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NEW GENERAL DECAY RESULT FOR A FOURTH-ORDER

MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY

WENJUN LIU∗, ZHIJING CHEN AND ZHIYU TU

Abstract. In this paper, we consider the fourth-order Moore-Gibson-

Thompson equation with memory recently introduced by (Milan J. Math.

2017, 85: 215-234) that proposed the fourth-order model. We discuss the
well-posedness of the solution by using Faedo-Galerkin method. On the other

hand, for a class of relaxation functions satisfying g′(t) ≤ −ξ(t)M(g(t)) for
M to be increasing and convex function near the origin and ξ(t) to be a non-

increasing function, we establish the explicit and general energy decay result,

from which we can improve the earlier related results.

1. Introduction

The Moore-Gibson-Thompson (MGT) equation is one of the equations of nonlin-
ear acoustics describing acoustic wave propagation in gases and liquids [13, 15, 30]
and arising from modeling high frequency ultrasound waves [9, 18] accounting for
viscosity and heat conductivity as well as effect of the radiation of heat on the
propagation of sound. This research field is highly active due to a wide range of
applications such as the medical and industrial use of high intensity ultrasound in
lithotripsy, thermotherapy, ultraound cleaning, etc. The classical nonlinear acous-
tics models include the Kuznetson’s equation, the Westervelt equation and the
Kokhlov-Zabolotskaya-Kuznetsov equation.

In order to gain a better understanding of the nonlinear MGT equation, we shall
begin with the linearized model. In [15], Kaltenbacher, Lasiecka and Marchand
investigated the following linearized MGT equation

τuttt + αutt + c2Au+ bAut = 0.(1.1)

For equation (1.1), they disclosed a critical parameter γ = α − c2τ
b and showed

that when γ > 0, namely in the subcritical case, the problem is well-posed and
its solution is exponentially stable; while γ = 0, the energy is conserved. Since its
appearance, an increasing interest has been developed to study the MGT equation,
see [4, 5, 8, 10, 14]. Caixeta, Lasiecka and Cavalcanti [4] considered the following
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nonlinear equation

τuttt + αutt + c2Au+ bAut = f(u, ut, utt).(1.2)

They proved that the underlying PDE generates a well-posed dynamical system
which admits a global and finite dimensional attractor. They also overcomed the
difficulty of lacking the Lyapunov function and the lack of compactness of the
trajectory.

Now, we concentrate on the stabilization of MGT equation with memory which
has received a considerable attention recently. For instance, Lasiecka and Wang [17]
studied the following equation:

τuttt + αutt + bAut + c2Au−
∫ t

0

g(t− s)Aw(s)ds = 0,(1.3)

where α − c2τ
b ≥ 0 and the form of w classifies the memory into three types. By

imposing the assumption on the relaxation function g, for a positive constant c0, as

g′(t) ≤ −c0g(t),(1.4)

they discussed the effect of memory described by three types on decay rates of the

energy when α − c2τ
b > 0. Moreover, in the critical case α − c2τ

b = 0, they proved
an exponential rate of decay for the solution of (1.3) under “the right mixture” of
memory. Lasiecka and Wang [18] showed the general decay result of the equation
(1.3) when w = u, and established their result under weaker condition on g. In [9],
Filippo et al. investigated the critical case of equation (1.3) (that is αb− c2τ = 0)
for w = u and g satisfies (1.4), and obtained an exponential decay result if and only

if A is a bounded operator. When
∫ t

0
is replaced by

∫∞
0

, (1.3) turns to

τuttt + αutt + bAut + c2Au−
∫ ∞

0

g(s)Aw(t− s)ds = 0.(1.5)

Alves et al. [1] investigated the uniform stability of equation (1.5) encompassing
three different types of memory in a history space set by the linear semigroup theory.
Moreover, we refer the reader to [3, 6, 7, 12, 24, 25, 26, 28] for other works of the
equation(s) with memory.

More recently, Filippo and Vittorino [11] considered the fourth-order MGT equa-
tion

utttt + αuttt + βutt + γAutt + δAut + %Au = 0.(1.6)

They investigated the stability properties of the related solution semigroup. And,
according to the values of certain stability numbers depending on the strictly posi-
tive parameters α, β, γ, δ, %, they established the necessary and sufficient condition
for exponential stability. For other related results on the higher-order equations,
please see [20, 27, 34, 35, 36, 37] and the references therein.

Motivated by the above results, we intend to study the following abstract version
of the fourth-order Moore-Gibson-Thompson (MGT) equation with a memory term

utttt + αuttt + βutt + γAutt + δAut + %Au−
∫ t

0

g(t− s)Au(s)ds = 0,(1.7)

where α, β, γ, δ, % are strictly positive constants, A is a strictly positive self-adjoint
linear operator defined in a real Hilbert space H where the (dense) embedding
D(A) ⊂ H need not to be compact. And we consider the following initial conditions

u(0) = u0, ut(0) = u1, utt(0) = u2, uttt(0) = u3.(1.8)
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A natural question that arised in dealing with the general decay of fourth-order
MGT equation with memory:

• Can we get a general decay result for a class of relaxation functions satisfying
g′(t) ≤ −ξ(t)M(g(t)) for M to be increasing and convex function near the
origin and ξ(t) to be a nonincreasing function?

Mustafa answered this question for viscoelastic wave equations in [31, 32]. Mes-
saoudi and Hassan [29] considered the similar question for memory-type Timoshenko
system in the cases of equal and non-equal speeds of wave propagation. Moreover,
they extended the range of polynomial decay rate optimality from p ∈

[
1, 3

2

)
to

p ∈ [1, 2) when g satisfies g′(t) ≤ −ξ(t)gp(t). We refer to [19] for the non-equal
wave speeds case. And, Liu et al. [22, 23] also concerned with the similar question
for third-order MGT equations with memory term.

The aim of this paper is to establish the well-posedness and answer the above
mention question for fourth-order MGT equation with memory (1.7). We first use
the Faedo-Galerkin method to prove the well-posedness result. We then use the idea
developed by Mustafa in [31, 32], taking into consideration the nature of fourth-
order MGT equation, to prove new general decay results for the case γ − δ

α > 0
and β − α%

δ > 0, based on the perturbed energy method and on some properties
of convex functions. Our result substantially improves and generalizes the earlier
related results in previous literature.

The rest of our paper is organized as follows. In Section 2, we give some assump-
tions and state our main results. In Section 3, we give the proof of well-posedness.
In Section 4, we state and prove some technical lemmas that are relevant in the
entire work. In Section 5, we prove the general decay result.

2. Preliminaries and main results

In this section, we consider the following assumptions and state our main results.
We use c > 0 to denote a positive constant which does not depend on the initial
data.

First, we consider the following assumptions as in [11] for (A1), in [18] for (A3),
(A5) and in [31] for (A2), (A4):

(A1) γ − δ
α > 0 and β − α%

δ > 0.
(A2) g : R+ → R+ is a non-increasing differentiable function such that

0 < g(0) <
2α%

δ
(αγ − δ), %−

∫ +∞

0

g(s)ds = l > 0.

(A3) g′′(t) ≥ 0 almost everywhere.
(A4) There exists a non-increasing differentiable function ξ : R+ → R+ and a

C1 function M : [0,∞) → [0,∞) which is either linear or strictly increasing and

strictly convex C2 function on (0, r], r ≤ g(0), with M(0) = M
′
(0) = 0, such that

g′(t) ≤ −ξ(t)M(g(t)), ∀ t ≥ 0.(2.1)

(A5) There exists λ0 > 0 such that A satisfies ‖u‖2 ≤ λ0

∥∥∥A 1
2u
∥∥∥2

for all u ∈ H.

Remark 1. ([31, Remark 2.8]) (1) From assumption (A2), we deduce that

g(t)→ 0 as t→ +∞ and g(t) ≤ %− l
t

, ∀ t > 0.
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Furthermore, from the assumption (A4), we obtain that there exists t0 ≥ 0 large
enough such that

g(t0) = r and g(t) ≤ r, ∀ t ≥ t0.

The non-increasing property of g(t) and ξ(t) gives

0 < g(t0) ≤ g(t) ≤ g(0) and 0 < ξ(t0) ≤ ξ(t) ≤ ξ(0), ∀ t ∈ [0, t0].

A combination of these with the continuity of H, for two constants a, d > 0, yields

a ≤ ξ(t)M(g(t)) ≤ d, ∀ t ∈ [0, t0].

Consequently, for any t ∈ [0, t0], we get

g′(t) ≤ −ξ(t)M(g(t)) ≤ −a = − a

g(0)
g(0) ≤ − a

g(0)
g(t)

and, hence,

g(t) ≤ −g(0)

a
g′(t), ∀ t ∈ [0, t0].(2.2)

(2) If M is a strictly increasing and strictly convex C2 function on (0, r], with
M(0) = M ′(0) = 0, then it has an extension M , which is strictly increasing and
strictly convex C2 function on (0,∞). For example, if we set M(r) = A, M ′(r) = B,
M ′′(r) = C, we can define M , for any t > r, by

M =
C

2
t2 + (B − Cr)t+

(
A+

C

2
r2 −Br

)
.

Then, inspired by the notations in [11], we define the Hilbert spaces

Hr := D
(
A r

2

)
, r ∈ R.

In order to simplify the notation, we denote the usual space H0 by H. The phase
space of our problem is

H = D
(
A 1

2

)
×D

(
A 1

2

)
×D

(
A 1

2

)
×H.

Moreover, we will denote the inner product of H by (·, ·) and its norm by ‖ · ‖.
After that, we introduce the following energy functional

E(t)

=
1

2

[∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
δ

α

(
%−G(t)

%

)∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
δ

α%
G(t)

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2

+

(
γ − δ

α

)∥∥∥A 1
2utt

∥∥∥2

+

(
γ − δ

α

)
α%

δ

∥∥∥A 1
2ut

∥∥∥2

+2

∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s),A 1

2utt + αA 1
2ut

)
ds+

α%

δ

(
g ◦ A 1

2u
)

(t)

−α
(
g′ ◦ A 1

2u
)

(t) + αg(t)
∥∥∥A 1

2u
∥∥∥2

+
(
β − α%

δ

)
‖utt‖2 +

α%

δ

(
β − α%

δ

)
‖ut‖2

]
,

where G(t) =
∫ t

0
g(s)ds and for any v ∈ L2

loc

(
R+;L2(Ω)

)
,

(g ◦ v)(t) :=

∫
Ω

∫ t

0

g(t− s) (v(t)− v(s))
2
dsdx.
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As in [31], we set, for any 0 < ν < 1,

Cν =

∫ ∞
0

g2(s)

νg(s)− g′(s)
ds and h(t) = νg(t)− g′(t).

The following lemmas play an important role in the proof of our main results.

Lemma 2.1. ([31]) Assume that condition (A2) holds. Then for any u ∈ L2
loc (R+;

L2(Ω)
)
, we have∫

Ω

(∫ t

0

g(t− s)
(
A 1

2u(s)−A 1
2u(t)

)
ds

)2

dx ≤ Cν
(
h ◦ A 1

2u
)

(t), ∀ t ≥ 0.

Lemma 2.2. (Jensen’s inequality) Let P : [b, c]→ R be a convex function. Assume
that functions f : Ω → [b, c] and h : Ω → R are integrable such that h(x) ≥ 0, for
any x ∈ Ω and

∫
Ω
h(x)dx = k > 0. Then

P

(
1

k

∫
Ω

f(x)h(x)dx

)
≤ 1

k

∫
Ω

P (f(x))h(x)dx.

Lemma 2.3. ([2])(The generalized Young inequality) If f is a convex function
defined on a real vector space X and ite convex conjugate is denoted by f∗, then

AB ≤ f∗(A) + f(B),(2.3)

where

f∗(s) = s (f ′)
−1

(s)− f
[
(f ′)

−1
(s)
]
.(2.4)

We are now in a position to state the well-posedness and the general decay result
for problem (1.7)-(1.8).

Theorem 2.4. (Well-posedness) Assume that (A1) − (A5) hold. Then, for given
(u0, u1, u2, u3) ∈ H and T > 0, there exists a unique weak solution u of problem
(1.7)-(1.8) such that

u ∈ C
(

[0, T ];D
(
A 1

2

))
∩ C1 ([0, T ];H) .

Theorem 2.5. (General decay) Let (u0, u1, u2, u3) ∈ H. Assume that (A1)-(A5)
hold. Then there exist positive constants k1 and k2 such that, along the solution of
problem (1.7)-(1.8), the energy functional satisfies

E(t) ≤ k2M
−1
1

(
k1

∫ t

g−1(r)

ξ(s)ds

)
, ∀ t ≥ g−1(t),(2.5)

where M1(t) =
∫ r
t

1
sM ′(s)ds and M1 is strictly decreasing and convex on (0, r], with

lim
t→0

M1(t) = +∞.

Remark 2. Assume that M(s) = sp, 1 ≤ p < 2 in (A4), then by simple cal-

culations, we see that the decay rate of E(t) is given by, for constants k, k̃ and
C,

E(t) ≤


C exp

(
−k̃
∫ t

0

ξ(s)ds

)
, if p = 1,

k

(
1 +

∫ t

0

ξ(s)ds

)− 1
p−1

, if 1 < p < 2.

(2.6)
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3. Proof of the well-posedness

In this section, we will prove the global existence and uniqueness of the solution
of problem (1.7)-(1.8). Firstly, we give the following lemmas.

Lemma 3.1. If 0 < g(0) < 2α%
δ (αγ− δ), then there is σ > 0 such that α

(
γ − δ

α

)
−

δg(0)
2(α−σ)% > 0.

Proof. Since g(0) < 2α%
δ (αγ − δ), all we need is to show

2α%

δ
(α− σ)

(
γ − δ

α

)
→ 2α%

δ
(αγ − δ) as σ → 0,

which is trivially true. �

Lemma 3.2. Assume that (A1)-(A5) hold. Then, the energy functional E(t) sat-
isfies, for all t ≥ 0,

1

2

[∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
δ

α

(
%−G(t)

%

)∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+

(
γ − δ

α

)∥∥∥A 1
2utt

∥∥∥2

+

(
γ − δ

α

)
α%

δ

∥∥∥A 1
2ut

∥∥∥2

− α
(
g′ ◦ A 1

2u
)

(t)

+αg(t)
∥∥∥A 1

2u
∥∥∥2

+
(
β − α%

δ

)
‖utt‖2 +

α%

δ

(
β − α%

δ

)
‖ut‖2

]
≤E(t)

≤1

2

[∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
δ

α

(
%−G(t)

%

)∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+

(
γ − δ

α

)∥∥∥A 1
2utt

∥∥∥2

+

(
γ − δ

α

)
α%

δ

∥∥∥A 1
2ut

∥∥∥2

− α
(
g′ ◦ A 1

2u
)

(t)

+
2α%

δ

(
g ◦ A 1

2u
)

(t) + αg(t)
∥∥∥A 1

2u
∥∥∥2

+
(
β − α%

δ

)
‖utt‖2

+
α%

δ

(
β − α%

δ

)
‖ut‖2 +

2δ

α%
G(t)

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2
]
.

Proof. From the definition of E(t), we have

E(t)

=
1

2

[∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
δ

α

(
%−G(t)

%

)∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
δ

α%
G(t)

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2

+

(
γ − δ

α

)∥∥∥A 1
2utt

∥∥∥2

+

(
γ − δ

α

)
α%

δ

∥∥∥A 1
2ut

∥∥∥2

+2

∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s),A 1

2utt + αA 1
2ut

)
ds+

α%

δ

(
g ◦ A 1

2u
)

(t)

−α
(
g′ ◦ A 1

2u
)

(t) + αg(t)
∥∥∥A 1

2u
∥∥∥2

+
(
β − α%

δ

)
‖utt‖2 +

α%

δ

(
β − α%

δ

)
‖ut‖2

]
.

Then, we estimate the sixth term of the above equality

2

∣∣∣∣∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s),A 1

2utt + αA 1
2ut

)
ds

∣∣∣∣
≤
∫ t

0

g(t− s)
[
α%

δ

∥∥∥A 1
2u(t)−A 1

2u(s)
∥∥∥2

+
δ

α%

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2
]
ds



NEW GENERAL DECAY RESULT 439

=
α%

δ

(
g ◦ A 1

2u
)

(t) +
δ

α%
G(t)

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2

.

A combination of the above results, we complete the proof of lemma. �

Now, we prove the well-posedness result of problem (1.7)-(1.8).

Proof of Theorem 2.1. The proof is given by Faedo-Galerkin method and combines
arguments from [16, 39, 38]. We present only the main steps.

Step 1. Approximate problem
We construct approximations of the solution u by the Faedo-Galerkin method as

follows. For every m ≥ 1, let Wm = span{w1, · · · , wm} be a Hilbertian basis of the
space H1

0 (Ω). We choose four sequences (um0 ), (um1 ), (um2 ) and (um3 ) in Wm such

that um0 → u0 strongly in D
(
A 1

2

)
, um1 → u1 strongly in D

(
A 1

2

)
, um2 → u2 strongly

in D
(
A 1

2

)
and um3 → u3 strongly in H. We define now the approximations:

um(t) =

m∑
j=1

amj (t)wj(x),(3.1)

where um(t) are solutions to the finite dimensional Cauchy problem (written in
normal form):∫

Ω

umtttt(t)wjdx+ α

∫
Ω

umttt(t)wjdx+ β

∫
Ω

umtt (t)wjdx

+ γ

∫
Ω

A 1
2umtt (t)A

1
2wjdx+ δ

∫
Ω

A 1
2umt (t)A 1

2wjdx

+ %

∫
Ω

A 1
2um(t)A 1

2wjdx−
∫ t

0

g(t− s)
∫

Ω

A 1
2um(t)A 1

2wjdxds = 0(3.2)

with initial conditions

(um(0), umt (0), umtt (0), umttt(0)) = (um0 , u
m
1 , u

m
2 , u

m
3 ) .(3.3)

According to the standard theory of ordinary differential equation, the finite di-
mensional problem (3.2)-(3.3) has a local solution (um(t), umt (t), umtt (t), u

m
ttt(t)) in

some interval [0, Tm) with 0 < Tm ≤ T , for every m ∈ N. Next, we present some
estimates that allow us to extend the local solutions to the interval [0, T ], for any
given T > 0.

Step 2. Weak solutions
Multiplying equation (3.2) by amjttt + αamjtt + α%

δ a
m
jt and integrating over Ω, we

have

d

dt
Em(t) + α

(
β − α%

δ

)
‖umtt ‖

2 − αg′(t)

2

∥∥∥A 1
2um

∥∥∥2

+
δ

2α%
g(t)

∥∥∥A 1
2umtt +

α%

δ
A 1

2um
∥∥∥2

+
α

2

(
g′′ ◦ A 1

2um
)

(t)

=−
[
α

(
γ − δ

α

)
− δg(t)

2α%

] ∥∥∥A 1
2umtt

∥∥∥2

+

∫ t

0

g′(t− s)
(
A 1

2um(t)−A 1
2um(s),A 1

2umtt

)
ds+

α%

2δ

(
g′ ◦ A 1

2um
)

(t),
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where

Em(t)

=
1

2

[∥∥∥umttt + αumtt +
α%

δ
umt

∥∥∥2

+
δ

α

(
%−G(t)

%

)∥∥∥A 1
2umtt + αA 1

2umt +
α%

δ
A 1

2um
∥∥∥2

+
δ

α%
G(t)

∥∥∥A 1
2umtt + αA 1

2umt

∥∥∥2

+

(
γ − δ

α

)∥∥∥A 1
2umtt

∥∥∥2

+

(
γ − δ

α

)
α%

δ

∥∥∥A 1
2umt

∥∥∥2

+2

∫ t

0

g(t− s)
(
A 1

2um(t)−A 1
2um(s),A 1

2umtt + αA 1
2umt

)
ds

+
α%

δ

(
g ◦ A 1

2um
)

(t)− α
(
g′ ◦ A 1

2um
)

(t) + αg(t)
∥∥∥A 1

2um
∥∥∥2

+
(
β − α%

δ

)
‖umtt ‖2 +

α%

δ

(
β − α%

δ

)
‖umt ‖2

]
.

(3.4)

From assumptions (A1)− (A3) and Lemma 3.1, we get, for ε ∈ (0, α),∫ t

0

g′(t− s)
(
A 1

2um(t)−A 1
2um(s),A 1

2umtt

)
ds

≤− (α− ε)%
2δ

(
g′ ◦ A 1

2um
)

(t)− δ

2(α− ε)%

∥∥∥A 1
2umtt

∥∥∥2
∫ t

0

g′(t− s)ds

=− (α− ε)%
2δ

(
g′ ◦ A 1

2um
)

(t) +
δ(g(0)− g(t))

2(α− ε)%

∥∥∥A 1
2umtt

∥∥∥2

and so

−
[
α

(
γ − δ

α

)
− δg(t)

2α%

] ∥∥∥A 1
2umtt

∥∥∥2

+

∫ t

0

g′(t− s)
(
A 1

2um(t)−A 1
2um(s),A 1

2umtt

)
ds+

α%

2δ

(
g′ ◦ A 1

2um
)

(t)

≤−
[
α

(
γ − δ

α

)
− δg(t)

2α%

] ∥∥∥A 1
2umtt

∥∥∥2

− (α− ε)%
2δ

(
g′ ◦ A 1

2um
)

(t)

+
δ(g(0)− g(t))

2(α− ε)%

∥∥∥A 1
2umtt

∥∥∥2

+
α%

2δ

(
g′ ◦ A 1

2um
)

(t)

=−
[
α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

] ∥∥∥A 1
2umtt

∥∥∥2

+
ε%

2δ

(
g′ ◦ A 1

2um
)

(t)

−
[

δg(t)

2(α− ε)%
− δg(t)

2α%

] ∥∥∥A 1
2umtt

∥∥∥2

≤0.(3.5)

Therefore, we have

d

dt
Em(t) + α

(
β − α%

δ

)
‖umtt ‖

2 − αg′(t)

2

∥∥∥A 1
2um

∥∥∥2

+
δ

2α%
g(t)

∥∥∥A 1
2umtt +

α%

δ
A 1

2um
∥∥∥2

+
α

2

(
g′′ ◦ A 1

2um
)

(t) ≤ 0.(3.6)

Integrating (3.6) from 0 to t ≤ Tm, one has

Em(t) +

∫ t

0

[α
(
β − α%

δ

)
‖umtt ‖

2 − αg′(τ)

2

∥∥∥A 1
2um

∥∥∥2
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+
δ

2α%
g(τ)

∥∥∥A 1
2umtt +

α%

δ
A 1

2um
∥∥∥2

+
α

2

(
g′′ ◦ A 1

2um
)

(τ) ]dτ

≤Em(0).(3.7)

Now, since the sequences (um0 )m∈N , (um1 )m∈N , (um2 )m∈N and (um3 )m∈N converge
and using (A1) − (A3), we can find a positive constant C independent of m such
that

Em(t) ≤ C.(3.8)

Therefore, using the fact % −
∫ t

0
g(s)ds ≥ l, the last estimate (3.8) together with

(3.4) give us, for all m ∈ N,Tm = T , we deduce that

(um)m∈N is bounded in L∞
(

0, T ;D
(
A 1

2

))
(umt )m∈N is bounded in L∞

(
0, T ;D

(
A 1

2

))
(umtt )m∈N is bounded in L∞

(
0, T ;D

(
A 1

2

))
(umttt)m∈N is bounded in L∞ (0, T ;H) .(3.9)

Consequently, we may conclude that

um ⇀ u weak∗ in L∞
(

0, T ;D
(
A 1

2

))
umt ⇀ ut weak∗ in L∞

(
0, T ;D

(
A 1

2

))
umtt ⇀ utt weak∗ in L∞

(
0, T ;D

(
A 1

2

))
umttt ⇀ uttt weak∗ in L∞ (0, T ;H) .

From (3.9), we get that (um)m∈N is bounded in L∞
(

0, T ;D
(
A 1

2

))
. Then, (um)m∈N

is bounded in L2
(

0, T ;D
(
A 1

2

))
. Since (umt )m∈N is bounded in L∞

(
0, T ;D

(
A 1

2

))
,

(umt )m∈N is bounded in L2
(

0, T ;D
(
A 1

2

))
. Consequently, (umtt )m∈N is bounded in

L2
(

0, T ;D
(
A 1

2

))
and (umttt)m∈N is bounded in L2 (0, T ;H). Moreover, (um)m∈N

is bounded in H3(0, T ;H1(Ω)).
Since the embeddingH3(0, T ;H1(Ω)) ↪→ L2(0, T ;H(Ω)) is compact, using Aubin-

Lions theorem [21], we can extract a subsequence (un)n∈N of (um)m∈N such that

un → u strongly in L2(0, T ;H(Ω)).

Therefore,

un → u strongly and a.e. on (0, T )× Ω.

The proof now can be completed arguing as in [21].

Step 3. Uniqueness
It is sufficient to show that the only weak solution of (1.7)-(1.8) with u0 = u1 =

u2 = u3 = 0 is

u ≡ 0.(3.10)

According to the energy estimate (3.8) and noting that E(u(0)) = 0, we obtain

E(u(t)) = 0, ∀t ∈ [0, T ].
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So, we have∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

=
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
∥∥∥2

=
∥∥∥A 1

2utt

∥∥∥2

=
∥∥∥A 1

2ut

∥∥∥2

=
∥∥∥A 1

2u
∥∥∥2

= ‖utt‖2 = 0, ∀t ∈ [0, T ].

And this implies (3.10). Thus, we conclude that problem (1.7)-(1.8) has at most
one solution. �

4. Technical lemmas

In this section, we state and prove some lemmas needed to establish our general
decay result.

Lemma 4.1. Let (u, ut, utt, uttt) be the solution of (1.7). Assume that (A1)-(A3)
hold. Then, we have

d

dt
E(t) ≤− α

(
β − α%

δ

)
‖utt‖2 −

[
α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

] ∥∥∥A 1
2utt

∥∥∥2

+
αg′(t)

2

∥∥∥A 1
2u
∥∥∥2

−
[

δg(t)

2(α− ε)%
− δg(t)

2α%

] ∥∥∥A 1
2utt

∥∥∥2

− δ

2α%
g(t)

∥∥∥A 1
2utt +

α%

δ
A 1

2u
∥∥∥2

− α

2

(
g′′ ◦ A 1

2u
)

(t) +
ε%

2δ

(
g′ ◦ A 1

2u
)

≤0.

Proof. Multiplying (1.7) by uttt + αutt + α%
δ ut and integrating over Ω yield

d

dt
E(t) =− α

(
β − α%

δ

)
‖utt‖2 −

[
α

(
γ − δ

α

)
− δg(t)

2α%

] ∥∥∥A 1
2utt

∥∥∥2

+
αg′(t)

2

∥∥∥A 1
2u
∥∥∥2

− δ

2α%
g(t)

∥∥∥A 1
2utt +

α%

δ
A 1

2u
∥∥∥2

+

∫ t

0

g′(t− s)
(
A 1

2u(t)−A 1
2u(s),A 1

2utt

)
ds

− α

2

(
g′′ ◦ A 1

2u
)

(t) +
α%

2δ

(
g′ ◦ A 1

2u
)

(t).(4.1)

We proceed to show that, for a constant ε ∈ (0, α),∣∣∣∣∫ t

0

g′(t− s)
(
A 1

2u(t)−A 1
2u(s),A 1

2utt

)
ds

∣∣∣∣
≤− (α− ε)%

2δ

(
g′ ◦ A 1

2u
)

(t) +
δ(g(0)− g(t))

2(α− ε)%

∥∥∥A 1
2utt

∥∥∥2

.(4.2)

Then, combining (4.1) and (4.2), we can obtain

d

dt
E(t) ≤− α

(
β − α%

δ

)
‖utt‖2 −

[
α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

] ∥∥∥A 1
2utt

∥∥∥2

+
αg′(t)

2

∥∥∥A 1
2u
∥∥∥2

−
[

δg(t)

2(α− ε)%
− δg(t)

2α%

] ∥∥∥A 1
2utt

∥∥∥2

− δ

2α%
g(t)

∥∥∥A 1
2utt +

α%

δ
A 1

2u
∥∥∥2

− α

2

(
g′′ ◦ A 1

2u
)

(t) +
ε%

2δ

(
g′ ◦ A 1

2u
)
.

According to (A1)-(A3) and Lemma 3.1, we complete the proof of lemma. �
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Lemma 4.2. Assume that (A1)-(A5) hold. Then, the functional F1(t) defined by

F1(t) =

∫
Ω

(
utt + αut +

α%

δ
u
)(

uttt + αutt +
α%

δ
ut

)
dx

satisfies the estimate

F ′1(t) ≤− δ

2α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
2αλ0

δ

(
β − α%

δ

)2

‖utt‖2

+
2α

δ

(
γ − δ

α

)2 ∥∥∥A 1
2utt

∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

+
2α(%− l)2

δ

∥∥∥A 1
2u
∥∥∥2

+
2α

δ
Cν

(
h ◦ A 1

2u
)

(t).(4.3)

Proof. Taking the derivative of F1(t) with respect to t, exploiting (1.7) and inte-
grating by parts, we get

F ′1(t) =

∫
Ω

[
−
(
β − α%

δ

)
utt

] (
utt + αut +

α%

δ
u
)
dx

− δ

α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

−
∫

Ω

(
γ − δ

α

)
A 1

2utt

(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx

+

∫
Ω

(∫ t

0

g(t− s)A 1
2u(s)ds

)(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx.

Using Young’s inequality, Lemma 2.1, (A5) and the fact γ− δ
α > 0 and β− α%

δ > 0,
we have ∫

Ω

[
−
(
β − α%

δ

)
utt

] (
utt + αut +

α%

δ
u
)
dx

≤2αλ0

δ

(
β − α%

δ

)2

‖utt‖2 +
δ

8αλ0

∥∥∥utt + αut +
α%

δ
u
∥∥∥2

≤2αλ0

δ

(
β − α%

δ

)2

‖utt‖2 +
δ

8α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

and∫
Ω

(∫ t

0

g(t− s)A 1
2u(s)ds

)(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx

=

∫
Ω

(∫ t

0

g(t− s)
(
A 1

2u(s)−A 1
2u(t)

)
ds

)(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx

+

∫
Ω

(∫ t

0

g(t− s)A 1
2u(t)ds

)(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx

≤2α

δ
Cν

(
h ◦ A 1

2u
)

(t) +
δ

4α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
2α(%− l)2

δ

∥∥∥A 1
2u
∥∥∥2

.

Also, we have

−
∫

Ω

(
γ − δ

α

)
A 1

2utt

(
A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
)
dx

≤2α

δ

(
γ − δ

α

)2 ∥∥∥A 1
2utt

∥∥∥2

+
δ

8α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

.

Then, combining the above inequalities, we complete the proof of (4.3). �
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Lemma 4.3. Assume that (A1)-(A5) hold. Then the functional F2(t) defined by

F2(t)

=−
∫

Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g(t− s)
[(
utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

]
dsdx

satisfies the estimate

F ′2(t)

≤− G(t)

4

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+

[
(%− l)2α2

2ε1
+

4λ0g
2(0)α2

G(t)

] ∥∥∥A 1
2ut

∥∥∥2

+

[
λ0(%− l)2

2
+

(
δ2

α2
+ %2

)
+ 3(%− l)2

]
ε1

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+

[
α2%2(%− l)2λ0ε1

2δ2
+

(%− l)2

2ε1

+3(%− l)2
(α%
δ

)2

ε1 +
(%− l)2

2

(α%
δ

)2
] ∥∥∥A 1

2u
∥∥∥2

+

[
(%− l)2

2ε1
+

1

2ε1

(
γ − δ

α

)2

+
1

2

(α%
δ

)2
(
γ − δ

α

)2
]∥∥∥A 1

2utt

∥∥∥2

+

[(
ε1α

2%2λ0

4δ2
+

3

4ε1
+ 1 +

α%

δ
+

2α4%2λ0

G(t)δ2

)
Cν +

2α2%2λ0

G(t)δ2

](
h ◦ A 1

2u
)

(t)

+

[
2
(
β − α%

δ

)2
ε1

+
4g2(0)

G(t)

]
‖utt‖2,(4.4)

where 0 < ε1 < 1.

Proof. By differentiating F2(t) with respect to t, using (1.7) and integrating by
parts, we obtain

F ′2(t)

=

∫
Ω

[
βutt + γAutt + δAut + %Au−

∫ t

0

g(t− s)Au(s)ds− α%

δ
utt

]
×
∫ t

0

g(t− s)
[(
utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

]
dsdx

− g(0)

∫
Ω

(
uttt + αutt +

α%

δ
ut

)
(utt + αut) dx

−
∫

Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g′(t− s)
[(
utt + αut +

α%

δ
u
)

(t)

−α%
δ
u(s)

]
dsdx−

∫ t

0

g(s)ds
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

=

∫
Ω

[(
β − α%

δ

)
utt +

δ

α

(
Autt + αAut +

α%

δ
Au
)

+

(
γ − δ

α

)
Autt

−
∫ t

0

g(s)dsAu(t)

] ∫ t

0

g(t− s)
[(
utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

]
dsdx

−
∫ t

0

g(s)ds
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2
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−
∫

Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g′(t− s)
[(
utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

]
dsdx

+

(∫ t

0

g(s)ds

)∫
Ω

∫ t

0

g(t− s) (Au(t)−Au(s)) ds(utt + αut)dx

+
α%

δ

∫
Ω

(∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s)

)
ds

)2

dx

− g(0)

∫
Ω

(
uttt + αutt +

α%

δ
ut

)
(utt + αut) dx.

Now, we estimate the terms in the right-hand side of the above identity.
Using Young’s inequality, we obtain, for 0 < ε1 < 1,∫

Ω

[(
β − α%

δ

)
utt +

δ

α

(
Autt + αAut +

α%

δ
Au
)

+

(
γ − δ

α

)
Autt

−
∫ t

0

g(s)dsAu(t)

] ∫ t

0

g(t− s)
[(
utt + αut +

α%

δ
u
)
− α%

δ
u(s)

]
dsdx

≤
[
λ0(%− l)2

2
+

(
δ2

α2
+ %2

)
+ 2(%− l)2

]
ε1

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+
2
(
β − α%

δ

)2
ε1

‖utt‖2 +

[
α2%2(%− l)2λ0ε1

2δ2
+

(%− l)2

2ε1

+2(%− l)2
(α%
δ

)2

ε1 +
(%− l)2

2

(α%
δ

)2
] ∥∥∥A 1

2u
∥∥∥2

+

[
(%− l)2

2ε1
+

1

2ε1

(
γ − δ

α

)2

+
1

2

(α%
δ

)2
(
γ − δ

α

)2
]∥∥∥A 1

2utt

∥∥∥2

+
(%− l)2α2

2ε1

∥∥∥A 1
2ut

∥∥∥2

+

(
ε1α

2%2λ0

4δ2
+

1

4ε1
+ 1

)
Cν

(
h ◦ A 1

2u
)

(t)

and (∫ t

0

g(s)ds

)∫
Ω

∫ t

0

g(t− s) (Au(t)−Au(s)) ds(utt + αut)dx

=

(∫ t

0

g(s)ds

)∫
Ω

∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s)

)
ds(A 1

2utt + αA 1
2ut)dx

≤ 1

2ε1
Cν

(
h ◦ A 1

2u
)

(t) +
(%− l)2

2
ε1

∥∥∥A 1
2utt + αA 1

2ut

∥∥∥2

≤ 1

2ε1
Cν

(
h ◦ A 1

2u
)

(t) + (%− l)2ε1

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

+ (%− l)2
(α%
δ

)2

ε1

∥∥∥A 1
2u
∥∥∥2

.

Also, we have

α%

δ

∫
Ω

(∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s)

)
ds

)2

dx ≤α%
δ
Cν

(
h ◦ A 1

2u
)

(t)

and

− g(0)

∫
Ω

(
uttt + αutt +

α%

δ
ut

)
(utt + αut) dx
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≤G(t)

4

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
g2(0)

G(t)
‖utt + αut‖2

≤G(t)

4

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
2g2(0)

G(t)
‖utt‖2 +

2λ0g
2(0)α2

G(t)

∥∥∥A 1
2ut

∥∥∥2

.

Exploiting Young’s inequality and (A5), we get

−
∫

Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g′(t− s)
[(
utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

]
dsdx

=−
∫

Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g′(t− s) (utt + αut) (t)dsdx

− α%

δ

∫
Ω

(
uttt + αutt +

α%

δ
ut

)∫ t

0

g′(t− s)(u(t)− u(s))dsdx

≤G(t)

2

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
2g2(0)

G(t)
‖utt‖2 +

2λ0α
2g2(0)

G(t)

∥∥∥A 1
2ut

∥∥∥2

+
2α2%2λ0

G(t)δ2

(
α2Cν + 1

) (
h ◦ A 1

2u
)

(t).

A combination of all the above estimates gives the desired result. �

As in [11], we introduce the following auxiliary functional

F3(t) =

∫
Ω

(uttt + αutt)utdx+
%

2

∥∥∥A 1
2u
∥∥∥2

.

Lemma 4.4. Assume that (A1)-(A5) hold. Then the functional F3(t) satisfies the
estimate

F ′3(t) ≤−
(

3δ

8
− ε2δ

4

)∥∥∥A 1
2ut

∥∥∥2

+
ε2δ

3

8α2%2λ0

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
2γ2

δ

∥∥∥A 1
2utt

∥∥∥2

+

(
ε2δ

3

4%2λ0
+

4α2%2λ0

ε2δ3
+

2β2λ0

δ

)
‖utt‖2

+
1

δ
Cν

(
h ◦ A 1

2u
)

(t) +
2(%− l)2

δ

∥∥∥A 1
2u
∥∥∥2

,(4.5)

where 0 < ε2 < 1.

Proof. Using the equation (1.7), a direct computation leads to the following identity

F ′3(t) =

∫
Ω

(uttt + αutt)uttdx+

∫
Ω

(utttt + αuttt)utdx+ %
(
A 1

2u,A 1
2ut

)
=(uttt, utt) + α‖utt‖2 − β(utt, ut)− γ

(
A 1

2utt,A
1
2ut

)
− δ

∥∥∥A 1
2ut

∥∥∥2

+

(∫ t

0

g(t− s)A 1
2u(s)ds,A 1

2ut

)
.(4.6)

Now, the first and third terms in the right-hand side of (4.6) can be estimated
as follows:

(uttt, utt)

≤ ε2δ
3

16α2%2λ0
‖uttt‖2 +

4α2%2λ0

ε2δ3
‖utt‖2

≤ ε2δ
3

8α2%2λ0

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
ε2δ

3

8α2%2λ0

∥∥∥αutt +
α%

δ
ut

∥∥∥2

+
4α2%2λ0

ε2δ3
‖utt‖2
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≤ ε2δ
3

8α2%2λ0

∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+ α2

(
ε2δ

3

4α2%2λ0
+

4%2λ0

ε2δ3

)
‖utt‖2 +

ε2δ

4

∥∥∥A 1
2ut

∥∥∥2

and

−β(utt, ut) ≤
2β2λ0

δ
‖utt‖2 +

δ

8λ0
‖ut‖2 ≤

2β2λ0

δ
‖utt‖2 +

δ

8

∥∥∥A 1
2ut

∥∥∥2

,

where 0 < ε2 < 1.
Using Young’s inequality and Lemma 2.1, we get

−γ
(
A 1

2utt,A
1
2ut

)
≤ 2γ2

δ

∥∥∥A 1
2utt

∥∥∥2

+
δ

8

∥∥∥A 1
2ut

∥∥∥2

and (∫ t

0

g(t− s)A 1
2u(s)ds,A 1

2ut

)
=

(∫ t

0

g(t− s)
(
A 1

2u(s)−A 1
2u(t) +A 1

2u(t)
)
ds,A 1

2ut

)
≤1

δ

∫
Ω

(∫ t

0

g(t− s)
(
A 1

2u(t)−A 1
2u(s)

)
ds

)2

dx

+
δ

4

∥∥∥A 1
2ut

∥∥∥2

+
2(%− l)2

δ

∥∥∥A 1
2u
∥∥∥2

+
δ

8

∥∥∥A 1
2ut

∥∥∥2

≤1

δ
Cν

(
h ◦ A 1

2u
)

(t) +
3δ

8

∥∥∥A 1
2ut

∥∥∥2

+
2(%− l)2

δ

∥∥∥A 1
2u
∥∥∥2

.

Then, combining the above inequalities, we obtain the desired result. �

Lemma 4.5. Assume that (A1)-(A5) hold. Then the functional F4(t) defined by

F4(t) =

∫
Ω

∫ t

0

f(t− s)
∣∣∣A 1

2u(s)
∣∣∣2 dsdx

satisfies the estimate

F ′4(t) ≤ −1

2

(
g ◦ A 1

2u
)

(t) + 3(%− l)
∥∥∥A 1

2u
∥∥∥2

,(4.7)

where f(t) =
∫∞
t
g(s)ds.

Proof. Noting that f ′(t) = −g(t), we see that

F ′4(t)

=f(0)
∥∥∥A 1

2 u
∥∥∥2

−
∫

Ω

∫ t

0

g(t− s)
∣∣∣A 1

2 u(s)
∣∣∣2 dsdx

=f(0)
∥∥∥A 1

2 u
∥∥∥2

−
∫

Ω

∫ t

0

g(t− s)
∣∣∣A 1

2 u(s)−A
1
2 u(t)

∣∣∣2 dsdx
− 2

∫
Ω

A
1
2 u

∫ t

0

g(t− s)
(
A

1
2 u(s)−A

1
2 u(t)

)
dsdx−

(∫ t

0

g(s)ds

)∥∥∥A 1
2 u
∥∥∥2

=−
(
g ◦ A

1
2 u
)
(t)− 2

∫
Ω

A
1
2 u

∫ t

0

g(t− s)
(
A

1
2 u(s)−A

1
2 u(t)

)
dsdx+ f(t)

∥∥∥A 1
2 u
∥∥∥2

.

Exploiting Young’s inequality and the fact
∫ t

0
g(s)ds ≤ %− l, we obtain

− 2

∫
Ω

A 1
2u

∫ t

0

g(t− s)
(
A 1

2u(s)−A 1
2u(t)

)
dsdx
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≤2(%− l)
∥∥∥A 1

2u
∥∥∥2

+
1

2(%− l)

(∫ t

0

g(t− s)ds
)∫

Ω

∫ t

0

g(t− s)
(
A 1

2u(s)−A 1
2u(t)

)2

dsdx

≤2(%− l)
∥∥∥A 1

2u
∥∥∥2

+
1

2

(
g ◦ A 1

2u
)

(t).

Moreover, taking account of f(t) ≤ f(0) = %− l, we have

f(t)
∥∥∥A 1

2u
∥∥∥2

≤ (%− l)
∥∥∥A 1

2u
∥∥∥2

.

Combining the above estimates, we arrive at the desired result. �

Lemma 4.6. Assume that (A1)− (A5) hold. The functional L(t) defined by

L(t) = NE(t) + F1(t) +N2F2(t) +N3F3(t)

satisfies, for a suitable choice of N,N2, N3,

L(t) ∼ E(t)

and the estimate, for all t ≥ t0,

L′(t) ≤− c
[
‖utt‖2 +

∥∥∥A 1
2utt

∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

+
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
u
∥∥∥2
]
− 4(%− l)

∥∥∥A 1
2u
∥∥∥2

+
1

8

(
g ◦ A 1

2u
)

(t),(4.8)

where t0 has been introduced in Remark 2.1.

Proof. Combining Lemmas 4.1-4.4 and recalling that g′ = νg−h, we obtain, for all
t ≥ t0,

L′(t)

≤−

[
α
(
β − α%

δ

)
N − 2αλ0

δ

(
β − α%

δ

)2

−

(
2
(
β − α%

δ

)2
ε1

+
4g2(0)

G(t)

)
N2

−
(
ε2δ

3

4%2λ0
+

4α2%2λ0

ε2δ3
+

2β2λ0

δ

)
N3

]
‖utt‖2 −

[(
α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

)
N

+

(
δg(t)

2(α− ε)%
− δg(t)

2α%

)
N − 2α

δ

(
γ − δ

α

)2

−

(
(%− l)2

2ε1
+

1

2ε1

(
γ − δ

α

)2

+
1

2

(α%
δ

)2
(
γ − δ

α

)2
)
N2 −

2γ2

δ
N3

]∥∥∥A 1
2utt

∥∥∥2

− α

2
N
(
g′′ ◦ A 1

2u
)

(t)

−
[(

3δ

8
− ε2δ

4

)
N3 −

(
(%− l)2α2

2ε1
+

4λ0g
2(0)α2

G(t)

)
N2

] ∥∥∥A 1
2ut

∥∥∥2

−
(
G(t)

4
N2 − 1− ε2δ

3N3

8α2%2λ0

)∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

+
ε%ν

2δ
N
(
g ◦ A 1

2u
)

(t)

−
[
δ

2α
−
(
λ0(%− l)2

2
+

(
δ2

α2
+ %2

)
+ 3(%− l)2

)
ε1N2

]
×
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
A 1

2u
∥∥∥2
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−
[
−αg

′(t)

2
N − 2α(%− l)2

δ
−
(
α2%2(%− l)2λ0ε1

2δ2
+

(%− l)2

2ε1

+3(%− l)2
(α%
δ

)2

ε1 +
(%− l)2

2

(α%
δ

)2
)
N2 −

2(%− l)2

δ
N3

] ∥∥∥A 1
2u
∥∥∥2

−
[
ε%

2δ
N − 2α

δ
Cν −

((
ε1α

2%2λ0

4δ2
+

3

4ε1
+ 1 +

α%

δ
+

2α4%2λ0

G(t)δ2

)
Cν

+
2α2%2λ0

G(t)δ2

)
N2 −

N3

δ
Cν

](
h ◦ A 1

2u
)

(t).

At this point, we need to choose our constants very carefully. First, we choose

ε1 =
αδ

2N2 [λ0α2(%− l)2 + 2(δ2 + α2%2) + 6α2(%− l)2]
and ε2 =

1

N3
.

The above choice yields

L′(t)

≤ −

[
α
(
β − α%

δ

)
N − 2αλ0

δ

(
β − α%

δ

)2

−

(
2
(
β − α%

δ

)2
ε1

+
4g2(0)

G(t)

)
N2

− δ3

4%2λ0
− 4α2%2λ0

δ3
N2

3 −
2β2λ0

δ
N3

]
‖utt‖2 −

[(
α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

)
N

+

(
δg(t)

2(α− ε)%
− δg(t)

2α%

)
N − 2α

δ

(
γ − δ

α

)2

−

(
(%− l)2

2ε1
+

1

2ε1

(
γ − δ

α

)2

+
1

2

(α%
δ

)2
(
γ − δ

α

)2
)
N2 −

2γ2

δ
N3

]∥∥∥A 1
2utt

∥∥∥2

− α

2
N
(
g′′ ◦ A 1

2u
)

(t)

−
[

3δ

8
N3 −

δ

4
−
(

(%− l)2α2

2ε1
+

4λ0g
2(0)α2

G(t)

)
N2

] ∥∥∥A 1
2ut

∥∥∥2

+
ε%ν

2δ
N
(
g ◦ A 1

2u
)

(t)−
(
G(t)

4
N2 − 1− δ3

8α2%2λ0

)∥∥∥uttt + αutt +
α%

δ
ut

∥∥∥2

− δ

4α

∥∥∥A 1
2utt + αA 1

2ut +
α%

δ
A 1

2u
∥∥∥2

−
[
−αg

′(t)

2
N − 2α(%− l)2

δ
−
(
α2%2(%− l)2λ0ε1

2δ2
+

(%− l)2

2ε1
+ 3(%− l)2

(α%
δ

)2

ε1

+
(%− l)2

2

(α%
δ

)2
)
N2 −

2(%− l)2

δ
N3

] ∥∥∥A 1
2u
∥∥∥2

−
[
ε%

2δ
N − 2α

δ
Cν

−
((

ε1α
2%2λ0

4δ2
+

3

4ε1
+ 1 +

α%

δ
+

2α4%2λ0

G(t)δ2

)
Cν +

2α2%2λ0

G(t)δ2

)
N2

−N3

δ
Cν

](
h ◦ A 1

2u
)

(t).

Then, we choose N2 large enough so that

G(t)

4
N2 − 1− δ3

8α2%2λ0
> 0.

Next, we choose N3 large enough so that

3δ

8
N3 −

δ

4
−
(

(%− l)2α2

2ε1
+

4λ0g
2(0)α2

G(t)

)
N2 > 0.
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Now, as ν2g(s)
νg(s)−g′(s) < g(s), it is easy to show, using the Lebesgue dominated con-

vergence theorem, that

νCν =

∫ ∞
0

ν2g(s)

νg(s)− g′(s)
ds→ 0, as ν → 0.

Hence, there is 0 < ν0 < 1 such that if ν < ν0, then

νCν <
1

16
(

2α
δ +

(
ε1α2%2λ0

4δ2 + 3
4ε1

+ 1 + α%
δ + 2α4%2λ0

G(t)δ2

)
N2 + N3

δ

) .
Now, let us choose N large enough and choose ν satisfying

ε%

4δ
N − 2α2%2λ0

G(t)δ2
N2 > 0 and ν =

δ

4ε%N
< ν0,

which means

ε%

2δ
N − 2α2%2λ0

G(t)δ2
N2

− Cν
(

2α

δ
+

(
ε1α

2%2λ0

4δ2
+

3

4ε1
+ 1 +

α%

δ
+

2α4%2λ0

G(t)δ2

)
N2 +

N3

δ

)
>
ε%

2δ
N − 2α2%2λ0

G(t)δ2
N2 −

1

16ν
=
ε%

4δ
N − 2α2%2λ0

G(t)δ2
N2 > 0

and

α
(
β − α%

δ

)
N − 2αλ0

δ

(
β − α%

δ

)2

−

(
2
(
β − α%

δ

)2
ε1

+
4g2(0)

G(t)

)
N2

− δ3

4%2λ0
− 4α2%2λ0

δ3
N2

3 −
2β2λ0

δ
N3 > 0,(

α

(
γ − δ

α

)
− δg(0)

2(α− ε)%

)
N +

(
δg(t)

2(α− ε)%
− δg(t)

2α%

)
N − 2α

δ

(
γ − δ

α

)2

−

(
(%− l)2

2ε1
+

1

2ε1

(
γ − δ

α

)2

+
1

2

(α%
δ

)2
(
γ − δ

α

)2
)
N2 −

2γ2

δ
N3 > 0,

− αg′(t)

2
N − 2α(%− l)2

δ
−
(
α2%2(%− l)2λ0ε1

2δ2
+

(%− l)2

2ε1
+ 3(%− l)2

(α%
δ

)2

ε1

+
(%− l)2

2

(α%
δ

)2
)
N2 −

2(%− l)2

δ
N3 > 4(%− l).

So we arrive at, for positive constant c,

L′(t) ≤− c
[
‖utt‖2 +

∥∥∥A 1
2utt

∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

+
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
u
∥∥∥2
]
− 4(%− l)

∥∥∥A 1
2u
∥∥∥2

+
1

8

(
g ◦ A 1

2u
)

(t).

On the other hand, from Lemma 3.2, we find that

|L(t)−NE(t)|

≤
∫

Ω

∣∣∣utt + αut +
α%

δ
u
∣∣∣ ∣∣∣uttt + αutt +

α%

δ
ut

∣∣∣ dx
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+N2

∫
Ω

∣∣∣uttt + αutt +
α%

δ
ut

∣∣∣ ∫ t

0

g(t− s)

×
∣∣∣(utt + αut +

α%

δ
u
)

(t)− α%

δ
u(s)

∣∣∣ dsdx
+N3

∫
Ω

|uttt + αutt| |ut|dx+N3
%

2

∥∥∥A 1
2u
∥∥∥2

≤cE(t).

Therefore, we can choose N even large (if needed) so that (4.8) is satisfied. �

5. Proof of the general decay result

In this section, we will give an estimate to the decay rate for the problem (1.7)-
(1.8).

Proof of Theorem 2.2. Our proof starts with the observation that, for any t ≥ t0,∫ t0

0

g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤− g(0)

a

∫ t0

0

g′(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤− g(0)

a

∫ t

0

g′(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤− cE′(t),

which are derived from (2.2) and Lemma 4.1 and can be used in (4.8).
Taking F(t) = L(t) + cE(t), which is obviously equivalent to E(t), we get, for all

t ≥ t0,

L′(t)

≤− c
[
‖utt‖2 +

∥∥∥A 1
2utt

∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

+
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
u
∥∥∥2
]

− 4(%− l)
∥∥∥A 1

2u
∥∥∥2

+
1

8

(
g ◦ A 1

2u
)

(t)

≤−mE(t) + c
(
g ◦ A 1

2u
)

(t)

≤−mE(t)− cE′(t) + c

∫ t

t0

g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds,

where m is a positive constant. Then, we obtain that

F ′(t) = L′(t) + cE′(t)

≤ −mE(t) + c

∫ t

t0

g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds.(5.1)

We consider the following two cases relying on the ideas presented in [31].
(i) M(t) is linear.
We multiply (5.1) by ξ(t), then on account of (A1)-(A4) and Lemma 4.1, we

obtain, for all t ≥ t0,

ξ(t)F ′(t) ≤−mξ(t)E(t) + cξ(t)

∫ t

t0

g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds
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≤−mξ(t)E(t) + c

∫ t

t0

ξ(s)g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤−mξ(t)E(t)− c
∫ t

t0

g′(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤−mξ(t)E(t)− c
∫ t

0

g′(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤−mξ(t)E(t)− cE′(t).
Therefore,

ξ(t)F ′(t) + cE′(t) ≤ −mξ(t)E(t).

As ξ(t) is non-increasing and F(t) ∼ E(t), we have

ξ(t)F(t) + cE(t) ∼ E(t)

and

(ξF + cE)′(t) ≤ −mξ(t)E(t), ∀ t ≥ t0.
It follows immediately that

E′(t) ≤ −mξ(t)E(t), ∀ t ≥ t0.

We may now integrate over (t0, t) to conclude that, for two positive constants k1

and k2

E(t) ≤ k2 exp

(
−k1

∫ t

t0

ξ(s)ds

)
, ∀ t ≥ t0.

By the continuity of E(t), we have

E(t) ≤ k2 exp

(
−k1

∫ t

0

ξ(s)ds

)
, ∀ t > 0.

(ii) M is nonlinear.
First, we define the functional

L(t) = L(t) + F4(t).

Obviously, L(t) is nonnegative. And, by Lemma 4.5 and Lemma 4.6, there exists
b > 0 such that

L′(t) =L′(t) + F ′4(t)

≤− c
[
‖utt‖2 +

∥∥∥A 1
2utt

∥∥∥2

+
∥∥∥uttt + αutt +

α%

δ
ut

∥∥∥2

+
∥∥∥A 1

2utt + αA 1
2ut +

α%

δ
u
∥∥∥2
]
− (%− l)

∥∥∥A 1
2u
∥∥∥2

− 3

8

(
g ◦ A 1

2u
)

(t)

≤− bE(t).

Therefore, integrating the above inequality over (t0, t), we see at once that

−L(t0) ≤ L(t)− L(t0) ≤ −b
∫ t

t0

E(s)ds.

It is sufficient to show that ∫ ∞
0

E(s)ds <∞(5.2)
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and

E(t) ≤ c

t− t0
, ∀t > t0.

Now, we define a functional λ(t) by

λ(t) := −
∫ t

t0

g′(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds.

Clearly, we have

λ(t) ≤−
∫ t

0

g′(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

≤− cE′(t), ∀ t ≥ t0.(5.3)

After that, we define another functional I(t) by

I(t) := q

∫ t

t0

∥∥∥A 1
2u(t)−A 1

2u(t− s)
∥∥∥2

ds.

Now, the following inequality holds under Lemma 4.1 and (5.2) that∫ t

t0

∥∥∥A 1
2u(t)−A 1

2u(t− s)
∥∥∥2

ds ≤2

∫ t

t0

(∥∥∥A 1
2u(t)

∥∥∥2

+
∥∥∥A 1

2u(t− s)
∥∥∥2
)
ds

≤4

∫ t

t0

(E(t) + E(t− s)) ds

≤8

∫ t

t0

E(0)ds

<∞.(5.4)

Then (5.4) allows for a constant 0 < q < 1 chosen so that, for all t ≥ t0,

0 < I(t) < 1;(5.5)

otherwise we get an exponential decay from (5.1). Moreover, recalling that M is
strict convex on (0, r] and M(0) = 0, then

M(θx) ≤ θM(x), for 0 ≤ θ ≤ 1 and x ∈ (0, r].

From assumptions (A2) and (A4), (5.5) and Lemma 2.2, it follows that

λ(t) =−
∫ t

t0

g′(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

=
1

qI(t)

∫ t

t0

I(t)(−g′(s))q
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

≥ 1

qI(t)

∫ t

t0

I(t)ξ(s)M(g(s))q
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

≥ ξ(t)

qI(t)

∫ t

t0

M(I(t)g(s))q
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

≥ξ(t)
q
M

(
1

I(t)

∫ t

t0

I(t)g(s)q
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

)
=
ξ(t)

q
M

(
q

∫ t

t0

g(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

)
.
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According to M is an extension of M (see Remark 2.1(2)), we also have

λ(t) ≥ξ(t)
q
M

(
q

∫ t

t0

g(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds

)
.

In this way, ∫ t

t0

g(s)
∥∥∥A 1

2u(t)−A 1
2u(t− s)

∥∥∥2

ds ≤ 1

q
M
−1
(
qλ(t)

ξ(t)

)
and (5.1) becomes

F ′(t) ≤−mE(t) + c

∫ t

t0

g(s)

∫
Ω

∣∣∣A 1
2u(t)−A 1

2u(t− s)
∣∣∣2 dxds

≤−mE(t) + cM
−1
(
qλ(t)

ξ(t)

)
, ∀ t ≥ t0.(5.6)

Let 0 < ε0 < r, we define the functional F1(t) by

F1(t) := M
′
(
ε0
E(t)

E(0)

)
F(t) + E(t), ∀ t ≥ 0.

Then, recalling that E′(t) ≤ 0, M
′
> 0 and M

′′
> 0 as well as making use of

estimate (5.6), we deduce that F1(t) ∼ E(t) and also, for any t ≥ t0, we have

F ′1(t) ≤−mE(t)M
′
(
ε0
E(t)

E(0)

)
+ cM

′
(
ε0
E(t)

E(0)

)
M
−1
(
qλ(t)

ξ(t)

)
+ E′(t).(5.7)

Taking account of Lemma 2.3, we obtain

M
′
(
ε0
E(t)

E(0)

)
M
−1
(
qλ(t)

ξ(t)

)
≤M∗

(
H
′
(
ε0
E(t)

E(0)

))
+M

(
M
−1
(
qλ(t)

ξ(t)

))
=M

∗
(
M
′
(
ε0
E(t)

E(0)

))
+
qλ(t)

ξ(t)
(5.8)

where

M
∗
(
M
′
(
ε0
E(t)

E(0)

))
=M

′
(
ε0
E(t)

E(0)

)(
M
′)−1

(
M
′
(
ε0
E(t)

E(0)

))
−M

[(
M
′)−1

(
M
′
(
ε0
E(t)

E(0)

))]
=ε0

E(t)

E(0)
M
′
(
ε0
E(t)

E(0)

)
−M

(
ε0
E(t)

E(0)

)

≤ε0
E(t)

E(0)
M
′
(
ε0
E(t)

E(0)

)
.

(5.9)

So, combining (5.7), (5.8) and (5.9), we obtain

F ′1(t) ≤ −(mE(0)− cε0)
E(t)

E(0)
M
′
(
ε0
E(t)

E(0)

)
+ c

qλ(t)

ξ(t)
+ E′(t).

From this, we multiply the above inequality by ξ(t) to get

ξ(t)F ′1(t) ≤ −(mE(0)− cε0)ξ(t)
E(t)

E(0)
M
′
(
ε0
E(t)

E(0)

)
+ cqλ(t) + ξ(t)E′(t).
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Then, using the fact that, as ε0
E(t)
E(0) < r, M

′ (
ε0

E(t)
E(0)

)
= M ′

(
ε0

E(t)
E(0)

)
and (5.3),

we get

ξ(t)F ′1(t) ≤− (mE(0)− cε0)ξ(t)
E(t)

E(0)
M ′
(
ε0
E(t)

E(0)

)
− cE′(t).

Consequently, defining F2(t) = ξ(t)F1(t)+cE(t), then since F1(t) ∼ E(t), we arrive
at

F2(t) ∼ E(t),(5.10)

and with a suitable choice of ε0, we get, for some positive constant k and for any
t ≥ t0,

F ′2(t) ≤ −kξ(t)
(
E(t)

E(0)

)
M ′
(
ε0
E(t)

E(0)

)
.(5.11)

Define

R(t) =
λ1F2(t)

E(0)
, λ1 > 0 and M2(t) = tM ′(ε0t).

Moreover, it suffices to show that M ′2(t),M2(t) > 0 on (0, 1] by the strict convexity
of M on (0, r]. And, it is easily seen that

F ′2(t) ≤ −kξ(t)M2

(
E(t)

E(0)

)
.(5.12)

According to (5.10) and (5.12), there exist λ2, λ3 > 0 such that

λ2R(t) ≤ E(t) ≤ λ3R(t).(5.13)

Then, it follows that there exists k1 > 0 such that

k1ξ(t) ≤ −
R′(t)

M2(R(t))
, ∀ t ≥ t0.(5.14)

Next, we define

M1(t) :=

∫ r

t

1

sM ′(s)
ds.

And based on the properties of M , we know that M1 is strictly decreasing function
on (0, r] and lim

t→0
M1(t) = +∞.

Now, we integrate (5.14) over (t0, t) to obtain

−
∫ t

t0

R′(s)

M2(R(s))
ds ≥ k1

∫ t

t0

ξ(s)ds

so

k1

∫ t

t0

ξ(s)ds ≤M1 (ε0R(t))−M1 (ε0R(t0)) ,

which implies that

M1 (ε0R(t)) ≥ k1

∫ t

t0

ξ(s)ds.

It is easy to obtain that

R(t) ≤ 1

ε0
M−1

1

(
k1

∫ t

t0

ξ(s)ds

)
, ∀ t ≥ t0.(5.15)

A combining of (5.13) and (5.15) gives the proof. �
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