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ON THE MUTUAL SINGULARITY OF

MULTIFRACTAL MEASURES

ZIED DOUZI∗ AND BILEL SELMI

(Communicated by Alain Miranville)

Abstract. The aim of this article is to show that the multifractal Hausdorff

and packing measures are mutually singular, which in particular provides an

answer to Olsen’s questions.

1. Introduction

The notion of singularity exponents or spectrum and generalized dimensions are
the major components of the multifractal analysis. They were introduced with a
view of characterizing the geometry of measure and to be linked with the multifractal
spectrum which is the map which affects the Hausdorff or packing dimension of the
iso-Hölder set

E(α) =

x ∈ suppµ; lim
r→0

log
(
µ
(
B(x, r)

))
log r

= α


for a given α ≥ 0 and suppµ is the topological support of probability measure µ
on Rn, B(x, r) is the closed ball of center x and radius r. It unifies the multifrac-
tal spectra to the multifractal Hausdorff (packing) function bµ(q) (Bµ(q)) via the
Legendre transform [3, 6, 7], i.e.,

fµ(α) := dimH

(
E(α)

)
= inf
q∈R

{
qα+ bµ(q)

}
or

Fµ(α) := dimP

(
E(α)

)
= inf
q∈R

{
qα+Bµ(q)

}
.

In the last decay, there has been a great interest in understanding the fractal di-
mensions of the iso-Hölder sets and measures.

In the following we aim to introduce the general tools that will be applied next.
We will review in brief the notion of multifractal Hausdorff and packing measures
already introduced in [6]. The key ideas behind the fine multifractal formalism in
[6] are certain measures of Hausdorff-packing type which are tailored to see only
the multifractal decomposition sets E(α). These measures are natural multifractal
generalizations of the centered Hausdorff measure and the packing measure and
are motivated by the τµ-function which appears in the multifractal formalism. We
first recall the definition of the multifractal Hausdorff measure and the multifractal
packing measure. We start by introducing the multifractal Hausdorff and packing
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measures. Let µ be a compactly supported probability measure on Rn. For q, t ∈ R,
E ⊆ Rn and δ > 0, we define

P
q,t

µ,δ(E) = sup

{∑
i

µ
(
B(xi, ri)

)q(
2ri
)t}

, E 6= ∅,

where the supremum is taken over all centered δ-packing of E.

Moreover we can set P
q,t

µ,δ(∅) = 0. The packing pre-measure is then given by

P
q,t

µ (E) = inf
δ>0

P
q,t

µ,δ(E).

In a similar way, we define

H
q,t

µ,δ(E) = inf

{∑
i

µ
(
B(xi, ri)

)q(
2ri
)t}

, E 6= ∅,

where the infinimum is taken over all centered δ-covering of E.

Moreover we can set H
q,t

µ,δ(∅) = 0. The Hausdorff pre-measure is defined by

H
q,t

µ (E) = sup
δ>0

H
q,t

µ,δ(E).

Especially, we have the conventions 0q =∞ for q ≤ 0 and 0q = 0 for q > 0.

H
q,t

µ is σ-subadditive but not increasing and P
q,t

µ is increasing but not σ-
subadditive. That’s why Olsen introduced the following modifications on the mul-
tifractal Hausdorff and packing measures H q,t

µ and Pq,t
µ ,

H q,t
µ (E) = sup

F⊆E
H

q,t

µ (F ) and Pq,t
µ (E) = inf

E⊆
⋃
i Ei

∑
i

P
q,t

µ (Ei).

In follows that H q,t
µ and Pq,t

µ are metric outer measures and thus measures
on the Borel family of subsets of Rn. An important feature of the Hausdorff and

packing measures is that Pq,t
µ ≤ P

q,t

µ . Moreover, there exists an integer ξ ∈ N,

such that H q,t
µ ≤ ξPq,t

µ . The measure H q,t
µ is a multifractal generalization of the

centered Hausdorff measure, whereas Pq,t
µ is a multifractal generalization of the

packing measure. In fact, it is easily seen that if t ≥ 0, then H 0,t
µ = H t and

P0,t
µ = Pt, where H t denotes the t-dimensional centered Hausdorff measure and

Pt denotes the t-dimensional packing measure.

The measures H q,t
µ and Pq,t

µ and the pre-measure P
q,t

µ assign in the usual way
a multifractal dimension to each subset E of Rn. They are respectively denoted by
bqµ(E), Bqµ(E) and Λqµ(E) and satisfy

bqµ(E) = inf
{
t ∈ R; H q,t

µ (E) = 0
}
, Bqµ(E) = inf

{
t ∈ R; Pq,t

µ (E) = 0
}
,

Λqµ(E) = inf
{
t ∈ R; P

q,t

µ (E) = 0
}
.

The number bqµ(E) is an obvious multifractal analogue of the Hausdorff dimension
dimH(E) of E whereas Bqµ(E) and Λqµ(E) are obvious multifractal analogues of the
packing dimension dimP (E) and the pre-packing dimension ∆(E) of E respectively.
In fact, it follows immediately from the definitions that

dimH(E) = b0µ(E), dimP (E) = B0
µ(E) and ∆(E) = Λ0

µ(E).

Next, for q ∈ R, we define the separator functions bµ, Bµ and Λµ by

bµ(q) = bqµ
(

suppµ
)
, Bµ(q) = Bqµ

(
suppµ

)
and Λµ(q) = Λqµ

(
suppµ

)
.
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It is well known that the functions bµ, Bµ and Λµ are decreasing and Bµ, Λµ are
convex and satisfying bµ ≤ Bµ ≤ Λµ.

The multifractal formalism based on the measures H q,t
µ and Pq,t

µ and the di-
mension functions bµ, Bµ and Λµ provides a natural, unifying and very general mul-
tifractal theory which includes all the hitherto introduced multifractal parameters,
i.e., the multifractal spectra functions fµ and Fµ, the multifractal box dimensions.
The dimension functions bµ and Bµ are intimately related to the spectra functions
fµ and Fµ, whereas the dimension function Λµ is closely related to the upper box

spectrum (more precisely, to the upper multifractal box dimension function Cµ, see
[6, Propositions 2.19 and 2.22]).

It should be noted that the interest of mathematicians in singularly continuous
measures and probability distributions were fairly weak, which can be explained, on
the one hand, by the absence of adequate analytic apparatus for specification and
investigation of these measures, and, on the other hand, by a widespread opinion
about the absence of applications of these measures. Due to the fractal explosion
and a deep connection between the theory of fractals and singular measures, the
situation has radically changed in the last years. The multifractal and the fractal
analysis allows one to perform a certain classification of these measures. Therefore,
Olsen in [6, Questions 7.1 and 7.2], posed the following two questions: Let p, q ∈ R.

(1) Assume that bµ is differentiable at p and q with b′µ(p) 6= b′µ(q). Then, the
following problem remains open:

H p,bµ(p)
µ xsuppµ

⊥ H q,bµ(q)
µ xsuppµ

.

(2) Assume that Bµ is differentiable at p and q with B′µ(p) 6= B′µ(q). Then, the
following problem remains open:

Pp,Bµ(p)
µ xsuppµ

⊥ Pq,Bµ(q)
µ xsuppµ

.

The aim of this paper is to focus on the above questions relying on these mul-
tifractal measures and functions. More precisely, we study the mutual singularity
of multifractal Hausdorff and packing measures on the homogeneous Moran sets
and this result completely differ to Olsen’s main theorems [6, Theorems 5.1 and
6.1] which are based on graph directed self-similar measures in Rn with totally dis-
connected support, cookie-cutter measures and self-similar measures satisfying the
significantly weaker open set condition [4, 5].

2. Main result

Before we set our main result, let us recall the class of homogeneous Moran sets.
We denote by {nk}k≥1 a sequence of positive integers and {ck}k≥1 a sequence of
positive numbers satisfying

nk ≥ 2, 0 < ck < 1, nkck ≤ 1 for k ≥ 1.

Let D0 = ∅, and for any k ≥ 1, set

Dm,k = {(im, im+1, . . . , ik) ; 1 6 ij 6 nj , m 6 j 6 k}

and Dk = D1,k. Define D =
⋃
k>1

Dk. If σ = (σ1, . . . , σk) ∈ Dk, τ = (τ1, . . . , τm) ∈

Dk+1,m, we denote σ ∗ τ = (σ1, . . . , σk, τ1, . . . , τm) .

Definition 2.1. Let J be a closed interval such that |J | = 1. We say the collection
F = {Jσ, σ ∈ D} of closed subsets of J fulfills the Moran structure if it satisfies the
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following conditions:
(a) J∅ = J.
(b) For all k ≥ 0 and σ ∈ Dk, Jσ∗1, Jσ∗2, . . . , Jσ∗nk+1

are subintervals of Jσ, and
satisfy that J◦σ∗i ∩ J◦σ∗j = ∅ (i 6= j), where A◦ denotes the interior of A.

(c) For any k ≥ 1, σ ∈ Dk−1, ck =
|Jσ∗j |
|Jσ|

, 1 6 j 6 nk where |A| denotes the

diameter of A.

Let F be a collection of closed subintervals of J having homogeneous Moran

structure. The set E(F ) =
⋂
k>1

⋃
σ∈Dk

Jσ is called an homogeneous Moran set de-

termined by F . It is convenient to denote M (J, {nk} , {ck}) for the collection of
homogeneous Moran sets determined by J, {nk} and {ck}.

Remark 1. If lim
n→+∞

sup
σ∈Dn

|Jσ| > 0, then E contains interior points. Thus the mea-

sure and dimension properties will be trivial. We assume therefore lim
n→+∞

sup
σ∈Dn

|Jσ|

= 0.

Let A = {a, b} be a two-letter alphabet, and A∗ the free monoid generated by
A. Let F be the homomorphism on A∗, defined by F (a) = ab and F (b) = a. It is
easy to see that Fn(a) = Fn−1(a)Fn−2(a). We denote by |Fn(a)| the length of the
word Fn(a), thus

Fn(a) = s1s2 · · · s|Fn(a)|, si ∈ A.

Therefore, as n→ +∞, we get the infinite sequence

ω = lim
n→∞

Fn(a) = s1s2s3 · · · sn · · · ∈ {a, b}N

which is called the Fibonacci sequence. For any n > 1, write ωn = ω|n = s1s2 · · · sn.
We denote by |ωn|a the number of the occurrence of the letter a in ωn, and |ωn|b
the number of occurrence of b. Then |ωn|a + |ωn|b = n. It follows from [7, pp. 143],

[8, pp. 271] that lim
n→+∞

|ωn|a
n

= η, where η2 + η = 1.

Let 0 < ra <
1
2 , 0 < rb <

1
3 , ra, rb ∈ R. In the Moran construction above, let

|J | = 1, nk =

{
2, if sk = a
3, if sk = b,

ckj = ck =

{
ra, if sk = a
rb, if sk = b

, 1 6 j 6 nk.

Here, we consider a class of homogeneous Moran sets E witch satisfy a special
property called the strong separation condition (SSC), i.e., take Jσ ∈ F . Let
Jσ∗1, Jσ∗2, . . . , Jσ∗nk+1

be the nk+1 basic intervals of order k + 1 contained in Jσ
arranged from the left to the right, then we assume that for all 1 ≤ i ≤ nk+1 − 1,
dist(Jσ∗i, Jσ∗(i+1)) ≥ ∆k|Jσ|, where (∆k)k is a sequence of positive real numbers,
such that 0 < ∆ = inf

k
∆k < 1. Then we construct the homogeneous Moran set

relating to the Fibonacci sequence and denote it by E := E(ω) = (J, {nk} , {ck}).
By the construction of E, we have

|Jσ| = r
|ωk|a
a r

|ωk|b
b , ∀σ ∈ Dk.
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Let Pa = (Pa1 , Pa2) , Pb = (Pb1 , Pb2 , Pb3) be probability vectors i.e., Pai >

0, Pbi > 0, and

2∑
i=1

Pai = 1,

3∑
i=1

Pbi = 1. For any k > 1 and any σ ∈ Dk, we

know σ = σ1σ2 · · ·σk where

σk ∈
{
{1, 2}, if sk = a
{1, 2, 3}, if sk = b.

For σ = σ1σ2 · · ·σk, we define σ(a) as follows: let ωk = s1s2 · · · sk and e1 < e2 <
· · · < e|ωk|a be the occurrences of the letter a in ωk, then σ(a) = σe1σe2 · · ·σe|ωk|a .

Similarly, let δ1 < δ2 < · · · < δ|ωk|b be the occurrences of the letter b in ωk, then

σ(b) = σδ1σδ2 · · ·σδ|ωk|b
.

Let

Pσ(a) = Pσe1Pσe2 · · ·Pσe|ωk|a and Pσ(b) = Pσδ1Pσδ2 · · ·Pσδ|ωk|b .

Obviously ∑
σ∈Dk

Pσ(a)Pσ(b) = 1.

Let µ be a mass distribution on E, such that for any σ ∈ Dk,

µ (Jσ) = Pσ(a)Pσ(b).

Now we define an auxiliary function β(q) as follows: For each q ∈ R and k ≥ 1,
there is a unique number βk(q) such that∑

σ∈Dk

(
Pσ(a)Pσ(b)

)q |Jσ|βk(q)
= 1.

By a simple calculation, we get

βk(q) =

− log

(
2∑
i=1

P qai

)
− k−|ωk|a

|ωk|a
log

(
3∑
i=1

P qbi

)
log ra +

k−|ωk|a
|ωk|a

log rb
.

Clearly, for any k > 1 we have βk(1) = 0. Thus β′k(q) < 0 for all q and βk(q) is a
strictly decreasing function. Our auxiliary function is

β(q) = lim
k→+∞

βk(q) =

− log

(
2∑
i=1

P qai

)
− η log

 3∑
j=1

P qbj


log ra + η log rb

,

where η2 + η = 1. The function β is strictly decreasing and differentiable at q,
limq→∓∞ β(q) = ±∞ and β(1) = 0. Note that in [7, Theorem B] it is shown that
the dimension of the level sets of the local Hölder exponent E(−β′(q)) is given by

dimH E(−β′(q)) = dimP E(−β′(q)) = −qβ′(q) + β(q).

Definition 2.2. Let µ, ν be two Borel probability measures on Rn. µ and ν are
said to be mutually singular and we write µ ⊥ ν if there exists a set A ⊂ Rn, such
that

µ(A) = 0 = ν(Rn \A).
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In the following we show that the Olsen’s multifractal Hausdorff and packing are
mutually singular, which in particular provides an answer to Olsen’s questions [6,
Questions 7.1 and 7.2].

Theorem 2.3. Suppose that E is a homogeneous Moran set satisfying (SSC) and
µ is the Moran measure on E. Then, for all p, q ∈ R where β′(p) 6= β′(q) we have

H p,β(p)
µ ⊥ H q,β(q)

µ and Pp,β(p)
µ ⊥ Pq,β(q)

µ on E.

Remark 2. The results of Theorem 2.3 hold if we replace the multifractal Hausdorff
and packing measures by the multifractal Hewitt-Stromberg measures (see [1, 2] for
the precise definitions).

3. Proof of the main result

In this section, we give a proof of the main theorem. Given q ∈ R, it follows from
[7, Proposition 3.1] that there exists a probability measure νq supported by E such
that for any k ≥ 1 and σ0 ∈ Dk,

νq (Jσ0) =
µ (Jσ0

)
q |Jσ0

|β(q)∑
σ∈Dk

µ (Jσ)
q |Jσ|β(q)

.

However, in [7] it is shown that

lim sup
r↓0

logµ
(
B(x, r)

)
log r

= −β′(q), νq − a.s

which implies that νq

(
E
(
− β′(q)

))
= 1. We therefore infer that if p, q ∈ R with

β′(p) 6= β′(q), then

νp ⊥ νq.(1)

We now prove the following three claims.

Claim 1. We have

0 < lim inf
k→+∞

∑
σ∈Dk

µ (Jσ)
q |Jσ|β(q) ≤ lim sup

k→+∞

∑
σ∈Dk

µ (Jσ)
q |Jσ|β(q)

< +∞.

Proof of Claim 1. By a simple calculation, we can get β(q)− βk(q) = O( 1
k ). Then,∑

σ∈Dk

µ (Jσ)
q |Jσ|β(q)

= |Jσ|β(q)−βk(q) ≥ (min {ra, rb})k(β(q)−βk(q))
,

which implies that

lim inf
k→+∞

∑
σ∈Dk

µ (Jσ)
q |Jσ|β(q)

> 0.

The proof of the

lim inf
k→+∞

∑
σ∈Dk

µ (Jσ)
q |Jσ|β(q)

< +∞.

is identical to the proof of the statement in the first part and is therefore omitted.
�

Claim 2. There exists a constant K > 0 such that for any q ∈ R

Kνq(E) ≤H q,β(q)
µ (E).
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Proof of Claim 2. For convenience of presentation let Jn(x) be the nth-level basic

set of E containing the point x. Let δ > 0 and
(
B (xi, ri)

)
i∈N

be a centered δ-

covering of E. For each i choose σ(i) ∈ Dn, for any n > 1 such that xi ∈ Jσ(i). For
each i ∈ N choose ki, `i ∈ N such that∣∣Jσ(i)|ki+1

∣∣ 6 ri < ∣∣Jσ(i)|ki
∣∣ and ∆

∣∣Jσ(i)|`i+1

∣∣ 6 ri < ∆
∣∣Jσ(i)|`i

∣∣,
which implies that

Jσ(i)|ki+1 (xi) ⊆ B (xi, ri) and E ∩B (xi, ri) ⊆ Jσ(i)|`i+1(xi).(2)

Then we have

νq(E) ≤
∑
i

νq (B (xi, ri))

≤
∑
i

νq
(
Jσ(i)|`i+1 (xi)

)
=

∑
i

µ
(
Jσ(i)|`i+1 (xi)

)q ∣∣Jσ(i)|`i+1 (xi)
∣∣β(q)∑

σ∈Dli+1

µ (Jσ)
q |Jσ|β(q)

≤ C1

∑
i

µ
(
Jσ(i)|`i+1 (xi)

)q ∣∣Jσ(i)|`i+1 (xi)
∣∣β(q)

.(3)

If β(q) > 0, then ∣∣Jσ(i)|`i+1

∣∣β(q)
6 (2∆)β(q) (2ri)

β(q)
.

If β(q) < 0, then

∣∣Jσ(i)|`i+1

∣∣ =

 ra
∣∣Jσ(i)|`i

∣∣ , s`i+1 = a

rb
∣∣Jσ(i)|`i

∣∣ , s`i+1 = b,

which implies that ∣∣Jσ(i)|`i+1

∣∣ ≥ min {ra, rb} · |Jσ(i)|`i |,
thus we deduce that

2ri 6 2∆
∣∣Jσ(i)|`i

∣∣ 6 2∆

min {ra, rb}
∣∣Jσ(i)|`i+1

∣∣ .
And this gives us ∣∣Jσ(i)|`i+1

∣∣β(q)
6

(
min {ra, rb}

2∆

)β(q)

(2ri)
β(q)

.

Which leads to the following inequality

(4)
∣∣Jσ(i)|`i+1

∣∣β(q)
6 k1 (2ri)

β(q)

where k1 is a suitable constant. If q < 0, it follows from (2) that

(5) µ
(
Jσ(i)|`i+1(xi)

)q ≤ µ (B (xi, ri))
q
.

Since the measure µ satisfies the doubling condition (see [7, Proposition 3.2]) then
for all q ≥ 0, there exists a constant A > 0 such that

(6) µ
(
Jσ(i)|`i+1(xi)

)q ≤ (µ (B (xi, ri∆))
µ (B (xi, ri))

)q
µ (B (xi, ri))

q ≤ Aqµ (B (xi, ri))
q
.
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It follows from (5) and (6) that there exists a constant C2 such that

µ
(
Jσ(i)|`i+1(xi)

)q ≤ C2µ (B (xi, ri))
q
.(7)

Now combining (3), (4) and (7) shows that

νq(E) ≤ k1C1C2

∑
i

µ (B(xi, ri))
q

(2ri)
β(q)

.

Finally, this yields

Kνq(E) ≤H
q,β(q)

µ,δ (E) ≤H
q,β(q)

µ (E) ≤H q,β(q)
µ (E)

where K = 1
k1C1C2

. �

Claim 3. There exists a constant K > 0 such that for any q ∈ R

P
q,β(q)

µ (E) ≤ Kνq(E).

Proof of Claim 3. Let F be a closed subset E and Dδ(F ) =
{
x ∈ E

∣∣ dist(x, F ) ≤
δ
}
. Recall that, if δ ↘ 0, then Dδ(F ) ↘ F . So, for all ε > 0 there exists δ0

satisfying

νq
(
Dδ(F )

)
≤ νq(F ) + ε, ∀ 0 < δ < δ0.

Let
(
B(xi, ri)

)
i∈N

be a centered δ-packing of F . For each i choose σ(i) ∈ Dn, for

any n > 1 such that xi ∈ Jσ(i). For each i ∈ N choose ki, `i ∈ N such that∣∣Jσ(i)|ki+1

∣∣ 6 ri < ∣∣Jσ(i)|ki
∣∣ and ∆

∣∣Jσ(i)|`i+1

∣∣ 6 ri < ∆
∣∣Jσ(i)|`i

∣∣.
Notice that

Jσ(i)|ki+1 (xi) ⊆ B (xi, ri) and E ∩B (xi, ri) ⊆ Jσ(i)|`i+1(xi).

Using a similar argument as that in Claim 2. There exist constants K1,K2 > 0
such that

(2ri)
β(q) ≤ K1

∣∣Jσ(i)|ki+1

∣∣β(q)

and

µ (B (xi, ri))
q ≤ K2µ

(
Jσ(i)|ki+1(xi)

)q
,

which implies that∑
i

µ (B(xi, ri))
q

(2ri)
β(q) ≤ K1K2

∑
i

µ
(
Jσ(i)|ki+1(xi)

)q ∣∣Jσ(i)|ki+1

∣∣β(q)

≤ K1K2

∑
i

µ
(
Jσ(i)|ki+1(xi)

)q ∣∣Jσ(i)|ki+1

∣∣β(q)∑
σ∈Dki+1

µ (Jσ)
q |Jσ|β(q)


×

∑
σ∈Dki+1

µ (Jσ)
q |Jσ|β(q)

≤ CK1K2

∑
i

νq
(
Jσ(i)|ki+1(xi)

)
≤ CK1K2

∑
i

νq
(
B (xi, ri)

)
≤ CK1K2νq

(
Dδ(F )

)
≤ CK1K2

(
νq(E) + ε

)
.
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Which leads to the following inequality

P
q,β(q)

µ (F ) ≤ K
(
νq(E) + ε

)
, where K = CK1K2.

Tending ε to 0 now yields

P
q,β(q)

µ (E) ≤ K νq(E).

This complete the proof of Claim 3. �

Proof of Theorem 2.3. It follows from Claim 2 and Claim 3 and since µ satisfies the
doubling condition that

K νq ≤H q,β(q)
µ ≤Pq,β(q)

µ ≤P
q,β(q)

µ ≤ K νq on E.

Which implies that

1

K
H q,β(q)
µ ≤ νq ≤

1

K
H q,β(q)
µ on E

and
1

K
Pq,β(q)
µ ≤ νq ≤

1

K
Pq,β(q)
µ on E.

The desired result now follows from (1). �

Remark 3. It follows from Claim 2 and Claim 3 and since 0 < νq(E) ≤ 1 that

bqµ(E) = Bqµ(E) = Λqµ(E) = β(q), ∀ q ∈ R.

It is also instructive to consider the special case q = 0. In particular, we have

dimH(E) = dimP (E) = ∆(E) = β(0) =
− log 2− η log 3

log ra + η log rb
,

where η2 + η = 1.
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