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THE DIGITAL SMASH PRODUCT

ISMET CINAR, OZGUR EGE* AND ISMET KARACA

ABSTRACT. In this paper, we construct the smash product from the digital
viewpoint and prove some its properties such as associativity, distributivity,
and commutativity. Moreover, we present the digital suspension and the dig-
ital cone for an arbitrary digital image and give some examples of these new
concepts.

1. INTRODUCTION

Digital topology with interesting applications has been a popular topic in com-
puter science and mathematics for several decades. Many researchers such as Rosen-
feld [21, 22], Kong [18, 17], Kopperman [19], Boxer, Herman [14], Kovalevsky [20],
Bertrand and Malgouyres would like to obtain some information about digital ob-
jects using topology and algebraic topology.

The first study in this area was done by Rosenfeld [21] at the end of 1970s. He
introduced the concept of continuity of a function from a digital image to another
digital image. Later Boxer [1] presents a continuous function, a retraction, and
a homotopy from the digital viewpoint. Boxer et al. [7] calculate the simplicial
homology groups of some special digital surfaces and compute their Euler charac-
teristics.

Ege and Karaca [9] introduce the universal coefficient theorem and the Eilenberg-
Steenrod axioms for digital simplicial homology groups. They also obtain some
results on the Kiinneth formula and the Hurewicz theorem in digital images. Ege
and Karaca [10] investigate the digital simplicial cohomology groups and especially
define the cup product. For other significant studies, see [13, 12, 16].

Karaca and Cinar [15] construct the digital singular cohomology groups of the
digital images equipped with Khalimsky topology. Then they examine the Eilenberg-
Steenrod axioms, the universal coefficient theorem, and the Kiinneth formula for a
cohomology theory. They also introduce a cup product and give general properties
of this new operation. Cinar and Karaca [8] calculate the digital homology groups
of various digital surfaces and give some results related to Euler characteristics for
some digital connected surfaces.

This paper is organized as follows: First, some information about the digital
topology is given in the section of preliminaries. In the next section, we define the
smash product for digital images. Then, we show that this product has some proper-
ties such as associativity, distributivity, and commutativity. Finally, we investigate
a suspension and a cone for any digital image and give some examples.
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2. PRELIMINARIES

Let Z™ be the set of lattice points in the n-dimensional Euclidean space. We call
that (X, k) is a digital image where X is a finite subset of Z™ and « is an adjacency
relation for the members of X. Adjacency relations on Z™ are defined as follows:
Two points p = (p1,p2,...,0n) and ¢ = (¢1, 92, ..., qn) in Z™ are called ¢;-adjacent
[2] for 1 <1 < n if there are at most [ indices ¢ such that |p; — ¢;| = 1 and for all
other indices ¢ such that |p; — ¢;| # 1, p; = ¢;- It is easy to see that ¢; = 2 (see
Figure 1) in Z,
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FI1GURE 1. 2-adjacency in Z

c1 =4 and ¢y = 8 (see Figure 2) in Z2,
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FIGURE 2. 4 and 8 adjacencies in Z?

and ¢; = 6, c; = 18 and ¢3 = 26 (see Figure 3) in Z3.
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FIGURE 3. 6, 18 and 26 adjacencies in Z>

A k-neighbor of p in Z" is a point of Z™ which is k-adjacent to p. A digital image
X is k-connected [14] if and only if for each distinct points z,y € X, there exists
a set {ag,a,...,a,} of points of X such that x = ag, y = a,, and a; and a;4; are
k-adjacent where i € {0,1,...,r — 1}. A k-component of a digital image X is a
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maximal k-connected subset of X. Let a,b € Z with a < b. A digital interval [1] is
defined as follows:

[, 9]z={a€Z|rx<a<yuxycl}

where 2-adjacency relation is assumed.

In a digital image (X, k), a digital k-path [3] from z to y is a (2, k)-continuous
function f : [0,m]z — X such that f(0) = = and f(m) = y where z,y € X. Let
f:(X,k) = (Y, ) be a function. If the image under f of every x-connected subset
of X is k-connected, then f is called (k, A)-continuous [2].

A function f : (X, k) — (Y, A) is (k, A)-continuous [22, 2] if and only if for any
r-adjacent points a,b € X, the points f(a) and f(b) are equal or A-adjacent. A
function f : (X, k) — (Y, A) is an isomorphism [4] if f is a (k, A)-continuous bijection
and f~!is (), k)-continuous.

Definition 2.1. [2] Suppose that f, g : (X, k) — (Y, A) are (k, \)-continuous maps.
If there exist a positive integer m and a function

F:Xx[0,mlz =Y

with the following conditions, then F' is called a digital (k, \)-homotopy between
f and g, and we say that f and g are digitally (x, A\)-homotopic in Y, denoted by
f = 9
(i) For all z € X, F(x,0) = f(x) and F(xz,m) = g(x).
(ii) For all z € X, F, : [0,m] — Y defined by F,(t) = F(z,t) is (2,)-
continuous.
(iii) For all ¢ € [0,m]z, F; : X — Y defined by Fi(z) = F(z,t) is (K, )-

continuous.

A digital image (X, k) is k-contractible [1] if the identity map on X is (k,k)-
homotopic to a constant map on X.

A (k, A)-continuous map f : X — Y is (k, A\)-homotopy equivalence [3] if there
exists a (A, k)-continuous map g : ¥ — X such that

9o f 2w Ix and fogo~anyy ly

where 1x and 1y are the identity maps on X and Y, respectively. Moreover, we
say that X and Y have the same (k, A)-homotopy type.

For the cartesian product of two digital images X7 and X5, the adjacency relation
[6] is defined as follows: Two points x;,y; € (X, ki), (zo,y0) and (z1,y1) are
k.«(k1, ke)-adjacent in X7 x X5 if and only if one of the following is satisfied:

e 7o =1 and yg = yi1; or

e o = x1 and yo and y; are ki-adjacent; or

e o and x; are Kg-adjacent and yg = y;; or

e o and x; are Kg-adjacent and yg and y; are xi-adjacent.

Definition 2.2. [3] A (k, A)-continuous surjection f: X — Y is (k, A)-shy if

o for each y € Y, f~1({y}) is k-connected, and

e for each yo,y1 € Y, if yo and y; are A-adjacent, then f~1({yo,v1}) is K-
connected.

Theorem 2.3. [5] For a continuous surjection f(X,k) — (Y, A), if [ is an iso-
morphism, then f is shy. On the other hand, if f is shy and injective, then f is an
isomorphism.
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The wedge of two digital images (X, k) and (Y, ), denoted by X VY, is the union
of the digital images (X', ) and (Y, 1), where [4]

e X and Y’ have a single point p;

elfz e X and Yy € Y’ are p-adjacent, then either x = p or y = p;

e (X', ) and (X, k) are isomorphic; and

e (Y', 1) and (Y, \) are isomorphic.
Theorem 2.4. [5] Two continuous surjections

fi(A0) = (Cy) and g:(B,5)— (D,0)

are shy maps if and only if f x g : (A X B, ki(,8)) = (C x D, k.(v,0)) is a shy
map.

Sphere-like digital images is defined as follows [4]:

Sn = [_la 1]£+1\{0n+1} C Zn+17

where 0,, is the origin point of Z™. For n = 0 and n = 1, the sphere-like digital
images are shown in Figure 4.
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FicURE 4. Digital 0—sphere Sy and digital 1-sphere S;

3. THE DIGITAL SMASH PRODUCT

In this section, we define the digital smash product which has some important
relations with a digital homotopy theory.

Definition 3.1. Let (X, k) and (Y, \) be two digital images. The digital smash
product X A'Y is defined to be the quotient digital image (X x Y)/(X VYY) with
the adjacency relation k. (k,A), where X VY is regarded as a subset of X x Y.

Before giving some properties of the digital smash product, we prove some the-
orems which will be used later.

Theorem 3.2. Let X, and Y, be digital images for each element a of an index set
A. For each a € A, if fo ~(1,n) ga : Xa = Yo then

H fa =(kn,Am) H Ya,

acA a€EA
where n is the cardinality of the set A.
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Proof. Let F, : X, x [0,m]z — Y, be a digital (x, A\)-homotopy between f, and g,,
where [0,m]z is a digital interval. Then

F: (H X,) x [0,m]z — H Y,
a€A acA
defined by
F((2a), 1) = (Fa(@a, 1))
is a digital continuous function, where ¢ is an element of [0, m]z since the functions

F, are digital continuous for each element a € A. Therefore F' is a digital (x™, A™)-
homotopy between [],. 4 fao and [[,c 4 9a- O

Theorem 3.3. If each f, : X, — Y, is a digital (k, \)-homotopy equivalence for
all a € A, then [[,c 4 fa is a digital (", \")-homotopy equivalence, where n is the
cardinality of the set A.

Proof. Let g, : Y, — X, be a (A, k)-homotopy inverse to f,, for each a € A. Then
we obtain the following relations:

(H ga)(H fa) = H(ga X fa) Z(An, k) H(IXQ) = 1Ha€AXa7

ac€A acA acA acA
(H fa)(H 9a) = H (fa X ga) 2(un An) H (ly,) = 11_[aeA Yo
a€A a€A acA a€A
So we conclude that ], 4 fa is a digital (x", \")-homotopy equivalence. O

Theorem 3.4. Let (X, k), (Y, \) and (Z,0) be digital images. If p: (X,k) = (Y, A)
is a (k, \)—shy map and (Z,0) is a o-connected digital image, then

px1:(X xZ ki(kx0)) = (Y X Z k(A X))
is a (k X 0, A X 0)-shy map, where 1z : (Z,0) = (Z,0) is an identity function.

Proof. Since (Z,0) is a o-connected digital image, then for y € Y and z € Z, we

have
p (), 15" (2))
p (), 2).

Thus, for each y € Y and z € Z, (p x 1z)"(y, 2) is k-connected by the definition
of the adjacency of the cartesian product of digital images. Moreover, the map 1z
preserves the connectivity, that is, for every zg,z; € Z such that zy and z; are
o-adjacent, 17 ({z0,21}) = {20, 21} is o-connected. It is easy to see that

(p % 12) 7 ({yo, w1} {20, 211) = (07 ({wo. 11 }), 17" ({20, 21 })
= (" ({yo, y1}), ({20, 21})).

Hence for each yo, y1 € ¥ and 20,21 € Z, (px 12)" ({t1o, 91}, {70, 21}) is & ke (5, 0)-
connected using the definition of the adjacency of the Cartesian product of digital
images. O

(px1z)"'(y,2)

=
=

Theorem 3.5. Let A and B be digital subsets of (X, k) and (Y, \), respectively. If
[9:(X,A) = (Y, B) are (k, A)-continuous functions such that f ~. ) g, then the
induced maps f,g: (X/A, k) — (Y/B,\) are digitally (1, \)-homotopic.
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Proof. Let F': (X xI, AxI) — (Y, B) be a digital (x, A\)-homotopy between f and g
where I = [0, m]z. It is clear that F' induces a digital function F' : (X/A)xI — Y/B
such that the following square diagram is commutative, where p and g are shy maps:

XxI—2 vy

(X/4) x 1 ——Y/B.

Since g o F' is digitally continuous, p x 1 is a shy map and F(px1)=gqoF, }? is a
digital continuous map. Hence F' is a digital (k, A)-homotopy map between f and
gJ. |

We are ready to present some properties of the digital smash product. The

following theorem gives a relation between the digital smash product and the digital
homotopy.

Theorem 3.6. Given digital images (X, k), (Y,\), (4,0), (B,a) and two digital
functions f : X — A and g : Y — B, there ezists a function fAg: X \NY - AANB
with the following properties:

(i) If h: A— C, k: B— D are digital functions, then

(hAEk)o(fAg)=(hof)A(kog).
(id) If f ~(x,0) f:x—>A and g ~(x.q) g Y — B, then

FANG 2k (5,0 b (0,0) frg.
Proof. The digital function f x g : X x Y — A x B has the property that
(fxg)(XVY)C AxB.

Hence f x g induces a digital function f Ag: X AY — A A B and property (i)
is obvious. As for (ii), the digital homotopy F' between f x g and f/ X g/ can be
constructed as follows: We know that

f X(k,0) f and 9= 9 -
By Theorem 3.2, we have

X9 2 (0N ke (000)) [ X G-

F is a digital homotopy of functions of pairs from (X xY, X VY') to (Ax B, AV B).

Consequently a digital homotopy between f A g and f Ag is induced by Theorem
3.5. |

Theorem 3.7. If f and g are digital homotopy equivalences, then f A g is a digital
homotopy equivalence.

Proof. Let f:(X,k) — (Y, ) be a (k, \)-homotopy equivalence. Then there exists
a (\, k)-continuous function f : (Y, A) = (X, ) such that

fof =ou 1y and f o f = Lx.
Moreover, let g : (4,0) — (B, a) be a (o, a)-homotopy equivalence. Then there is
a (o, 0)-continuous function ¢ : (B,a) — (A, o) such that

g ogl ~(a,a) 1p and g/ °g ~(,5) 14.
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By Theorem 3.6, there exist digital functions
fAG:XANA=YAB and f Ag :YAB—=XAA

such that
(fAg)o(f Ng)=1lyaB,
(fof)A(gog) =1lyns,
and
(f Ng)o(fAng)=1xna,
(f o f)A(g 0g) =1xna.
So f A g is a digital homotopy equivalence. O

The following theorem shows that the digital smash product is associative.

Theorem 3.8. Let (X, k), (Y,\) and (Z,0) be digital images. (X NY) N Z is
digitally isomorphic to X AN (Y N Z).

Proof. Consider the following diagram:

XxYxZ—2 s XxYxZ

(X/\Y)/\ZT>X/\(Y/\Z)

where p represents for the digital shy maps of the foom X xY — X AY. By
Theorem 3.4, p x 1 and 1 x p are digital shy maps. 1: X xY xZ - X xY x Z
induces functions

f(XAYINZ—-XAYANZ) and g: XANYANZ)—= (XAY)ANZ,

These functions are clearly injections. By Theorem 2.3, f is a digital isomorphism.
O

The next theorem gives the distributivity property for the digital smash product.

Theorem 3.9. Let (X, k), (Y,\) and (Z,0) be digital images. (X VY )N Z is
digitally isomorphic to (X NZ)V (Y N Z).

Proof. Suppose that p represents for the digital shy maps of the form X xY — XAY
and ¢ stands for the digital shy maps of the form X x Y — X VY. We may obtain
the following diagram:

(X xY)x Z-"5 (X xZ)x (Y x Z)

(X xY)ANZ (XAZ)x (Y AZ)

(XVY)AZ—— (X NZ)V (Y A 2).
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From Theorem 2.4, p x p is a digital shy map and by Theorem 3.4, ¢ A 1 is also a
digital shy map. The function m : (X xY) x Z — (X x Z) x (Y x Z) induces a
digital function

i (XANZ)x(YNZ)=» (X x2Z)x (Y xZ).

Obviously f is a one-to-one function. By Theorem 2.3, f is a digital isomorphism.
|

Theorem 3.10. Let (X, k) and (Y, \) be digital images. X \Y is digitally isomor-
phic to Y AN X.

Proof. If we suppose that g stands for the digital shy maps Y x X — Y A X and p
represents for the digital shy maps of the form X xY — X AY | we get the following
diagram:

XxY 257V xX

X/\Y—f>Y/\X.

The switching map u : X XY — Y x X induces a digital shy map f : XAY - YAX.
Additionally, f is a one-to-one. Hence, f is a digital isomorphism from Theorem
2.3. O

Definition 3.11. The digital suspension of a digital image X, denoted by sX, is
defined to be X A S;.

Example 1. Choose a digital image X = Sy. Then we get the following digital
images in Figure 5.

e i
’ e

i

FIGURE 5. S; x Sp and 51 A Sy

Theorem 3.12. Let xg be the base point of a digital image X. Then sX is digitally
isomorphic to the quotient digital image

(X X [a,b]z)/(X x {a} U{zo} X [a,b] U X x {b}),

where the cardinality of [a, bz is equal to 8.



THE DIGITAL SMASH PRODUCT 467

Proof. The function
[aa b]Z i> Sl

is a digital shy map defined by 6(¢;) = ¢; mod 8, where ¢; € S1 and i € {0,1,...,7}.
Hence if p: X x S1 — X A 57 is a digital shy map, then the digital function

X x[a,b)z 28 X xS 25 X A S,
is also a digital shy map, and its effect is to identify together points of
X x {a}U{zo} x [a,b]z U X x {b}.
The digital composite function p o (1 x 6) induces a digital isomorphism
(X x [a,b]z)/(X x {a} U{zo} X [a,b]z UX x {b}) = X A S1 = sX.
O

Definition 3.13. The digital cone of a digital image X, denoted by cX, is defined
to be X A I, where I = [0, 1]z.

Example 2. Take a digital image X = Sy. Then we have the following digital
images in Figure 6.

s

FIGURE 6. Sy x I and Sog AT

Theorem 3.14. For any digital image (X, k), the digital cone cX is a contractible
digital image.

Proof. Since I = [0,1]z is digitally contractible to the point {0},
cX=XNI 2(2’2) XA {0}
is obviously a single point. a

Corollary 1. Form € N, S,,, AI is equal to S,, NSy, where I = [0, 1]z is the digital
interval and Sy is a digital O-sphere.

Proof. Since Sy and I consist of two points, we get the required result. |

4. THE OPEN PROBLEM

For each m,n > 0, can we prove that digital (m + n)-sphere S,, 4, is isomorphic
to S, A S, 7
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5. CONCLUSION AND FUTURE WORKS

This paper introduces some notions such as the smash product, the suspension,
and the cone for digital images. Since they are significant topics related to homo-
topy, homology, and cohomology groups in algebraic topology, we believe that the
results in the paper can be useful for future studies in digital topology.
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