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Abstract. The asymptotic behaviour of an autonomous neural field lattice

system with delays is investigated. It is based on the Amari model, but with
the Heaviside function in the interaction term replaced by a sigmoidal function.

First, the lattice system is reformulated as an infinite dimensional ordinary de-

lay differential equation on weighted sequence state space `2ρ under some appro-
priate assumptions. Then the global existence and uniqueness of its solution

and its formulation as a semi-dynamical system on a suitable function space

are established. Finally, the asymptotic behaviour of solution of the system is
investigated, in particular, the existence of a global attractor is obtained.

1. Introduction. Neural field models are often represented as evolution equations
generated as continuum limits of computational models of neural fields theory. They
are tissue level models that describe the spatio-temporal evolution of coarse grained
variables such as synaptic or firing rate activity in populations of neurons. See
Coombes et al. [4] and the literature therein. A particularly influential model is
that proposed by S. Amari in [1] (see also Chapter 3 of Coombes et al. [4] by
Amari):

∂tu(t, x) = −u(t, x) +

∫
Ω

K(x− y)H (u(t, y)− θ) dy, x ∈ Ω ⊂ R,

where θ > 0 is a given threshold and H : R → R is the Heaviside function.
The continuum neural models may lose their validity in capturing detailed dy-

namics at discrete sites when the discrete structures of neural systems become
dominant. Lattice models, e.g., [2, 6, 9, 10], can used to describe dynamics at each
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site of the neural field. Han & Kloeden [7] introduced and investigated the following
lattice version of the Amari model:

d

dt
ui(t) = fi(ui(t)) +

∑
j∈Zd

ki,jH(uj(t)− θ) + gi(t), i ∈ Zd.

Delays are often included in neural field models to account for the transmission
time of signals between neurons. In addition, to facilitate the analysis, the Heaviside
function can be replaced by a simplifying sigmoidal function such as

σε(x) =
1

1 + e−x/ε
, x ∈ R, 0 < ε < 1.

In this paper we consider the autonomous neural field lattice system with delays

d

dt
ui(t) = fi(ui(t)) +

∑
j∈Zd

ki,jσε(uj(t− τj)− θ) + gi, i ∈ Zd. (1)

Throughout this paper we assume that the delays τj > 0 are uniformly bounded,
i.e., satisfy

Assumption 1. There exists a constant h ∈ (0,∞) that 0 ≤ τi ≤ h for all i ∈ Zd.

and that the interconnection matrix (ki,j)i,j∈Zd satisfies

Assumption 2. ki,j ≥ 0 for all i, j ∈ Zd and there exists a constant κ > 0 such
that

∑
j∈Zd

ki,j ≤ κ for each i ∈ Zd.

The main goal of this paper is to investigate asymptotic behaviour of solutions
to the neural lattice system with delays (1), in particular, the attractor for the
semidynamical system generated by its solutions. The initial conditions for such
delay systems have the form

ui(s) = ψi(s), ∀s ∈ [−h, 0], i ∈ Zd, (2)

for appropriate functions ψi.

2. Preliminaries. We follow Han & Kloeden [7] and consider a weighted space of
bi-infinite real valued sequences with vectorial indices i = (i1, · · · , id) ∈ Zd.

In particular, given a positive sequence of weights (ρi)i∈Zd , we consider the sep-
arable Hilbert space

`2ρ :=
{
u = (ui)i∈Zd :

∑
i∈Zd

ρiu
2
i <∞

}
with the inner product

〈u,v〉 :=
∑
i∈Zd

ρiuivi for u = (ui)i∈Zd ,v = (vi)i∈Zd ∈ `2ρ

and norm

‖u‖ρ :=

√∑
i∈Zd

ρiu2
i .

We assume that the ρi satisfy the following assumption.

Assumption 3. ρi > 0 for all i ∈ Zd and ρΣ :=
∑
i∈Zd

ρi <∞.
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The appropriate function space for the solutions of the lattice system with delays
(1) is the Banach space C([−h, 0], `2ρ) of continuous functions by v : [−h, 0] → `2ρ
with the norm

‖v‖C([−h,0],`2ρ) = max
s∈[−h,0]

‖v(s)‖ρ.

For a solution u(t) = (ui(t))i∈Zd ∈ `2ρ of (1) we denote by ut the segment of the

solution in C([−h, 0], `2ρ) defined by ut(s) = u(t + s) for each s ∈ [−h, 0]. The

corresponding initial condition (2) must then satisfy (ψi(·))i∈Zd ∈ C([−h, 0], `2ρ).

2.1. The reaction term. For any u = (ui)i∈Zd ∈ `2ρ, we define the operator f by

f(u) := (fi(ui))i∈Zd .

To ensure that the f(u) take values in `2ρ for every u ∈ `2ρ and has necessary dissipa-
tive properties, we make the following standing assumptions on the fi throughout
the rest of the paper.

Assumption 4. The functions fi : R → R are continuously differential with
weighted equi-locally bounded derivatives, i.e., there exists a non-decreasing func-
tion L(·) ∈ C(R+,R+) such that

sup
i∈Zd

max
s∈[−r,r]

|f ′i (s)| ≤ L(ρir), ∀r ∈ R+, i ∈ Zd;

Assumption 5. fi(0) = 0 for all i ∈ Zd;

Assumption 6. There exist constants α > 0 and βi with β = (βi)i∈Zd ∈ `2ρ such
that

sfi(s) ≤ −α|s|2 + β2
i , ∀s ∈ R, ∀i ∈ Zd.

It was shown in [7] that Assumption 4 implies that fi is locally Lipschitz with

|fi(x)− fi(y)| ≤ L(ρi(|x|+ |y|)) |x− y|, ∀i ∈ Zd, x, y ∈ R.

Since

ρi|ui| ≤
√
ρΣ

(∑
i∈Zd

ρiu
2
i

)1/2
=
√
ρΣ‖u‖ρ,

it follows

|fi(ui)− fi(vi)| ≤ L(ρi(|ui|+ |vi|)) · |ui − vi| ≤ L(
√
ρΣ(‖u‖ρ + ‖v‖ρ)) · |ui − vi|

for every u = (ui)i∈Zd and v = (vi)i∈Zd . The following lemma from [7] states the
Lipschitz and dissipative properties of the operator f .

Lemma 2.1. Assume that Assumptions 4–6 hold. Then f : `2ρ → `2ρ is locally
Lipschitz and satisfies the dissipativity condition

〈f(u),u〉 ≤ −α‖u‖2ρ + ‖β‖2ρ.

2.2. The interaction term. For any v ∈ C([−h, 0], `2ρ) we define the operator Kτ

by Kτ (v) = (Kτ,i(v))i∈Zd by

Kτ,i(v) =
∑
j∈Zd

ki,jσε(vj(−τj)− θ), ∀i ∈ Zd.

Lemma 2.2. The operator Kτ maps C([−h, 0], `2ρ) to `2ρ.
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Proof. The function σε takes values in the unit interval [0,1], so

|Kτ,i(v)| ≤
∑
j∈Zd

ki,j ≤ κ, ∀i ∈ Zd,v ∈ C([−h, 0], `2ρ).

Then

‖Kτ (v)‖2ρ =
∑
i∈Zd

ρi|Kτ,i(v)|2 ≤ κ2ρΣ <∞.

Remark 1. The function σε is differentiable with a uniformly bounded derivative

d

dx
σε(x) ≤ 1

ε
for all x ∈ R.

Hence it is globally Lipschitz with the Lipschitz constant Lσ = 1
ε .

2.3. The forcing term. Finally, we suppose that the constant forcing term g :=
(gi)i∈Zd satisfies the following assumption.

Assumption 7. g ∈ `2ρ.

3. Existence and uniqueness of solutions. The lattice differential equation (1)
can be rewritten as an infinitely dimensional ordinary differential equation on `2ρ,

d

dt
u(t) = Gτ (t,ut) := f(u) +Kτ (ut) + g, (3)

where Gτ (t,ut) := (Gτ,i(t,ut))i∈Zd .
In this section we study the existence and uniqueness of solutions of the dif-

ferential equation (3). To this end, we will need the following auxiliary Lemma
3.1.

Let ZdN :={i = (i1, i2, · · · , id) ∈ Zd : |i1|, |i2|, · · · , |id| ≤ N} and define

KN
τ,i(v) :=

∑
j∈ZdN

ki,jσε(vj(−τj)− θ), i ∈ Zd.

Lemma 3.1. The mapping v 7→ KN
τ,i(v) is continuous from C([−h, 0], `2ρ) to R for

every i ∈ Zd.

Proof. Let vn → v0 in C([−h, 0], `2ρ). Since Assumption 1: 0 ≤ τj ≤ h for each

j ∈ Zd, we see that (vn(−τj))j∈Zd → (v0(−τj))j∈Zd in `2ρ. Thus for every ε > 0 there
exist an M(ε) > 0 such that∑

j∈Zd
ρj|vnj (−τj)− v0

j (−τj)|2 < ε2, ∀n ≥M(ε).

Considering only the j ∈ ZdN appearing in the sum defining KN
τ,i, we obtain

|vnj (−τj)− v0
j (−τj)| < ε/

√
ρN , ∀n ≥M(ε), j ∈ ZdN ,

where ρN := minj∈ZdN ρj.

The mapping x 7→ σε(x− θ) is continuous for all x ∈ R. Since there are a finite
number of terms in the sum in the definition of KN

τ,i, it follows from the elementary
inequality

|(a1 + b1)− (a2 + b2)| ≤ |a1 − a2|+ |b1 − b2|, a1, a2, b1, b2 ∈ R1

that the mapping v→ KN
τ,i(v) is continuous.
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3.1. Existence of solutions.

Theorem 3.2. Suppose that Assumptions 1–7 hold. Then for each r > 0 there
exists a(r) > 0 such that for every ψ ∈ C([−h, 0], `2ρ) satisfying ‖ψ‖C([−h,0],`2ρ) ≤ r,

the lattice delay equation (3) has at least one solution defined on [0, a(r)]. Moreover,
the solution u(·) ∈ C1([0, a], `2ρ).

Proof. Step 1. First, we claim that Gτ (t,ut) is well defined and bounded.
It is easy to see that Gτ (t,ut) is well defined since f(u), Kτ (ut) and g are all

well defined. As for the boundedness, we denote that

|Gτ,i(ut)| ≤ |fi(ui(t))|+ |Kτ,i(ut)|+ |gi|. (4)

Since fi is locally Lipschitz and satisfies fi(0) = 0 by Assumption 4-5, we see that

|fi(ui(t))| ≤ L(ρi|ui(t)|) · |ui(t)| ≤ L(
√
ρΣ‖u(t)‖ρ) · |ui(t)|.

Then we obtain (∑
i∈Zd

ρi|fi(ui(t))|2
) 1

2 ≤ L(
√
ρΣ‖u(t)‖ρ)‖u(t)‖ρ. (5)

For the second term with delay, we have |Kτ,i(ut)| ≤ κ by Assumption 2, which
gives (∑

i∈Zd
ρi|Kτ,i(ut)|2

) 1
2 ≤ √ρΣκ, (6)

where we have used Assumption 3.
Finally, for the last term g, Assumption 7 gives

‖g‖ρ <∞. (7)

Using (5), (6) and (7) in (4) we conclude that Gτ is well defined and bounded.

Step 2. Next, we claim that the maps Gτ,i : C([−h, 0], `2ρ) → R are continuous for

all i ∈ Zd.
We consider {unt }n∈N ⊂ C([−h, 0], `2ρ) and u0

t ∈ C([−h, 0], `2ρ) such that unt →u0
t

in C([−h, 0], `2ρ). Then

|Gτ,i(unt )−Gτ,i(u0
t )| ≤ |fi(uni (t))− fi(u0

i (t))|+ |Kτ,i(u
n
t )−Kτ,i(u

0
t )|. (8)

By the local Lipschitz continuity of fi,

|fi(uni (t))− fi(u0
i (t))| ≤ L(

√
ρΣ(‖unt (0)‖ρ + ‖u0

t (0)‖ρ)) · |uni (t)− u0
i (t)|, (9)

which shows that this term converges to zero.
Next for the second term on the right-hand side

|Kτ,i(u
n
t )−Kτ,i(u

0
t )| =

∣∣∣∣ ∑
j∈Zd

ki,jσε(u
n
j (t− τj)− θ)−

∑
j∈Zd

ki,jσε(u
0
j (t− τj)− θ)

∣∣∣∣
=
∑
j∈Zd

ki,j|σε(unj (t− τj)− θ)− σε(u0
j (t− τj)− θ)|
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≤
∑
j∈ZdN

ki,j|σε(unj (t− τj)− θ)− σε(u0
j (t− τj)− θ)|

+
∑

j∈Zd\ZdN

ki,j|σε(unj (t− τj)− θ)− σε(u0
j (t− τj)− θ)|

≤Lσ
∑
j∈ZdN

ki,j|unj (t− τj)− u0
j (t− τj)|+ 2

∑
j∈Zd\ZdN

ki,j.

(10)

On one hand, since
∑
j∈Zd

ki,j ≤ κ, for every ε > 0, there exists a N1(ε) such that∑
j∈Zd\ZdN

ki,j ≤ 4ε when N ≥ N1(ε): we assume that the N in (10) is such an N . On

the other hand,
∑

j∈ZdN

ki,j|unj (t− τj)− u0
j (t− τj)| < ε when n > M(ε) by Lemma 3.1

for all N . Thus Kτ,i is continuous.
Using (9) and (10) in (8), we complete the proof of the claim.
Having the two steps above, by Theorem 10 in Caraballo et al. [3], for each r > 0

there exists a(r) > 0 such that if ψ ∈ C([−h, 0], `2ρ) and ‖ψ‖C([−h,0],`2ρ) ≤ r, then

the problem (3) has at least one solution defined on [0, a(r)].

Step 3. Finally, we claim the following inequality holds:∑
|i|≥K

ρi|Gτ,i(ut)|2 ≤ C(
√
ρΣ‖u(t)‖ρ)

(
max

s∈[−h,0]

∑
|i|≥K

ρiu
2
i (t+ s) + bK

)
,

where bK → 0+ as K →∞, and C(·) > 0 is a continuous non-decreasing function.
The proof is as follows.∑
|i|≥K

ρi|Gτ,i(ut)|2

≤3
∑
|i|≥K

ρi|fi(ui(t))|2 + 3
∑
|i|≥K

ρi|
∑
j∈Zd

ki,jσε(uj(t− τj)− θ)|2 + 3
∑
|i|≥K

ρi|gi|2

≤3
∑
|i|≥K

ρiL
2(ρi|ui(t)|)|ui(t)|2 + 3

∑
|i|≥K

ρi · κ2 + 3
∑
|i|≥K

ρi|gi|2

≤3L2(
√
ρΣ‖u(t)‖ρ)

∑
|i|≥K

ρi|ui(t)|2 + 3
∑
|i|≥K

ρi · κ2 + 3
∑
|i|≥K

ρi|gi|2

≤C(
√
ρΣ‖u(t)‖ρ)

(
max

s∈[−h,0]

∑
|i|≥K

ρiu
2
i (t+ s) + bK

)
.

By Corollary 13 in [3], we also conclude that the solution u(·) ∈ C1([0, a], `2ρ).

3.2. A prior estimate of solutions. Here we will establish some estimates of the
solutions, which imply that the solutions are bounded uniformly with respect to
bounded sets of initial conditions and all positive values of time.

Proposition 1. Suppose that Assumptions 1–7 hold. Then every solution u(·) of
(3) with u0 = ψ ∈ C([−h, 0], `2ρ) verifies

‖ut‖2C([−h,0],`2ρ) ≤ R1e
−αt‖ψ‖2C([−h,0],`2ρ) +R2, (11)

where Rj > 0, j = 1, 2, are constants depending on the parameters of the problem.
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Proof. We multiply the ith component of (1) by ρiui(t) and sum over i to obtain

1

2

d

dt
‖u‖2ρ =

∑
i∈Zd

ρiuifi(ui) +
∑
i∈Zd

(
ρiui

∑
j∈Zd

ki,jσε(uj(t− τj)− θ)
)

+
∑
i∈Zd

ρiuigi. (12)

By Assumption 6 and ρi > 0 we have

ρifi(ui(t))ui(t) ≤ −αρiu2
i (t) + ρiβ

2
i ,

so ∑
i∈Zd

ρifi(ui(t))ui(t) ≤ −α‖u(t)‖2ρ + ‖β‖2ρ.

Since function σε takes values in the unit interval, using Young’s inequality we
obtain ∣∣∣ρiui ∑

j∈Zd
ki,jσε(uj(t− τj)− θ)

∣∣∣ ≤ ∣∣∣ρiui ∑
j∈Zd

ki,j

∣∣∣
≤ α

4
ρiu

2
i +

1

α
ρi
(∑
j∈Zd

ki,j
)2

≤ α

4
ρiu

2
i +

1

α
ρiκ

2,

so ∑
i∈Zd

∣∣∣ρiui ∑
j∈Zd

ki,jσε(uj(t− τj)− θ)
∣∣∣ ≤ α

4
‖u(t)‖2ρ +

1

α
ρΣκ

2.

The last term on the right hand of (12) satisfies∑
i∈Zd

ρigiui(t) ≤
α

4

∑
i∈Zd

ρiu
2
i (t) +

1

α

∑
i∈Zd

ρig
2
i

≤ α

4
‖u(t)‖2ρ +

1

α
‖g‖2ρ.

In summary, collecting the inequalities above, we obtain

1

2

d

dt
‖u(t)‖2ρ ≤ −

1

2
α‖u(t)‖2ρ + ‖β‖2ρ +

1

α

(
ρΣκ

2 + ‖g‖2ρ
)
.

Integrating both sides of this differential inequality yields

‖u(t)‖2ρ ≤ ‖u(0)‖2ρe−αt +
2

α

(
‖β‖2ρ +

1

α

(
ρΣκ

2 + ‖g‖2ρ
))

(1− e−αt). (13)

Let θ ∈ [−h, 0]. Replacing t by t+ θ in (13) and using

‖u(t+ θ)‖ρ = ‖ψ(t+ θ)‖ρ ≤ ‖ψ‖C([−h,0],`2ρ), t+ θ < 0,

we obtain

‖u(t+ θ)‖2ρ ≤ ‖ψ‖2ρe−α(t+θ) +
2

α

(
‖β‖2ρ +

1

α

(
ρΣκ

2 + ‖g‖2ρ
))

(1− e−α(t+θ)).

Finally, using that θ ∈ [−h, 0] and neglecting the negative terms yields

‖ut‖2C([−h,0],`2ρ) ≤ e
αhe−αt‖ψ‖2C([−h,0],`2ρ) +

2

α

(
‖β‖2ρ +

1

α

(
ρΣκ

2 + ‖g‖2ρ
))

= R1e
−αt‖ψ‖2C([−h,0],`2ρ) +R2,

(14)

where

R1 := eαh, R2 :=
2

α

(
‖β‖2ρ +

1

α

(
ρΣκ

2 + ‖g‖2ρ
))
.
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3.3. Uniqueness of solutions. Having the existence of the solution of problem
(3), moreover, we now establish the uniqueness of the solution with the additional
assumption that

Assumption 8. There exists a constant κ̃ > 0 such
∑
j∈Zd

k2i,j
ρj
≤ κ̃ for each i ∈ Zd.

Lemma 3.3. Suppose that Assumptions 1–8 hold. Then the solution u of problem
(3) is unique.

Proof. Assumption 8 implies that the operator Kτ : C([−h, 0], `2ρ)→ `2ρ is Lipschitz.
In fact, ∑

i∈Zd
ρi

∣∣∣Kτ,i(ut)−Kτ,i(vt)
∣∣∣2

≤
∑
i∈Zd

ρi

∣∣∣ ∑
j∈Zd

ki,j

(
σε(uj(t− τj)− θ)− σε(vj(t− τj)− θ)

)∣∣∣2
≤
∑
i∈Zd

ρi

(∑
j∈Zd

ki,j
∣∣σε(uj(t− τj)− θ)− σε(vj(t− τj)− θ)∣∣)2

≤
∑
i∈Zd

ρi

(
Lσ
∑
j∈Zd

ki,j|uj(t− τj)− vj(t− τj)|
)2

≤
∑
i∈Zd

ρiL
2
σ

(∑
j∈Zd

ki,j√
ρj

√
ρj|uj(t− τj)− vj(t− τj)|

)2

≤ρΣκ̃L
2
σ‖ut − vt‖2C([−h,0],`2ρ).

Hence, suppose that we have two different solutions u, v of problem (3) with the
same initial condition u(s) = v(s) = ψ(s), ∀s ∈ [−h, 0].

Set w = u− v, we obtain that

1

2

d

dt
‖w‖2ρ

≤L(
√
ρΣ(‖u‖ρ + ‖v‖ρ))‖w‖2ρ + ‖w‖ρ

√
C1ρΣκ̃Lσ‖wt‖C([−h,0],`2ρ)

≤L
(
2
√
ρΣ(R1‖ψ‖2C([−h,0],`2ρ) +R2)

)
‖w‖2ρ + ‖w‖ρ

√
C1ρΣκ̃Lσ‖wt‖C([−h,0],`2ρ)

≤C‖wt‖2C([−h,0],`2ρ),

where C = max
{
L
(
2
√
ρΣ(R1‖ψ‖2C([−h,0],`2ρ) +R2)

)
,
√
C1ρΣκ̃Lσ

}
.

Integrating from 0 to t then gives

‖w(t)‖2ρ ≤ 2C

∫ t

0

‖wτ‖2C([−h,0],`2ρ)dτ + ‖w(0)‖2ρ.

Let θ ∈ [−h, 0]. Replacing t by t+θ in the inequality above and using ‖w(t+θ)‖ρ = 0
when t+ θ < 0. We obtain

‖w(t+ θ)‖2ρ ≤ 2C

∫ t+θ

0

‖wτ‖2C([−h,0],`2ρ)dτ + ‖w(0)‖2ρ.

Then take the supremum on θ,

‖wt‖2C([−h,0],`2ρ) ≤ 2C

∫ t

0

‖wτ‖2C([−h,0],`2ρ)dτ + ‖w(0)‖2ρ.
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By Gronwall’s inequality, we have

‖wt‖2C([−h,0],`2ρ) ≤ 2Cte2Ct‖w(0)‖2ρ + ‖w(0)‖2ρ. (15)

Since w(0) = 0, we obtain that w ≡ 0.

The proof of the next corollary follows easily using (15).

Corollary 1. The map (t,ψ) 7→ ut is continuous.

Proposition 1 implies that every local solution of (1) can be extended globally,
which, with the uniqueness of the solution, will allow us to define a semigroup in
terms of the solution mapping and to conclude that it has a bounded absorbing set.

4. Asymptotic behaviour. When Assumptions 1–8 hold, Theorem 3.2 and
Lemma 3.3 ensure the local existence and uniqueness of solutions of the delayed
lattice system (3), while Proposition 1 shows that the solutions are, in fact, globally
defined.

We can thus define a semigroup of operators S : R+×C([−h, 0], `2ρ)→C([−h, 0], `2ρ)
by

S(t,ψ) = ut,

where ut is the unique solution to (3) with u0 = ψ. The semigroup map S is
continuous in its variables by Corollary 1.

It also follows from inequality (11) that the semigroup has a bounded absorbing
set.

Corollary 2. The bounded set defined by

B0 :=
{
ψ ∈ C([−h, 0], `2ρ) : ‖ψ‖C([−h,0],`2ρ) ≤ R0

}
,

with R0 :=
√

1 +R2, is absorbing for the semigroup S.

Our aim is to study the asymptotic behaviour of solution of problem (1). In
particular, we will show the existence of a global attractor. For this we will apply
the following well-known results about the existence of global attractors, see [8] and
[5].

Theorem 4.1. Let x → S(t, x) be continuous for any t ≥ 0. Assume that S
is asymptotically compact and possesses a bounded absorbing set B0. Then there
exists a global compact attractor A, which is the minimal closed set attracting any
bounded set. If, moreover, the space X is connected and the map t → S(t, x) is
continuous for any x ∈ X, then the set A is connected.

4.1. Tail estimate. To show the asymptotic compactness of the semigroup, we
need to estimate the tails of solutions of (3), i.e., their higher dimensional compo-
nents, see [2].

Lemma 4.2. Suppose that Assumptions 1–8 hold and let B be a bounded set of
C([−h, 0], `2ρ). Then, for any ε > 0 there exist T (ε,B) and M(ε,B) such that

max
s∈[−h,0]

∑
|i|>2M(ε,B)

ρi|ui(t+ s)|2 < ε, t ≥ T,

for any initial condition ψ ∈ B and the corresponding solution u(·) of (3) with u0

= ψ.
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Proof. Define a smooth function ξ satisfying

ξ(s)


= 0, 0 ≤ s ≤ 1,

∈ [0, 1], 1 ≤ s ≤ 2,

= 1, s ≥ 2.

Let M be a fixed (and large) integer to be specified later, and set

vi(t) = ξM (|i|)ui(t) with ξM (|i|) = ξ
( |i|
M

)
, i ∈ Zd,

where | · | denotes the Euclidean norm. We multiply the ith component of (1) by
ρivi, then summing over i ∈ Zd, and since u(·) ∈ C1([0,∞], `2ρ), we have

1

2

d

dt

∑
i∈Zd

ρiξM (|i|)|ui(t)|2 =
∑
i∈Zd

ρiξM (|i|)ui(t)
dui(t)

dt

=
∑
i∈Zd

ρiξM (|i|)ui(t)fi(ui(t)) +
∑
i∈Zd

ρiξM (|i|)ui(t)gi

+
∑
i∈Zd

ρiξM (|i|)ui(t)
∑
j∈Zd

ki,jσε(uj(t− τj)− θ).

(16)

First, by Assumption 6,

ρiξM (|i|)ui(t)fi(ui) ≤ −αρiξM (|i|)u2
i (t) + ρiξM (|i|)β2

i . (17)

Then, since function σε takes values in the unit interval, using Young’s inequality,∣∣∣ρiξM (|i|)ui(t)
∑
j∈Zd

ki,jσε(uj(t− τj)− θ)
∣∣∣ ≤ ∣∣ρiξM (|i|)ui(t)κ

∣∣
≤ α

4
ρiξM (|i|)u2

i (t) +
κ2

α
ρiξM (|i|).

(18)

And using Young’s inequality again,∑
i∈Zd

ρiξM (|i|)giui(t) =
∑
|i|≥M

ρiξM (|i|)giui(t)

≤ α

4

∑
i∈Zd

ρiξM (|i|)u2
i (t) +

1

α

∑
|i|≥M

ρig
2
i .

(19)

Inserting the estimations (17), (18) and (19) into (16), then

1

2

d

dt

∑
i∈Zd

ρiξM (|i|)u2
i (t) ≤− 1

2
α
∑
i∈Zd

ρiξM (|i|)u2
i (t) +

∑
i∈Zd

ρiξM (|i|)β2
i

+
κ2

α

∑
i∈Zd

ρiξM (|i|) +
1

α

∑
|i|≥M

ρig
2
i .

(20)

We now estimate each term on the right hand side of the above inequality. Note
that ∑

i∈Zd
ρiξM (|i|)β2

i =
∑
|i|≥M

ρiξM (|i|)β2
i ≤

∑
|i|≥M

ρiβ
2
i .

Since β = (βi)i∈Zd ∈ `2ρ, then for every ε > 0 there exists I1(ε) > 0 such that∑
i∈Zd

ρiξM (|i|)β2
i ≤

∑
|i|≥M

ρiβ
2
i <

1

6
ε when M ≥ I1(ε). (21)
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Similarly, since ρΣ =
∑
i∈Zd

ρi < ∞, then for every ε > 0, there exists I2(ε) > 0 such

that ∑
i∈Zd

ρiξM (|i|) =
∑
|i|≥M

ρiξM (|i|) ≤
∑
|i|≥M

ρi <
α

6κ2
ε when M ≥ I2(ε). (22)

In addition, since g = (gi)i∈Zd ∈ `2ρ by Assumption 7, for every ε > 0 there exists
I3(ε) > 0 such that ∑

|i|≥M

ρig
2
i ≤

α

6
ε, ∀t ∈ R, when M ≥ I3(ε). (23)

Finally, for any ε > 0, choosing I(ε) := max{I1(ε), I2(ε), I3(ε)}, inserting the esti-
mations (21), (22) and (23) into (20) results in

d

dt

∑
i∈Zd

ρiξM (|i|)u2
i (t) ≤ −α

∑
i∈Zd

ρiξM (|i|)u2
i (t) + ε, ∀M ≥ I(ε).

It follows immediately from Gronwall’s lemma that∑
i∈Zd

ρiξM (|i|)u2
i (t) ≤ e−αt

∑
i∈Zd

ρiξM (|i|)u2
i (0) +

ε

α
.

In a similar way as in Proposition 1 we have

max
s∈[−h,0]

∑
i∈Zd

ρiξM (|i|)u2
i (t+ s) ≤ eαhe−αt max

s∈[−h,0]

∑
i∈Zd

ρiξM (|i|)ψ2
i (s) +

ε

α
.

Thus, there exist T (ε,B) and M(ε,B) such that

max
s∈[−h,0]

∑
|i|>2M

ρi|ui(t+ s)|2 ≤ ε if t ≥ T.

4.2. Existence of the global attractor. In order to apply Theorem 4.1, we need
to prove that S generated by the delay lattice system (3) is asymptotically compact.

Lemma 4.3. Suppose that Assumptions 1–8 hold. Then the semigroup S is asymp-
totically compact.

Proof. We consider ξn := untn = S(tn,ψ
n), where ψn ∈ B, a bounded set in

C([−h, 0], `2ρ). From (14) there is a C > 0 such that

‖untn(s)‖ ≤ C, ∀s ∈ [−h, 0],∀n ∈ N.

For fixed s ∈ [−h, 0] we can find a subsequence (which we still denote by un) such
that

un(tn + s) ⇀ ζ(s) in `2ρ.

In fact, the weak convergence here is strong, which follows from Lemma 4.2. Indeed,
there exists N1 > 0, when n ≥ N1, we have tn > T (where T is the constant in
Lemma 4.2). Moreover, for any µ > 0 there exist K2(µ) and N2(µ) such that∑
|i|>K2

ρi|uni (tn + s)|2 < µ,
∑
|i|>K2

ρi|ζi(s)|2 < µ,
∑
|i|≤K2

ρi|uni (tn + s)− ζi(s)|2 < µ
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if n ≥ max{N1, N2(µ)}. Hence

‖un(tn + s)− ζ(s)‖2ρ ≤
∑
|i|≤K2

ρi|uni (tn + s)− ζi(s)|2 +
∑
|i|>K2

ρi|uni (tn + s)− ζi(s)|2

≤
∑
|i|≤K2

ρi|uni (tn + s)− ζi(s)|2 + 2
∑
|i|>K2

ρi|uni (tn + s)|2

+ 2
∑
|i|>K2

ρi|ζi(s)|2

<5µ.

Thus, {un(tn + s)} is precompact in `2ρ for any s ∈ [−h, 0]. Since Gτ is a bounded
map, Proposition 1 and the integral representation of solutions imply that

‖un(tn + s)− un(tn + t)‖ρ ≤
∫ t

s

‖Gτ (untn+τ )‖ρdτ ≤ K(t− s) if − h ≤ s < t ≤ 0.

Then, the Ascoli-Arzelà theorem implies that ξn is relatively compact in C([−h, 0],
`2ρ).

Remark 2. If Assumption 8 guarranteeing uniqueness of solutions does not hold,
then the lattice model (1) generates a set-valued semi-dynamical system, which can
be shown to have a global attractor using essentially the same Lemmas as above.
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