
ELECTRONIC RESEARCH ARCHIVE doi:10.3934/era.2020006
Volume 28 Number 1, March 2020 Pages 91–102
eISSN: 2688-1594 AIMS (2020)

FINITE TIME BLOW-UP FOR A WAVE EQUATION WITH

DYNAMIC BOUNDARY CONDITION AT CRITICAL AND HIGH

ENERGY LEVELS IN CONTROL SYSTEMS

XIAOQIANG DAI, CHAO YANG∗, SHAOBIN HUANG, TAO YU AND YUANRAN ZHU

Abstract. We study the initial boundary value problem of linear homoge-

neous wave equation with dynamic boundary condition. We aim to prove the

finite time blow-up of the solution at critical energy level or high energy level
with the nonlinear damping term on boundary in control systems.

1. Introduction

In this paper, we mainly discuss the initial boundary value problem of linear
homogeneous wave equation with dynamic boundary condition

utt −∆u = 0 in (0,∞)× Ω,(1.1)

u(x, t) = 0 on [0,∞)× Γ0,(1.2)

∂u

∂ν
= −Q(ut) + f(u) on [0,∞)× Γ1,(1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,(1.4)

where Ω ⊂ Rn, n ≥ 1 is a regular, bounded and connected domain with boundary
∂Ω = Γ0

⋃
Γ1, Γ0

⋂
Γ1 = ∅, where Γ0 and Γ1 are measurable over ∂Ω endowed

with the (n−1)− dimensional Lebesgue measures λn−1(Γ0) and λn−1(Γ1); ∆ is the
Laplacian operator with respect to the x; Q(ut) = |ut|m−2ut, f(u) = |u|p−2u, m ≥
2, p ≥ 2. These properties of Ω, Γ0 and Γ1 will be assumed throughout the paper.
The initial data are u0 ∈ H1(Ω) and u1 ∈ L2(Ω), with the compatibility condition
u0 = 0 on Γ0. We always assume that λn−1(Γ0) > 0 and λn−1(Γ1) > 0 throughout
the paper.

For the wave equation with nonlinear dynamic boundary condition like problem
(1.1)-(1.4), arising in the physical models and control systems, there have been many
papers dealing with the existence and blow-up of the solution. In [4]-[7], [12]-[18] and
[33], the global existence and decay properties of the solution of the problem (1.1)-
(1.4) were proved for arbitrarily large initial data when f ≡ 0 or f(x, u)u ≤ 0 if Q
and f were under some special assumptions. When f(x, u)u ≥ 0, which means f is a
source term, the situation is quite different. If f(x, u) = |u|p−2u, p > 2 and Q ≡ 0,
when the (n−1)-dimensional Lebesgue measure λn−1(Γ0) and λn−1(Γ1) are assumed
to be positive, the authors of [18] obtained the finite time blow-up when the initial
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energy is negative for problem (1.1)-(1.4). For the same problem above, Levine and
Smith [11] proved the global existence of the solution when initial data u0 and u1

are very small. Zhang et al. [30] considered the Kirchhoff equation with dynamic
boundary condition. They obtained the energy decay and blow-up of a solution with
negative and small positive initial energy. Recently, some authors have studied the
viscoelastic wave equation with boundary damping and source terms. In [9], Lee
et al. proved the global existence and exponential growth solution. In [16], they
proved the blow-up result of solutions under suitable conditions of the initial data,
and in [17] they studied the existence and decay of solutions for a viscoelastic wave
equation with acoustic boundary conditions. In [25], the author studied problem
(1.1)-(1.4) when Q(ut) = |ut|m−2ut and f(u) = |u|p−2u, and showed that the
solution of problem (1.1)-(1.4) globally exists in time for arbitrary initial data when
2 ≤ p ≤ m, in opposition with the finite time blow-up occurring when m = 2 < p. In
[2] they proved more general existence and stability results by using a natural tool
for the problem–monotone operator theory that contrast with the Schauder fixed
point arguments used in [25]. For the same problem with p > m, Zhang and Hu [29]
obtained the nonexistence of the solution under the energy level E(0) < d when the
initial data are in the unstable set. As well known, in the frame of potential well
theory, the variational arguments are usually taken by considering different levels of
the initial data, see its applications to differential kinds of model equations in[21],
[27] and [28], which are very different from the other aspects of the studies on the
wave equations [3], [10], [11], [22], [23], [26] and [31]. However, no results were
obtained about the finite time blow-up of the solution for problem (1.1)-(1.4) when
Q(ut) = |ut|m−2ut and f(u) = |u|p−2u, p > m at critical energy level E(0) = d or
high energy level E(0) > d. The main purpose of this paper is to get the finite time
blow-up result of the solution of the problem (1.1)-(1.4) whenQ(ut) = |ut|m−2ut and
f(u) = |u|p−2u, p > m for the critical initial data and arbitrarily large initial data.
We mainly adapt the method introduced by Vitillaro in [24] to study the solution of
problem (1.1)-(1.4) when Q(ut) = |ut|m−2ut and f(u) = |u|p−2u, p > m at critical
energy level and the convexity method introduced by Gazzola and Squassina in [8]
to get the finite time blow-up of the solution at high energy level.

In Section 2, we introduce some basic setup, notations and some known results
of the solution to problem (1.1)-(1.4). In section 3, we prove the blow-up result
of the solution when E(0) = d. Finally in Section 4, we obtain the blow-up result
when E(0) > d.

2. Set up and notations

First we denote

‖ · ‖ = L2(Ω), ‖ · ‖q = Lq(Ω), ‖ · ‖q,Γ1
= Lq(Γ1), 1 ≤ q ≤ ∞,

and

H1
Γ0

(Ω) = {u ∈ H1(Ω) | u|Γ0
= 0},(2.1)

(u|Γ0
is in the sense of trace). We can endow H1

Γ0
(Ω) the equivalent norm ‖u‖pp,Γ1

=

‖∇u‖ because of the Poincarè inequality (see [17]) and the fact that λn−1(Γ0) > 0.
We also define some useful functionals

J(u) =
1

2
‖∇u‖2 − 1

p
‖u‖pp,Γ1

,(2.2)

I(u) = ‖∇u‖2 − ‖u‖pp,Γ1
,(2.3)
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E(t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 − 1

p
‖u‖pp,Γ1

.(2.4)

All these functionals are defined on H1
Γ1

(Ω). According to the definition of E(t),
we have

E(0) =
1

2
‖u1‖2 +

1

2
‖∇u0‖2 −

1

p
‖u0‖pp,Γ1

.

We also use the trace-Sobolev embedding H1
Γ1

(Ω) ↪→ Lp(Γ1) for 2 ≤ p < r intro-
duced in [1], where

(2.5) r =

{
2(n−1)
n−2 , if n ≥ 3;

+∞, if n = 1, 2.

We also have the embedding inequality

‖u‖pp,Γ1
≤ C∗‖∇u‖,(2.6)

where C∗ is the embedding constant. Then we introduce the unstable set V defined
by

V = {(u0, u1) ∈ H1
Γ1

(Ω)× L2(Ω) | I(0) < 0, 0 < E(0) = d},(2.7)

where d is the mountain pass level, characterized as

d = inf
u∈H1

Γ0
(Ω),u|Γ1 6=0

(
sup
λ>0

J(λu)

)
.(2.8)

We define

λ1 := C
−p
p−2
∗ .(2.9)

It has been proved in [25] that
(

1
2 −

1
p

)
λ2

1 is the potential well depth, that is

d =

(
1

2
− 1

p

)
λ2

1.(2.10)

In [25], the author have proved the local and global existence of the solution for
problem (1.1)-(1.4). Now we introduce some results in [25] as follows:

Theorem 2.1. (Local existence of the solution) Suppose that m > 1, 2 ≤ p < r
and m > r

r+1−p . Then, given initial data u0 ∈ H1
Γ0

(Ω) and u1 ∈ L2(Ω), there is

a T > 0 and a weak solution u of the problem (1.1)-(1.4) on (0, T ) × Ω such that
u ∈ C([0, T ];H1

Γ0
(Ω) ∩ C1([0, T ];L2(Ω))) ,ut ∈ Lm((0, T )× Γ1),

E(t) +

∫ t

s

‖uτ (τ)‖mm,Γ1
dτ = E(s),(2.11)

holds for 0 ≤ s ≤ t ≤ T .

3. Finite time blow-up for critical initial energy E(0) = d

In this section, we mainly show the finite time blow-up of the solution when
initial data are at critical level. In order to prove the finite time blow-up of the
solution, we first prove some basic lemmas.
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Lemma 3.1. (Invariant manifolds) We suppose that m > 1, 2 ≤ p < r and
m > r

r+1−p . Let

V ′ = {(u0, u1) ∈ H1
Γ0

(Ω)× L2(Ω) | ‖∇u0‖ > λ1, 0 < E(0) = d},
then we have V = V ′.

Proof. First we show that V ⊂ V ′. Let (u0, u1) ∈ V , then we have I(0) < 0 (i.e
‖∇u0‖2 < ‖u0‖pp,Γ1

). By using the embedding inequality (2.6), we can obtain that

‖∇u0‖2 < ‖u0‖pp,Γ1
≤ Cp∗‖∇u0‖p.

Hence we have ‖∇u0‖ > C
− p
p−2

∗ = λ1. So we get that V ⊂ V ′. Then we show that
V ′ ⊂ V . Let (u0, u1) ∈ V ′, then we have ‖∇u0‖ > λ1 and E(0) = d. Supposing by
contradiction that I(0) ≥ 0, we have

‖∇u0‖2 ≥ ‖u0‖pp,Γ1
.

Combining

E(0) =
1

2
‖u1‖22 +

1

2
‖∇u0‖22 −

1

p
‖u0‖pp,Γ1

,

we can get

1

2
‖∇u0‖22 −

1

p
‖u0‖pp,Γ1

≤ d.

Then we obtain that

d ≥
(

1

2
− 1

p

)
‖∇u0‖2.

Since ‖∇u0‖ > λ1, it follows that

d >

(
1

2
− 1

p

)
λ2

1 = d,

which leads to a contradiction. This completes the proof. �

Lemma 3.2. (Invariant manifolds and boundness) Suppose that m > 1, 2 ≤ p < r
and m > r

r+1−p . Let (u0, u1) ∈ V and u(x, t) be the weak solution of the problem

(1.1)-(1.4) on [0, Tmax). Then (u(t, ·), ut(t, ·)) remains inside V for any [0, Tmax).
Furthermore, we have

‖∇u(t)‖2 < ‖u(t)‖pp,Γ1
, t ∈ [0, tmax),

‖u(t)‖p,Γ1 > C∗λ1, t ∈ [0, tmax),

‖∇u(t)‖ > λ1, t ∈ [0, tmax).

Proof. From I(0) < 0 and the continuity of I(u) respecting to t, it follows that there
exists a sufficiently small t1 > 0, such that I(u) < 0 for 0 < t < t1. Combining
(2.11), we set that d1 = E(t1), then we have

0 < d1 = d−
∫ t1

0

‖uτ (τ)‖mm,Γ1
dτ < d.

We choose t = t1 as the initial time, by the same proceeding in Theorem 2.3 [12],
we can get that (u(t, ·), ut(t, ·)) remains inside V for any t ∈ [0, Tmax) (Here we
have already known the invariance when E(0) < d, so by selecting t1 as the initial
time, we can have E(t1) < d again, then we can use the invariance conclusion for
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E(t1) < d). Furthermore, noting I(u) < 0 for all t ∈ [0, Tmax), according to the
definition of I(u), we have

‖∇u(t)‖2 < ‖u(t)‖pp,Γ1
, t ∈ [0, Tmax).(3.1)

Moreover, according to Lemma 3.1, we can obtain that

‖∇u(t)‖ > λ1, t ∈ [0, Tmax).(3.2)

Then, by using (2.9) and (3.1), we have

‖u(t)‖p,Γ1
> C∗λ1, t ∈ [0, Tmax).(3.3)

This completes the proof. �

By the similar method in [24], we can prove that in the manifold V ′ = {(u0, u1) ∈
H1

Γ0
(Ω) × L2(Ω) | ‖∇u0‖ > λ1, 0 < E(0) = d}, there is a constant λ2 between

‖∇u(t)‖ and λ1, i.e., there is a λ2 > λ1 such that ‖∇u(t)‖ ≥ λ2 > λ1. This will be
given by the following lemma. And this lemma will be used to prove the finite time
blow-up for the critical case E(0) = d.

Lemma 3.3. Suppose that m > 1, 2 ≤ p < r and m > r
r+1−p . Let (u0, u1) ∈ V

and u(x, t) be the weak solution of the problem (1.1)-(1.4) on [0, Tmax). There is a
λ2 > λ1 such that ‖∇u(t)‖ ≥ λ2 > λ1.

Proof. According to Lemma 3.2, we have I(u) < 0 for all t ∈ [0, Tmax). By (2.6),
we have

E(t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 − 1

p
‖u‖pp,Γ1

≥ 1

2
‖∇u‖2 − 1

p
‖u‖pp,Γ1

≥ 1

2
‖∇u‖2 − 1

p
Cp∗‖∇u‖p := g(‖∇u‖),

(3.4)

where g(λ) = 1
2λ

2 − 1
pC

p
∗λ

p for λ ≥ 0. It is easy to see that g takes its maximum

at λ = λ1, with g(λ1) = d, being strictly decreasing for λ ≥ λ1, and g(λ) → −∞
as λ → ∞. Combining the fact that E(t) is decreasing when t ∈ [0, Tmax) and
E(0) = d, we can continue to argue as follows. By the continuity of ‖∇u(·)‖, there
are only two possibilities:

(a) there is a t0 ≥ 0 such that E(t0) < d and ‖∇u(t0)‖ > λ1;

(b) there is an ε0 > 0 such that E(t) = d on [0, ε0).

In the first case, we choose t0 as the initial time. Due to the fact that E(t)
and g(λ) are both decreasing and continuous, there exists a λ2 > λ1 such that
E(t0) = g(λ2). We now claim that

‖∇u(t0)‖ ≥ λ2.

Suppose for contradiction that ‖∇u(t0)‖ < λ2 for some t ∈ [0, Tmax). By using
(3.4) and the fact that g(λ) is a decreasing function, we have

E(t0) ≥ g(‖∇u(t0)‖) > g(λ2) = E(t0),

which leads to a contradiction. We can also obtain that

1

2
‖∇u‖2 ≥ 1

2
λ2

2 >
1

2
λ1

2.
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We then choose λ0 = 1
2λ1

2 and E1 = (1 − p
2 )λ0. By doing the same process in

Theorem 2.3 in [24], we can conclude the proof for the first case.
In the second case, for t ∈ [0, ε0), we have E(t) = d. By using (2.11), we have∫ t

0

‖uτ (τ)‖mm,Γ1
dτ = 0 t ∈ [0, ε0).

Due to the fact that ‖ut(t)‖mm,Γ1
≥ 0, we have ut = 0 and u(t) = u0 on [0, ε0).

Suppose for contradiction that ‖∇u0‖ < λ2 for t ∈ [0, ε0). We can obtain that

d = E(0) =
1

2
‖∇u0‖2 −

1

p
‖u0‖pp,Γ1

≥ g(‖∇u0‖) > g(λ2) = E(0) = d,

which leads to a contradiction. This completes the proof. �

Theorem 3.4. (Finite time blow-up of solutions for E(0) = d) Assume that 1 <
m < p, m > r

r+1−p , 2 ≤ p < r. If (u0, u1) ∈ V ′, then the solution of problem

(1.1)-(1.4) blows up in finite time.

Proof. Arguing by contradition, we assume that there exists a global weak solution
of problem (1.1)-(1.4). We set H(t) = d−E(t). By Theorem 2.1, E(t) is decreasing
about t. So H(t) is an increasing function, then we have

H(t) ≥ H(0) = d− E(0) = 0, t ≥ 0.(3.5)

Next, by using the definition of E(t), we have

H(t) ≤ d− 1

2
‖∇u(t)‖22 +

1

p
‖u(t)‖pp,Γ1

, t ≥ 0.(3.6)

By using (3.2) and (2.10), we can obtain that

d− 1

2
‖∇u(t)‖22 ≤ d−

1

2
λ2

1 = −1

p
λ2

1 < 0.

Combining (3.6), we have

H(t)− 1

p
‖u(t)‖pp,Γ1

≤ d− 1

2
‖∇u(t)‖22 < 0.

Then (3.5) tells

H(0) ≤ H(t) <
1

p
‖u(t)‖pp,Γ1

, t ≥ 0.(3.7)

Next, using the definition of E(t) and (3.6), we have

d

dt
(u, ut) = ‖ut‖2 − ‖∇u(t)‖22 + ‖u(t)‖pp,Γ1

−
∫

Γ1

|ut|m−2utudσ

= 2‖ut‖2 +

(
1− 2

p

)
‖u(t)‖pp,Γ1

− 2E(t)−
∫

Γ1

|ut|m−2utudσ

= 2‖ut‖2 +

(
1− 2

p

)
‖u(t)‖pp,Γ1

− 2d+ 2H(t)−
∫

Γ1

|ut|m−2utudσ.
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Then, According to Lemma 3.3, we choose a λ2, such that ‖∇u(t)‖ ≥ λ2 > λ1, then
by using (3.3), we have

d

dt
(u, ut) ≥ 2‖ut‖2 +

(
1− 2

p
− 2d(C∗λ2)−p

)
‖u(t)‖pp,Γ1

+ 2H(t)−
∫

Γ1

|ut|m−2utudσ

= 2‖ut‖2 + C1‖u(t)‖pp,Γ1
+ 2H(t)−

∫
Γ1

|ut|m−2utudσ,

(3.8)

where C1 = 1− 2
p − 2d(C∗λ2)−p > 0. To obtain d

dt (u, ut), we first estimate the last

term in (3.8). By Hölder’s inequality, we obtain∣∣∣∣∫
Γ1

|ut|m−2utudσ

∣∣∣∣ ≤ ‖ut‖m−1
m,Γ1
‖u‖p,Γ1

= ‖ut‖m−1
m,Γ1
‖u‖1−

p
m

p,Γ1
‖u‖

p
m

p,Γ1
,(3.9)

in which 1
p + 1

m = 1, and then, by (3.7), Hölder’s inequality, Young inequality and

the fact that H ′(t) = ‖ut‖mm,Γ1
, we obtain that∣∣∣∣∫

Γ1

|ut|m−2utudσ

∣∣∣∣ ≤ ‖u‖1− p
m

p,Γ1
‖u‖

p
m

p,Γ1
‖ut‖m−1

m,Γ1

≤ C2H
1
p−

1
m (t)‖u‖

p
m

p,Γ1
‖ut‖m−1

m,Γ1

≤ C3(εm‖u‖pp,Γ1
+ ε−m

′
‖ut‖mm,Γ1

)H−ᾱ(t)

≤ C3(εm‖u‖pp,Γ1
+ ε−m

′
H ′(t))H−ᾱ(t),

(3.10)

for any ε > 0, where ᾱ = 1
m −

1
p > 0 and 1

m + 1
m′ = 1, and we denote C1, C2,..., as

suitable positive constants. Let 0 < α < ᾱ, by (3.5) and (3.10), we have∣∣∣∣∫
Γ1

|ut|m−2utudσ

∣∣∣∣ ≤ C3(εmH−ᾱ(0)‖u‖pp,Γ1
+ ε−m

′
H ′(t)H−α(t)Hα−ᾱ(0)).(3.11)

Now we introduce an auxiliary function

Z(t) = H1−α(t) + δ

∫
Ω

uutdx,

where δ is a small positive constant which will be decided later. By (3.8) and (3.11),
we have

Z ′(t) ≥ (1− α)H−α(t)H ′(t)

+ δ

(
2‖ut‖2 + C1‖u‖pp,Γ1

+ 2H(t)−
∫

Γ1

|ut|m−2utudσ

)
≥ (1− α− δC3ε

−m′Hα−ᾱ(0))H−α(t)H ′(t)

+ δ(C1 − C3ε
mH−ᾱ(0))‖u‖pp,Γ1

+ 2δ‖ut‖2 + 2δH(t).

(3.12)

Let δ < (1 − α)C−1
3 εm

′
H ᾱ−α(0), so the first term on the right hand side of (3.12)

is positive. Moreover, if we choose ε sufficiently small, we can obtain that

C1 − C3ε
mH−ᾱ(0) ≥ 1

2
C1,

further,

Z ′(t) ≥ 1

2
C0δ‖u‖pp,Γ1

+ 2δ‖ut‖2 + 2δH(t) ≥ C4δ(‖u‖pp,Γ1
+ ‖ut‖2 +H(t)).(3.13)
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Letting δ sufficiently small, we have Z ′(0) > 0. And noting thatH(t) is an increasing
function, we have Z(t) ≥ Z(0) for t ≥ 0. Now we set r = 1

1−α , since α < ᾱ < 1, it

is evident that 1 < r < r̄ := 1
1−ᾱ . According to the following inequality

|a+ b|r ≤ 2r−1(|a|r + |b|r) for r ≥ 1,

Young inequality and Cauchy-Schwarz inequality, we have

Zr(t) ≤ 2r−1(H(t) + δr‖ut‖r‖u‖r) ≤ C4(H(t) + ‖ut‖2 + ‖u‖
1

1
2
−α ).(3.14)

Now by choosing α sufficiently small, we have

‖u‖
1

1
2
−α ≤ 1 + ‖u‖2.(3.15)

Using Poincaré inequality and combining (3.1), (3.14) and (3.15), we have

Zr(t) ≤ C5(H(t) + ‖ut‖2 + ‖∇u‖2) ≤ C6(‖u‖pp,Γ1
+ ‖ut‖2 +H(t)).(3.16)

In turning by (3.13) and (3.16), and the fact that r > 1, we obtain that

Z ′(t) ≥ C7Z
r(t).(3.17)

Solving (3.17), we can obtain that there exist positive constants C8 and C9, such
that

Zr−1(t) ≥ 1

−C8t+ C9
.

Then we have

lim
t→C9

C8

Zr−1(t) =∞.

So Z(t) is not global. This completes the proof. �

4. Blow up for high initial energy E(0) > d when Q(ut) = 0

In this section, we mainly discuss the problem (1.1)-(1.4) without damping term,
i.e., Q(ut) = 0. We mainly adapt the convexity method introduced in [8].

Lemma 4.1. Let γ > 0, T > 0 and h(t) be a Lipschitzian function over [0, T ).
Assume that h(0) ≥ 0 and h′(t) + γh(t) > 0 for all t ∈ (0, T ). Then h(t) > 0 for all
t ∈ (0, T ).

Theorem 4.2. (Finite time blow-up of solutions for E(0) > d.) Assume that
Q(ut) = 0, 1 < m < p, m > r

r+1−p , 2 ≤ p < r. If

I(0) < 0,

E(0) > d,∫
Ω

u0u1dx ≥ 0,

‖u0‖2 >
2p

p− 2
E(0),

then the solution of problem (1.1)-(1.4) blows up in finite time.
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Proof. We will prove the result by two steps.

Step I. We first show that

(4.1) I(u(t)) < 0 and ‖u‖2 > 2p

p− 2
E(0), t ≥ 0.

Arguing by contradiction, we suppose by the continuity of I(t) that there exists a
first time t0 > 0 such that I(u(t0)) = 0. Then we consider the L(t) function defined
by

L(t) := ‖u‖2.

We have

L′(t) = 2

∫
Ω

uutdx.

From the definition of I(u), we obtain that

L′′(t) = 2‖ut‖2 − 2I(u).

Noticing that

I(u) ≤ 0, t ∈ (0, t0].

As L′′(t) ≥ 0 and L′(0) =
∫

Ω
u0u1dx ≥ 0 holds for all t ∈ (0, t0], by Lemma 4.1,

we can obtain that L′(t) > 0 of all t ∈ (0, t0). So we can know that L(t) is strictly
increasing on (0, t0]. Thus,

L(t) ≥ ‖u0‖2 >
2p

p− 2
E(0), t ∈ (0, t0].

As a consequence, we have

L(t0) >
2p

p− 2
E(0).

On the other hand, combining the fact that E(t) is a decreasing function, we have

E(t0) ≤ E(t) < E(0), t ∈ (0, t0].

According to the assumption, when I(t0) = 0, we have

‖∇u(t0)‖2 ≤ 2p

p− 2
E(0).

From ‖u‖H1
Γ0

(Ω) = ‖∇u‖ for u ∈ H1
Γ0

(Ω), we have

L(t0) = ‖u(t0)‖2 ≤ ‖u(t0)‖2H1
Γ0

(Ω) = ‖∇u(t0)‖2 ≤ 2p

p− 2
E(0)

which leads to a contradiction. Thus we have proved that

I(u) < 0, t ∈ [0, Tmax).

By the discussion above, we see that L(t) is strictly increasing on [0, Tmax) provided
I(u) < 0, which implies

‖∇u‖2 ≥ L(t) >
2p

p− 2
E(0), t ∈ [0, Tmax).(4.2)
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Step II. Now we prove the finite time blow-up of the solution. As discussed above,

we assume that u is global first. Then for any t > 0, we use Cauchy-Schwarz
inequality

‖u‖‖ut‖ ≥
∫

Ω

uutdx

to get

L(t)L′′(t)− p+ 2

4
(L′(t))2 = 2‖u‖2(‖ut‖2 − I(u))− p+ 2

4
(2

∫
Ω

uutdx)2

≥ 2‖u‖2(‖ut‖2 − I(u))− (p+ 2)‖u‖2‖ut‖2

≥ ‖u‖2ξ(t),
where

ξ(t) = −2pE(0) + (p− 2)‖∇u‖2.
According to (4.2), we have

‖∇u‖2 > 2p

p− 2
E(0).

So we can obtain that

2pE(0) < (p− 2)‖∇u‖2.
Then we have ξ(t) > 0. Further we have

L(t)L′′(t)− p+ 2

4
(L′(t))2 ≥ 0.

Thus (
L(t)−α

)′′
=

−α
Lα+2(t)

(
L(t)L′′(t)− (1 + α) (L′(t))

2
)
< 0,

where α = p−2
4 > 0. Hence, it proves that L−α(t) reaches 0 in finite time, then

there exists a T ∈ [0,∞) such that

lim
t→T

L(t) =∞.

Finally we prove that L(t) is not global. This completes the proof. �
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