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NEW GENERAL DECAY RESULT FOR A FOURTH-ORDER
MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY

WENJUN LIU*, ZHIJING CHEN AND ZHIYU TU

ABSTRACT. In this paper, we consider the fourth-order Moore-Gibson-
Thompson equation with memory recently introduced by (Milan J. Math.
2017, 85: 215-234) that proposed the fourth-order model. We discuss the
well-posedness of the solution by using Faedo-Galerkin method. On the other
hand, for a class of relaxation functions satisfying g¢'(t) < —¢&(¢)M(g(t)) for
M to be increasing and convex function near the origin and £(¢) to be a non-
increasing function, we establish the explicit and general energy decay result,
from which we can improve the earlier related results.

1. INTRODUCTION

The Moore-Gibson-Thompson (MGT) equation is one of the equations of nonlin-
ear acoustics describing acoustic wave propagation in gases and liquids [13, 15, 30)
and arising from modeling high frequency ultrasound waves [9, 18] accounting for
viscosity and heat conductivity as well as effect of the radiation of heat on the
propagation of sound. This research field is highly active due to a wide range of
applications such as the medical and industrial use of high intensity ultrasound in
lithotripsy, thermotherapy, ultraound cleaning, etc. The classical nonlinear acous-
tics models include the Kuznetson’s equation, the Westervelt equation and the
Kokhlov-Zabolotskaya-Kuznetsov equation.

In order to gain a better understanding of the nonlinear MGT equation, we shall
begin with the linearized model. In [15], Kaltenbacher, Lasiecka and Marchand
investigated the following linearized MGT equation
(1.1) Tuss + o + AU+ bAuy = 0.

For equation (1.1), they disclosed a critical parameter v = « — CzTT and showed
that when v > 0, namely in the subcritical case, the problem is well-posed and
its solution is exponentially stable; while v = 0, the energy is conserved. Since its
appearance, an increasing interest has been developed to study the MGT equation,
see [4, 5, 8, 10, 14]. Caixeta, Lasiecka and Cavalcanti [4] considered the following
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nonlinear equation
(1.2) Tl + g + AU+ DAy = f(u, ug, g

They proved that the underlying PDE generates a well-posed dynamical system
which admits a global and finite dimensional attractor. They also overcomed the
difficulty of lacking the Lyapunov function and the lack of compactness of the
trajectory.

Now, we concentrate on the stabilization of MGT equation with memory which
has received a considerable attention recently. For instance, Lasiecka and Wang [17]
studied the following equation:

t
(1.3) Tug + qug + bAu + A Au — / g(t — s)Aw(s)ds =0,
0

where o — CQTT > 0 and the form of w classifies the memory into three types. By

imposing the assumption on the relaxation function g, for a positive constant cg, as

(1.4) g'(t) < —cog(t),

they discussed the effect of memory described by three types on decay rates of the
2

energy when a — 5% > 0. Moreover, in the critical case a — 5~ = 0, they proved

an exponential rate of decay for the solution of (1.3) under “the right mixture” of
memory. Lasiecka and Wang [18] showed the general decay result of the equation
(1.3) when w = u, and established their result under weaker condition on g. In [9],
Filippo et al. investigated the critical case of equation (1.3) (that is ab — ¢*1 = 0)
for w = u and g satisfies (1.4), and obtained an exponential decay result if and only

if A is a bounded operator. When f(f is replaced by fooo, (1.3) turns to
(1.5) Ty + g + bAuy +  Au — / g(s)Aw(t — s)ds = 0.
0

Alves et al. [1] investigated the uniform stability of equation (1.5) encompassing
three different types of memory in a history space set by the linear semigroup theory.
Moreover, we refer the reader to [3, 6, 7, 12, 24, 25, 26, 28] for other works of the
equation(s) with memory.

More recently, Filippo and Vittorino [11] considered the fourth-order MGT equa-
tion

(1.6) Upter + QU + Buge + yAu + 0 Auy + pAu = 0.

They investigated the stability properties of the related solution semigroup. And,
according to the values of certain stability numbers depending on the strictly posi-
tive parameters a, 3, v, 9, o, they established the necessary and sufficient condition
for exponential stability. For other related results on the higher-order equations,
please see [20, 27, 34, 35, 36, 37] and the references therein.

Motivated by the above results, we intend to study the following abstract version
of the fourth-order Moore-Gibson-Thompson (MGT) equation with a memory term

t
(17) Ugstr + Ut + ,Butt + ’y.Autt + 5.Aut + Q.Au — / g(t — S)AU(S)dS = 0,
0

where «, 3, v, J, o are strictly positive constants, A is a strictly positive self-adjoint
linear operator defined in a real Hilbert space H where the (dense) embedding
D(A) C H need not to be compact. And we consider the following initial conditions

(1.8) u(0) = uyg, ut(0) = uq, gt (0) = ua, gt (0) = us.
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A natural question that arised in dealing with the general decay of fourth-order
MGT equation with memory:

e Can we get a general decay result for a class of relaxation functions satisfying
g'(t) < =£(t)M(g(t)) for M to be increasing and convex function near the
origin and £(¢) to be a nonincreasing function?

Mustafa answered this question for viscoelastic wave equations in [31, 32]. Mes-
saoudi and Hassan [29] considered the similar question for memory-type Timoshenko
system in the cases of equal and non-equal speeds of wave propagation. Moreover,
they extended the range of polynomial decay rate optimality from p € [1, %) to
p € [1,2) when g satisfies ¢'(t) < —&(t)gP(t). We refer to [19] for the non-equal
wave speeds case. And, Liu et al. [22, 23] also concerned with the similar question
for third-order MGT equations with memory term.

The aim of this paper is to establish the well-posedness and answer the above
mention question for fourth-order MGT equation with memory (1.7). We first use
the Faedo-Galerkin method to prove the well-posedness result. We then use the idea
developed by Mustafa in [31, 32|, taking into consideration the nature of fourth-
order MGT equation, to prove new general decay results for the case v — g >0
and 3 — %% > 0, based on the perturbed energy method and on some properties
of convex functions. Our result substantially improves and generalizes the earlier
related results in previous literature.

The rest of our paper is organized as follows. In Section 2, we give some assump-
tions and state our main results. In Section 3, we give the proof of well-posedness.
In Section 4, we state and prove some technical lemmas that are relevant in the
entire work. In Section 5, we prove the general decay result.

2. PRELIMINARIES AND MAIN RESULTS

In this section, we consider the following assumptions and state our main results.
We use ¢ > 0 to denote a positive constant which does not depend on the initial
data.

First, we consider the following assumptions as in [11] for (A1), in [18] for (A3),
(A5) and in [31] for (A2), (A4):

(Al)y—2 >0and 8 — 22 > 0.

(A2) g : RT = Rt is a non-increasing differentiable function such that

2 oo
0<g(0)<%(a7—5), g—/ g(s)ds =1>0.
0

(A3) ¢"(t) > 0 almost everywhere.

(A4) There exists a non-increasing differentiable function ¢ : RT — RT and a
C! function M : [0,00) — [0,00) which is either linear or strictly increasing and
strictly convex C? function on (0,7], r < g(0), with M(0) = M'(0) = 0, such that

(2.1) g'(t) < =§(t)M(g(t)), Vt=0.
2
(A5) There exists A\g > 0 such that A satisfies ||ul|? < g HA%UH for all w € H.
Remark 1. ([31, Remark 2.8]) (1) From assumption (A2), we deduce that

-1
g(t) =0 as t— 400 and g(t) < QT’ vt >0.
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Furthermore, from the assumption (A4), we obtain that there exists ¢ty > 0 large
enough such that
g(to) =r and g(t) <, YVt >tp.
The non-increasing property of g(t) and £(¢) gives
0<glt) <g(t)<g(0)  and  0<E(to) <EW) <),  Vie (0t
A combination of these with the continuity of H, for two constants a,d > 0, yields
a<EHM(gt) <d,  Vteoko)
Consequently, for any ¢ € [0, to], we get

g'(t) < —E(t)M(g(t)) < —a = —mg(o) < —@g(t)
and, hence,
(2. o<y, viepun]

(2) If M is a strictly increasing and strictly convex C? function on (0,r], with
M(0) = M’(0) = 0, then it has an extension M, which is strictly increasing and
strictly convex C? function on (0, 00). For example, if we set M (r) = A, M'(r) = B,
M"(r) = C, we can define M, for any t > r, by

M:§t2+(B—Cr)t+<A+§r2—Br>.

Then, inspired by the notations in [11], we define the Hilbert spaces
H,:=D(A?), reR.

In order to simplify the notation, we denote the usual space Hy by H. The phase
space of our problem is

H:D(.A%) XD(A%) XD(A%) x H.
Moreover, we will denote the inner product of H by (-,-) and its norm by || - ||.
After that, we introduce the following energy functional
E(t)
0= G(t)

2
) bt 22
o

-2 g

t
42 [ gtt—s) (Abu(t) - Abuls), Abun + adbur) ds+ 52 (g0 Abu) (1)
0

o oo A1) 0 ) [ (5 %) et + 58 (5 ) ]

1 ap 120
== Huttt + ouy + 71”” + -
2 ) o

+2 e A% + ozA%utH2 + (7 - 6) | A%
ap @

2

)
where G(t) = fotg(s)ds and for any v € L (RT; L*(Q)),

loc

(g o)1) ;:/Q/O gt — 8) (u(t) — v(s))? dsda.
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As in [31], we set, for any 0 < v < 1,

_ [T ) s an =vg(t) — ¢
Com [ s and (D) = va(t) ~ (0.

The following lemmas play an important role in the proof of our main results.

Lemma 2.1. ([31]) Assume that condition (A2) holds. Then for anyu € L?, . (RT;
L?(Q)), we have

/Q (/Otg(t —s) (A%u(s) - A%u(t)> d8>2 de < C, (h o A%u) (t), V>0,

Lemma 2.2. (Jensen’s inequality) Let P: [b,c] — R be a convex function. Assume
that functions f : Q — [b,c] and h : Q@ — R are integrable such that h(x) > 0, for
any x € Q and [, h(z)dx =k > 0. Then

1 1
P (k [ f(a:)h(a:)dx) < E/QP(f(x))h(x)dx.

Lemma 2.3. ([2])(The generalized Young inequality) If f is a convexr function
defined on a real vector space X and ite convexr conjugate is denoted by f*, then

(2.3) AB < f(4) + f(B),
where
(2.4) P =s) e = 1) )]

We are now in a position to state the well-posedness and the general decay result
for problem (1.7)-(1.8).

Theorem 2.4. (Well-posedness) Assume that (A1) — (A5) hold. Then, for given
(ug,u1,uz,uz) € H and T > 0, there exists a unique weak solution u of problem
(1.7)-(1.8) such that

weC ([O,T];D (A%)) N Ct([0,T): H).

Theorem 2.5. (General decay) Let (ug,uy,us,us) € H. Assume that (Al)-(A5)
hold. Then there exist positive constants k1 and ko such that, along the solution of
problem (1.7)-(1.8), the energy functional satisfies

(2.5) E(t) < koMt (k:1 /tl( )f(s)ds) , Vit>g ),

where M (t) = ftr ﬁ,(s)ds and My is strictly decreasing and convex on (0,r], with
}iH(l)Ml(ﬁ) = +o0.
—y

Remark 2. Assume that M(s) = s?, 1 < p < 2 in (A4), then by simple cal-
culations, we see that the decay rate of E(t) is given by, for constants k, k and

(2.6) B < o <_E/o 5(8)_‘?17 if p=1,

k<1—|— tﬁ(s)ds) ) if l<p<2.
0
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3. PROOF OF THE WELL-POSEDNESS

In this section, we will prove the global existence and uniqueness of the solution
of problem (1.7)-(1.8). Firstly, we give the following lemmas.

Lemma 3.1. If0 < ¢g(0) < 2”(0[7 d), then there is o > 0 such that « (’y — g) —

39(0)
Sa—0)s > 0.

Proof. Since g(0) < 2%2(ay — §), all we need is to show

20 1) 2a0
6(a0)<’ya>%6(a'y§) as o —0,

which is trivially true. O

Lemma 3.2. Assume that (A1)-(A5) hold. Then, the energy functional E(t) sat-
isfies, for allt > 0,

0= G@)
0

(=) Wi+ (1= 2) i o o ate) 0
rag(0) [ Ak + (5 - 52) bl + 5 (5 - %) ]
<E(1)

1 29 2
5 [Huttt + auyr + %utH + a < > HA2Utt + Oé.AQUt + 7./42’&”

S% U Ut + QU + %Ut 2 + 2 g (QG> ‘)Azutt+aA2ut+ fA2uH2
@ [
(=D (- 2 F e e (oo

+2(();g (g o _Azu) (t) + ozg(t) HA%UHQ + (5 - *) g |2

£22 (5 22) flull? + 26 00) [ Abwee + 0 ]

Proof. From the definition of E( ), we have
E(t)

1 2 9 G(t 2
[l Sl (42 b ot S

K (7_04) b (3 5) 5 e

t
42 [ glt = s) (Abu(t) - Abuls), Abun + adbu) ds + 52 (g0 Abu) (1)
0

~a (g 0 Ab) () + ag) [ Ao+ (5= 5F) hual? + 5 (5 - 52) hul?).

+2 e HA%utt +adzy,
%)

Then, we estimate the sixth term of the above equality

¢
2 / g(t—s) <A%u(t) — A%u(s),A%utt + aA%ut) ds
0

< o0 [F it - At + 4t ot
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5 2
_2e (g o A%u) () + = G(t) HA%utt +adby,
6 aQ
A combination of the above results, we complete the proof of lemma. O

Now, we prove the well-posedness result of problem (1.7)-(1.8).

Proof of Theorem 2.1. The proof is given by Faedo-Galerkin method and combines
arguments from [16, 39, 38]. We present only the main steps.

Step 1. Approximate problem

We construct approximations of the solution u by the Faedo-Galerkin method as
follows. For every m > 1, let W,,, = span{ws, -+ ,wy,} be a Hilbertian basis of the
space H} (). We choose four sequences (uf'), (uf*), (u3') and (u§') in W, such

that uf® — ug strongly in D (.A%), ul™ — wy strongly in D (A%), udt — ug strongly
in D (.A%) and u5* — us3 strongly in H. We define now the approximations:

m

(3.1) um™(t) = a (tw;(z),

j=1
where u™(t) are solutions to the finite dimensional Cauchy problem (written in
normal form):

/uﬁtt(t)wjdera/ uﬂt(t)wjdx+[3/ ugy (t)w,dx
Q Q Q
+ / Azul (H) A2 w,ds + 6 / AU () A2 w;da

Q Q

t

(3.2) + Q/ A%um(t)A%wjdx —/ g(t — s)/ A%um(t)A%wjdxds =0
Q 0 Q

with initial conditions

(3-3) (u™(0), u"(0), uy (0), uiy (0)) = (ug', uf", ug', uz") .

According to the standard theory of ordinary differential equation, the finite di-
mensional problem (3.2)-(3.3) has a local solution (w™(t),uj"(£), uy; (t), uiy(t)) in
some interval [0,7,,) with 0 < T,,, < T, for every m € N. Next, we present some

estimates that allow us to extend the local solutions to the interval [0, 7], for any
given T > 0.

Step 2. Weak solutions
. Multiplying equation (3.2) by afy, + aaly, + faj; and integrating over €2, we
ave

d m @Q m 2
ZE" (1) +a (8- 22) ) -

ag'(t)

petarf
g b b 45 b

(o-8)- 2

+ /t g (t—s) (.A%um(t) - Aium(s),A%uZ}> ds + 22 (g’ oA%um) (t),

0

2
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where
E™(t)

o G(t
il (4

> HA ?Z+oz.A uy® ;’A%um’r

g0t At +aatur [+ (7— el (- 2) 5 e

+2 /t g(t—s) (A%um(t) - A%um(s),A%ug’ + aA%uf’) ds
0

+% (gOA%um) (t) —a (g' O.Aéum) (t) + ag(t) HA%umH2
(3.9
(’B_7> | tt||2+7<ﬁ—7) [ }

From assumptions (A1) — (A3) and Lemma 3.1, we get, for € € (0, a),

/ ( ),A%ug) ds

sy s [ 0=
2 g D
and so
(8)- ] st
+ /Ot g/t —s) (AFum () — Abum(s), Ay ) ds + 52 (g 0 ABu™) (1)
<= [oo-3) - Bl - 52 oo
*6(38) _;’)g)) HA%u?Z T2 (g o Atu )()
oo 8- o e
a [2(29E Z)g 2a9] HA
(35) <0.

Therefore, we have

th 1)+ (5~ 2) ug - 22O | adur |

(3.6) +2—g HA ufy + LAk umH +3 297 oAum) ) <o

Integrating (3.6) from 0 to ¢t < T),, one has

B+ [ o (9~ 52) i - 257 [t
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+Tg ) 4k + S atur |+ S (570 Abum) ()]s
(3.7) <E™(0).

Now, since the sequences (u§)men, (U7 )men, (U5 )men and (uf)men converge
and using (A1) — (A43), we can find a positive constant C' independent of m such
that

(3.8) E™(t) < C.

Therefore, using the fact o — fo s)ds > 1, the last estimate (3.8) together with
(3.4) give us, for all m € N, T,,, =T, we deduce that

(Wmen is bounded in L* (0,T:D (A}))

(W )men is bounded in L™ (o T;D(A%))

(W) men is bounded in L (o T;D(A%))
(3.9) (W) men is bounded in  L>(0,T;H).

Consequently, we may conclude that

upy — uy  weak™ in L™ (O,T;D A%>)

ugyy — upr  weak™ in L (0,T; H).
From (3.9), we get that (u™),en is bounded in L>® (O, T;D (A%)). Then, (u™)men
is bounded in L? (0,7 D (A%) ). Since (uf')men is bounded in L= (0,7;D (A%)),
(u™)men is bounded in L? (0, T,D (A%)). Consequently, (uf})men is bounded in

L? (O,T;D (A%)) and (ul},)men is bounded in L? (0,T; H). Moreover, (u™)en

is bounded in H3(0,T; H(Q)).
Since the embedding H3(0,T; H*(Q2)) — L*(0,T; H(S)) is compact, using Aubin-
Lions theorem [21], we can extract a subsequence (u™)nen of (u™)men such that

u" —u  strongly in  L*(0,T; H()).
Therefore,
u™ = u strongly and ae. on (0,T) x .
The proof now can be completed arguing as in [21].

Step 3. Uniqueness
It is sufficient to show that the only weak solution of (1.7)-(1.8) with ug = u; =
Uy = ug = 0 is

(3.10) u=0.
According to the energy estimate (3.8) and noting that E(u(0)) = 0, we obtain
E(u(t)) =0, vt € [0,T].
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So, we have

2 2
e + s + S| = [Abuas + 0B + %A%UH

5
1 2 1 2 1 2 2
- HAfutt - HAfut - HAqu = Jlugt]® = 0, vt € [0, 7).
And this implies (3.10). Thus, we conclude that problem (1.7)-(1.8) has at most
one solution. g

4. TECHNICAL LEMMAS

In this section, we state and prove some lemmas needed to establish our general
decay result.

Lemma 4.1. Let (u, us, s, ugee) e the solution of (1.7). Assume that (Al)-(A3)
hold. Then, we have

0= (0= ) = fo (00 - g b

%UHQ a [2(29_(2)@ 204@} HA e
]

- %g HAZutt + 7A2UH - — (g”OAzu) (t) + % (g' OA%U)

<0.

Proof. Multiplying (1.7) by s + aug + SFu; and integrating over © yield

1= o) o1 2) - ] o
10

+ B - %g HAZU“‘FiAQUH
+ /t g (t—s) (.A%u(t) - A%u(s),A%utt> ds
0
(4.1) — % (g” o A%u) (t) + % (g’ o A%u) (t).

We proceed to show that, for a constant ¢ € (0, ),

t
/ gt —s) (A%u(t)—A%u(s),A%utt ds
0

an e O

Then, combining (4.1) and (4.2), we can obtain

0= (0= ) = fo (0-5) - g0t

R Frer i

b S (- ).

According to (A1)-(A3) and Lemma 3.1, we complete the proof of lemma. [
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Lemma 4.2. Assume that (A1)-(A5) hold. Then, the functional Fi(t) defined by
Fi(t) = / (Utt + aus + %U) (Uttt + auy + %ut) dx
Q
satisfies the estimate

1) 1 1 « 1 2 20[/\
Fi(t) < - % H-Aiutt +aAzuy + TQAEUH > (ﬁ - *) [[wee||?

2

+ 2% ('Y - Z)z H»A%utt ’ + ’ Uy + Uy + %Ut
(4.3) + M HA%uHQ + %acy (noAtu) ).

Proof. Taking the derivative of F(t) with respect to ¢, exploiting (1.7) and inte-
grating by parts, we get

Fl(t) :/Q {— (5 — %) utt} (utt + oy + ?u> dz
- é HA%utt + CYA%Ut + %A%UHQ + ’ Ut + QU + %Ut
« ) 1)
— / (’}/ — 5) A%Utt (-A%Utt + OZA%Ut + %Aéu) dx
Q o) 0

t
# [ ([ ot = 9autsiis) (Abun -+ adiu+ S2abu) de
2 \Jo 0

Using Young’s inequality, Lemma 2.1, (A5) and the fact v — % >0and -2 >0,

2

we have
/Q [_ (5 - %) utt] (utt + aug + 7U> dx
< (9= ) ol o ot S
f?() (9= ) 4 g [ A b St
and

¢
/ (/ g(t — s)Aéu(s)ds> (.A%utt +aAzu, + %A%u> dx
2 \Jo 0

t
+ / ( g(t — S)Aéu(t)ds) (A%utt +adzu, + %A%u) dz
o \Jo g

<=a, (hoA%u) (&) + % HA%utt +adbu, + %A%UHQ + M HA%UH2 .

Also, we have

/ (’y - ) AZuy <A2utt +aAzu, + —A2u>
Q

<2 (o-8) ]

Then, combining the above mequahtles, we complete the proof of (4.3). g

2
+ — HAZU“ + O[AZUf + 7./42’U,H .
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Lemma 4.3. Assume that (A1)-(A5) hold. Then the functional Fy(t) defined by
Fy(t)

ap

- /Q (um + oy + %ut) /Otg(t —s) [(utt + auy + %u) (t) — ?u(s)} dsdx

satisfies the estimate

F5(t)
G(t « 2 —D2a?  4Xpg3%(0)a? 2
<- # ‘ Ut + Uy + %Ut + [(9 253 + Oé((t)) ] HA%W
By —1)? 5?2 N ) L2
[ ()t 7] bt

[a?0%(0 —1)*Noer " (0—1)?
252 261

B 2 J
N
N '(5104:5922)\0 N 4%1 14 % N 2(0;‘2;2;;0) 5 2225)25);0] (hoA2u) (1)
(4.4) + _2 G ;%9)2 + 42*((;))) el

where 0 < g1 < 1.

Proof. By differentiating F5(t) with respect to ¢, using (1.7) and integrating by
parts, we obtain

F5(t)
t o
:/ {Butt + yAuy + 0 Aus + 0 Au — / g(t — s)Au(s)ds — 5%4
Q 0

X /Otg(t —5) [(utt + auy + %u) (t) — %u(s)] dsdzx

d 0
!
- 9(0)/ (uttt + auy + Tgut) (uee + ouy) da
Q
t
_ ao 1y ap
/Q (um + auy + 5 ut)/o g'(t—s) [(utt + auy + 5 u) (t)
ap 2

t g
——u(s)} dsdx — / g(s)ds ‘ Uggs + QU + — Uy
5 0 g

0 0
:/ (ﬁ — %) Ut + — (Autt + OéAUt + %AU) + ('Y - ) -Autt
Q 1) @ ) @

|
- tg(S)dsAu(t) tg(t —5) [(utt + auy + %u) (t) — %u(s)} dsdz
[ ersavco] | 7 0=

ap |2
Ugpt + QU + —— Ut

o
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4]

,/g)(
w ([ atsras) [ [ ate =) (Aute) — Auto) st + ey
/(/ (t—s) A5U(t)—«4éu(8))ds>2dx

a
- 9(0)/ (um + auy + Tgut) (uee + cuy) da.
Q

« t a @
Uper + Uy + Tgut) /0 g (t—s) [(utt + oy + —Qu) (t) — ?Qu(s)] dsdx

Now, we estimate the terms in the right-hand side of the above identity.
Using Young’s inequality, we obtain, for 0 < &1 < 1,

/Q [(ﬂ - %) Ut + — (Autt + aAus + *-AU) (7 - ) Ay

- /otg(s)ds_Au(t)} / g(t—s) Kutt + aur + %u) - %u(s)] dsdz

< [)\0( 5 l ( ) +2(p—-1) }E1HA2Utt+Oz.A2Ut+A uH2
+2 (6; #) luee | + {a e o (02_511)2
(2 e 5 2 ]

+

YA Tt

(0 —1)%a? H 1 ‘2 e1ao®No 1 3
~ 7 2 -_ = - R 1 v 2
+ 52, A ut‘ + 15° —|—4 - +1)C (hO.A u) (t)

and

</ot 9(s) ds) / / gt — ) (Au(t) — Au(s)) ds(uss + au)da
/ / (t—s) AQU( ) — Aéu(S)) ds(AZuy + aAZu,)de

2

gicy (hoA%u) (t) + . HAzutt +adry,
SiC’V (hoA%u) )+ (o—=1)e1 HA2utt+aA2ut+fA2u‘2
2

and

«
—9(0) / (Uttt + augy + TQUO (uge + cuy) dx
Q
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G(t o 2 ¢%(0
S% ‘ Uggr + QU + TQU:& + gGEt)) llwee + aUt||2

G(t) ap |12 2¢%(0) 2 2X00%(0)a? | 1 2
<= == el | W V|
=7 [ + e + 5 “tH Gw el e HA “tH

Exploiting Young’s inequality and (A5), we get
t
— / (um + gy + %ut) / g (t—s) [(utt + oy + %u> (t) — %u(s)] dsdx
Q 1) 0 ) 1)

ap ! /
S / (um + oy + TUt) / g (t — s) (uge + auy) (t)dsdx
Q

0
t

_ % (um + auy + %Ut) / g (t — s)(u(t) — u(s))dsdz
2 0

ap
Ugpt + QU + —— Ut

]

IN

2X002g2(0) ‘
G(t)

2020%Ng , o 1

A combination of all the above estimates gives the desired result. O

As in [11], we introduce the following auxiliary functional
2
Fg(t) = / (uttt + autt) Utdl‘ + g HA%UH .
Q

Lemma 4.4. Assume that (A1)-(A5) hold. Then the functional F5(t) satisfies the

estimate
30 €90 1 2 5263 aQ
Pty <—|=-== HA2u 7’u au —u
3(t) < < > || T+ SaZg7ng 11t + augy + 5

2 £96° 4a292)\ 2/32)\0

2

+

2’}/2 1
—_ 2
T HA Ut 10%h T T 5y08 5

2

)

(4.5) +%CV (hoAtu) (t)+2(9%;l)2 424

where 0 < g9 < 1.

Proof. Using the equation (1.7), a direct computation leads to the following identity

F3(t) :/ (W + auuge)ugde + /
Q

(et + Qg )urde + 0 (A% u, A%Ut)
Q

2
1 1 1
=(Uget, uge) + a||Utt||2 — B(uge, ur) — (-AZUtt,-AQUt) -6 HA2UtH

(4.6) + ( /0 t g(t — s)A%u(s)ds,Aéut> .

Now, the first and third terms in the right-hand side of (4.6) can be estimated
as follows:

(wtet, utr)
€203 5 4a?0?)g 9
<— +—
~ 160202\ [lweee | €903 e
£96° ‘ ap )2 €963 H o |12 4a?0®)g 9
S5 o + + = + o5 + = +
=8a20? N Uttt T QUL 5 Ut 8a20%Xg QU 5 Ut 503 [|ese]|
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€903 ‘ ap |2 9 £96° 40%) 9 €20 H 1 2
= 8a2g%r Ugee + Oyt + 5 ta 102070 | 2p0? Jueell” + 1 Az uy
and

232\ 232\ o 1 1?2
Bl ) < 2 P+ Sl < 220 o+ & A

where 0 < &9 < 1.
Using Young’s inequality and Lemma 2.1, we get

(A Ab) <2 b

and
t

g(t — s)A%u(s)ds7 Az ut>

/
/otg(t ) (A%u(s) — AZu(t) + A%u(t)) dS’AéuJ
J

S% A (/Otg(t —5) (.A%u(t) — A%u(s)) ds)zdx
# g b +Q*_ZHA o + g e
<50 (noahu) @+ 4l +@%”2HA%“Hz-

Then, combining the above ineqmahtles7 we obtain the desired result.

Lemma 4.5. Assume that (A1)-(A5) hold. Then the functional Fy(t) defined by

// ft—29) )A2us‘ dsdx

satisfies the estimate

1 . L2
(4.7) Fit) < -3 (90 A%u) (1) +3(0-1) HAfu‘ :
where f(t) = [*g
Proof. Noting that f’(t) = —g(t), we see that
F(t)

0) ’A%u ‘2 —/ /tg(t—s) ‘A%u(s)rdsda@
’ —// (t—ys) ’A2u A2u(t)’2dsdx
A2u/0 g(t — 5) (A% u(s) — Au(t) ) dsda ~ (/Otg(s)ds) (e ’

~(goAtu) @) - /A2u/0 gt — ) (Adu(s) - Au(t)) dsdx+f(t)HA%u

’AZu

Exploiting Young’s inequality and the fact fo s)ds < p — [, we obtain

- 2~/QA%U/O g(t —s) (,A%u(s) - A%u(t)) dsdx

‘ 2

O
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1|2
~bla|

(1—1) (/ ds)// (t—s) (Adu(s) - Aﬁu(t))gdsdx

(0—1) HAEUH +5 (g o Abu) (1)
Moreover, taking account of f(t) < f(0) = o — I, we have
1 2 1 2
o] < e sl
Combining the above estimates, we arrive at the desired result.

Lemma 4.6. Assume that (A1) — (A5) hold. The functional L(t) defined by
L(t) = NE(t) + Fi(t) + NaFy(t) + N3F3(t)
satisfies, for a suitable choice of N, Ny, N3,

L(t) ~ E(t)
and the estimate, for all t > tg,
2 2
L'(t) <—c |:||utt|2 + HA%Utt + ‘ U + Oy + %Ut
1 1 ao |2 121 1
(4.8) || At + aAbu + ?UH } —4(o-|atu] + < (g0 4%) ),

where tg has been introduced in Remark 2.1.

Proof. Combining Lemmas 4.1-4.4 and recalling that ¢’ = vg — h, we obtain, for all

t > to,

2 _ ag)? 2
(),

82(53 4o Q2>\(] 2ﬂ2)\0 2 ) 59(0)
(492)\0 5253 * ) Na| lluaell”™ = { (7 ! 2(a—¢)p N
1
2

2 N2 2
B2l (e
oQ « 2e1 2e1 «
2
+ (7 NQ-*Ng HAQUtt
3 —

ozfsg 2

) ~ 5N (970 Abu) )

30 €20 (0 —D2%a?  4X0g?(0)a? 1P
<84>N = TG N | [[ A%
G(t) £20° N3 o |2 Qv o 1
— <4 No —1-— 8a2g2)\0 ’ Ut + Uy + ?Ut + ﬁ (g oA U) (t)
K Aol —1)? L 2
__204_<2+ ?"‘Q +3(Q—l) 51N2

X

2
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_ag’(t)N ~ 2a(0— 1)? B a?0%(0 — 1) Mgy n (0—1)?
L 2 1) 2(52 251

st (5 e+ €5 (58)") - B

[ep 20 e1020%X\g 3 ap  20%0%)
PR (( w7 T Y T awme )¢

20(2Q2)\0 N3 1
GO >N2 : C] (hoA u) (t).

At this point, we need to choose our constants very carefully. First, we choose
ad 1
) A W Py | Y ey prareeT py 1) B
The above choice yields

L'(t)

<-fo(o- o2 ooy (20 L o)

4;23)\0 - 4a2§i2)\0 25;)\0 N3] uaell? KQ (7 B Z) B 2(ig£02)g> N
N 2 2 2

+(z< )y ) - (R ()

) (1-5) ) -] Pt (ot o

i

4

(g Py s

+

_|_

N2 -

30
N
[s .-

2

1 G(t) 53 ap
+ %N (QOA u) (t) — (4N2 -1- WQQAO) Huttt + auy + 5

2
- HA%U“ + Oé.A%Ut + %.A%’UJH
4o §

[ ad(t)  2a(e—1*  [(aPeP(e—1)*Ne1 | (0—1)* 2 Q)2
[ 5 N 5 262 o t3le l)( )51

A () ) e [ [ Fe

2 2 4,2 2
€1a”0” Ao 3 ap  2a%0% ) 202 0%\
(| +—+1+—= v+ ———— | V-
(( 2 i VTS T awe )T e )

—1230”} (hoAtu) (1)

Then, we choose N> large enough so that

Gt 5

Ny —1-— 0.
2 8?02\ =

Next, we choose N3 large enough so that
30 ] (0—1)%a?  4Xog%(0)a?
—N3 — - — Ny > 0.
g < % TG 2>
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2
Now, as #_(;2(3) < g(s), it is easy to show, using the Lebesgue dominated con-

vergence theorem, that
) 2
VC’V:/ L(S)/dséo, as v —0.
o vg(s)—g'(s)
Hence, there is 0 < vy < 1 such that if v < vy, then
1

vCy < 2 c1a2p2 ) 3 a 2at 92\ N3
16(§+(1T%°+E+1+79+W)N2+73>

Now, let us choose N large enough and choose v satisfying

€0 2020\ _
BN WNQ >0 and Vv = 4€QN < 1,
which means
2 .2
€0, 20707 Ag N,
20 G(t)d?
2a e1020%X\g 3 ap  2040%\g N3
o (uind g0, 2 28 T8 A0 Ay 23
C(é ( 2 4 TS T awme )T
€0 2a20%\g 1 €0 2a20% g
Ll A0N -y 28 E A0,
%N T Gme 2 T e 16 T e 27
and
2
ap 2a)g ao\?2 2(8-428) 442(0)
~ S9N - _ 28y N.
O‘<5 5) 5 (ﬂ 5) < O
(53 40[2,92)\0 2ﬁ2)\0
— — N2 — N
v S B R

(o (=8 - (w5 -5 0-0)
(5 (- 0) 3 (9 (-2) ) e

Cad(t), 20(e—1)?  [(a?*(e—1)Xee1 | (0—1)? 2 (20)?
3 5 252 M G (5) °1

So we arrive at, for positive constant c,

2

«@Q
Ut + QU + —— Ut

£'(t) g—c{lluulﬂHA%“tt 2+‘ 5

1 2 12 1
At et s Sl oo bl + L (ve i) .
On the other hand, from Lemma 3.2, we find that
|L(t) = NE()]

<,

aQ
Uttt + QU + —— Ut dx

o

aQ
Ut + QU + —u‘

o
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ap t
+N2/ ‘Uttt+autt+7ut‘/ g(t—s)
Q o 0

X ‘(utt + oy + %u) (t) — %u(s)‘ dsdx

2
+ N3/ |um + autt| |Ut|d$ + Ngg HA%'LLH
Q
<cE(t).

Therefore, we can choose N even large (if needed) so that (4.8) is satisfied. O

5. PROOF OF THE GENERAL DECAY RESULT

In this section, we will give an estimate to the decay rate for the problem (1.7)-
(1.8).

Proof of Theorem 2.2. Our proof starts with the observation that, for any ¢ > ¢,

/Oto g(s)/Q [Abu(t) — Adu(t - s)\2 dxds

t
0

S—gio)/Og’(s)/ﬂ’Aéu(t)—Aéu(t—s)‘zdxds

< - @ /Ot g’(s)/Q ‘.A%u(t) — Azu(t — s)’2 dxds
< —cE'(t),

which are derived from (2.2) and Lemma 4.1 and can be used in (4.8).
Taking F(t) = L(t) 4+ cE(t), which is obviously equivalent to E(t), we get, for all
t> th

L'(t)

2 1 2 aQ
< —c||luwll® + HA"’UttH + Huttt T QU + =

’ + HA%Utt + Oz.A%ut + OESQUHQ]
~4(0—1) HA%UHQ + é (90 A%u) (@)

< —mB(t) +c (g oA%u) (t)

<—mE(t) - cE'(t) + c/ttg(s) /Q ‘A%u(t) — Azu(t — s)‘2 dzds,

where m is a positive constant. Then, we obtain that

F'(t)=L'(t) + cE'(t)

t 2
(5.1) < —-mE(t) + c/ g(s)/ ‘A%u(t) - .A%u(t - 3)’ dzds.
to Q
We consider the following two cases relying on the ideas presented in [31].
(i) M(t) is linear.
We multiply (5.1) by &(t), then on account of (A1)-(A4) and Lemma 4.1, we
obtain, for all ¢t > tg,

E()F(t) < —mE(H)E(t) + c&(t) / g(s) /Q ‘A%u(t) — Abu(t—s)| duds

to
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. 2
< — mE(WE() + §< () [ JAbute) — Abute = )| deds

< —mE@E() — ¢ / t g(s) [ [Abu) — abue = )] dads

< —mé&(t)E(t) / / ’A2u A%u(t—s)rdxds

Therefore,

E)F'(t) + cE'(t) < —mE(H)E(?).
As £(t) is non-increasing and F(t) ~ E(t), we have

§(1)F (1) + cE(t) ~ E(t)
and
(EF + CE)'(t) < —mé(t)E(t), Vit>tp.

It follows immediately that

E'(t) < —m&(H)E(t),  Vt>to.

We may now integrate over (tg,t) to conclude that, for two positive constants k;
and kQ

t
B0 <hew (b [ 0)is). iz
to

By the continuity of E(t), we have

E(t) < ko exp <—k;1 /tf(s)ds> ) Vt>0.
0

(ii) M is nonlinear.
First, we define the functional

L(t) = L(t) 4+ Fy(1).

Obviously, L(t) is nonnegative. And, by Lemma 4.5 and Lemma 4.6, there exists
b > 0 such that

L'(t) =L'(t) + Fy(t)

9 1 2 ap 2
S —C ||uttH + HA2UttH + Hum + aue + ?utH

+ “A2Utt + Oz.AQUt + 7UH :| (o=1) HA2 uH2 — g (g o A%u) (t)
< —bE(?).
Therefore, integrating the above inequality over (to,t), we see at once that
—L(tg) < L(t) — L(tg) < b/ E(s
It is sufficient to show that

(5.2) E(s)ds < o0
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and

vVt > tg.

Clearly, we have

(5.3) < —cE'(t), YVt > to.

After that, we define another functional I(¢) by

I(t) = q/tt HA%u(t) ~ Adu(t— S)H2 ds.

Now, the following inequality holds under Lemma 4.1 and (5.2) that

/t ® ds §2/t <HA5u(t)H2+ HA%u(t—s)
to to

1

Azu(t) — Azu(t — s)

2
)ds

<4 /t (Et)+E(t—s))ds

to
t
<8 [ E(0)ds
to
(5.4) <00.
Then (5.4) allows for a constant 0 < ¢ < 1 chosen so that, for all ¢t > o,
(5.5) 0<I(t) <1

otherwise we get an exponential decay from (5.1). Moreover, recalling that M is
strict convex on (0,7] and M (0) = 0, then

M(0z) < 0M(x), for 0<9<1 and x € (0,r].
From assumptions (A2) and (A44), (5.5) and Lemma 2.2, it follows that

) = — /t o (5) [ Abu(t) — Abu(t - S)Hst

— ot | O A0 - At o0
>t [ Hetaa bt - At - as
> S0 [ artrgtena 4o - Aute - o0
>0, (I(lt) /t:m)g(s)q [ Abute) — Abuge - s)\fds)
0y (q[:g<s> [atuo - atute -9 as).
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According to M is an extension of M (see Remark 2.1(2)), we also have

a0 =Y @ﬁa@W%@—A%www%Q.

/t: 9(s) HA%U(t) — Asu(t — s)H2 ds < émﬂ (M)

and (5.1) becomes

In this way,

F'(t) <—mE(t / /‘.Au — Azu(t — s) dxds

(5.6) < —mE(t)+ T (‘?é;) Wt to,
Let 0 < g9 < r, we define the functional F;(t) by
= E(t)
fl(t) =M (EOE(O)>F(t)+E(t)’ VtZO

Then, recalling that E'(t) < 0, M > 0and M > 0 as well as making use of
estimate (5.6), we deduce that F;(t) ~ E(t) and also, for any ¢ > ¢y, we have

(5.7 Fl(t) < — mE®)I <50 g(((t)))) + T <50 ]?((3))) e (‘?(i))) L E).

Taking account of Lemma 2.3, we obtain

v () (3
vl ()

o M( om )
where
o o (o)

) E
S (B0 () (37 (o 20 ) <o (o) (37 (20 )]

So, combining (5.7), (5.8) and (5.9), we obtain

E(t)— E A
Fi(t) < —(mE(0) — CE())E((S))M <EOE(((§))> + cqg(sft)) + E'(t).
From this, we multiply the above inequality by £()

to get
SOFI(0) < ~(mB(0) - cen)s O Z T (c0giar) +eadle) + €O
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Then, using the fact that, as 50% <, i (Eo%) = M (60%) and (5.3),

we get

EOFL(D) < - ) - o)) g M (2 ) B0
Consequently, defining Fa(t) = £(t)F1(t)+cE(t), then since F; (t) ~ E(t), we arrive
at
(5.10) Fa(t) ~ E(b),

and with a suitable choice of g, we get, for some positive constant k and for any
t Z t07

(5.11) FU(t) < —ke(D) @((é))) M <50 g((é))) .
Define
R(t) = A{Ef(z(;), M0 and M) = tM'(st).

Moreover, it suffices to show that M3 (t), Ma2(t) > 0 on (0, 1] by the strict convexity
of M on (0,7]. And, it is easily seen that

(5.12) Fh(t) < —kE(t) Mo (gg) )

According to (5.10) and (5.12), there exist Ay, A3 > 0 such that

(5.13) A R(t) < E(t) < A\3R(t).

Then, it follows that there exists k; > 0 such that

(5.14) ki&(t) < —ﬂ, YVt >tp.
Ma(R(t))

Next, we define

M (t) := /tT f/(s)ds.

And based on the properties of M, we know that M; is strictly decreasing function
on (0,7] and %iI%Ml(t) = +00.
—

Now, we integrate (5.14) over (to,t) to obtain

— ti S ‘ S S
B TATIE) Rl AR

b [ €(s)ds < My (cR(0)) — My (c0R(t0))

which implies that

M (egR(1)) > kl/ &(s)ds.

It is easy to obtain that

1

t
(5.15) R(t) < . Mt <k:1 §(S)ds> , Yt > to.
0 to

A combining of (5.13) and (5.15) gives the proof. O
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