F}, converges to J*F in the

Alexiewicz norm as well. Thus, by Theorem 2.7 we have

<janf7 ¢> = _<janFa ¢/> = <(~7anF)/’¢>v
and (13) holds. From (13) and the definition of derivative in the distributional
sense we get (14). By definition of fractional derivative we have DI f = D™ J ™" f,

from where (15) follows. Since J!7"f is a temperate distribution and DIF =
D(JL="F), we have (16). O

Corollary 1. Let n € RY, m := [n], f € Dk and F € Cy the primitive of f.
Then
DI'F =DM lgm=nf, (17)

Proof. The equality (17) follows from expression (14). O

The following example shows that, although F' is differentiable nowhere, its frac-
tional derivative of any order is well defined. Moreover, the fractional integral and
derivative of arbitrary order of F are always well defined in the distributional sense.

Example 1. Let n € RT and F € Cj such that F’(x) does not exists for any
x € [a,b]. Note that ' ¢ ACG.(I) for any I C [a,b], hence F’ does not belong to
HK(I) nor L'(I). However, F' € Dy and [ DF = F(x) for all z € [a,b]. By

Theorem 4.2 we have

TIF(6) = T o(6) = — / TrF(2)¢! (2)de

— 00

and

DF(0) = T3, 0) = (1 [ g @ wde

for all ¢ € D(a,b) where JF defines an absolutely continuous functions for any
n > 0 and T denotes the m—th distributional derivative of the distribution 7'
This means, the fractional integral and derivative of any order of F' exist, even
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though F” is not a Henstock-Kurzweil integrable function and F' is differentiable
nowhere, respectively. In particular, for n > 1, we have that J"F’ € C°(R). On
the other hand, by Definition 4.1 and Corollary 1 for all ¢ € D(a,b)

DyF(¢) = (-1)™ /_OO T ()™ (2)de = (=1)" LT F (D),

Lemma 4.3. For anyn € R™, f € Dyg and ¢ € D(a,b) we have that
(DU(T3f).d) = (D' f, T;" 6, (18)
where j is any positive integer or zero.

Proof. Let n € R, ¢ € D(a,b) and f € Dyx. By Theorem 3.2, Theorem 2.7 and
the Fubini Theorem

n . 1 b ’ n—1
s = g o [ [0 o deds,
b
= lgr;o Je@)Tp" o(t) di. (19)

For each ¢ € D(a,b), T ¢ € AC[a,b] C BVl]a,b]. Since (fx) converges in the
Alexiewicz norm to f, applying Theorem 2.7 in (19) we get

(Tt ) / FOTE o)t = (F, T 6).

From here and by the definition of derivative in distributional sense, (18) holds. O

Applying integration by parts, semigroup property [30], and FTC, is easy to see
that J;' ¢ € D(a,b). Since J;* ¢ = JJ' ¢, (18) is well defined. Now we will show a
version of the integration by parts formula for J;* on Dy k.

Theorem 4.4. Letn € RY, f € Dyi and ¢ € BV|[a,b]. Then,

b b
/ ()T f () der = / ST () dt. (20)

Proof. Let n € RY, f € Dyg and ¢ € BV|a,b]. Analogously, as in the proof of
Lemma 4.3 we have
= hm fk( )Ty o(t) dt,

b
/ (@) T f () da

where (fi) C L'[a,b] and ||fi — f]la — O7 as k — oco. Since ¢ € BV [a,b], we have
that J ¢ € AC[a,b] and ACla,b] C BV]a,b|. By Theorem 2.7 we have (20). O

/¢ ) lim )/j(xt)”lfk(t)dtdac

k—o0 F

Theorem 4.5. Assume that ni,ns € RYU{0}, g € Dy and f = J"T"2g. Then
D Dnzf — DTL1+7L2 f
Proof. We proceed as in [12, Theorem 2.13]. O

Remark 5. Note that D?2Dnt f = Drztm f — Dratnz f — DiDl2 f for g € Dy
and f = JMmtn2g,

Now we will prove the fundamental theorem of calculus in the distributional
sense, it means, D} inverts J,' on Dy and for any n € RT.
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Theorem 4.6. Let n € RY U{0}. Then, for every f € Dy,
DyJa f=1T.

Proof. In the case n = 0, the statement is trivial because D, and J,' are both the
identity operator. Assume that n € RT and let m := [n]. Then, by the definition of
D7, the semigroup property of the integral operators and the fundamental theorem
of calculus (Theorem 2.5),

DRIy f=D"gJ, "I f=D"T,"f =T

O
Theorem 4.7. Let fi, fo in Dyx, n € RT U{0} and c1,co € R. Then,
D"(c1fi + cofa) = a1 D" f1 + c2D" fa.
Proof. The linearity property follows from the linearity of the derivative. O

Now we will show some relations between Riemann-Liouville integrals and deriva-
tives.

Corollary 2. Let n € Rt U{0}. If there exists some g € Dy such that f = Jg,
then

T Dy f =T
Proof. Tt follows from definition of f and Theorem 4.6,
T2 Dif = T4 DaTigl =Ti'g = f.

Corollary 3. Let 0 <n < 1. Assume that f is such that J}~"f € Cy. Then,
T Daf =1 (21)
In particular, if f € Cy, then (21) holds as well.

Proof. Assume that J!7"f € Cp. Since Cj is isometrically isomorphic to Dy
(Theorem 2.4) there exists ¢ € Dy such that

Jo " f =T 0. (22)
Applying the operator D=" in (22) by Theorem 3.3 and Theorem 4.6,
f=J33¢.
It follows from Corollary 2. Now let us consider f € Cy, then J1~"f € Cj it follows
in an analogous way. O

We have that the differential operator D is the inverse operator J!. This means,

DI, f =T,
for any f € Dyr. Analogously, for n € RY and f € Dy
DI f =T

Now, let us consider F' € C[a,b]. In general, [ DF(t)dt # F(z) because of the
appearance of the constant F'(a). We will show that in general, 72 does not inverts
D7 . Even more, we provide an explicit expression.

Definition 4.8. Let n € N. Tt is said that F' € C"[a, b] if and only if F(*~1) € C[a, b]

in the classical sense, it means, (%)n_l F(z) = F"= ().
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It is clear that C'[a,b] = C[a,b]. Note that if F("~1) € C[a,b], then for any
¢ € D(a,b) we have
<F(n_1)7¢> = (_1)n—1<F7¢(n—1)>.
Moreover, if F' € C"[a,b], then F, F() .. F("=1 ¢ Cla,b] and F*~V is the primi-
tive of F(¥) therefore

FE=D(g) = / F®(t)dt + FE=D(a),
with another notation
Dkle — F(kfl)’
where k =1,2,...,n — 1. For k = n we have D"F = ¢ for some ¢ € Dyy.
Lemma 4.9. The space C™[a,b] consists of those and only those functions f(x),

which are represented in the form

n—1

1 x
f(x):m/a(x—t dt—i—chx—a

where ¢ € Dy, ¢ being arbitrary constants.

Proof. The proof follows from Definition 4.8, characterization of C|[a, b] in terms of
distributional integral and Definition 3.1. Moreover, ¢ = D" f and ¢, = f*)(a)/k! =
Dk f(a)/k!. O

Let n be a positive number. We define [n] as the greatest integer less than or

equal to n.

Theorem 4.10. Let n € RT and m := |n] + 1. Assume that f is such that
Jm=nf eC™a,b]. Then,

m— 1 n k—1
jnan § F Dm—k—lj;n—nf(a).
In particular, if 0 <n <1 we have
D2 (@) = f@) - E= L g1 p(a)
Dy f(z)=f(z (n) fi a).

Proof. Since J,"~"f € C™, by Theorem 2.4 there exits ¢ € Dy such that
DN = T+ DI f(a).
By Lemma 4.9 we have that

,_.

m—

T (@) = J5"o(x) + Z D7 " f(a). (23)
k=0
By definition of D, the expression (23) and Theorem 3.3
TPy f(x) = J/D"I " f(x

m

)
1— 1( )

= TP |Tle+ Y DI f(a)
k=0 k!

-1

D7 " f(a)

nym(. _ ,\k
= gorgret Y S

k=0

= Jio (24)
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Now applying the operator D"~ to both sides of (23) and by Theorem 3.3 we have
that

f( ) Dm njm¢ +m D n[(ia)k}(‘r)ijam,fnf(a)

k!
k=0

By definition of derivative, Theorem 3.3 and Example 2.4 in [12],

= 33—& k+n—m k m—n
o) = T2000) + 3 iy PRI ) (25)

So, we substitute k by m — k — 1 in (25) and by the expression (24), we obtain the
result. O

Following the idea that the primitives of an element in Dy g differ by a constant,
we will generalize the following results, [30, Lemma 2.1]. Let 0 < n < 1 and
F € AC[a,b]. Then J}="F € AC|[a,b] and

F(a)(z —a)™"*!

Jy "F(x) = JoF! ().
E ) = SR )
Furthermore, under the same assumptions of [12, Lemma 2.12] we have
F
D'F(z) = (a) I ().

'l —n)(z—a)®
Now we give the corresponding generalizations in the distributional sense.
Corollary 4. Let 0 <n < 1 and F € Cla,b]. Then J}™"F € Cla,b] and
F(a)(x —a)~"t!

1-n _ 2-n
ja F<x)_ F(*?’L+2) +k7a f(l’)
for f € Dy such that f = DF. Moreover,
DiF(x) = D g1 (),

'l —n)(z —a)»
Proof. Let F € C[a,b]. By Theorem 2.4 and Theorem 2.5 we have that

/f )dz + F(a /DF+F

for some f € Dy such that f = DF. Let 0 <n < 1 be fixed. Then
1

JIrF() = F(l_n)/:(x—t)_"F(t)dt

_ F(ll_n)/:(x—t ( /f dz)dt (26)

Let us consider f € Dyg, h(u) =u ™ if 0 < u < b—a and 0 else, and let us define
their definite integrals as

t x
f)Z/ f, t>=a and HO(CU):/ h, x>0.
a 0

We emphasize with the subindex zero that the definite integrals Fy and Hy are in
Cy and AC|[a,b)NCy, respectively. It is clear that f can be considered as an element
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of A, and h belongs to L*(R). By [32, Theorem 4.4] we have that Hy * f € Cp and
Hy * f(z) = hx Fy(x) for all x € R. Moreover,

/h(:c—t)Fo(t) it = /wh(x—t)FO(t) dt

= / Ho(ZE —t d
R
= / Hy(z —t )d (27)
for a < x < b. On the other hand,
T (x—t) L
H = —_— . 2
o f@) = [ Erw (25)

By expressions (26), (27), (28) and properties of gamma function we have that

i e (e [ 1e)o

F(a) n
- T Rt )
_ F(a’) 1—n 1
T2—m = " gy Hox /@)
_ F(CL) 1-n 2—n
= m@?—a) +Ja " f(z).
It is clear that J!~"F € Cla,b]. On the other hand,
D'F(x) := DJ""F(z)
_ Fla)(z—a)™ 5,
= D Nt 2) +J. "flz)
F(a)

+ DI f(x).

'l —n)(z—a)®
By Theorem 4.2, Theorem 3.3 and Theorem 4.6 we have
DJy~"f(x) = DDJ; " Fo(w) = DI, "Fo(w) = J,~"f (x).

O
Example 2. Let f:[0,1] — R defined as
. (—1)k+12k=1 if t ¢ [Ck—1,Ck)
f) = { 0 if t=1,
where ¢; =1 —27¢ i = 071,2 . It is well known that f € HK][0,1] \ L[0,1], see
[8]. Therefore, F(t fo f belongs to ACG.[0,1]\ AC[0, 1], see e.g., [18]. Since F

is in Cp, we have that jol "F belongs to AC[0, 1] for 0 < n < 1, hence jolan is

differentiable a.e. Taking n = 1/2 and applying Corollary 4 we can calculate Jol/ 2 7,
even though f ¢ L'[0, 1],

T ) = Dé” <>

k:+1 _1\n+1 _1\n+lon+1
+2Cn—117 I71/2+(1)72£C1/2,
n nm

M |
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when = € (¢,—1,¢p), in case z = ¢; for i € N we have that Dl/zF(x) does not exists.
This example illustrates that f does not need to be Lebesgue integrable to achieve its
fractional integral pointwise a.e. Moreover, according to Definition 4.1 and equality

(13) from Theorem 4.2 the operators jol/ ’f and D(l)/ *F are distributions given by
the same regular distribution, this means that for all ¢ € D(a, b)

T80 =~ [ B P @ = [ 3wl = ) F@),
and

Dé/Q / j1/2 &' (2)da = — / j1/2 & (2)dz.

5. Some applications. The integral equation
1 x
— — )" p(t)dt = 29
w0l = fw) (29)
where 0 < n < 1, f is a known function and ¢ is the unknown function, is called the
Abel integral equation. Assume this equation is considered on a compact interval
[a,b]. We will show a generalization of the solution of (29).

Theorem 5.1. The Abel integral equation (29) is solvable in Dyk if and only if
Ji=nf e Cla,b] and J}7"f(a) =0

Proof. Necessity. Let 0 < n < 1 be fixed. Assume that the Abel integral equation
(29) has a solution in Dy . It means, given f € Dy there exists ¢ € Dy such
that

Ta'p(x) = f().
Applying J1~™, by Theorem 3.3 we get

Theta) = [ C o) dt = T f(a).

By hypothesis ¢ € Dy, thus Jl~"f € Cy. Since the Abel integral equation has a
solution, it must be ¢ =D} f.

Sufficiency. Assume that there exists f € Dgx such that J1~"f € Cy. Then
there exists ¢ € Dy such that

i@ = [ ") dt.

We will prove that ¢ is solution of (29). Applying D.=" by Theorem 4.6 and
Theorem 3.3 we have

f=J7¢1.
O

Remark 6. It is possible to prove this result using the associative property of the
convolution, change of variable and the isomorphism between Dy and Cj.

The Fourier transform of a distribution T is defined as

(T, ¢) = (T, ),

where ¢ € D, the set of test functions, and the Fourier transform of g at x is

g(x) = /00 g(t) exp(—2mitz)dt.

— 00
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Thus, we obtained the following properties of the Fourier transform for the Riemann-
Liouville integral and derivative.

Proposition 1. Letn € RYU{0}, F € Cy and f € Dyk such that DF = f. Then
(i) e -
(T f,d) = (nI3F, ¢),
where n = 2wis and ¢ € D(a,b).
(ii) Form—1<n <m,
(Df.¢) = ™ T " f,6) = (" T T, ).
(i1i) Let k € N. Then
(D*T2 ), 6) = (=R T2 . 9).
where DF denotes the k—folds iterates of the derivative in distributional sense.
Proof. By (13) from Theorem 4.2
(Jef.0) = (T0f.9)
= —(TF () )
= _<t7anFa ¢>
= (JrF,ng)
= (nIJ2F,9), (30)

where v = —27s¢(s). Analogously, by definition of distributional derivative and
(30) we obtain (i7). Let k € N, it is easy to see

<D(u7(?f)a¢> = <777t7(:74fa¢>
Applying the same argument k£ — 1 times we get the result. O

Also, if T is a distribution and % is a test function, then the convolution of 1 x T

is defined as
(T, ¢) = (T, 9~ x ),
where ¢~ (z) = (—x) and ¢ € D(a,b). Additionally, the convolution theorem holds
in distributional sense, see [13]: if T' is a temperate distribution and ¢ a distribution
with compact support, then
T =T,

where the right side is the product of a distribution and a function in C*°(R), which
defines a temperate distribution. From the previous proposition we obtained the

following relations. Note that J)'f is a temperate distribution when f € Dy and
n > 0, see [34], [37].

Proposition 2. Let n € R U{0}, F € Cy, f € Dyk such that DF = f, and
¥,¢ € D(a,b).
(i) Then
<d)**7anfa¢> = <nk7({LF¢7¢>
(i) If DI f is a temperate distribution,

(W*xDRf,¢) = (1 JI"F -, ¢),

where m —1<n<m.
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Conclusions. In this work, we present an extension of the Riemann-Liouville frac-
tional derivative defined over the space of Henstock-Kurzweil integrable distribu-
tions. Thus, we obtain a generalization of classical results and new relations between
the fractional derivative and integral operators. These results enable to achieve ex-
pressions for the fractional integral (of arbitrary order) of any integrable distribu-
tion f, even though f is not induced by a Lebesgue integrable function; and for the
fractional derivative of any order of f’, though f is continuous and differentiable
nowhere, see Example 1 and Example 2. Hence, an advantage of this extension is
that the fractional derivative of any order n > 0 (integer or non-integer) is always
well defined over Dy, which contains the spaces of Lebesgue, Henstock-Kurzweil
and improper integrable functions. Thus, it is not necessary to constrain the frac-
tional derivative D™ over AC™. We believe that our results might contribute to
modeling real-world problems.

Perspectives. In the classic fractional calculus theory there is a version of Leibniz’
formula. This means, it is assumed that the functions f, g are analytic functions in
order to obtain an explicit expression of the fractional derivative of the product fg,
see e.g. [12, Theorem 2.18]. In the distribution theory the product of a distribution
f€D(a,b)and g € C>(a,b) is defined as

f9(®) = f(g9),

for any ¢ € C>°(a,b). In particular, if f € Dk and g € BV|a, b], then the product
belongs to Dk and

/a ' fg = Fo)a) - / " Fag.

where F' € Cy and DF = f, see [34]. In this paper we extended the integral and
differential concepts of arbitrary positive order in the distributional sense. Thus a
natural question is: Under what conditions is it possible to get an explicit expression
of D"*[fg], where n € RY, f € Dy and g € BV |a,b]?

Here we established fundamental results for fractional calculus in the sense of
the distributional Henstock-Kurzweil integral. On the other hand, the Riemann-
Liouville fractional derivative seems to be the most suitable according to theoretical
and applied studies, see [6]. Nevertheless, many numerical approximations of the
fractional derivative were made considering the Caputo derivative and the Lebesgue
integral. Thus, the future possible research is rich and has several directions, for ex-
ample, differential equations, generalized differential equations, mathematical mod-
eling and numerical approximation, where integration techniques play an important
role, see e.g., [2], [5], [6], [7], [9], [15], [20], [27], [31], [35], [38] and [39], among others.
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