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Abstract. This paper proposes a near-field shape neural network (NSNN) to

determine the shape of a sound-soft cavity based on a single source and sev-
eral measurements placed on a curve inside the cavity. The NSNN employs

the near-field measurements as input, and the output is the shape parameters

of the cavity. The self-attention mechanism is employed to obtain the feature
information of the near-field data, as well as the correlations among them. The

weights and biases of the NSNN are updated through the gradient descent al-

gorithm, which minimizes the error of the reconstructed shape of the cavity.
We prove that the loss function sequence related to the weights is a mono-

tonically bounded non-negative sequence, which indicates the convergence of

the NSNN. Numerical experiments show that the shape of the cavity can be
effectively reconstructed with the NSNN.

1. Introduction. The exterior scattering problem is a typical inverse scattering
problem, where scattering objects are illuminated by incident waves from the ex-
terior of the objects, and the measurements are also taken outside [8]. Examples
of this problem appear in a wide range of applications, such as geophysical explo-
rations, sonar and radar techniques, etc. However, in some practical applications,
it is necessary to use non-destructive testing to detect the structural integrity of the
cavity. In some industrial applications, the transmitters and receivers are placed
in the cavity, structural integrity of which is then tested through source (incident
waves) and measurements (scattering waves) [12]. In this case, the inverse scattering
problem is called interior inverse scattering problem. In this paper, we investigate
the approach to recover the shape of the cavity by using the near-field data. This
study is based on the Dirichlet boundary condition and the near-field data produced
by the cavity and the single point source.

In recent years, the interior inverse scattering problems of cavity have attracted
widespread attention, and some classical numerical methods have been proposed
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to the solution. In [22], Qin and Cakoni employed a Newton-type optimization
technique for an equivalent nonlinear integral equation to solve the inverse interior
scattering problem for an impenetrable cavity with the Dirichlet boundary condi-
tion. Qin and Colton [23] proved the uniqueness of the inverse scattering problem
of impenetrable cavity with the Dirichlet boundary condition. In their study, the
shape and position of the cavity were retrieved by the linear sampling method
(LSM). They further extended their method to reconstruct both the shape of the
cavity and the surface impedance of the cavity in literature [24]. Cakoni et al. [6]
established a LSM to determining the shape of a penetrable cavity, and proved the
uniqueness through an unusual non-selfadjoint eigenvalue problem. Hu et al. [11]
used the LSM to determine both the shape and boundary impedance of the partially
coated cavity. In addition to the LSM, Zeng et al. [32] employed the decomposi-
tion method to reconstruct the cavity and present some convergence results. Liu
[16] used the factorization method (FM) to solve inverse scattering problem of the
cavity. In [15], the near-field imaging method is developed to solving the inverse
problem of reconstructing the shape of an interior cavity. Sun et al. [28] applied
the reciprocity gap (RG) functional method and determine the shape of the cavity
from the Cauchy data on a curve inside the cavity, they also indicated the equiv-
alence of the RG functional method and the LSM with mere the scattered field.
Karageorghis et al. [13] employed the method of fundamental solutions (MFS) to
detect a sound-soft scatterer surrounding host acoustic homogeneous medium due
to a given point source inside it. Recently, Zhang et al. [33] proposed the idea
of using a reference ball and the superimposition of two point sources as incident
waves, and proved that the position, shape and boundary conditions of the cavity
can be uniquely determined from phaseless near-field data. More studies on the
inverse scattering problems of the cavities can also be found in [2, 10, 25].

The interior scattering problem is physically more complicated than the usual
exterior scattering problem in some aspects. In the former situation, all of the scat-
tered waves are “trapped”, i.e., the scattered waves are reflected to the boundary
as the incident waves repeatedly. As a result, the reconstruction effect is weaker
[23]. With the availability of large amount of data, it becomes applicable to utilize
machine learning algorithms in the solution of the inverse problem of cavity. In
recent years, machine learning methods have been widely employed in a variety
of inverse problems and achieved favorable results. Li and Liu et al. [14] gener-
ated the inferred geometric body with the input characteristic parameters from the
training dataset. In their study, the training dataset consists of some preprocessed
body shapes associated with appropriately sampled characteristic parameters. This
method applies the inverse scattering techniques in wave propagation theory to the
body generation. This is based on a delicate one-to-one correspondence between a
geometric body and the far-field pattern of a source scattering problem governed
by the Helmholtz system. Yin et al. [31] proposed a two-layer sequence-to-sequence
neural network, which can utilize phaseless far-field data to recover impenetrable
obstacles, and they gave convergence results about the network. Aggarwal et al.
[1] introduced a model-based image reconstruction framework with a convolution
neural network (CNN) based on regularization prior. Their study proposed a model
based deep learning (MoDL) framework, which combines the power of data-driven
learning algorithms with that of the physics derived model-based framework. The
MoDL framework provided a systematic approach to designing deep architectures
for inverse problems with the arbitrary structure. Sanghvi et al. [27] introduced a
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novel convolutional neural network structure, termed the contrast source network
(CSN), to solve electromagnetic inverse scattering problems. The CSN is built on
and extended the capability of existing physics-based inversion algorithms. Numer-
ical experiments showed the CSN is capable of recovering high permittivity objects,
which include homogeneous, heterogeneous and lossy scatterers. Proof of the con-
vergence of neural network algorithms in machine learning can be found in [29, 30].

Machine learning has some unique advantages, such as the capability of find-
ing potential rules and values from massive data, the power of quickly extracting
data features, the strong parallel distribution processing ability, the application to
approximating complex nonlinear relations, etc. This paper proposes a machine
learning algorithm for the interior inverse scattering problem of the impenetrable
cavity with the Dirichlet boundary condition. We consider the two-dimensional
case, and reconstruct the shape of the cavity from the data of a single source and
measurements located inside the cavity. Compared with the classic reconstruction
methods, the present method has two major advantages. First, this method can
still accurately reconstruct the shape of cavity when only small amount of measure-
ments are available. Accuracy can be further improved with more measurement
data. Second, in the limited-aperture case, this method has higher accuracy in
the cavity shape reconstructed based on local near-field data. Finally, we would
like to mention in passing that the study of inverse scattering problems with min-
imum/optimal measurement data has been a longstanding and intriguing topic in
the literature; see e.g. [3, 4, 5, 7, 17, 18, 19, 20, 21, 26] and the references cited
therein. Our study in this paper contributes to this topic for the interior scattering
problem.

The rest of this paper is organized as follows. Section 2 introduces the inverse
cavity scattering problem. In section 3, we establish the NSNN. The convergence of
the NSNN is proved in section 4. In section 5, we conducted numerical experiments
to illustrate the effectiveness of the NSNN. Finally, in section 6, we make conclusions
and discuss some future works.

2. The inverse scattering problem of the cavity. Consider an impenetrable
cavity D ⊂ R2, which is assumed to be a bounded simply connected domain with
C2 boundary ∂D. Physically, we assume the medium inside D is homogeneous with
refractive index scaled to one. Let Γ be a closed smooth curve inside the cavity (see
figure 1). Consider the interior scattering problem of the Helmholtz equation for
the cavity D, we find the scattered field us ∈ C2(D) ∩ C(D) satisfying

∆us + k2us = 0, in D, (1)

us = −ui, on ∂D, (2)

where k = ω/c > 0 is the wave number, ω > 0 denotes the frequency of a time
harmonic wave and c > 0 is the sound speed. The incident field ui is a point source

of the form ui(x, z) = Φ(x, z) = i
4H

(1)
0 (k|x− z|), where Φ(x, z) is the fundamental

solution to the Helmholtz equation, H
(1)
0 is the Hankel function of the first kind of

order zero.
To ensure the uniqueness of the forward scattering problem 1-2, we have to

assume that k2 is not an interior eigenvalue of −∆ with respect to the bound-
ary condition 2. Then, the well-posedness of the forward scattering problems 1-2
under the Dirichlet boundary condition can be proved (cf. [8]). Therefore, the
forward scattering is to find the scattered field us ∈ εH1(D) such that us solves the
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Helmholtz equation 1 and the total field u = ui + us satisfies a boundary condition
of the form 2.

Let z be located at the closed smooth curve Γ ⊂ D. The inverse problem we are
interested in is to determine the shape of D from the measurement of the scattered
field on the curve Γ inside D due to a point source located at z ∈ Γ. Under
the restrictive assumptions on the size of the cavity, Qin and Cakoni [22] proved
that the shape of the cavity can be uniquely determined by one source and several
measurements.

Figure 1. A schematic of the problem geometry.

3. The inverse scattering network. In this section, we present the architecture
of the proposed neural network for the inverse problem. The inverse scattering
problem of the cavity uses the known near-field data us(x, z) to determine the
shape of the cavity D. It is assumed that the observation curve Γ ⊂ D is a circle,
i.e., Γ = {ρ ∈ R2, |ρ| = rΓ, rΓ > 0}. Next, we introduce two notations for our
subsequent use.

Assumption 3.1. Let D ⊂ R2 be a bounded and simply connected domain with C2

boundary ∂D. We assume that the boundary curve of the cavity D has the following
parameterized representation:

∂D : f(t) = (f1(t), f2(t)), 0 ≤ t ≤ 2π,

where f1(t) and f2(t) admit the following (truncated) Fourier representations:
f1(t) = a0 +

I∑
i=1

ai cos(i · t) +
I∑
i=1

bi sin(i · t),

f2(t) = c0 +
I∑
i=1

ci cos(i · t) +
I∑
i=1

di sin(i · t),
(3)

where I ∈ N+. Let Y = (y1, y2, · · · , yL) denote the ordered set of the Fourier
coefficients a0, ai, bi, c0, ci, di, i = 1, 2, · · · , I, where L = 4I + 2, yl(l = 1, 2, · · · , L)
represents the l-th parameter in Y .

Definition 3.2. The training data set M of the near-field shape neural network
(NSNN) is given by

M = {usi , Yi;Di ∈ D}mi=1, (4)

where m is the total amount of training data set M , D represents the set of the
training shapes, usi = (xi1, x

i
2, · · · , xiN ) ∈ CN means the near-field data of Di,
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xin(n = 1, 2, · · · , N) represents the measurement of the n-th observation point in
usi , Yi = (yi1, y

i
2, · · · , yiL) ∈ RL means the true shape parameters of Di, y

i
l(l =

1, 2, · · · , L) represents the value of l-th parameter in Yi.

It is remarked that ∂D parametrized of the form 3 is rather general, which
includes the star-shaped domain as a special case. In fact, if D is star-shaped, it
can be parametrized as r(t)(cos t, sin t), t ∈ (0, 2π), where r : [0, 2π] 7→ R+ is the
radial function. By a direct verification, one can show that the truncated Fourier
expansion of r(t)(cos t, sin t) is of the general form 3. Furthermore, we convert the
problem of using the us(x, z) to determine the shape of the cavityD into the problem
of using the us(x, z) to determine the shape parameters Y = (y1, y2, · · · , yL) of the
cavity D.

In the NSNN, usi in the training data set M = {usi , Yi}mi is used as the input
of the near-field layer, Yi is used as the input of the shape layer. Next, we present
the main ingredients in constructing the NSNN, which consists of the near-field
layer and the shape layer, where the near-field layer is composed of a self-attention
sublayer and a feedforward neural network (FNN) sublayer, and the shape layer is
composed of a masked self-attention sublayer, a near-field shape attention sublayer
and a fully connected sublayer; see figure 2 for a schematic illustration of its working
state.

Figure 2. NSNN structure.

3.1. Self-attention sublayer. The self-attention sublayer learns the self-attention
values of xi1, x

i
2, · · · , xiN in the near-field data usi = (xi1, x

i
2, · · · , xiN ) of the each

input vector. Since the NSNN cannot handle complex numbers at this stage, let
xi1, x

i
2, · · · , xiN be transformed to the real number field and conducting dimensional

conversion. In order to explain the NSNN, we give two definitions as follow.

Definition 3.3. For xi1 = ιi1 + iβi1, x
i
2 = ιi2 + iβi2, · · · , xiN = ιiN + iβiN (i =

√
−1) in

usi = (xi1, x
i
2, · · · , xiN ) ∈ CN . Define a mapping F : CN 7→ RO, s.t.
F(xi1) := x̃i1 =

[
ιi1;βi1; 0; · · · ; 0

]
∈ RO,

F(xi2) := x̃i2 =
[
0; 0; ιi2;βi2; 0; · · · ; 0

]
∈ RO,

...

F(xiN ) := x̃iN =
[
0; · · · ; 0N−1; ιiN ;βiN ; 0; · · · ; 0

]
∈ RO.
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Definition 3.4. Let A = [a1, a2, · · · , an] ∈ Rn, B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

... · · ·
...

bi1 bi2 · · · bmn

 ∈
Rm×n, define a splice operator ⊕ni=1.

⊕ni=1 ai = A,

⊕mi=1 ⊕nj=1bij = B.

First, input us = (x1, x2, · · · , xN ) ∈ CN into the self-attention sublayer, then
get the vector ũs = (x̃1, x̃2, · · · , x̃N ) ∈ RO by mapping F . Second, this sub-
layer will randomly generate three different learnable parameter matrices, WQ

en ∈
RO×O,WK

en ∈ RO×O,WV
en ∈ RO×O. Finally, the self-attention vectors of x̃1 is given

by 

h11 = softmax
[

1√
O

(
x̃1W

Q
en

) (
x̃1W

K
en

)>] · (x̃1W
V
en

)
, h11 ∈ RO;

h12 = softmax
[

1√
O

(
x̃1W

Q
en

) (
x̃2W

K
en

)>] · (x̃2W
V
en

)
, h12 ∈ RO;

...

h1N = softmax
[

1√
O

(
x̃1W

Q
en

) (
x̃NW

K
en

)>] · (x̃NWV
en

)
, h1N ∈ RO,

(5)

where O is the number of nodes of the self-attention mechanism, softmax is the
activation function [9], 1√

O
is the scale factor. Similarly, the self-attention vectors

[(h21, h22, · · · , h2N ), (h31, h32, · · · , h3N ), · · · , (hN1, hN2, · · · , hNN )] of (x̃2, x̃3, · · · ,
x̃N ) can be obtained by the formula 5. According to the operation rules given in
Definition 3.4, the self-attention vectors are integrated to obtain the self-attention
matrix ~.

~ = ⊕Nj=1 ⊕Nj=1 softmax

[
1√
O

(
x̃nW

Q
en

) (
x̃jW

K
en

)>] · (x̃jWV
en

)
, ~ ∈ RN×N ·O. (6)

In order to extract more interactive information of the near-field data us =
(x1, x2, · · · , xN ), let ~ act on the learnable linear projection matrix W0 ∈ RN ·O×O,
the output Z of this sublayer can be obtained.

Z = ~W0, Z ∈ RN×O. (7)

3.2. Feedforward neural network (FNN) sublayer. Since the inverse problem
is a typical nonlinear problem, the feedforward neural network (FNN) is used to
provide the nonlinear transformation, so that the NSNN can better solve inverse
problems. The FNN sublayer is shown in figure 3.

The FNN sublayer carries out the information transmission via the formula 8,
for the input sequence Z, there is

Y = tanh (ZW1 + b1)W2 + b2,Y ∈ RN×O, (8)

where W1 ∈ RO×O and W2 ∈ RO×O are the weight matrix of the first layer and
the second layer respectively, b1 and b2 are the bias of the first layer and the bias
of the second layer respectively. O is the number of nodes in the self-attention
mechanism, O is the number of neurons in the FNN sublayer, and tanh(·) is the
activation function [9].
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Figure 3. Feedforward neural network structure.

Next, the shape layer predicts the target sequence via regression. The input of
shape layer is the true shape parameters Y = (y1, y2, · · · , yL) and the output Y of
the near-field layer. The output of the shape layer is the recovered shape parameters

of cavity Ŷ = (ŷ1, ŷ2, · · · , ŷL), and the shape layer includes the following three
sublayers.

3.3. Masked self-attention sublayer. In the masked self-attention sublayer, first
of all, we add a positive constant y0 to Y = (y1, y2, · · · , yL) ∈ RL to get Y =
(y0, y1, y2, · · · , yL) ∈ RL+1, it is worth noting that the masked self-attention sub-
layer automatically mask the information of yl+1, yl+2, · · · , yL when calculating the

self-attention of yl(l = 0, 1, · · · , L). Secondly, Ỹ ∈ RL+1 is obtained under the

action of F(Y ), and then three learnable parameters matrices WQ
de ∈ RO×O,WK

de ∈
RO×O,WV

de ∈ RO×O are randomly generated in this layer. Finally, the self-attention
matrix H of Y is obtained by the following formula.

H = ⊕li=0softmax

[
1√
O

(
ỹiW

Q
de

) (
ỹlW

K
de

)>] · (ỹlWV
de

)
, l = 0, · · · , L,H ∈ RL×O.

(9)

3.4. Near-field shape attention sublayer. The input of this sublayer is H ∈
RL×O and the output Y ∈ RN×O of the near-field layer. First, near-field shape

attention sublayer initializes three learnable weight matrices WQ
ed ∈ RO×O,WK

ed ∈
RO×O,WV

ed ∈ RO×O. Then the attention matrix H of H and Y is established by
self-attention mechanism. Finally, H is input to the fully connected sublayer.

H = softmax

[
1√
O

(
HWQ

de

) (
YWK

de

)>] · (YWV
de

)
,H ∈ RO. (10)

3.5. Fully connected sublayer. This sublayer performs affine transformation on

H, the reconstructed shape parameters Ŷ of the cavity are obtained by the following
transformation.

Ŷ = HW + B, (11)

where W ∈ RO×L and B ∈ RL are respectively the weight and bias in the fully
connected sublayer.

In the NSNN training process, the loss function is needed to judge the learning
situation of the NSNN. The loss function used in this paper is given by Definition
4.3.
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4. Convergence analysis of the NSNN. This section gives the convergence
analysis and proof of the NSNN. The following definitions and assumptions will be
used for our results.

Definition 4.1. Given an m × n matrix A = (aij), vecA is defined as an mn
dimensional vector obtained by stacking the columns of the matrix A on top of one
another: vecA = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)>.

Definition 4.2. We define the following activation function for any vector A =
(a1, a2, · · · , an), G(A) = (g(a1), g(a2), · · · , g(an))>, S(A) = (s(a1), s(a2), · · · ,
s(an))>. Define

G′(A) = (g′(a1), g′(a2), · · · , g′(an))>,

S′(A) = (s′(a1), s′(a2), · · · , s′(an))>,

G′′(A) = (g′′(a1), g′′(a2), · · · , g′′(an))>,

S′′(A) = (s′′(a1), s′′(a2), · · · , s′′(an))>.

To simplify the presentation, we write all the weights together as W = (WQ[WQ
en,

WQ
de,W

Q
ed],W

K [WK
en,W

K
de ,W

K
ed ],WV [WV

en,W
V
de,W

V
ed],W

O[W0,W1,W2,W]), let w =
vecW .

Definition 4.3. Let {Yi}mi=1 be the true output of the NSNN and {Ŷi}mi=1 be the
predicted output of the NSNN. The loss function is defined as

E(w) =
1

2

m∑
i=1

(Yi − Ŷi)2, (12)

where m represents the total amount of training data sets, Yi represents true shape

parameters of cavity of the i-th group, and Ŷi represents reconstructed shape pa-
rameters of cavity of the i-th group.

The gradient of the loss function 12 with respect to the weight w is given by

∂E
∂w = −

m∑
i=1

(
Yi − Ŷi

)(
∂Ŷi

∂w

)>
. The gradient descent algorithm is used to update

the weights and bias in NSNN. Starting from an arbitrary initial value w0, the
sequence of weights {wt} are constructed iteratively by

wt+1 = wt + ∆w, t = 0, 1, 2, . . . , (13)

where

∆w = −α∂E(wt)

∂w
(14)

and α > 0 is the learning rate. We next introduce two assumptions in our study.

Assumption 4.4. |g(r)|, |g′(r)|, |g′′(r)| and |s(r)|, |s′(r)|, |s′′(r)| are uniformly bou-
nded for r ∈ R.

Assumption 4.5. ‖wt‖(t = 0, 1, 2, . . .) is bounded in the learning process 13.

Remark 1. Assumption 4.4 is valid for Sigmoid functions which are the most often
used activation functions. An assumption like 4.5 is often used in the literature(see
e.g.[29, 30]) for a nonlinear iteration procedure to guarantee the convergence.

Theorem 4.6. Suppose that the loss function is given by the formula 12. The weight
sequence {wt} is generated by the formula 13 for initial value w0. Assumptions 4.4
and 4.5 are valid. Then, we have:
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(1) E(wt+1) ≤ E(wt);
(2) There exists E∗ ≥ 0 such that lim

t→+∞
E(wt) = E∗.

Theorem 4.6 shows that the established NSNN is convergent. To prove Theorem
4.6, we first derive four auxiliary lemmas. In this proof, we use C for a generic
positive constant which may be different in different places, and assume that all
biases b = 0 in the NSNN.

Lemma 4.7. In the near-field shape attention sublayer has

H = s

[
1√
O

(HWQ
ed)
(
YWK

ed

)>] · (YWV
ed

)
, (15)

where O ≤ C is a positive constant, let WQ
ed,W

K
ed ,W

V
ed be WQ,WK ,WV and ∆H(wt)

= H(wt+1)−H(wt), if H and Y are bounded, then ∆H(wt) ≤ C‖∆wt‖.

Proof. We only consider the case for WQ (The proof of the WK ,WV case is similar).
The gradient of the loss function 12 relative to the weight wt in the near-field shape
attention sublayer is given by

∂E

∂wt
=
∂E

∂Ŷ

∂Ŷ

∂H
∂H
∂W t

Q

= −
M∑
i=1

(
Yi − Ŷi

)
W ∂H
∂W t

Q

, (16)

where
∂H
∂W t

Q

= s′
[

1√
O

(
HW t

Q

)
(YWK)

>
]
· (YWV )

1√
O
H (YWK)

>
. (17)

Let

V (wt) =
1√
O

(
HW t

Q

)
(YWK)

>
, (18)

then
∆V (wt) = V (wt+1)− V (wt), (19)

applying the Taylor expansion in the formula 19 yields

∆V (wt) = V (wt) + V ′(wt)∆wt + V ′′(δ)(∆wt)2 − V (wt)

= V ′(wt)∆wt + V ′′(δ)(∆wt)2

=
1√
O
H(YWK)>∆wt

≤ C‖∆wt‖,

(20)

and each component of δ lies in between the two corresponding components of wt

and wt+1.
If H and Y are bounded, noting the formulas 17, 18 and 20, we have

∆H(wt) = H(wt+1)−H(wt)

= s[V (wt)]YWV − s[V (wt)]YWV

= s[V (wt)]YWV + s′[V (wt)]YWV ∆V (wt) + s′′[τ(wt)]YWV (∆V (wt))2

− s[V (wt)]YWV

= s′[V (wt)]YWV ∆V (wt) + s′′[τ(wt)]YWV (∆V (wt))2

≤ C‖∆wt‖,

where each component of τ(wt) lies in between the two corresponding components
of V (wt) and V (wt+1).
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Lemma 4.8. In the masked self-attention sublayer, we have

H = ⊕li=0s

[
1√
O

(
ỹiW

Q
de

) (
ỹlW

K
de

)>] · (ỹlWV
de

)
, l = 0, 1, . . . , L, (21)

where O ≤ C is a positive constant, let WQ
de,W

K
de ,W

V
de be WQ,WK ,WV and ∆H(wt)

= H(wt+1)−H(wt), then we have ∆H(wt) ≤ C‖∆wt‖.

Proof. We only consider the case for WQ (The proof of the WK ,WV case is similar).
The gradient of the loss function 12 relative to the wt in the masked self-attention
sublayer is given by

∂E

∂wt
=
∂E

∂Ŷ

∂Ŷ

∂H
∂H
∂H

∂H

∂W t
Q

= −
M∑
i=1

(
Yi − Ŷi

)
Ws′

[
1√
O

(
HWQ

ed

) (
YWK

ed

)>]
·
(
YWV

ed

) 1√
O
WQ
ed

(
YWK

ed

)> ∂H

∂W t
Q

,

(22)

where

∂H

∂W t
Q

= ⊕li=0s
′
[

1√
O

(
ỹiW

t
Q

)
(ỹlWK)

>
]
· (ỹlWV )

1√
O
ỹi (ỹlWK)

>
. (23)

Let Uil(w
t) = 1√

O
(ỹiW

t
Q)(ỹlWV )>, we have

∆Uil(w
t) = Uil(w

t+1)− Uil(wt)
= Uil(w

t) + U ′il(w
t)∆wt + U ′′il(ϑ)(∆wt)2 − Uil(wt)

= U ′il(w
t)∆wt + U ′′il(ϑ)(∆wt)2

=
1√
O
ỹi(ỹlWV )>∆wt

≤ C‖∆wt‖,

(24)

where each component of ϑ lies in between the two corresponding components of
wt and wt+1, by the formulas 23 and 24, we have

∆H(wt) = H(wt+1)−H(wt)

= H(Uil(w
t)) +H ′(Uil(w

t))∆Uil(w
t) +H ′′(τil(w

t))(∆Uil(w
t))2

−H(Uil(w
t))

= H ′(Uil(w
t))∆Uil(w

t) +H ′′(τil(w
t))(∆Uil(w

t))2

≤ C‖∆wt‖,

where each component of τil(w
t) lies in between the two corresponding components

of Uil(w
t) and Uil(w

t+1)

Lemma 4.9. In the FNN sublayer, we have

Y = g(ZW1 + b1)W2 + b2, (25)

let ∆Y(wt) = Y(wt+1) − Y(wt), if Z is bounded, then ∆Y(wt) ≤ C‖∆wt‖, where
O ≤ C is a positive constant.
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Proof. We only consider the case for W1 (The proof of the W2 case is similar). The
gradient of the loss function 12 relative to the wt in the FNN sublayer is given by

∂E

∂wt
=
∂E

∂Ŷ

∂Ŷ

∂H
∂H
∂Y

∂Y
∂W t

1

= −
m∑
i=1

(
Yi − Ŷi

)
W
[
s′
[

1√
O

(
HWQ

ed

) (
YWK

ed

)>](
HWQ

ed

)
WK
ed

(
YWV

ed

)
+ s

[
1√
O

(
HWQ

ed

) (
YWK

ed

)>]
WV
ed

]
∂Y
∂W t

1

,

(26)
where

∂Y
∂W t

1

= g′(ZW t
1 + b1)W2Z. (27)

Let ∆Y(wt) = Y(wt+1) − Y(wt), if Z is bounded, then from the formula 27 we
can get

∆Y(wt) = Y(wt+1)− Y(wt)

= Y(wt) + Y ′(wt)∆wt + Y ′′(κ)(∆wt)2 − Y(wt)

= Y ′(wt)∆W t
1 + Y ′′(κ)(∆wt)2

≤ C‖∆wt‖,

where each component of κ lies in between the two corresponding components of
Y(wt) and Y(wt+1).

Lemma 4.10. In the self-attention sublayer, we have

~ = ⊕Nj=1 ⊕Nn=1 s

[
1√
O

(
x̃nW

Q
en

) (
x̃jW

K
en

)>] · (x̃jWV
en

)
; (28)

Z = hW0, (29)

where O ≤ C is a positive constant, let WQ
en,W

K
en,W

V
en be WQ,WK ,WV and ∆~(wt)

= ~(wt+1)− ~(wt), then we have ∆~(wt) ≤ C‖∆wt‖ and ∆Z(wt) ≤ C‖∆wt‖.

Proof. We only consider the case for WQ (The proof of the WK ,WV case is similar).
The gradient of the loss function 12 relative to the wt in the self-attention sublayer
is given by

∂E

∂wt
=
∂E

∂Ŷ

∂Ŷ

∂H
∂H
∂Y

∂Y
∂Z

∂Z

∂~
∂~
∂W t

Q

= −
m∑
i=1

(
Yi − Ŷi

)
W

[
s′
[

1√
O

(
HWQ

ed

) (
YWK

ed

)>](
HWQ

ed

) (
WK
ed

)
YWV

ed

+ s

[
1√
O

(
HWQ

ed

) (
YWK

ed

)>]
WV
ed

]
g′ (ZW1 + b1)W2W1W0

∂~
∂W t

Q

;

(30)



1134 WEISHI YIN, JIAWEI GE, PINCHAO MENG AND FUHENG QU

∂E

∂wt
=
∂E

∂Ŷ

∂Ŷ

∂H
∂H
∂Y

∂Y
∂Z

∂Z

∂W t
0

= −
m∑
i=1

(
Yi − Ŷi

)
W

[
s′
[

1√
O

(
HWQ

ed

) (
YWK

ed

)>](
HWQ

ed

) (
WK
ed

)
YWV

ed

+ s

[
1√
O

(
HWQ

ed

) (
YWK

ed

)>]
WV
ed

]
g′ (ZW1 + b1)W2W1

∂Z

∂W t
0

,

(31)
where

∂~
∂W t

Q

= ⊕Nj=1 ⊕Nn=1 s
′
[

1√
O

(
x̃nW

t
Q

)
(x̃jWK)

>
]

1√
O
x̃n (x̃jWK)

>
(x̃jWV ) ; (32)

∂Z

∂W t
0

= ~. (33)

Let Bnj(w
t) = 1√

O

(
x̃nW

t
Q

)
(x̃jWK)

>
, we have

∆Bnj(w
t) = Bnj(w

t+1)−Bnj(wt)
= Bnj(w

t) +B′nj(w
t)∆wt +B′′nj(γ)(∆wt)2 −Bnj(wt)

= B′nj(w
t)∆wt +B′′nj(γ)(∆wt)2

=
1√
O
x̃n(x̃jWK)>∆wt

≤ C‖∆wt‖,

(34)

where each component of γ lies in between the two corresponding components of
wt and wt+1.

Let ∆~(Bnj(w
t)) = ~(Bnj(w

t+1))− ~(Bnj(w
t)). By the formulas 30, 32 and 34,

we can get

∆~(Bnj(w
t)) = ~(Bnj(w

t+1))− ~(Bnj(w
t))

= ~(Bnj(w
t)) + ~′(Bnj(wt))(∆Bnjwt)) + ~′′(νnj(wt))(∆Bnj(wt))2

− ~(Bnj(w
t))

= ⊕Nj=1 ⊕Nn=1 s
′ [Bnj(wt)] (x̃jWV )(∆Bnj(w

t))

+⊕Nj=1 ⊕Nn=1 s
′′ [νnj(wt)] (x̃jWV )(∆Bnj(w

t))2

≤ C‖∆wt‖,
(35)

where each component of νnj(w
t) lies in between the two corresponding components

of Bnj(w
t) and Bnj(w

t+1).

Let ∆Z(wt) = Z(wt+1)− Z(wt), suppose that Assumption 4.4 and Assumption
4.5 are satisfied, from the formulas 31, 33 and 35 we have ∆Z(wt) ≤ C‖∆wt‖.

Proof of Theorem 4.6. Applying the Taylor expansion, together with the use of the
formulas 14, 16, 17, 22, 23, 26, 27, 30, 32, 35 and Lemma 4.7, 4.8, 4.9 and Lemma
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4.10, we have

E(wt+1)− E(wt) = −
m∑
i=1

(
Yi − Ŷi

(
wt
))2 ∂Ŷ

∂w
‖∆wt‖

− 1

2
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V
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(
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[
υ

(
1√
O

(
x̃nW

Q
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x̃jW

K
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O
x̃n
(
x̃jW

K
en

)>
·
(
x̃jW

V
en

)
‖∆wt‖2

≤ − 1

α
‖∆wt‖2 + ρ

(
∆wt

)
,

(36)

where each component of υ
(

1√
O

(
x̃nW

Q
en

) (
x̃jW

K
en

)>)
lies in between the two cor-

responding components of υ
(
wt+1

)
and υ (wt).

By Assumption 4.4, Assumption 4.5, Lemma 4.7, Lemma 4.8, Lemma 4.9, Lemma
4.10 and the Cauchy-Schwarz inequality, we get

ρ(∆wt) ≤ C‖∆wt‖2. (37)

A combination of the formulas 36 and 37 leads to

E
(
wt+1

)
− E

(
wt
)
≤ −

(
1

α
− C

)
‖∆wt‖2. (38)

Hence, the conclusion (1) in Theorem 4.6 is valid if the learning rate is small
enough such that 0 < α < 1

C , where C is the constant in the formula 38. Since the
nonnegative sequence {E(wt)} is monotone and bounded below, there must exist
a limiting value E∗ ≥ 0 such that lim

t→+∞
E(wt) = E∗. So the conclusion (2) in

Theorem 4.6 is proved.

5. Numerical experiments. In this section, we present several typical numerical
experiments to demonstrate the effectiveness and efficiency of the proposed the
NSNN for the inverse cavity scattering problem.
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5.1. Data processing. First, we recall that the training data set M in Definition
3.2, where usi and Yi represent the near-field data and the truncated Fourier-shape
vector associated with a cavity. Furthermore, for a given shape of cavity, the exis-
tence of a solution to the interior Dirichlet problem of the cavity can be based on
boundary integral equations. Hence, for the forward cavity scattering problem, we
make use of the integral equation method for solving 1-2 to obtain the associated
near-field data (cf. [8]). Second, in order to ensure the uniqueness of the inverse cav-
ity scattering problem, we need to restrict the size of the cavity (cf.[22]). Therefore,
D is constructed according to 3 by varying the Fourier coefficients in [−%, %] in a
uniformly distributed manner by excluding those self-intersecting boundary curves,
where % ∈ R+ is an a-priori given constant. Next, we fix I in 3, and classify the
shapes of the cavity according to the corresponding Fourier-shape parameters and
near-field data, and label each category accordingly, and then each labeled category
is used as the training data of the naive Bayesian classifier (NBC) to train the NBC
network.

That is, in the first phase, for a given set of the near-field data, we can deter-
mine the suitable category to which the associated cavity should belong. In the
second phase, within a given class of cavities, we train the NSNN to recover the
corresponding Fourier coefficients of an unknown cavity by given its near-field data.

5.2. Shape reconstruction. For all examples, we set the radius rΓ = 0.5 and
center oΓ = (0, 0) of the detection circle Γ inside the cavity, the single point source
position is z = (0.5, 0), the wavenumber is k = 1.5, the number of observation points
is N , the limited-aperture range is P. Unless otherwise specified in the following
experiments, the parameter values of the NSNN are shown in Table 1. The values of
learning rate α, dropout, O and O are derived from the reference [9], the values of
the other parameters are obtained through multiple experiments. The influence of
the value of the experimental parameters on the experimental results will be taken
as the next step. We use “−” to indicate the true shape of the cavity, and “−−”
to indicate the reconstructed shape of the cavity.

Table 1. Parameter values of the NSNN.

Parameter value
The Near-field shape of layer 2

Learning rate α 0.0001
Dropout 0.5

O 256
O 256

Batch 1000
Epoch: t 100

Example 1. Reconstruct the cavity with different numbers of observation points.
In this experiment, the number of training cavities is set to be m = 50000, the

limited-aperture range is set to be P = [0, 2π], the number of observation points
for the kite-shaped cavity and the peanut-shaped cavity is set to be N = 5, 7, 9
respectively, the number of observation points for the starfish-shaped cavity is set
to be N = 5, 11, 19 respectively. There is no noise in the near-field data, and the
reconstruction result is shown in figure 4.
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(a) N = 5 (b) N = 7 (c) N = 9

(d) N = 5 (e) N = 7 (f) N = 9

(g) N = 5 (h) N = 11 (i) N = 19

Figure 4. Reconstruct three shapes of cavity under the conditions
of single point source incidence and limited observation points.

Figure 4 shows the reconstructed effects of the kite-shaped cavity, the peanut-
shaped cavity and the starfish-shaped cavity, respectively. Among them, the kite-
shaped cavity figure 4(a), (b), (c) and the peanut-shaped cavity figure 4(d), (e), (f)
from left to right represent the number of observation points of N = 5, N = 7 and
N = 9, respectively. The starfish-shaped cavity figure 4(g), (h) and (i) from left to
right represent the number of observation points of N = 5, N = 11 and N = 19.
It can be seen that when the total number of training data sets and the epoch of
train remain unchanged, as the number of observation points increases, the near-
field data will increase, then the feature information about the cavity by the NSNN
will be extracted more, and the shape of the cavity will be reconstructed more
accurately. For the kite-shaped cavity and the peanut-shaped cavity, the better
effect of reconstruction can be achieved when the number of observation points
is N = 9, while for the starfish-shaped cavity with more parameters, the better
effect of reconstruction can be achieved when the number of observation points
increases to N = 19. Therefore, the reconstruction effect of the NSNN is affected
by the complexity of the shape of cavity. The more parameters, the more complex
the shape of the cavity, and the effect of reconstruction becomes worse. In the
experiment, we can improve the effect of reconstruction by increasing the number
of observation points.
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Example 2. Reconstruct the cavity with the near-field data containing different
noise levels.

We consider adding noise levels of noise = 0%, 5%, 10%, and 20% to the real and
the imaginary parts of the near-field data of the kite-shaped cavity, the peanut-
shaped cavity and the starfish-shaped cavity, respectively (Here, the noise is chosen
to be Gaussian white noise with mean being 0 and variance being 0.05, 0.1 and
0.2, respectively.). Set m = 50000, P = [0, 2π], the number of observation points
for the kite-shaped cavity and the peanut-shaped cavity is set to be N = 9, the
number of observation points for the starfish-shaped cavity is set to be N = 19. The
reconstruction effect of the kite-shaped cavity is shown in figure 5, the reconstruction
effect of the peanut-shaped cavity is shown in figure 6 and the reconstruction effect
of the starfish-shaped cavity is shown in figure 7.

(a) noise = 0% (b) noise = 5%

(c) noise = 10% (d) noise = 20%

Figure 5. Reconstruct the kite-shaped cavity with different noises.

It can be seen from figure 5, 6, and 7 that when the noise level is below 10%, the
noise has little effect on the reconstruction of the NSNN. Of course, the results of the
reconstruction deteriorate as the noise level increases. When the noise is increased
to 20%, the results of the NSNN reconstruction will deviate obviously from the true
boundary of the cavity. Due to the fact that the number of shape parameters of
the starfish-shaped cavity is relatively larger and the noise exists in the near-field
data, the NSNN is more complex to extract the information of near field data and
shape parameters, which leads to the poor effect of the NSNN reconstruction.

Example 3. Reconstruct the cavity with difference of the total number of training
data sets.

We observe the reconstruction effect of the NSNN by changing the total amount
m of training data set. Taking the kite-shaped cavity as an example, the number
of training cavities is set to be m = 10000, m = 30000, m = 50000, respectively.
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(a) noise = 0% (b) noise = 5%

(c) noise = 10% (d) noise = 20%

Figure 6. Reconstruct the peanut-shaped cavity with different noises.

(a) noise = 0% (b) noise = 5%

(c) noise = 10% (d) noise = 20%

Figure 7. Reconstruct the starfish-shaped cavity with different noises.
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Set P = [0, 2π] and N = 9, the near-field data has no noise, and the reconstruction
effect is shown in figure 8.

(a) m = 10000 (b) m = 30000 (c) m = 50000

Figure 8. Reconstruct the kite-shaped cavity under different m.

From the figure 8, we can see that as m gradually increases, the effect of recon-
struction is improved gradually, thereby the reconstructed shape of cavity is closer
to the true shape of cavity.

In the above experiments, the shape of the cavity was reconstructed at the full-
aperture range, namely P = [0, 2π], and the effect of reconstruction is ideal. In
order to make the experiment closer to the actual situation. In Example 4, we
consider reconstructing the shape of the cavity with the limited-aperture.

Example 4. Reconstruction of cavity with different local scattering data.
We consider the reconstruction by the NSNN when the limited-aperture range

is set to be P =
[

3π
4 ,

5π
4

]
,
[
π
2 ,

3π
2

]
, [0, 2π] respectively. This experiment takes the

kite-shaped cavity as an example, set m = 50000 and N = 9. The near-field data
has no noise, and the effect of reconstruction is shown in figure 9.

It can be seen from figure 9 that as the limited-aperture range gradually de-
creases, the effect of reconstruction will deteriorate accordingly. This is because
when the limited-aperture range P is reduced, the similarity between the near-field
data increases, resulting in the available cavity information from the near-field data
becomes less and less, which suppresses the accuracy of reconstruction. However,
we can see that the NSNN can also reconstruct the shape of the cavity well under
the limited-aperture range.

(a) P = [0, 2π] (b) P =
[
π
2
, 3π

2

]
(c) P =

[
3π
4
, 5π

4

]
Figure 9. Reconstruct the kite-shaped cavity under different the
limited-aperture range conditions.
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6. Conclusions. In this paper, we propose the NSNN to solve the interior in-
verse scattering problems connected with the Helmholtz equation, and we prove
the convergence of the NSNN. Numerical experiments show that the NSNN can
well reconstruct the shape of the cavity by using a single point source and a few
observation points. The experimental results also confirm the generalization ability
and robustness of this method. However, there are still many problems need to
be further studied, such as the influence of the selection of the NSNN parameters
on the effect of the NSNN reconstruction. In the future, we would like to extend
the study to three dimensional problems and the inverse cavity electromagnetic
scattering problems governed by the Maxwell system.

Acknowledgments. The work of Weishi Yin was supported by a startup fund
from National Natural Science Foundation of China (project 11671107).

REFERENCES

[1] H. K. Aggarwal, M. P. Mani and M. Jacob, MoDL: Model based deep learning architecture

for inverse problems, IEEE Transactions on Medical Imaging, 38 (2019), 394–405.
[2] M. N. Akinci, Detection of the cavities inside a target with near field orthogonality sampling

method, 2018 18th Mediterranean Microwave Symposium (MMS), IEEE, (2018), 391–393.

[3] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single
far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691.

[4] E. Bl̊asten and H. Liu, On corners scattering stably, nearly non-scattering interrogating waves,

and stable shape determination by a single far-field pattern, preprint, arXiv:1611.03647.
[5] E. Bl̊asten and H. Liu, Recovering piecewise constant refractive indices by a single far-field

pattern, preprint, arXiv:1705.00815.

[6] F. Cakoni, D. Colton and S. Meng, The inverse scattering problem for a penetrable cavity
with internal measurements, AMS Contemporary Mathematics, 615 (2014), 71–88.

[7] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping

polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361–
1384.

[8] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4nd edition,
Applied Mathematical Sciences, 93. Springer, Cham, New York, 2019.

[9] L. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, London, 2017.

[10] J. Guo, Q. Yang, M. Cai, G. Yan and Z. Guo, Reconstruction of a crack with the incident
waves and measurements inside a penetrable cavity, J. Inverse Ill-Posed Probl., 27 (2019),

643–656.

[11] Y. Hu, F. Cakoni and J. Liu, The inverse scattering problem for a partially coated cavity
with interior measurements, Appl. Anal., 93 (2014), 936–956.

[12] P. Jakubik and R. Potthast, Testing the integrity of some cavity-the Cauchy problem and the

range test, Appl. Numer. Math., 58 (2008), 899–914.
[13] A. Karageorghis, D. Lesnic and L. Marin, The method of fundamental solutions for the

identification of a scatterer with impedance boundary condition in interior inverse acoustic

scattering, Eng. Anal. Bound. Elem., 92 (2018), 218–224.
[14] J. Li, H. Liu, W.-Y. Tsui and X. Wang, An inverse scattering approach for geometric body

generation: A machine learning perspective, Mathematics in Engineering, 1 (2019), 800–823.

[15] P. Li and Y. Wang, Near-field imaging of interior cavities, Commun. Comput. Phys., 17
(2015), 542–563.

[16] X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18 pp.
[17] H. Liu, A global uniqueness for formally determined inverse electromagnetic obstacle scatter-

ing, Inverse Problems, 24 (2008), 035018, 13 pp.
[18] H. Liu, M. Petrini, L. Rondi and J. Xiao, Stable determination of sound-hard polyhedral

scatterers by a minimal number of scattering measurements, J. Differential Equations, 262
(2017), 1631–1670.

[19] H. Liu, L. Rondi and J. Xiao, Mosco convergence for H(curl) spaces, higher integrability
for Maxwell’s equations, and stability in direct and inverse EM scattering problems, J. Eur.
Math. Soc. (JEMS), 21 (2019), 2945–2993.

http://dx.doi.org/10.1109/TMI.2018.2865356
http://dx.doi.org/10.1109/TMI.2018.2865356
http://dx.doi.org/10.1109/MMS.2018.8612107
http://dx.doi.org/10.1109/MMS.2018.8612107
http://www.ams.org/mathscinet-getitem?mr=MR2120253&return=pdf
http://dx.doi.org/10.1090/S0002-9939-05-07810-X
http://dx.doi.org/10.1090/S0002-9939-05-07810-X
http://arxiv.org/pdf/1611.03647
http://arxiv.org/pdf/1705.00815
http://www.ams.org/mathscinet-getitem?mr=MR3221599&return=pdf
http://dx.doi.org/10.13140/RG.2.1.1415.9520
http://dx.doi.org/10.13140/RG.2.1.1415.9520
http://www.ams.org/mathscinet-getitem?mr=MR2036535&return=pdf
http://dx.doi.org/10.1088/0266-5611/19/6/008
http://dx.doi.org/10.1088/0266-5611/19/6/008
http://www.ams.org/mathscinet-getitem?mr=MR3971246&return=pdf
http://dx.doi.org/10.1007/978-3-030-30351-8
http://www.ams.org/mathscinet-getitem?mr=MR4015249&return=pdf
http://dx.doi.org/10.1515/jiip-2018-0023
http://dx.doi.org/10.1515/jiip-2018-0023
http://www.ams.org/mathscinet-getitem?mr=MR3195867&return=pdf
http://dx.doi.org/10.1080/00036811.2013.801458
http://dx.doi.org/10.1080/00036811.2013.801458
http://www.ams.org/mathscinet-getitem?mr=MR2420625&return=pdf
http://dx.doi.org/10.1016/j.apnum.2007.04.007
http://dx.doi.org/10.1016/j.apnum.2007.04.007
http://www.ams.org/mathscinet-getitem?mr=MR3804621&return=pdf
http://dx.doi.org/10.1016/j.enganabound.2017.07.005
http://dx.doi.org/10.1016/j.enganabound.2017.07.005
http://dx.doi.org/10.1016/j.enganabound.2017.07.005
http://dx.doi.org/10.3934/mine.2019.4.800
http://dx.doi.org/10.3934/mine.2019.4.800
http://www.ams.org/mathscinet-getitem?mr=MR3376702&return=pdf
http://dx.doi.org/10.4208/cicp.010414.250914a
http://www.ams.org/mathscinet-getitem?mr=MR3151685&return=pdf
http://dx.doi.org/10.1088/0266-5611/30/1/015006
http://www.ams.org/mathscinet-getitem?mr=MR2421972&return=pdf
http://dx.doi.org/10.1088/0266-5611/24/3/035018
http://dx.doi.org/10.1088/0266-5611/24/3/035018
http://www.ams.org/mathscinet-getitem?mr=MR3582207&return=pdf
http://dx.doi.org/10.1016/j.jde.2016.10.021
http://dx.doi.org/10.1016/j.jde.2016.10.021
http://www.ams.org/mathscinet-getitem?mr=MR3994098&return=pdf
http://dx.doi.org/10.4171/JEMS/895
http://dx.doi.org/10.4171/JEMS/895


1142 WEISHI YIN, JIAWEI GE, PINCHAO MENG AND FUHENG QU

[20] H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both
sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515–524.

[21] H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with

far field measurements, Inverse Problems, 23 (2007), 297–308.
[22] H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse

interior scattering problem, Inverse Problems, 27 (2011), 035005, 17 pp.
[23] H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62

(2012), 699–708.

[24] H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary
condition, Adv. Comput. Math., 36 (2012), 157–174.

[25] F. Qu, J. Yang and H. Zhang, Shape reconstruction in inverse scattering by an inhomogeneous

cavity with internal measurements, SIAM J. Imaging Sci., 12 (2019), 788–808.
[26] L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,

Indiana Univ. Math. J., 57 (2008), 1377–1408.

[27] Y. Sanghvi, Y. Kalepu and U. K. Khankhoje, Embedding deep learning in inverse scattering
problems, IEEE Transactions on Computational Imaging, 6 (2020), 46–56.

[28] Y. Sun, Y. Guo and F. Ma, The reciprocity gap functional method for the inverse scattering

problem for cavities, Appl. Anal., 95 (2016), 1327–1346.
[29] D. Xu, Z. Li and W. Wu, Convergence of gradient method for a fully recurrent neural network,

Soft Computing, 14 (2010), 245–250.
[30] D. Xu, Z. Li, W. Wu, X. Ding and D. Qu, Convergence of gradient descent algorithm for a

recurrent neuron, International Symposium on Neural Networks, Springer, Berlin, Heidelberg,

(2007), 117–122.
[31] W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles

with limited phaseless far-field data, Journal of Computational Physics, 417 (2020), 109594.

[32] F. Zeng, P. Suarez and J. Sun, A decomposition method for an interior inverse scattering
problem, Inverse Problems and Imaging, 7 (2013), 291–303.

[33] D. Zhang, Y. Wang, Y. Guo and J. Li, Uniqueness in inverse cavity scattering problems with

phaseless near-field data, Inverse Problems, 36 (2020), 025004.

Received May 2020; 1st revision May 2020; 2nd revision May 2020.

E-mail address: yinweishi@foxmail.com

E-mail address: givejoywisdom@163.com

E-mail address: mengpc@cust.edu.cn

E-mail address: qufuheng@163.com

http://www.ams.org/mathscinet-getitem?mr=MR2216412&return=pdf
http://dx.doi.org/10.1088/0266-5611/22/2/008
http://dx.doi.org/10.1088/0266-5611/22/2/008
http://www.ams.org/mathscinet-getitem?mr=MR2302975&return=pdf
http://dx.doi.org/10.1088/0266-5611/23/1/016
http://dx.doi.org/10.1088/0266-5611/23/1/016
http://www.ams.org/mathscinet-getitem?mr=MR2772524&return=pdf
http://dx.doi.org/10.1088/0266-5611/27/3/035005
http://dx.doi.org/10.1088/0266-5611/27/3/035005
http://www.ams.org/mathscinet-getitem?mr=MR2908789&return=pdf
http://dx.doi.org/10.1016/j.apnum.2010.10.011
http://www.ams.org/mathscinet-getitem?mr=MR2886186&return=pdf
http://dx.doi.org/10.1007/s10444-011-9179-2
http://dx.doi.org/10.1007/s10444-011-9179-2
http://www.ams.org/mathscinet-getitem?mr=MR3945239&return=pdf
http://dx.doi.org/10.1137/18M1232401
http://dx.doi.org/10.1137/18M1232401
http://www.ams.org/mathscinet-getitem?mr=MR2429096&return=pdf
http://dx.doi.org/10.1512/iumj.2008.57.3217
http://dx.doi.org/10.1109/TCI.2019.2915580
http://dx.doi.org/10.1109/TCI.2019.2915580
http://www.ams.org/mathscinet-getitem?mr=MR3479006&return=pdf
http://dx.doi.org/10.1080/00036811.2015.1064519
http://dx.doi.org/10.1080/00036811.2015.1064519
http://dx.doi.org/10.1007/s00500-009-0398-0
http://dx.doi.org/10.1007/978-3-540-72395-0_16
http://dx.doi.org/10.1007/978-3-540-72395-0_16
http://dx.doi.org/10.1016/j.jcp.2020.109594
http://dx.doi.org/10.1016/j.jcp.2020.109594
http://www.ams.org/mathscinet-getitem?mr=MR3031850&return=pdf
http://dx.doi.org/10.3934/ipi.2013.7.291
http://dx.doi.org/10.3934/ipi.2013.7.291
http://dx.doi.org/10.1088/1361-6420/ab53ee
http://dx.doi.org/10.1088/1361-6420/ab53ee
mailto:yinweishi@foxmail.com
mailto:givejoywisdom@163.com
mailto:mengpc@cust.edu.cn
mailto:qufuheng@163.com

	1. Introduction
	2. The inverse scattering problem of the cavity
	3. The inverse scattering network
	3.1. Self-attention sublayer
	3.2. Feedforward neural network (FNN) sublayer
	3.3.  Masked self-attention sublayer
	3.4.  Near-field shape attention sublayer
	3.5.  Fully connected sublayer

	4. Convergence analysis of the NSNN
	5. Numerical experiments
	5.1. Data processing
	5.2. Shape reconstruction

	6. Conclusions
	Acknowledgments
	REFERENCES

