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ON THE MUTUAL SINGULARITY OF
MULTIFRACTAL MEASURES

ZIED DOUZI* AND BILEL SELMI

(Communicated by Alain Miranville)

ABSTRACT. The aim of this article is to show that the multifractal Hausdorff
and packing measures are mutually singular, which in particular provides an
answer to Olsen’s questions.

1. INTRODUCTION

The notion of singularity exponents or spectrum and generalized dimensions are
the major components of the multifractal analysis. They were introduced with a
view of characterizing the geometry of measure and to be linked with the multifractal
spectrum which is the map which affects the Hausdorff or packing dimension of the
iso-Holder set

log <u (B(, r)))

E(a) = 1 =
(@) = q@ €suppp; lim og T @

for a given a > 0 and supp p is the topological support of probability measure p
on R™, B(x,r) is the closed ball of center z and radius r. It unifies the multifrac-
tal spectra to the multifractal Hausdorff (packing) function b,(q) (Bu(q)) via the
Legendre transform [3, 6, 7], i.e.,

fula) == dimg (E(a)) = qhelﬂfia {qa + b#(q)}

F,(o) :=dimp (E(a)) = érelﬂg {qa + B#(q)}.

In the last decay, there has been a great interest in understanding the fractal di-
mensions of the iso-Holder sets and measures.

In the following we aim to introduce the general tools that will be applied next.
We will review in brief the notion of multifractal Hausdorff and packing measures
already introduced in [6]. The key ideas behind the fine multifractal formalism in
[6] are certain measures of Hausdorff-packing type which are tailored to see only
the multifractal decomposition sets E(a). These measures are natural multifractal
generalizations of the centered Hausdorff measure and the packing measure and
are motivated by the 7,-function which appears in the multifractal formalism. We
first recall the definition of the multifractal Hausdorff measure and the multifractal
packing measure. We start by introducing the multifractal Hausdorff and packing
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measures. Let u be a compactly supported probability measure on R”. For q,t € R,
E CR™ and é§ > 0, we define

‘@ _Sup{z,u‘ xlarrl (2Ti)t}7 E#@,

where the supremum is taken over all centered J-packing of F.
—54,t . . .
Moreover we can set @Z,é(ﬁ)) = 0. The packing pre-measure is then given by

7B = inf ZU5(E).

“w

In a similar way, we define

jf = inf {Zu (wi,75) (Qri)t} , E#0,

where the infinimum is taken over all centered §-covering of E.
Moreover we can set %Z’; (0) = 0. The Hausdorfl pre-measure is defined by
A(E) = sup L5 (E).
6>0
Especially, we have the conventions 07 = oo for ¢ < 0 and 09 = 0 for ¢ > 0.
%Z’t is o-subadditive but not increasing and @Z’t is increasing but not o-

subadditive. That’s why Olsen introduced the following modifications on the mul-

tifractal Hausdorff and packing measures 7" and 22,

HINE) = gg%jf "(F) and 2%Y(E)= ECIBfE Z 7

In follows that Jﬁf’t and z@;{’t are metric outer measures and thus measures
on the Borel family of subsets of R™. An important feature of the Hausdorff and
packing measures is that @Z’t < ?Z’t. Moreover, there exists an integer £ € N,
such that %’L‘” <¢ @Z’t. The measure %’j}’t is a multifractal generalization of the
centered Hausdorff measure, whereas ﬁg’t is a multifractal generalization of the
packing measure. In fact, it is easily seen that if ¢ > 0, then )" = ' and
POt = D', where A" denotes the t-dimensional centered Hausdorff measure and
2 denotes the t-dimensional packing measure.

The measures 1" and Z1* and the pre-measure ?Z’t assign in the usual way

a multifractal dimension to each subset F of R™. They are respectively denoted by
bi(E), Bi(E) and Af(E) and satisfy

bi(E) =inf {t e Ry #04(B) =0}, ByE)=inf{teR; 23(E) =0},

Ni(B) =inf {te Ry 2} (E) = 0}.

The number bf, (E) is an obvious multifractal analogue of the Hausdorff dimension
dimg (E) of E whereas B{(E) and Af,(E) are obvious multifractal analogues of the
packing dimension dimp(FE) and the pre-packing dimension A(FE) of E respectively.
In fact, it follows immediately from the definitions that

dimy (E) = b)(E), dimp(E)=Bj(E) and A(E)=A)(E).
Next, for ¢ € R, we define the separator functions b,, B3, and A, by
bu(q) = bl ( supp u), B,(q) = By ( supp u) and A,(g) = Af ( supp p).
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It is well known that the functions b,, B, and A, are decreasing and B,,, A, are
convex and satisfying b, < B, < A,,.

The multifractal formalism based on the measures 3" and 2% and the di-
mension functions b, B, and A, provides a natural, unifying and very general mul-
tifractal theory which includes all the hitherto introduced multifractal parameters,
i.e., the multifractal spectra functions f, and F),, the multifractal box dimensions.
The dimension functions b, and B,, are intimately related to the spectra functions
fu and F},, whereas the dimension function A, is closely related to the upper box
spectrum (more precisely, to the upper multifractal box dimension function 6#, see
[6, Propositions 2.19 and 2.22]).

It should be noted that the interest of mathematicians in singularly continuous
measures and probability distributions were fairly weak, which can be explained, on
the one hand, by the absence of adequate analytic apparatus for specification and
investigation of these measures, and, on the other hand, by a widespread opinion
about the absence of applications of these measures. Due to the fractal explosion
and a deep connection between the theory of fractals and singular measures, the
situation has radically changed in the last years. The multifractal and the fractal
analysis allows one to perform a certain classification of these measures. Therefore,
Olsen in [6, Questions 7.1 and 7.2], posed the following two questions: Let p,q € R.

(1) Assume that b, is differentiable at p and ¢ with b],(p) # b},(¢). Then, the
following problem remains open:

7bu ’bu
(%ip (p) n %q (9)

2) Assume that B, is differentiable at p and ¢ with B’ (p) # B/ (q). Then, the
n p "
following problem remains open:

7Bu
1L gzz (a)

Lsupp p Lsupp p

7P Bu(p)

H Lsupp p Lsupp p

The aim of this paper is to focus on the above questions relying on these mul-
tifractal measures and functions. More precisely, we study the mutual singularity
of multifractal Hausdorff and packing measures on the homogeneous Moran sets
and this result completely differ to Olsen’s main theorems [6, Theorems 5.1 and
6.1] which are based on graph directed self-similar measures in R” with totally dis-
connected support, cookie-cutter measures and self-similar measures satisfying the

significantly weaker open set condition [4, 5].

2. MAIN RESULT

Before we set our main result, let us recall the class of homogeneous Moran sets.
We denote by {nr}r>1 a sequence of positive integers and {c;}r>1 a sequence of
positive numbers satisfying

ng>2, 0<c<1l, nrgep <1 fork>1.
Let Do = (), and for any k > 1, set

Dm,k:{(imaim-i-lw--aik); 1<ij<njv m<j<k}
and Dy = Dy . Define D = | | Dy. If o = (01,...,0%) € D, 7 = (71,...,7m) €
k>1
Diy1,m, we denote o 7 = (01,..., 0k, T, -, Tim) -

Definition 2.1. Let J be a closed interval such that |J| = 1. We say the collection
F ={J,,0 € D} of closed subsets of J fulfills the Moran structure if it satisfies the
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following conditions:

(a) J@ =J.

(b) For all k > 0 and 0 € Dy, Jos1, Jox2,- -1 Josn,,, are subintervals of J,, and
satisfy that J2,, N Jg,; =0 (i # j), where A° denotes the interior of A.

o*i o
_ ol

(c) Forany k > 1,0 € Dy_1, ¢ = AR 1 < j < ny, where |A] denotes the

diameter of A.

Let .%# be a collection of closed subintervals of J having homogeneous Moran
structure. The set E(.F) = ﬂ U Js is called an homogeneous Moran set de-
k>10€Dy,
termined by .#. It is convenient to denote M (J,{n},{cx}) for the collection of
homogeneous Moran sets determined by J, {n;} and {c}.

Remark 1. If lim sup |J,| > 0, then E contains interior points. Thus the mea-
n—-+oo oceD,

sure and dimension properties will be trivial. We assume therefore lim sup |J,|
n—+o0o oeD,,
=0.

Let A = {a,b} be a two-letter alphabet, and A* the free monoid generated by
A. Let F be the homomorphism on A*, defined by F(a) = ab and F(b) = a. It is
easy to see that F(a) = F"~!(a)F"2(a). We denote by |F"(a)| the length of the
word F™(a), thus

Fn(a)28132"~8|pn(a)‘, s; € A.

Therefore, as n — 400, we get the infinite sequence

w= lim F"(a) = 518283 8- € {a,b}N
n— oo
which is called the Fibonacci sequence. For any n > 1, write w, = w|,, = s152 -+ sp.
We denote by |w,|, the number of the occurrence of the letter a in w,,, and |wy],
the number of occurrence of b. Then |wy,|, + |wy|, = n. It follows from [7, pp. 143],
8, pp. 271] that Tim “le

n—-+oo
Let 0 < ry < %, 0<mr < %, ra, Ty € R. In the Moran construction above, let

= 1, where n? + 1 = 1.

_ |2, ifsp=a
[JI=1, "’“_{3, if s, = b,

Ck; Ck{ :Z: iiz::(g , 1< g <ng.
Here, we consider a class of homogeneous Moran sets E witch satisfy a special
property called the strong separation condition (SSC), i.e., take J, € .#. Let
Josts Jox2,s ooy Jowmy,, be the ngyq basic intervals of order k + 1 contained in .J,
arranged from the left to the right, then we assume that for all 1 <7 < ng4q — 1,
dist(Jowi, Jos(it1)) = ArlJo|, where (Ag)x is a sequence of positive real numbers,
such that 0 < A = i%f A < 1. Then we construct the homogeneous Moran set

relating to the Fibonacci sequence and denote it by F := E(w) = (J, {n}, {ck}).
By the construction of E, we have

Wi w
T, | = 7k "“’rz‘) b Vo e Dy
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Let P, = (Puy,Pay), Py = (Py,, Py, Py,) be probability vectors i.e., P,, >
2 3

0,P,, > 0, and ZPai = LZPI,I. = 1. For any £k > 1 and any ¢ € Dy, we
i=1 =
know o = o109 - - - 0}, where

{1,2}, ifsp=a
%k € { {1,2,3), if s, =0b.

For 0 = 0105 - 0y, we define o(a) as follows: let wy = s152---s, and e1 < ea <

- < €w,|, be the occurrences of the letter a in wy, then o(a) = o¢, 0, - - Tep,| -
Similarly, let 01 < §o < -+ < (5‘%‘17 be the occurrences of the letter b in wy, then
o(b) = 05,05, 06, -

Let

Py =Py, P, - P,

eyt Oey *

and Pa(b) =P, P,

...P ]
elwk‘a 0517 T83 U&‘wklb

Obviously

> Po@Po) =1
oeDy

Let p be a mass distribution on E, such that for any o € Dy,
H (JU) = Po‘(a)Po—(b)~

Now we define an auxiliary function 5(q) as follows: For each ¢ € R and k > 1,
there is a unique number S (g) such that

Z (Pa'(a) a’(b)) |J |,3k(‘I) =1L
o€Dy,

By a simple calculation, we get

2
—log (Z Pfl) k ‘w‘:)"“‘ log (Z Pq>
i—1

—|wi|

logr, + |"-’k|aa log 1y,

Br(q) =

Clearly, for any k > 1 we have f(1) = 0. Thus 3;,(¢) < 0 for all ¢ and Sx(q) is a

strictly decreasing function. Our auxiliary function is

2 3
—log (Z Pgi> —nlog ZPZZ
i=1 j=1

k—-+oo B logrq +nlogry

)

where 72 4+ = 1. The function f is strictly decreasing and differentiable at g,
limg 7o B(q) = £00 and (1) = 0. Note that in [7, Theorem B] it is shown that
the dimension of the level sets of the local Holder exponent E(—p8(q)) is given by

dimy E(—5'(q)) = dimp E(—5'(q)) = —¢B'(q) + B(q).

Definition 2.2. Let u, v be two Borel probability measures on R”. p and v are
said to be mutually singular and we write p L v if there exists a set A C R", such
that

W(A) = 0= p(R"\ A).
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In the following we show that the Olsen’s multifractal Hausdorff and packing are
mutually singular, which in particular provides an answer to Olsen’s questions [6,
Questions 7.1 and 7.2].

Theorem 2.3. Suppose that E is a homogeneous Moran set satisfying (SSC) and
i is the Moran measure on E. Then, for all p,q € R where 5'(p) # '(q) we have

%f,ﬁ(p)J_%fﬁ(Q) and :@5,5(17)1_@5,[3(11) on E.

Remark 2. The results of Theorem 2.3 hold if we replace the multifractal Hausdorff
and packing measures by the multifractal Hewitt-Stromberg measures (see [1, 2] for
the precise definitions).

3. PROOF OF THE MAIN RESULT

In this section, we give a proof of the main theorem. Given g € R, it follows from
[7, Proposition 3.1] that there exists a probability measure v, supported by E such
that for any £k > 1 and o¢ € Dy,

v () = U)ol
D SN VAT AL

o€Dy,

However, in [7] it is shown that

log 1u(B(z,
msup BHB@T) g,
rl0 lOgT‘

which implies that v, (E( — B’(q))) = 1. We therefore infer that if p,q € R with
B'(p) # B'(q), then
(1) vp L v,
We now prove the following three claims.
Claim 1. We have

L Ba) < 8(a)
0<1klgl+11£ w(Jo) | s lim sup Z )T |7 < oo

oeDy, k—r+oo oeDy,

Proof of Claim 1. By a simple calculation, we can get 8(q) — Bx(q) = O(%). Then,
Z (J) |, |B(Q) pA |ﬂ(q) Br(q) > (min {rq, r })k(ﬂ (@)— Bk(Q))
o€Dy

which implies that
lim inf p(Js)? |Jg|ﬁ(q) > 0.

The proof of the
lim inf 11 (Jo) 5P @ < oo

is identical to the proof of the statement in the first part and is therefore omitted.
O

Claim 2. There exists a constant K > 0 such that for any ¢ € R
Kv,(E) < %q,ﬁ(q)(E).
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Proof of Claim 2. For convenience of presentation let J,,(z) be the nth-level basic
set of £ containing the point x. Let § > 0 and (B (@4, 74) ) N be a centered J-
1E€
covering of E. For each i choose o (i) € D,,, for any n > 1 such that x; € J,;). For
each i € N choose k;,¥¢; € N such that
[ Totiikit1] <7i < [ Jo@y| and A [gyer1] <7 < Aoge],
which implies that
(2)  Jo(ykitr (@) ©€ B(wi,mi) and  EN B (xi,7i) C Jogi))e,+1(T4)-
Then we have

ve(E) < ZVq(B(l“i’Ti))
< > v (oot (@)

%

_ Z 1 (Jo )54 ()" | Jo (i) 10541 (i?z')|5(q)

- Z ,U(Ja)q ‘J0|5(f1)
O’EDziJrl
B(q)
(3) < O Y (oo (@) [Toes (@)
i
If 5(¢) = 0, then
|Jo(i)|&+1|ﬁ(q) < (2A)P@ (2”)/3(4).
If 6(¢) < 0, then
o |Jo@iye] s Se41=a
| Totiy1e+1] =
b |J0'(z)|ﬁt ,  Se41 = b?

which implies that

| To@)leiss | = min{ra,mo} - [ Toqoe,

)

thus we deduce that

2r; <20 | Jo(i)jes

2A
< 7 | o iy 41 ] -

And this gives us
i B(a)
8 min{7q, s
[owieal™ < (;A}) (2r;)"@ .
Which leads to the following inequality

(4) ’Jg(i)‘ei_‘_l’B(Q) <k (2r)°@
where k; is a suitable constant. If ¢ < 0, it follows from (2) that
D 1 (ot (@) < p (B (wi,7:))?.

Since the measure y satisfies the doubling condition (see [7, Proposition 3.2]) then
for all ¢ > 0, there exists a constant A > 0 such that

ACACIN))

,U(B (JUZ Tz)) ) H (B (xi”ri))q < Aq,u (B (fi,T'i))q.

6)  p (o () < (
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It follows from (5) and (6) that there exists a constant C5 such that

(7) K (Ja(i)|€i+1(33i))q < Cop (B (xi,13))?
Now combining (3), (4) and (7) shows that

vo(E) < k1C1C2 > pu(B(ai i) (2r5)" 7.

Finally, this yields

Kv,(E) < 2°5"(B) < 77

_ 1
where K = oG O

Claim 3. There exists a constant K > 0 such that for any ¢ € R
—4,8(0) 7
Z,(B) < Kuy(B).

Proof of Claim 5. Let F be a closed subset E and Ds(F) = {z € E | dist(z, F) <
6}. Recall that, if § \, 0, then Ds(F) N\, F. So, for all € > 0 there exists d
satisfying
ve(Ds(F)) < vg(F) +e, V0 <§ < do.
Let (B(mi,ri))‘ . be a centered d-packing of F. For each ¢ choose o(i) € D, for
1€

any n > 1 such that x; € J,(;). For each i € N choose k;, ¢; € N such that

o] S7i < [Jomm| and AlJoaen| < <AlJowe
Notice that

Jo@i)kit1 (i) € B (24,75) and  EN B (x4,75) € Jogiyje4+1(24)-
Using a similar argument as that in Claim 2. There exist constants K1, Ko > 0
such that
(2r)° @ < K, ’Ja(i)\kiJrl}B(Q)
and
1 (B (i,7:) < Kopt (i1 ()"

which implies that

S B )P < KikKe S i (oo (@0)) ogoiea
B(q)
jz (Jn(i)\kﬁl(xi))q {J”(i)‘ki+1|

< KKy a7 P@

P Z w(Jo) ‘Ja|

0€DK,; +1
% Z 1 (Jo)q ‘Ja|5(‘1)
0€Dk,; +1

< CKlKQZVq(Ja(i)mH(fUi))
S CKlKQZVq(B (J/'i,ri))
<

CK1Kqvy(Ds(F)) < CK Ky (uq(E) + 5).
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Which leads to the following inequality
7Py < ' (yq(E) —|—5), where K = CK,Ko.
Tending € to 0 now yields

717(B) < K vy(B).

This complete the proof of Claim 3.

431

O

Proof of Theorem 2.35. It follows from Claim 2 and Claim 3 and since p satisfies the

doubling condition that

Ky, < %qﬁ(q) < gzg,ﬁ(q) < @Z"B(Q) < Ky, on E.

Which implies that

%q,ﬂ(q) <y, < % %ﬁq,ﬁ(q) on E

= -

and
1 1
= {gzgﬁ(@ <y, < % @Z,B(q) on E.
The desired result now follows from (1).
Remark 3. It follows from Claim 2 and Claim 3 and since 0 < v,(E) < 1 that
bi(E) = B(E) = Al(E) = 6(q), VgeR
It is also instructive to consider the special case ¢ = 0. In particular, we have
_ —log2 —mnlog3

dimp (E) = dimp(E) = A(E) = 5(0) = logra +nlogry’

where 7% + 17 = 1.
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