

## ON THE MUTUAL SINGULARITY OF MULTIFRACTAL MEASURES

ZIED DOUZI\* AND BILEL SELMI

(Communicated by Alain Miranville)

ABSTRACT. The aim of this article is to show that the multifractal Hausdorff and packing measures are mutually singular, which in particular provides an answer to Olsen's questions.

### 1. INTRODUCTION

The notion of singularity exponents or spectrum and generalized dimensions are the major components of the multifractal analysis. They were introduced with a view of characterizing the geometry of measure and to be linked with the multifractal spectrum which is the map which affects the Hausdorff or packing dimension of the iso-Hölder set

$$E(\alpha) = \left\{ x \in \text{supp } \mu; \lim_{r \rightarrow 0} \frac{\log(\mu(B(x, r)))}{\log r} = \alpha \right\}$$

for a given  $\alpha \geq 0$  and  $\text{supp } \mu$  is the topological support of probability measure  $\mu$  on  $\mathbb{R}^n$ ,  $B(x, r)$  is the closed ball of center  $x$  and radius  $r$ . It unifies the multifractal spectra to the multifractal Hausdorff (packing) function  $b_\mu(q)$  ( $B_\mu(q)$ ) via the Legendre transform [3, 6, 7], i.e.,

$$f_\mu(\alpha) := \dim_H(E(\alpha)) = \inf_{q \in \mathbb{R}} \{q\alpha + b_\mu(q)\}$$

or

$$F_\mu(\alpha) := \dim_P(E(\alpha)) = \inf_{q \in \mathbb{R}} \{q\alpha + B_\mu(q)\}.$$

In the last decay, there has been a great interest in understanding the fractal dimensions of the iso-Hölder sets and measures.

In the following we aim to introduce the general tools that will be applied next. We will review in brief the notion of multifractal Hausdorff and packing measures already introduced in [6]. The key ideas behind the fine multifractal formalism in [6] are certain measures of Hausdorff-packing type which are tailored to see only the multifractal decomposition sets  $E(\alpha)$ . These measures are natural multifractal generalizations of the centered Hausdorff measure and the packing measure and are motivated by the  $\tau_\mu$ -function which appears in the multifractal formalism. We first recall the definition of the multifractal Hausdorff measure and the multifractal packing measure. We start by introducing the multifractal Hausdorff and packing

Received by the editors February, 2020 and, in revised form, February, 2020.

2010 *Mathematics Subject Classification*. Primary: 28A20; Secondary: 28A80.

*Key words and phrases*. Multifractal analysis, homogeneous Moran sets.

\* Corresponding author: Zied Douzi.

measures. Let  $\mu$  be a compactly supported probability measure on  $\mathbb{R}^n$ . For  $q, t \in \mathbb{R}$ ,  $E \subseteq \mathbb{R}^n$  and  $\delta > 0$ , we define

$$\overline{\mathcal{P}}_{\mu, \delta}^{q, t}(E) = \sup \left\{ \sum_i \mu(B(x_i, r_i))^q (2r_i)^t \right\}, \quad E \neq \emptyset,$$

where the supremum is taken over all centered  $\delta$ -packing of  $E$ .

Moreover we can set  $\overline{\mathcal{P}}_{\mu, \delta}^{q, t}(\emptyset) = 0$ . The packing pre-measure is then given by

$$\overline{\mathcal{P}}_{\mu}^{q, t}(E) = \inf_{\delta > 0} \overline{\mathcal{P}}_{\mu, \delta}^{q, t}(E).$$

In a similar way, we define

$$\overline{\mathcal{H}}_{\mu, \delta}^{q, t}(E) = \inf \left\{ \sum_i \mu(B(x_i, r_i))^q (2r_i)^t \right\}, \quad E \neq \emptyset,$$

where the infimum is taken over all centered  $\delta$ -covering of  $E$ .

Moreover we can set  $\overline{\mathcal{H}}_{\mu, \delta}^{q, t}(\emptyset) = 0$ . The Hausdorff pre-measure is defined by

$$\overline{\mathcal{H}}_{\mu}^{q, t}(E) = \sup_{\delta > 0} \overline{\mathcal{H}}_{\mu, \delta}^{q, t}(E).$$

Especially, we have the conventions  $0^q = \infty$  for  $q \leq 0$  and  $0^q = 0$  for  $q > 0$ .

$\overline{\mathcal{H}}_{\mu}^{q, t}$  is  $\sigma$ -subadditive but not increasing and  $\overline{\mathcal{P}}_{\mu}^{q, t}$  is increasing but not  $\sigma$ -subadditive. That's why Olsen introduced the following modifications on the multifractal Hausdorff and packing measures  $\mathcal{H}_{\mu}^{q, t}$  and  $\mathcal{P}_{\mu}^{q, t}$ ,

$$\mathcal{H}_{\mu}^{q, t}(E) = \sup_{F \subseteq E} \overline{\mathcal{H}}_{\mu}^{q, t}(F) \quad \text{and} \quad \mathcal{P}_{\mu}^{q, t}(E) = \inf_{E \subseteq \bigcup_i E_i} \sum_i \overline{\mathcal{P}}_{\mu}^{q, t}(E_i).$$

It follows that  $\mathcal{H}_{\mu}^{q, t}$  and  $\mathcal{P}_{\mu}^{q, t}$  are metric outer measures and thus measures on the Borel family of subsets of  $\mathbb{R}^n$ . An important feature of the Hausdorff and packing measures is that  $\mathcal{P}_{\mu}^{q, t} \leq \overline{\mathcal{P}}_{\mu}^{q, t}$ . Moreover, there exists an integer  $\xi \in \mathbb{N}$ , such that  $\mathcal{H}_{\mu}^{q, t} \leq \xi \mathcal{P}_{\mu}^{q, t}$ . The measure  $\mathcal{H}_{\mu}^{q, t}$  is a multifractal generalization of the centered Hausdorff measure, whereas  $\mathcal{P}_{\mu}^{q, t}$  is a multifractal generalization of the packing measure. In fact, it is easily seen that if  $t \geq 0$ , then  $\mathcal{H}_{\mu}^{0, t} = \mathcal{H}^t$  and  $\mathcal{P}_{\mu}^{0, t} = \mathcal{P}^t$ , where  $\mathcal{H}^t$  denotes the  $t$ -dimensional centered Hausdorff measure and  $\mathcal{P}^t$  denotes the  $t$ -dimensional packing measure.

The measures  $\mathcal{H}_{\mu}^{q, t}$  and  $\mathcal{P}_{\mu}^{q, t}$  and the pre-measure  $\overline{\mathcal{P}}_{\mu}^{q, t}$  assign in the usual way a multifractal dimension to each subset  $E$  of  $\mathbb{R}^n$ . They are respectively denoted by  $b_{\mu}^q(E)$ ,  $B_{\mu}^q(E)$  and  $\Lambda_{\mu}^q(E)$  and satisfy

$$b_{\mu}^q(E) = \inf \left\{ t \in \mathbb{R}; \quad \mathcal{H}_{\mu}^{q, t}(E) = 0 \right\}, \quad B_{\mu}^q(E) = \inf \left\{ t \in \mathbb{R}; \quad \mathcal{P}_{\mu}^{q, t}(E) = 0 \right\},$$

$$\Lambda_{\mu}^q(E) = \inf \left\{ t \in \mathbb{R}; \quad \overline{\mathcal{P}}_{\mu}^{q, t}(E) = 0 \right\}.$$

The number  $b_{\mu}^q(E)$  is an obvious multifractal analogue of the Hausdorff dimension  $\dim_H(E)$  of  $E$  whereas  $B_{\mu}^q(E)$  and  $\Lambda_{\mu}^q(E)$  are obvious multifractal analogues of the packing dimension  $\dim_P(E)$  and the pre-packing dimension  $\Delta(E)$  of  $E$  respectively. In fact, it follows immediately from the definitions that

$$\dim_H(E) = b_{\mu}^0(E), \quad \dim_P(E) = B_{\mu}^0(E) \quad \text{and} \quad \Delta(E) = \Lambda_{\mu}^0(E).$$

Next, for  $q \in \mathbb{R}$ , we define the separator functions  $b_{\mu}$ ,  $B_{\mu}$  and  $\Lambda_{\mu}$  by

$$b_{\mu}(q) = b_{\mu}^q(\text{supp } \mu), \quad B_{\mu}(q) = B_{\mu}^q(\text{supp } \mu) \quad \text{and} \quad \Lambda_{\mu}(q) = \Lambda_{\mu}^q(\text{supp } \mu).$$

It is well known that the functions  $b_\mu$ ,  $B_\mu$  and  $\Lambda_\mu$  are decreasing and  $B_\mu$ ,  $\Lambda_\mu$  are convex and satisfying  $b_\mu \leq B_\mu \leq \Lambda_\mu$ .

The multifractal formalism based on the measures  $\mathcal{H}_\mu^{q,t}$  and  $\mathcal{P}_\mu^{q,t}$  and the dimension functions  $b_\mu$ ,  $B_\mu$  and  $\Lambda_\mu$  provides a natural, unifying and very general multifractal theory which includes all the hitherto introduced multifractal parameters, i.e., the multifractal spectra functions  $f_\mu$  and  $F_\mu$ , the multifractal box dimensions. The dimension functions  $b_\mu$  and  $B_\mu$  are intimately related to the spectra functions  $f_\mu$  and  $F_\mu$ , whereas the dimension function  $\Lambda_\mu$  is closely related to the upper box spectrum (more precisely, to the upper multifractal box dimension function  $\bar{C}_\mu$ , see [6, Propositions 2.19 and 2.22]).

It should be noted that the interest of mathematicians in singularly continuous measures and probability distributions were fairly weak, which can be explained, on the one hand, by the absence of adequate analytic apparatus for specification and investigation of these measures, and, on the other hand, by a widespread opinion about the absence of applications of these measures. Due to the fractal explosion and a deep connection between the theory of fractals and singular measures, the situation has radically changed in the last years. The multifractal and the fractal analysis allows one to perform a certain classification of these measures. Therefore, Olsen in [6, Questions 7.1 and 7.2], posed the following two questions: Let  $p, q \in \mathbb{R}$ .

(1) Assume that  $b_\mu$  is differentiable at  $p$  and  $q$  with  $b'_\mu(p) \neq b'_\mu(q)$ . Then, the following problem remains open:

$$\mathcal{H}_\mu^{p,b_\mu(p)} \llcorner_{\text{supp } \mu} \perp \mathcal{H}_\mu^{q,b_\mu(q)} \llcorner_{\text{supp } \mu}.$$

(2) Assume that  $B_\mu$  is differentiable at  $p$  and  $q$  with  $B'_\mu(p) \neq B'_\mu(q)$ . Then, the following problem remains open:

$$\mathcal{P}_\mu^{p,B_\mu(p)} \llcorner_{\text{supp } \mu} \perp \mathcal{P}_\mu^{q,B_\mu(q)} \llcorner_{\text{supp } \mu}.$$

The aim of this paper is to focus on the above questions relying on these multifractal measures and functions. More precisely, we study the mutual singularity of multifractal Hausdorff and packing measures on the homogeneous Moran sets and this result completely differ to Olsen's main theorems [6, Theorems 5.1 and 6.1] which are based on graph directed self-similar measures in  $\mathbb{R}^n$  with totally disconnected support, cookie-cutter measures and self-similar measures satisfying the significantly weaker open set condition [4, 5].

## 2. MAIN RESULT

Before we set our main result, let us recall the class of homogeneous Moran sets. We denote by  $\{n_k\}_{k \geq 1}$  a sequence of positive integers and  $\{c_k\}_{k \geq 1}$  a sequence of positive numbers satisfying

$$n_k \geq 2, \quad 0 < c_k < 1, \quad n_k c_k \leq 1 \quad \text{for } k \geq 1.$$

Let  $D_0 = \emptyset$ , and for any  $k \geq 1$ , set

$$D_{m,k} = \{(i_m, i_{m+1}, \dots, i_k); \quad 1 \leq i_j \leq n_j, \quad m \leq j \leq k\}$$

and  $D_k = D_{1,k}$ . Define  $D = \bigcup_{k \geq 1} D_k$ . If  $\sigma = (\sigma_1, \dots, \sigma_k) \in D_k$ ,  $\tau = (\tau_1, \dots, \tau_m) \in D_{k+1,m}$ , we denote  $\sigma * \tau = (\sigma_1, \dots, \sigma_k, \tau_1, \dots, \tau_m)$ .

**Definition 2.1.** Let  $J$  be a closed interval such that  $|J| = 1$ . We say the collection  $\mathcal{F} = \{J_\sigma, \sigma \in D\}$  of closed subsets of  $J$  fulfills the Moran structure if it satisfies the

following conditions:

- (a)  $J_\emptyset = J$ .
- (b) For all  $k \geq 0$  and  $\sigma \in D_k$ ,  $J_{\sigma*1}, J_{\sigma*2}, \dots, J_{\sigma*n_{k+1}}$  are subintervals of  $J_\sigma$ , and satisfy that  $J_{\sigma*i}^\circ \cap J_{\sigma*j}^\circ = \emptyset$  ( $i \neq j$ ), where  $A^\circ$  denotes the interior of  $A$ .
- (c) For any  $k \geq 1$ ,  $\sigma \in D_{k-1}$ ,  $c_k = \frac{|J_{\sigma*j}|}{|J_\sigma|}$ ,  $1 \leq j \leq n_k$  where  $|A|$  denotes the diameter of  $A$ .

Let  $\mathcal{F}$  be a collection of closed subintervals of  $J$  having homogeneous Moran structure. The set  $E(\mathcal{F}) = \bigcap_{k \geq 1} \bigcup_{\sigma \in D_k} J_\sigma$  is called an homogeneous Moran set determined by  $\mathcal{F}$ . It is convenient to denote  $M(J, \{n_k\}, \{c_k\})$  for the collection of homogeneous Moran sets determined by  $J$ ,  $\{n_k\}$  and  $\{c_k\}$ .

**Remark 1.** If  $\lim_{n \rightarrow +\infty} \sup_{\sigma \in D_n} |J_\sigma| > 0$ , then  $E$  contains interior points. Thus the measure and dimension properties will be trivial. We assume therefore  $\lim_{n \rightarrow +\infty} \sup_{\sigma \in D_n} |J_\sigma| = 0$ .

Let  $A = \{a, b\}$  be a two-letter alphabet, and  $A^*$  the free monoid generated by  $A$ . Let  $F$  be the homomorphism on  $A^*$ , defined by  $F(a) = ab$  and  $F(b) = a$ . It is easy to see that  $F^n(a) = F^{n-1}(a)F^{n-2}(a)$ . We denote by  $|F^n(a)|$  the length of the word  $F^n(a)$ , thus

$$F^n(a) = s_1 s_2 \cdots s_{|F^n(a)|}, \quad s_i \in A.$$

Therefore, as  $n \rightarrow +\infty$ , we get the infinite sequence

$$\omega = \lim_{n \rightarrow \infty} F^n(a) = s_1 s_2 s_3 \cdots s_n \cdots \in \{a, b\}^{\mathbb{N}}$$

which is called the Fibonacci sequence. For any  $n \geq 1$ , write  $\omega_n = \omega|_n = s_1 s_2 \cdots s_n$ . We denote by  $|\omega_n|_a$  the number of the occurrence of the letter  $a$  in  $\omega_n$ , and  $|\omega_n|_b$  the number of occurrence of  $b$ . Then  $|\omega_n|_a + |\omega_n|_b = n$ . It follows from [7, pp. 143], [8, pp. 271] that  $\lim_{n \rightarrow +\infty} \frac{|\omega_n|_a}{n} = \eta$ , where  $\eta^2 + \eta = 1$ .

Let  $0 < r_a < \frac{1}{2}$ ,  $0 < r_b < \frac{1}{3}$ ,  $r_a, r_b \in \mathbb{R}$ . In the Moran construction above, let

$$|J| = 1, \quad n_k = \begin{cases} 2, & \text{if } s_k = a \\ 3, & \text{if } s_k = b, \end{cases}$$

$$c_{k_j} = c_k = \begin{cases} r_a, & \text{if } s_k = a \\ r_b, & \text{if } s_k = b \end{cases}, \quad 1 \leq j \leq n_k.$$

Here, we consider a class of homogeneous Moran sets  $E$  which satisfy a special property called the strong separation condition (SSC), i.e., take  $J_\sigma \in \mathcal{F}$ . Let  $J_{\sigma*1}, J_{\sigma*2}, \dots, J_{\sigma*n_{k+1}}$  be the  $n_{k+1}$  basic intervals of order  $k+1$  contained in  $J_\sigma$  arranged from the left to the right, then we assume that for all  $1 \leq i \leq n_{k+1} - 1$ ,  $\text{dist}(J_{\sigma*i}, J_{\sigma*(i+1)}) \geq \Delta_k |J_\sigma|$ , where  $(\Delta_k)_k$  is a sequence of positive real numbers, such that  $0 < \Delta = \inf_k \Delta_k < 1$ . Then we construct the homogeneous Moran set relating to the Fibonacci sequence and denote it by  $E := E(\omega) = (J, \{n_k\}, \{c_k\})$ . By the construction of  $E$ , we have

$$|J_\sigma| = r_a^{|\omega_k|_a} r_b^{|\omega_k|_b}, \quad \forall \sigma \in D_k.$$

Let  $P_a = (P_{a_1}, P_{a_2})$ ,  $P_b = (P_{b_1}, P_{b_2}, P_{b_3})$  be probability vectors i.e.,  $P_{a_i} > 0$ ,  $P_{b_i} > 0$ , and  $\sum_{i=1}^2 P_{a_i} = 1$ ,  $\sum_{i=1}^3 P_{b_i} = 1$ . For any  $k \geq 1$  and any  $\sigma \in D_k$ , we know  $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$  where

$$\sigma_k \in \begin{cases} \{1, 2\}, & \text{if } s_k = a \\ \{1, 2, 3\}, & \text{if } s_k = b. \end{cases}$$

For  $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ , we define  $\sigma(a)$  as follows: let  $\omega_k = s_1 s_2 \cdots s_k$  and  $e_1 < e_2 < \cdots < e_{|\omega_k|_a}$  be the occurrences of the letter  $a$  in  $\omega_k$ , then  $\sigma(a) = \sigma_{e_1} \sigma_{e_2} \cdots \sigma_{e_{|\omega_k|_a}}$ . Similarly, let  $\delta_1 < \delta_2 < \cdots < \delta_{|\omega_k|_b}$  be the occurrences of the letter  $b$  in  $\omega_k$ , then  $\sigma(b) = \sigma_{\delta_1} \sigma_{\delta_2} \cdots \sigma_{\delta_{|\omega_k|_b}}$ .

Let

$$P_{\sigma(a)} = P_{\sigma_{e_1}} P_{\sigma_{e_2}} \cdots P_{\sigma_{e_{|\omega_k|_a}}} \quad \text{and} \quad P_{\sigma(b)} = P_{\sigma_{\delta_1}} P_{\sigma_{\delta_2}} \cdots P_{\sigma_{\delta_{|\omega_k|_b}}}.$$

Obviously

$$\sum_{\sigma \in D_k} P_{\sigma(a)} P_{\sigma(b)} = 1.$$

Let  $\mu$  be a mass distribution on  $E$ , such that for any  $\sigma \in D_k$ ,

$$\mu(J_\sigma) = P_{\sigma(a)} P_{\sigma(b)}.$$

Now we define an auxiliary function  $\beta(q)$  as follows: For each  $q \in \mathbb{R}$  and  $k \geq 1$ , there is a unique number  $\beta_k(q)$  such that

$$\sum_{\sigma \in D_k} (P_{\sigma(a)} P_{\sigma(b)})^q |J_\sigma|^{\beta_k(q)} = 1.$$

By a simple calculation, we get

$$\beta_k(q) = \frac{-\log \left( \sum_{i=1}^2 P_{a_i}^q \right) - \frac{k-|\omega_k|_a}{|\omega_k|_a} \log \left( \sum_{i=1}^3 P_{b_i}^q \right)}{\log r_a + \frac{k-|\omega_k|_a}{|\omega_k|_a} \log r_b}.$$

Clearly, for any  $k \geq 1$  we have  $\beta_k(1) = 0$ . Thus  $\beta'_k(q) < 0$  for all  $q$  and  $\beta_k(q)$  is a strictly decreasing function. Our auxiliary function is

$$\beta(q) = \lim_{k \rightarrow +\infty} \beta_k(q) = \frac{-\log \left( \sum_{i=1}^2 P_{a_i}^q \right) - \eta \log \left( \sum_{j=1}^3 P_{b_j}^q \right)}{\log r_a + \eta \log r_b},$$

where  $\eta^2 + \eta = 1$ . The function  $\beta$  is strictly decreasing and differentiable at  $q$ ,  $\lim_{q \rightarrow \mp\infty} \beta(q) = \pm\infty$  and  $\beta(1) = 0$ . Note that in [7, Theorem B] it is shown that the dimension of the level sets of the local Hölder exponent  $E(-\beta'(q))$  is given by

$$\dim_H E(-\beta'(q)) = \dim_P E(-\beta'(q)) = -q\beta'(q) + \beta(q).$$

**Definition 2.2.** Let  $\mu, \nu$  be two Borel probability measures on  $\mathbb{R}^n$ .  $\mu$  and  $\nu$  are said to be mutually singular and we write  $\mu \perp \nu$  if there exists a set  $A \subset \mathbb{R}^n$ , such that

$$\mu(A) = 0 = \nu(\mathbb{R}^n \setminus A).$$

In the following we show that the Olsen's multifractal Hausdorff and packing are mutually singular, which in particular provides an answer to Olsen's questions [6, Questions 7.1 and 7.2].

**Theorem 2.3.** *Suppose that  $E$  is a homogeneous Moran set satisfying (SSC) and  $\mu$  is the Moran measure on  $E$ . Then, for all  $p, q \in \mathbb{R}$  where  $\beta'(p) \neq \beta'(q)$  we have*

$$\mathcal{H}_\mu^{p, \beta(p)} \perp \mathcal{H}_\mu^{q, \beta(q)} \quad \text{and} \quad \mathcal{P}_\mu^{p, \beta(p)} \perp \mathcal{P}_\mu^{q, \beta(q)} \quad \text{on } E.$$

**Remark 2.** The results of Theorem 2.3 hold if we replace the multifractal Hausdorff and packing measures by the multifractal Hewitt-Stromberg measures (see [1, 2] for the precise definitions).

### 3. PROOF OF THE MAIN RESULT

In this section, we give a proof of the main theorem. Given  $q \in \mathbb{R}$ , it follows from [7, Proposition 3.1] that there exists a probability measure  $\nu_q$  supported by  $E$  such that for any  $k \geq 1$  and  $\sigma_0 \in D_k$ ,

$$\nu_q(J_{\sigma_0}) = \frac{\mu(J_{\sigma_0})^q |J_{\sigma_0}|^{\beta(q)}}{\sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)}}.$$

However, in [7] it is shown that

$$\limsup_{r \downarrow 0} \frac{\log \mu(B(x, r))}{\log r} = -\beta'(q), \quad \nu_q - \text{a.s}$$

which implies that  $\nu_q(E(-\beta'(q))) = 1$ . We therefore infer that if  $p, q \in \mathbb{R}$  with  $\beta'(p) \neq \beta'(q)$ , then

$$(1) \quad \nu_p \perp \nu_q.$$

We now prove the following three claims.

**Claim 1.** *We have*

$$0 < \liminf_{k \rightarrow +\infty} \sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)} \leq \limsup_{k \rightarrow +\infty} \sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)} < +\infty.$$

*Proof of Claim 1.* By a simple calculation, we can get  $\beta(q) - \beta_k(q) = O(\frac{1}{k})$ . Then,

$$\sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)} = |J_\sigma|^{\beta(q) - \beta_k(q)} \geq (\min\{r_a, r_b\})^{k(\beta(q) - \beta_k(q))},$$

which implies that

$$\liminf_{k \rightarrow +\infty} \sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)} > 0.$$

The proof of the

$$\liminf_{k \rightarrow +\infty} \sum_{\sigma \in D_k} \mu(J_\sigma)^q |J_\sigma|^{\beta(q)} < +\infty.$$

is identical to the proof of the statement in the first part and is therefore omitted.  $\square$

**Claim 2.** *There exists a constant  $\underline{K} > 0$  such that for any  $q \in \mathbb{R}$*

$$\underline{K} \nu_q(E) \leq \mathcal{H}_\mu^{q, \beta(q)}(E).$$

*Proof of Claim 2.* For convenience of presentation let  $J_n(x)$  be the  $n$ th-level basic set of  $E$  containing the point  $x$ . Let  $\delta > 0$  and  $\left(B(x_i, r_i)\right)_{i \in \mathbb{N}}$  be a centered  $\delta$ -covering of  $E$ . For each  $i$  choose  $\sigma(i) \in D_n$ , for any  $n \geq 1$  such that  $x_i \in J_{\sigma(i)}$ . For each  $i \in \mathbb{N}$  choose  $k_i, \ell_i \in \mathbb{N}$  such that

$$|J_{\sigma(i)|k_i+1}| \leq r_i < |J_{\sigma(i)|k_i}| \quad \text{and} \quad \Delta |J_{\sigma(i)|\ell_i+1}| \leq r_i < \Delta |J_{\sigma(i)|\ell_i}|,$$

which implies that

$$(2) \quad J_{\sigma(i)|k_i+1}(x_i) \subseteq B(x_i, r_i) \quad \text{and} \quad E \cap B(x_i, r_i) \subseteq J_{\sigma(i)|\ell_i+1}(x_i).$$

Then we have

$$\begin{aligned} \nu_q(E) &\leq \sum_i \nu_q(B(x_i, r_i)) \\ &\leq \sum_i \nu_q(J_{\sigma(i)|\ell_i+1}(x_i)) \\ &= \sum_i \frac{\mu(J_{\sigma(i)|\ell_i+1}(x_i))^q |J_{\sigma(i)|\ell_i+1}(x_i)|^{\beta(q)}}{\sum_{\sigma \in D_{\ell_i+1}} \mu(J_{\sigma})^q |J_{\sigma}|^{\beta(q)}} \\ (3) \quad &\leq C_1 \sum_i \mu(J_{\sigma(i)|\ell_i+1}(x_i))^q |J_{\sigma(i)|\ell_i+1}(x_i)|^{\beta(q)}. \end{aligned}$$

If  $\beta(q) \geq 0$ , then

$$|J_{\sigma(i)|\ell_i+1}|^{\beta(q)} \leq (2\Delta)^{\beta(q)} (2r_i)^{\beta(q)}.$$

If  $\beta(q) < 0$ , then

$$|J_{\sigma(i)|\ell_i+1}| = \begin{cases} r_a |J_{\sigma(i)|\ell_i}|, & s_{\ell_i+1} = a \\ r_b |J_{\sigma(i)|\ell_i}|, & s_{\ell_i+1} = b, \end{cases}$$

which implies that

$$|J_{\sigma(i)|\ell_i+1}| \geq \min\{r_a, r_b\} \cdot |J_{\sigma(i)|\ell_i}|,$$

thus we deduce that

$$2r_i \leq 2\Delta |J_{\sigma(i)|\ell_i}| \leq \frac{2\Delta}{\min\{r_a, r_b\}} |J_{\sigma(i)|\ell_i+1}|.$$

And this gives us

$$|J_{\sigma(i)|\ell_i+1}|^{\beta(q)} \leq \left(\frac{\min\{r_a, r_b\}}{2\Delta}\right)^{\beta(q)} (2r_i)^{\beta(q)}.$$

Which leads to the following inequality

$$(4) \quad |J_{\sigma(i)|\ell_i+1}|^{\beta(q)} \leq k_1 (2r_i)^{\beta(q)}$$

where  $k_1$  is a suitable constant. If  $q < 0$ , it follows from (2) that

$$(5) \quad \mu(J_{\sigma(i)|\ell_i+1}(x_i))^q \leq \mu(B(x_i, r_i))^q.$$

Since the measure  $\mu$  satisfies the doubling condition (see [7, Proposition 3.2]) then for all  $q \geq 0$ , there exists a constant  $A > 0$  such that

$$(6) \quad \mu(J_{\sigma(i)|\ell_i+1}(x_i))^q \leq \left(\frac{\mu(B(x_i, \frac{r_i}{\Delta}))}{\mu(B(x_i, r_i))}\right)^q \mu(B(x_i, r_i))^q \leq A^q \mu(B(x_i, r_i))^q.$$

It follows from (5) and (6) that there exists a constant  $C_2$  such that

$$(7) \quad \mu(J_{\sigma(i)|\ell_i+1}(x_i))^q \leq C_2 \mu(B(x_i, r_i))^q.$$

Now combining (3), (4) and (7) shows that

$$\nu_q(E) \leq k_1 C_1 C_2 \sum_i \mu(B(x_i, r_i))^q (2r_i)^{\beta(q)}.$$

Finally, this yields

$$\underline{K} \nu_q(E) \leq \overline{\mathcal{H}}_{\mu, \delta}^{q, \beta(q)}(E) \leq \overline{\mathcal{H}}_{\mu}^{q, \beta(q)}(E) \leq \mathcal{H}_{\mu}^{q, \beta(q)}(E)$$

where  $\underline{K} = \frac{1}{k_1 C_1 C_2}$ .  $\square$

**Claim 3.** *There exists a constant  $\overline{K} > 0$  such that for any  $q \in \mathbb{R}$*

$$\overline{\mathcal{P}}_{\mu}^{q, \beta(q)}(E) \leq \overline{K} \nu_q(E).$$

*Proof of Claim 3.* Let  $F$  be a closed subset  $E$  and  $D_{\delta}(F) = \{x \in E \mid \text{dist}(x, F) \leq \delta\}$ . Recall that, if  $\delta \searrow 0$ , then  $D_{\delta}(F) \searrow F$ . So, for all  $\varepsilon > 0$  there exists  $\delta_0$  satisfying

$$\nu_q(D_{\delta}(F)) \leq \nu_q(F) + \varepsilon, \quad \forall 0 < \delta < \delta_0.$$

Let  $(B(x_i, r_i))_{i \in \mathbb{N}}$  be a centered  $\delta$ -packing of  $F$ . For each  $i$  choose  $\sigma(i) \in D_n$ , for any  $n \geq 1$  such that  $x_i \in J_{\sigma(i)}$ . For each  $i \in \mathbb{N}$  choose  $k_i, \ell_i \in \mathbb{N}$  such that

$$|J_{\sigma(i)|k_i+1}| \leq r_i < |J_{\sigma(i)|k_i}| \quad \text{and} \quad \Delta |J_{\sigma(i)|\ell_i+1}| \leq r_i < \Delta |J_{\sigma(i)|\ell_i}|.$$

Notice that

$$J_{\sigma(i)|k_i+1}(x_i) \subseteq B(x_i, r_i) \quad \text{and} \quad E \cap B(x_i, r_i) \subseteq J_{\sigma(i)|\ell_i+1}(x_i).$$

Using a similar argument as that in Claim 2. There exist constants  $K_1, K_2 > 0$  such that

$$(2r_i)^{\beta(q)} \leq K_1 |J_{\sigma(i)|k_i+1}|^{\beta(q)}$$

and

$$\mu(B(x_i, r_i))^q \leq K_2 \mu(J_{\sigma(i)|k_i+1}(x_i))^q,$$

which implies that

$$\begin{aligned} \sum_i \mu(B(x_i, r_i))^q (2r_i)^{\beta(q)} &\leq K_1 K_2 \sum_i \mu(J_{\sigma(i)|k_i+1}(x_i))^q |J_{\sigma(i)|k_i+1}|^{\beta(q)} \\ &\leq K_1 K_2 \sum_i \left( \frac{\mu(J_{\sigma(i)|k_i+1}(x_i))^q |J_{\sigma(i)|k_i+1}|^{\beta(q)}}{\sum_{\sigma \in D_{k_i+1}} \mu(J_{\sigma})^q |J_{\sigma}|^{\beta(q)}} \right) \\ &\quad \times \sum_{\sigma \in D_{k_i+1}} \mu(J_{\sigma})^q |J_{\sigma}|^{\beta(q)} \\ &\leq C K_1 K_2 \sum_i \nu_q(J_{\sigma(i)|k_i+1}(x_i)) \\ &\leq C K_1 K_2 \sum_i \nu_q(B(x_i, r_i)) \\ &\leq C K_1 K_2 \nu_q(D_{\delta}(F)) \leq C K_1 K_2 (\nu_q(E) + \varepsilon). \end{aligned}$$

Which leads to the following inequality

$$\overline{\mathcal{P}}_{\mu}^{q,\beta(q)}(F) \leq \overline{K} \left( \nu_q(E) + \varepsilon \right), \quad \text{where } \overline{K} = CK_1K_2.$$

Tending  $\varepsilon$  to 0 now yields

$$\overline{\mathcal{P}}_{\mu}^{q,\beta(q)}(E) \leq \overline{K} \nu_q(E).$$

This complete the proof of Claim 3.  $\square$

*Proof of Theorem 2.3.* It follows from Claim 2 and Claim 3 and since  $\mu$  satisfies the doubling condition that

$$\underline{K} \nu_q \leq \mathcal{H}_{\mu}^{q,\beta(q)} \leq \mathcal{P}_{\mu}^{q,\beta(q)} \leq \overline{\mathcal{P}}_{\mu}^{q,\beta(q)} \leq \overline{K} \nu_q \quad \text{on } E.$$

Which implies that

$$\frac{1}{\overline{K}} \mathcal{H}_{\mu}^{q,\beta(q)} \leq \nu_q \leq \frac{1}{\underline{K}} \mathcal{H}_{\mu}^{q,\beta(q)} \quad \text{on } E$$

and

$$\frac{1}{\underline{K}} \mathcal{P}_{\mu}^{q,\beta(q)} \leq \nu_q \leq \frac{1}{\overline{K}} \mathcal{P}_{\mu}^{q,\beta(q)} \quad \text{on } E.$$

The desired result now follows from (1).  $\square$

**Remark 3.** It follows from Claim 2 and Claim 3 and since  $0 < \nu_q(E) \leq 1$  that

$$b_{\mu}^q(E) = B_{\mu}^q(E) = \Lambda_{\mu}^q(E) = \beta(q), \quad \forall q \in \mathbb{R}.$$

It is also instructive to consider the special case  $q = 0$ . In particular, we have

$$\dim_H(E) = \dim_P(E) = \Delta(E) = \beta(0) = \frac{-\log 2 - \eta \log 3}{\log r_a + \eta \log r_b},$$

where  $\eta^2 + \eta = 1$ .

#### ACKNOWLEDGMENTS

The authors are greatly indebted to the referee for his carefully reading the first submitted version of this paper and giving elaborate comments and valuable suggestions on revision so that the presentation can be greatly improved.

#### REFERENCES

- [1] N. Attia and B. Selmi, [Regularities of multifractal Hewitt-Stromberg measures](#), *Commun. Korean Math. Soc.*, **34** (2019), 213–230. MR 3912188
- [2] N. Attia and B. Selmi, [A multifractal formalism for Hewitt-Stromberg measures](#), *Journal of Geometric Analysis*, (2019).
- [3] F. Ben Nasr, I. Bhouri and Y. Heurteaux, [The validity of the multifractal formalism: results and examples](#), *Adv. in Math.*, **165** (2002), 264–284. MR 1887585
- [4] M. Das, [Pointwise Local Dimensions](#), Ph.D. Thesis, The Ohio State University, 1996. MR 2694644
- [5] M. Das, [Hausdorff measures, dimensions and mutual singularity](#), *Trans. Amer. Math. Soc.*, **357** (2005), 4249–4268. MR 2156710
- [6] L. Olsen, [A multifractal formalism](#), *Adv. in Math.*, **116** (1995), 82–196. MR 1361481
- [7] M. Wu, [The singularity spectrum  \$f\(\alpha\)\$  of some Moranfractals](#), *Monatsh Math.*, **144** (2005), 141–155. MR 2123961
- [8] W. Zhiying and W. Zhixiong, [Sequences of substitutions and related topics](#), *Adv Math (China)*, **18** (1989), 270–293.

ZIED DOUZI, ANALYSIS, PROBABILITY AND FRACTALS LABORATORY LR18ES17, FACULTY OF SCIENCES OF MONASTIR, DEPARTMENT OF MATHEMATICS, 5019-MONASTIR, TUNISIA

*Email address:* **douzi.fsm@gmail.com**

BILEL SELMI, ANALYSIS, PROBABILITY AND FRACTALS LABORATORY LR18ES17, FACULTY OF SCIENCES OF MONASTIR, DEPARTMENT OF MATHEMATICS, 5019-MONASTIR, TUNISIA

*Email address:* **bilel.selmi@fsm.rnu.tn**