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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF BOUND

STATES FOR A CLASS OF NONAUTONOMOUS

SCHRÖDINGER-POISSON SYSTEM

LIRONG HUANG AND JIANQING CHEN∗

Abstract. This paper is concerned with the following Schrödinger-Poisson

system

(Pµ) : −∆u+ u+K(x)φu = |u|p−1u+ µh(x)u, −∆φ = K(x)u2, x ∈ R3,

where p ∈ (3, 5), K(x) and h(x) are nonnegative functions, and µ is a positive

parameter. Let µ1 > 0 be an isolated first eigenvalue of the eigenvalue problem
−∆u + u = µh(x)u, u ∈ H1(R3). As 0 < µ ≤ µ1, we prove that (Pµ) has

at least one nonnegative bound state with positive energy. As µ > µ1, there

is δ > 0 such that for any µ ∈ (µ1, µ1 + δ), (Pµ) has a nonnegative ground

state u0,µ with negative energy, and u0,µ(n) → 0 in H1(R3) as µ(n) ↓ µ1.

Besides, (Pµ) has another nonnegative bound state u2,µ with positive energy,

and u2,µ(n) → uµ1 in H1(R3) as µ(n) ↓ µ1, where uµ1 is a bound state of

(Pµ1 ).

1. Introduction

In this paper, we study a class of Schrödinger-Poisson system with the following
version

(1)

{
−∆u+ u+K(x)φu = |u|p−1u+ µh(x)u in R3,
−∆φ = K(x)u2 in R3,

where p ∈ (3, 5), µ > 0, K(x) and h(x) are nonnegative functions. System (1) can
be looked on as a non-autonomous version of the system

(2)

{
−∆u+ u+ φu = f(u) in R3,
−∆φ = u2 in R3,

which has been derived from finding standing waves of the Schrödinger-Poisson
system {

iψt −∆ψ + φψ = f(ψ) in R3,
−∆φ = |ψ|2 in R3.

A starting point of studying system (1) is the following fact. For any u ∈ H1(R3)
and K ∈ L∞(R3), there is a unique φu ∈ D1,2(R3) with

φu(x) =
1

4π

∫
R3

K(y)|u(y)|2

|x− y|
dy

Received by the editors December, 2019.
2010 Mathematics Subject Classification. 35J20, 35J70.
Key words and phrases. Schrödinger-Poisson system, indefinite linear part, bound state, ground

state, asymptotic behavior.
Lirong Huang is supported by NSF of Fujian (No. 2017J01549 ); Jianqing Chen is supported

by NNSF of China (No. 11871152, 11671085).
∗ Corresponding author: Jianqing Chen.

c©2020 American Institute of Mathematical Sciences

383

http://dx.doi.org/10.3934/era.2020022


384 LIRONG HUANG AND JIANQING CHEN

such that −∆φu = K(x)u2, see e.g. [11, 20]. Inserting this φu into the first equation
of the system (1), we get that

(3) −∆u+ u+K(x)φuu = |u|p−1u+ µh(x)u, u ∈ H1(R3).

Problem (3) can be also looked on as a usual semilinear elliptic equation with an
additional nonlocal perturbation K(x)φuu. Our aim here is to prove some new
phenomenon of (3) due to the presence of the term K(x)φuu. Before giving the
main results, we state the following assumptions.

(A1): h(x) ≥ 0, h(x) 6≡ 0 in R3 and h(x) ∈ L 3
2 (R3) ∩ L∞(R3).

(A2): There exist b > 0 and H0 > 0 such that h(x) ≥ H0e
−b|x| for all x ∈ R3.

(A3): K(x) ≥ 0 and K(x) ∈ L2(R3) ∩ L∞(R3).
(A4): There exist a > 0 and K0 > 0 such that K(x) ≤ K0e

−a|x| for all
x ∈ R3.

From Lemma 2.1, we know that under the condition (A1), the following eigen-
value problem

−∆u+ u = µh(x)u, u ∈ H1(R3)

has a first eigenvalue µ1 > 0 and µ1 is simple. Denote

F (u) :=

∫
R3

K(x)φu(x)|u(x)|2dx

and introduce the energy functional Iµ : H1(R3)→ R associated with (3)

Iµ(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

(
1

p+ 1
|u|p+1 +

µ

2
h(x)u2

)
dx,

where ‖u‖2 =
∫
R3(|∇u|2 + u2)dx. From [11] and the Sobolev inequality, Iµ is well

defined and Iµ ∈ C1(H1(R3),R). Moreover, for any v ∈ H1(R3),

〈I ′µ(u), v〉 =

∫
R3

(
∇u∇v + uv +K(x)φuuv − |u|p−1uv + µh(x)uv

)
dx.

It is known that there is a one to one correspondence between solutions of (3) and
critical points of Iµ in H1(R3). Note that if u ∈ H1(R3) is a solution of (3), then
(u, φu) is a solution of the system (1). If u ≥ 0 and u is a solution of (3), then
(u, φu) is a nonnegative solution of (1) since φu is always nonnegative. We call
u ∈ H1(R3)\{0} a bound state of (3) if I ′µ(u) = 0. At this time (u, φu) is called a
bound state of (1). A bound state u is called a ground state of (3) if I ′µ(u) = 0 and
Iµ(u) ≤ Iµ(w) for any bound state w. In this case, we call (u, φu) a ground state
of (1). The first result is about µ less than µ1.

Theorem 1.1. Suppose that the assumptions of (A1) - (A4) hold and 0 < b < a < 2.
If 0 < µ ≤ µ1, then problem (3) has at least one nonnegative bound state.

The second result is about µ in a small right neighborhood of µ1.

Theorem 1.2. Under the assumptions of (A1) - (A4), if 0 < b < a < 1, then there
exists δ > 0 such that, for any µ ∈ (µ1, µ1 + δ),

(1) problem (3) has at least one nonnegative ground state u0,µ with Iµ(u0,µ) < 0.

Moreover, u0,µ(n) → 0 strongly in H1(R3) for any sequence µ(n) > µ1 and

µ(n) → µ1;
(2) problem (3) has another nonnegative bound state u2,µ with Iµ(u2,µ) > 0.

Moreover, u2,µ(n) → uµ1
strongly in H1(R3) for any sequence µ(n) > µ1

and µ(n) → µ1, where uµ1 satisfies I ′µ1
(uµ1) = 0 and Iµ1(uµ1) > 0.
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The proofs of Theorem 1.1 and Theorem 1.2 are based on critical point theory.
There are several difficulties in the road of getting critical points of Iµ in H1(R3)
since we are dealing with the problem in the whole space R3, the embedding from
H1(R3) into Lq(R3) (2 < q < 6) is not compact, the appearance of a nonlocal term
K(x)φuu and the non coercive linear part. To explain our strategy, we review some
related known results. For the system (2), under various conditions of f , there are
a lot of papers dealing with the existence and nonexistence of positive solutions
(u, φu) ∈ H1(R3) × D1,2(R3), see for example [2, 23] and the references therein.
The lack of compactness from H1(R3) ↪→ Lq(R3) (2 < q < 6) was overcome by
restricting the problem in H1

r (R3) which is a subspace of H1(R3) containing only
radial functions. The existence of multiple radial solutions and non-radial solutions
have been obtained in [2, 13]. See also [6, 15, 16, 17, 18, 19, 24, 29, 30] for some
other results related to the system (2).

While for nonautonomous version of Schrödinger-Poisson system, only a few
results are known in the literature. Jiang et.al.[21] have studied the following
Schrödinger-Poisson system with non constant coefficient{

−∆u+ (1 + λg(x))u+ θφ(x)u = |u|p−2u in R3,
−∆φ = u2 in R3, lim|x|→∞ φ(x) = 0,

in which the authors prove the existence of ground state solution and its asymptotic
behavior depending on θ and λ. The lack of compactness was overcome by suitable
assumptions on g(x) and λ large enough. The Schrödinger-Poisson system with
critical nonlinearity of the form{

−∆u+ u+ φu = V (x)|u|4u+ µP (x)|u|q−2u in R3,
−∆φ = u2 in R3, 2 < q < 6, µ > 0

has been studied by Zhao et al. [31]. Besides some other conditions, Zhao et. al.
[31] assume that V (x) ∈ C(R3,R), lim|x|→∞ V (x) = V∞ ∈ (0,∞) and V (x) ≥ V∞
for x ∈ R3 and prove the existence of one positive solution for 4 < q < 6 and each
µ > 0. It is also proven the existence of one positive solution for q = 4 and µ large
enough. Cerami et. al. [11] study the following type of Schrödinger-Poisson system

(4)

{
−∆u+ u+ L(x)φu = g(x, u) in R3,
−∆φ = L(x)u2 in R3.

Besides some other conditions and the assumption L(x) ∈ L2(R3), they prove
the existence and nonexistence of ground state solutions. We emphasize that
L(x) ∈ L2(R3) will imply suitable compactness property of the coupled term
L(x)φu. Huang et. al. [20] have used this property to prove the existence of
multiple solutions of (4) when g(x, u) = a(x)|u|p−2u+µh(x)u and µ stays in a right
neighborhood of µ1. The lack of compactness was overcome by suitable assumptions
on the sign changing function a(x). While for (3), none of the aboved mentioned
properties can be used. We have to analyze the energy level of the functional Iµ
such that the Palais-Smale ((PS) for short) condition may hold at suitable interval.
Also for (3), another difficulty is to find mountain pass geometry for the functional
Iµ in the case of µ ≥ µ1. We point out that for the semilinear elliptic equation

(5) −∆u = a(x)|u|p−2u+ µ̃k(x)u, in RN ,

Costa et.al.[14] have proven the mountain pass geometry for the related func-
tional of (5) when µ̃ ≥ µ̃1, where µ̃1 is the first eigenvalue of −∆u = µ̃k(x)u
in D1,2(RN ). Costa et. al. have managed to do these with the help of the condition
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RN a(x)ẽp1dx < 0, where ẽ1 is a positive eigenfunction corresponding to µ̃1. In the

present paper, it is not possible to use such kind of condition. We will develop fur-
ther the techniques in [20] to prove the mountain pass geometry. A third difficulty is
to look for a ground state of (3). A usual method of getting a ground state is by min-
imizing the functional Iµ over the Nehari set {u ∈ H1(R3)\{0} : 〈I ′µ(u), u〉 = 0}.
But in the case of µ > µ1, one can not do like this because we do not know if
0 belongs to the boundary of this Nehari set. To overcome this trouble, we will
minimize the functional over the set {u ∈ H1(R3)\{0} : I ′µ(u) = 0}.

This paper is organized as follows. In Section 2, we give some preliminaries. Spe-
cial attentions are focused on several lemmas analyzing the Palais-Smale conditions
of the functional Iµ, which will play an important role in the proofs of Theorem 1.1
and Theorem 1.2. In Section 3, we prove Theorem 1.1. And Section 4 is devoted to
the proof of Theorem 1.2.

Notations. Throughout this paper, o(1) is a generic infinitesimal. The H−1(R3)
denotes dual space of H1(R3). Lq(R3) (1 ≤ q ≤ +∞) is a Lebesgue space with the
norm denoted by ‖u‖Lq . The Sp+1 is defined by

Sp+1 = inf
u∈H1(R3)\{0}

∫
R3

(
|∇u|2 + |u|2

)
dx(∫

R3 |u|p+1dx
) 2
p+1

.

For any ρ > 0 and x ∈ R3, Bρ(x) denotes the ball of radius ρ centered at x. C
or Cj (j = 1, 2, · · · ) denotes various positive constants, whose exact value is not
important.

2. Preliminaries

In this section, we give some preliminary lemmas, which will be helpful to analyze
the (PS) conditions for the functional Iµ. Firstly, for any u ∈ H1(R3) and K ∈
L∞(R3), defining the linear functional

Lu(v) =

∫
R3

K(x)u2vdx, v ∈ D1,2(R3),

one may deduce from the Hölder and the Sobolev inequalities that

(6) |Lu(v)| ≤ C‖u‖2
L

12
5
‖v‖L6 ≤ C‖u‖2

L
12
5
‖v‖D1,2 .

Hence, for any u ∈ H1(R3), the Lax-Milgram theorem implies that there exists a
unique φu ∈ D1,2(R3) such that −∆φ = K(x)u2 in D1,2(R3). Moreover it holds
that

φu(x) =
1

4π

∫
R3

K(y)u2(y)

|x− y|
dy.

Clearly φu(x) ≥ 0 for any x ∈ R3. We also have that

(7) ‖φu‖2D1,2 =

∫
R3

|∇φu|2dx =

∫
R3

K(x)φuu
2dx.

Using (6) and (7), we obtain that

(8) ‖φu‖L6 ≤ C‖φu‖D1,2 ≤ C‖u‖2
L

12
5
≤ C‖u‖2.

Then we deduce that

(9)

∫
R3

K(x)φu(x)u2(x)dx ≤ C‖u‖4.
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Hence on H1(R3), both the functional

(10) F (u) =

∫
R3

K(x)φu(x)u2(x)dx

and

(11) Iµ(u) =
1

2
‖u‖2 +

1

4
F (u)−

∫
R3

(
1

p+ 1
|u|p+1 +

µ

2
h(x)u2

)
dx

are well defined and C1. Moreover, for any v ∈ H1(R3),

〈I ′µ(u), v〉 =

∫
R3

(
∇u∇v + uv +K(x)φuuv − |u|p−1uv − µh(x)uv

)
dx.

The following Lemma 2.1 is a direct consequence of [28, Lemma 2.13].

Lemma 2.1. Assume that the hypothesis (A1) holds. Then the functional u ∈
H1(R3) 7→

∫
R3 h(x)u2dx is weakly continuous and for each v ∈ H1(R3), the func-

tional u ∈ H1(R3) 7→
∫
R3 h(x)uvdx is weakly continuous.

Using the spectral theory of compact symmetric operators on Hilbert space, the
above lemma implies the existence of a sequence of eigenvalues (µn)n∈N of

−∆u+ u = µh(x)u, in H1(R3)

with µ1 < µ2 ≤ · · · and each eigenvalue being of finite multiplicity. The associated
normalized eigenfunctions are denoted by e1, e2, · · · with ‖ei‖ = 1, i = 1, 2, · · · .
Moreover, one has µ1 > 0 with an eigenfunction e1 > 0 in R3. In addition, we have
the following variational characterization of µn:

µ1 = inf
u∈H1(R3)\{0}

‖u‖2∫
R3 h(x)u2dx

, µn = inf
u∈S⊥n−1\{0}

‖u‖2∫
R3 h(x)u2dx

,

where S⊥n−1 = {span{e1, e2, · · · , en−1}}⊥.
Next we analyze the (PS) condition of the functional Iµ inH1(R3). The following

definition is standard.

Definition 2.2. For d ∈ R, the functional Iµ is said to satisfy (PS)d condition if
for any (un)n∈N ⊂ H1(R3) with Iµ(un)→ d and I ′µ(un)→ 0, the (un)n∈N contains

a convergent subsequence in H1(R3). The functional Iµ is said to satisfy (PS)
conditions if Iµ satisfies (PS)d condition for any d ∈ R.

Lemma 2.3. Let (un)n∈N ⊂ H1(R3) be such that Iµ(un)→ d ∈ R and I ′µ(un)→ 0,

then (un)n∈N is bounded in H1(R3).

Proof. For n large enough, we have that

d +1 + o(1)‖un‖ = Iµ(un)− 1

4
〈I ′µ(un), un〉(12)

=
1

4
‖un‖2 −

µ

4

∫
R3

h(x)u2
ndx+

p− 3

4(p+ 1)

∫
R3

|un|p+1dx.

Note that p+1
p−1 > 3

2 for p ∈ (3, 5). Then for any ϑ > 0, we obtain from h ∈
L

3
2 (R3) ∩ L∞(R3) that∫

R3

h(x)u2
ndx ≤

(∫
R3

|un|p+1dx

) 2
p+1
(∫

R3

|h(x)|
p+1
p−1 dx

) p−1
p+1

≤ 2ϑ

p+ 1

∫
R3

|un|p+1dx+
p− 1

p+ 1
ϑ−

2
p−1

∫
R3

|h(x)|
p+1
p−1 dx.
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Choosing ϑ = p−3
2µ , we get

(13) d+ 1 + o(1)‖un‖ ≥
1

4
‖un‖2 −D(p, h)µ

p+1
p−1 ,

where D(p, h) = p−1
4(p+1)

(
p−3

2

)− 2
p−1

∫
R3 |h(x)|

p+1
p−1 dx. Hence (un)n∈N is bounded in

H1(R3). �

The following lemma is a variant of Brezis-Lieb lemma. One may find the proof
in [20].

Lemma 2.4. [20] If a sequence (un)n∈N ⊂ H1(R3) and un ⇀ u0 weakly in H1(R3),
then

lim
n→∞

F (un) = F (u0) + lim
n→∞

F (un − u0).

Lemma 2.5. There is a δ1 > 0 such that for any µ ∈ [µ1, µ1 + δ1), any solution u
of (3) satisfies

Iµ(u) > − p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Proof. Since u is a solution of (3), we get that

Iµ(u) =
1

2

(
‖u‖2 − µ

∫
R3

h(x)u2dx

)
+

1

4
F (u)− 1

p+ 1

∫
R3

|u|p+1dx

=
p− 1

2(p+ 1)

(
‖u‖2 − µ

∫
R3

h(x)u2dx

)
+

p− 3

4(p+ 1)
F (u).

Noticing that ‖u‖2 ≥ µ1

∫
R3 h(x)u2dx for any u ∈ H1(R3), we deduce that for any

u 6= 0,

Iµ1
(u) ≥ p− 3

4(p+ 1)
F (u) > 0.

Next, we claim: there is a δ1 > 0 such that for any µ ∈ [µ1, µ1 +δ1), any solution
u of (3) satisfies

Iµ(u) > − p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Suppose this claim is not true, then there is a sequence µ(n) > µ1 with µ(n) → µ1

and solutions uµ(n) of (3) such that

Iµ(n)(uµ(n)) ≤ −
p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Note that I ′
µ(n)(uµ(n)) = 0. Then we deduce that for n large enough,

Iµ(n)(uµ(n)) + o(1)‖uµ(n)‖ ≥ Iµ(n)(uµ(n))−
1

4
〈I ′µ(n)(uµ(n)), uµ(n)〉

≥ 1

4
‖uµ(n)‖2 −D(p, h)

(
µ(n)

) p+1
p−1

.

This implies that (uµ(n))n∈N is bounded in H1(R3). Since for any n ∈ N, ‖uµ(n)‖2 ≥
µ1

∫
R3 h(x)(uµ(n))2dx, we obtain that as µ(n) → µ1

‖uµ(n)‖2 − µ(n)

∫
R3

h(x)(uµ(n))2dx ≥
(

1− µ(n)

µ1

)
‖uµ(n)‖2 → 0
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because (uµ(n))n∈N is bounded in H1(R3). Noting that

Iµ(n)(uµ(n)) =
p− 1

2(p+ 1)

(
‖uµ(n)‖2 − µ(n)

∫
R3

h(x)(uµ(n))2dx

)
+

p− 3

4(p+ 1)
F (uµ(n)),

we deduce that

lim inf
n→∞

Iµ(n)(uµ(n)) ≥
p− 3

4(p+ 1)
lim inf
n→∞

F (uµ(n)) ≥ 0,

which contradicts to the

Iµ(n)(uµ(n)) ≤ −
p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

This proves the claim and the proof of Lemma 2.5 is complete. �

Lemma 2.6. If µ ∈ [µ1, µ1 + δ1), then Iµ satisfies (PS)d condition for any d < 0.

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)d sequence of Iµ with d < 0. Then for n
large enough,

d+ o(1) =
1

2
‖un‖2 −

µ

2

∫
R3

h(x)u2
ndx+

1

4
F (un)− 1

p+ 1

∫
R3

|un|p+1dx

and

〈I ′µ(un), un〉 = ‖un‖2 − µ
∫
R3

h(x)u2
ndx+ F (un)−

∫
R3

|un|p+1dx.

Then we can prove that (un)n∈N is bounded in H1(R3). Without loss of generality,
we may assume that un ⇀ u0 weakly in H1(R3) and un → u0 a. e. in R3. Denoting
wn := un − u0, we obtain from Brezis-Lieb lemma and Lemma 2.4 that for n large
enough,

‖un‖2 = ‖u0‖2 + ‖wn‖2 + o(1),

F (un) = F (u0) + F (wn) + o(1)

and
‖un‖p+1

Lp+1 = ‖u0‖p+1
Lp+1 + ‖wn‖p+1

Lp+1 + o(1).

Using Lemma 2.1, we also have that
∫
R3 h(x)u2

ndx →
∫
R3 h(x)u2

0dx as n → ∞.
Therefore

d+ o(1) = Iµ(un) = Iµ(u0) +
1

2
‖wn‖2(14)

+
1

4
F (wn)− 1

p+ 1

∫
R3

|wn|p+1dx.

Noticing 〈I ′µ(un), ψ〉 → 0 for any ψ ∈ H1(R3), we obtain that I ′µ(u0) = 0. From
which we deduce that

(15) ‖u0‖2 − µ
∫
R3

h(x)u2
0dx+ F (u0) =

∫
R3

|u0|p+1dx.

Since (un)n∈N is bounded in H1(R3), we obtain from I ′µ(un)→ 0 that

o(1) = ‖un‖2 − µ
∫
R3

h(x)u2
ndx+ F (un)−

∫
R3

|un|p+1dx.

Combining this with (15) as well as Lemma 2.1, we obtain that

(16) o(1) = ‖wn‖2 + F (wn)−
∫
R3

|wn|p+1dx.
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Recalling the definition of Sp+1, we have that ‖u‖2 ≥ Sp+1‖u‖2Lp+1 for any u ∈
H1(R3). Now we distinguish two cases:

(i):

∫
R3

|wn|p+1dx 6→ 0 as n→∞;

(ii):

∫
R3

|wn|p+1dx→ 0 as n→∞.

Suppose that the case (i) occurs. We may obtain from (16) that

‖wn‖2 ≥ Sp+1

(
‖wn‖2 + F (wn)− o(1)

) 2
p+1 .

Hence we get that for n large enough,

(17) ‖wn‖2 ≥ S
p+1
p−1

p+1 + o(1).

Therefore using (14), (16) and (17), we deduce that for n large enough,

d +o(1) = Iµ(un)

= Iµ(u0) +
1

2
‖wn‖2 +

1

4
F (wn)− 1

p+ 1

∫
R3

|wn|p+1dx.

= Iµ(u0) +
p− 1

2(p+ 1)
‖wn‖2 +

p− 3

4(p+ 1)
F (wn)(18)

> − p− 1

2(p+ 1)
S
p+1
p−1

p+1 +
p− 1

2(p+ 1)
‖wn‖2 +

p− 3

4(p+ 1)
F (wn)

> 0,

which contradicts to the condition d < 0. This means that the case (i) does not
occur. Therefore the case (ii) occurs. Using (16), we deduce that ‖wn‖2 → 0 as
n→∞. Hence we have proven that un → u0 strongly in H1(R3). �

Next we give a mountain pass geometry for the functional Iµ.

Lemma 2.7. There exist δ2 > 0 with δ2 ≤ δ1, ρ > 0 and α > 0, such that for any
µ ∈ [µ1, µ1 + δ2), Iµ|∂Bρ ≥ α > 0.

Proof. For any u ∈ H1(R3), there exist t ∈ R and v ∈ S⊥1 such that

(19) u = te1 + v, where

∫
R3

(∇v∇e1 + ve1) dx = 0.

Hence we deduce that

(20) ‖u‖2 = ‖∇(te1 + v)‖2L2 + ‖te1 + v‖2L2 = t2 + ‖v‖2,

(21) µ2

∫
R3

h(x)v2dx ≤ ‖v‖2, µ1

∫
R3

h(x)e2
1dx = ‖e1‖2 = 1

and

(22) µ1

∫
R3

h(x)e1vdx =

∫
R3

(∇v∇e1 + ve1) dx = 0.
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We first consider the case of µ = µ1. Denoting θ1 := (µ2 − µ1)/2µ2 > 0, then by
the relations from (19) to (22), we obtain that

Iµ1(u) =
1

2
‖u‖2 +

1

4
F (u)− µ1

2

∫
R3

h(x)u2dx− 1

p+ 1

∫
R3

|u|p+1dx

=
1

2
‖te1 + v‖2 +

1

4
F (te1 + v)

−µ1

2

∫
R3

h(x)(te1 + v)2dx− 1

p+ 1

∫
R3

|te1 + v|p+1dx

≥ 1

2

(
1− µ1

µ2

)
‖v‖2 +

1

4
F (te1 + v)− 1

p+ 1

∫
R3

|te1 + v|p+1dx

≥ θ1‖v‖2 +
1

4
F (te1 + v)− C1|t|p+1 − C2‖v‖p+1.

Next we estimate the term F (te1 + v). Using the expression of F (u), we have that

F (te1 + v) =
1

4π

∫
R3×R3

K(x)K(y)(te1(y) + v(y))2(te1(x) + v(x))2

|x− y|
dydx.

Since

(te1(y) + v(y))
2

(te1(x) + v(x))
2

= t4(e1(y))2(e1(x))2 + (v(y))2(v(x))2

+2t3
(
e1(y)(e1(x))2v(y) + e1(x)(e1(y))2v(x)

)
+2t

(
e1(x)v(x)(v(y))2 + e1(y)v(y)(v(x))2

)
+t2

(
(e1(x))2(v(y))2 + 4e1(y)e1(x)v(y)v(x) + (e1(y))2(v(x))2

)
,

we know that

(23)

∣∣∣∣∣
∫
R3×R3

K(x)K(y)
(
e1(y)(e1(x))2v(y) + e1(x)(e1(y))2v(x)

)
|x− y|

dydx

∣∣∣∣∣ ≤ C‖v‖;
(24)

∣∣∣∣∣
∫
R3×R3

K(x)K(y)
(
2(e1(x))2(v(y))2 + 4e1(y)e1(x)v(y)v(x)

)
|x− y|

dydx

∣∣∣∣∣ ≤ C‖v‖2
and

(25)

∣∣∣∣∣
∫
R3×R3

K(x)K(y)
(
e1(x)v(x)(v(y))2 + e1(y)v(y)(v(x))2

)
|x− y|

dydx

∣∣∣∣∣ ≤ C‖v‖3.
Hence

Iµ1(u) ≥ θ1‖v‖2 + θ2|t|4 − C1|t|p+1 − C2‖v‖p+1

−C3|t|3‖v‖ − C4|t|2‖v‖2 − C5|t|‖v‖3 +
1

4
F (v),

where θ2 = 1
4

∫
R3 K(x)φe1e

2
1dx. Note that

t2‖v‖2 ≤ 2

p+ 1
|t|p+1 +

p− 1

p+ 1
‖v‖

2(p+1)
p−1 ,

|t|‖v‖3 ≤ 1

p+ 1
|t|p+1 +

p

p+ 1
‖v‖

3(p+1)
p

and for some q0 with 2 < q0 < 4, we also have that

|t|3‖v‖ ≤ 1

q0
‖v‖q0 +

q0 − 1

q0
|t|

3q0
q0−1 .
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Therefore we deduce that

(26)

Iµ1
(u) ≥ θ1‖v‖2 + θ2|t|4 −

C3

q0
‖v‖q0 − C3(q0 − 1)

q0
|t|

3q0
q0−1

− 2C4

p+ 1
|t|p+1 − (p− 1)C4

p+ 1
‖v‖

2(p+1)
p−1 − C5

p+ 1
|t|p+1

− pC5

p+ 1
‖v‖

3(p+1)
p − C|t|p+1 − C‖v‖p+1.

From q0 > 2 and 3q0
q0−1 > 4 (since q0 < 4), we know that there are positive constants

θ3, θ4 and θ̃3, θ̃4 such that

Iµ1(u) ≥ θ3‖v‖2 + θ4|t|4

provided that ‖v‖ ≤ θ̃3 and |t| ≤ θ̃4. Hence there are positive constants θ5 and θ̃5

such that

(27) Iµ1
(u) ≥ θ5‖u‖4 for ‖u‖2 ≤ θ̃2

5.

Set δ̄ := min{µ1

2 θ5θ̃
2
5, µ2 − µ1} > 0 and δ2 := min{δ̄, δ1}. Then for any

µ ∈ [µ1, µ1 + δ2), we deduce from (27) that

Iµ(u) = Iµ1
(u) +

1

2
(µ1 − µ)

∫
R
h(x)u2dx

≥ θ5‖u‖4 −
µ− µ1

2µ1
‖u‖2

= ‖u‖2
(
θ5‖u‖2 −

µ− µ1

2µ1

)
≥ ‖u‖2

(
1

2
θ5θ̃

2
5 −

1

4
θ5θ̃

2
5

)
=

1

4
θ5θ̃

2
5‖u‖2

for 1
2 θ̃

2
5 ≤ ‖u‖2 ≤ θ̃2

5. Choosing ρ2 = 1
2 θ̃

2
5 and α = 1

4θ5θ̃
2
5ρ

2, we finish the proof of
Lemma 2.7. �

3. Proof of Theorem 1.1

In this section, our aim is to prove Theorem 1.1. For 0 < µ < µ1, it is standard
to prove that the functional Iµ contains mountain pass geometry. For µ = µ1, as
we have seen in Lemma 2.7, with the help of the competing between the Poisson
term K(x)φuu and the nonlinear term, the 0 is a local minimizer of the functional
Iµ1

and Iµ1
contains mountain pass geometry. To get a mountain pass type critical

point of the functional Iµ, it suffices to prove the (PS)d condition by the mountain
pass theorem of [3]. In the following we will focus our attention to the case of
µ = µ1, since the case of 0 < µ < µ1 is similar.

Proposition 3.1. Let the assumptions (A1)−(A4) hold and 0 < b < a < 2. Define

dµ1
= inf
γ∈Γ1

sup
t∈[0,1]

Iµ1
(γ(t))

with

Γ1 =
{
γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, Iµ1

(γ(1)) < 0
}
.

Then dµ1 is a critical value of Iµ1 .

Before proving Proposition 3.1, we analyze the (PS)dµ1 condition of Iµ1
. Let

U(x) be the unique positive solution of −∆u + u = |u|p−1u in H1(R3). We know
that for any ε ∈ (0, 1), there is a C ≡ C(ε) > 0 such that U(x) ≤ Ce−(1−ε)|x|.
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Lemma 3.2. If the assumptions (A1)− (A4) hold and 0 < b < a < 2, then the dµ1

defined in Proposition 3.1 satisfies dµ1 <
p−1

2(p+1)S
p+1
p−1

p+1 .

Proof. It suffices to find a path γ(t) starting from 0 such that

sup
t∈[0,1]

Iµ1
(γ(t)) <

p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Define UR(x) = U(x−Rθ) with θ = (0, 0, 1). Note that for the UR defined as above,
the Iµ1

(tUR) → −∞ as t → +∞ and Iµ1
(tUR) → 0 as t → 0. We know that there

is a unique TR > 0 such that ∂
∂tIµ1

(tUR)|t=TR = 0, which is

‖UR‖2 − µ1

∫
h(x)U2

Rdx+ T 2
RF (UR)− T p−1

R

∫
Up+1
R dx = 0.

If TR → 0 as R → ∞, then ‖UR‖2 − µ1

∫
h(x)U2

Rdx → 0 as R → ∞, which is
impossible. If TR →∞ as R→∞, then as R→∞,

1

T 2
R

(
‖UR‖2 − µ1

∫
h(x)U2

Rdx

)
+ F (UR) = T p−3

R

∫
Up+1
R dx→∞,

which is impossible either. Hence we only need to estimate Iµ1
(tUR) for t in a finite

interval and we may write

Iµ1
(tUR) ≤ g(t) + CF (UR),

where

g(t) =
t2

2

(
‖UR‖2 − µ1

∫
R3

h(x)U2
Rdx

)
− |t|

p+1

p+ 1

∫
R3

Up+1
R dx.

Noting that under the assumptions (A1)−(A4) , we obtain that for R large enough,

(28)

F (UR) ≤
(∫

R3

K(x)
6
5U

12
5

R dx

) 5
6
(∫

R3

φ6
URdx

) 1
6

≤ C
(∫

R3

e−
6
5a|x+Rθ|(U(x))

12
5 dx

) 5
6

≤ C
(∫

R3

e−
6
5aRe( 6

5a−
12
5 (1−ε))|x|dx

) 5
6

≤ Ce−aR

since 0 < a < 2. We can also prove that

(29)

∫
R3

h(x)U2
Rdx =

∫
R3

h(x+Rθ)U2(x)dx

≥ C
∫
R3

e−b|x+Rθ|U2(x)dx ≥ C
∫
R3

e−b|x|−bRU2(x)dx

≥ Ce−bR
∫
R3

e−b|x|U2(x)dx ≥ Ce−bR.

It is now deduced from (28) and (29) that

sup
t>0

Iµ1(tUR) ≤ sup
t>0

g(t) + Ce−aR

≤ p−1
2(p+1)

(
‖UR‖2 − µ1

∫
R3 h(x)U2

Rdx
) p+1
p−1 (‖UR‖−2

Lp+1)
p+1
p−1 + Ce−aR

≤ p−1
2(p+1)S

p+1
p−1

p+1 − Ce−bR + o(e−bR) + Ce−aR

<
p− 1

2(p+ 1)
S
p+1
p−1

p+1

for R large enough since 0 < b < a. The proof is complete. �
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Lemma 3.3. Under the assumptions (A1)−(A4), Iµ1
satisfies (PS)d condition for

any d < p−1
2(p+1)S

p+1
p−1

p+1 .

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)d sequence of Iµ1 with d < p−1
2(p+1)S

p+1
p−1

p+1 .

Then we have that for n large enough,

d+ o(1) =
1

2
‖un‖2 −

µ1

2

∫
R3

h(x)u2
ndx+

1

4
F (un)− 1

p+ 1

∫
R3

|un|p+1dx

and

〈I ′µ1
(un), un〉 = ‖un‖2 − µ1

∫
R3

h(x)u2
ndx+ F (un)−

∫
R3

|un|p+1dx.

Hence we can deduce that (un)n∈N is bounded in H1(R3). Going if necessary to a
subsequence, we may assume that un ⇀ u0 weakly in H1(R3) and un → u0 a. e.
in R3. Denote wn := un−u0. We then obtain from Brezis-Lieb lemma and Lemma
2.4 that for n large enough,

‖un‖2 = ‖u0‖2 + ‖wn‖2 + o(1), F (un) = F (u0) + F (wn) + o(1)

and

‖un‖p+1
Lp+1 = ‖u0‖p+1

Lp+1 + ‖wn‖p+1
Lp+1 + o(1).

Since
∫
R3 h(x)u2

ndx→
∫
R3 h(x)u2

0dx as n→∞, we deduce that

d+ o(1) = Iµ1
(un) = Iµ1

(u0) +
1

2
‖wn‖2(30)

+
1

4
F (wn)− 1

p+ 1

∫
R3

|wn|p+1dx.

From 〈I ′µ1
(un), ψ〉 → 0 for any ψ ∈ H1(R3), one may deduce that I ′µ1

(u0) = 0.
Therefore

‖u0‖2 − µ1

∫
R3

h(x)u2
0dx+ F (u0) =

∫
R3

|u0|p+1dx

and then

Iµ1
(u0) ≥ p− 1

2(p+ 1)

(
‖u0‖2 − µ1

∫
R3

h(x)u2
0dx

)
+

p− 3

4(p+ 1)
F (u0) ≥ 0.

Now using an argument similar to the proof of (16), we obtain that

(31) o(1) = ‖wn‖2 + F (wn)−
∫
R3

|wn|P+1dx.

By the relation ‖u‖2 ≥ Sp+1‖u‖2Lp+1 for any u ∈ H1(R3), we proceed our discussion
according to the following two cases:

(I):

∫
R3

|wn|p+1dx 6→ 0 as n→∞;

(II):

∫
R3

|wn|p+1dx→ 0 as n→∞.

Suppose that the case (I) occurs. Then up to a sbusequence, we may obtain from
(31) that

‖wn‖2 ≥ Sp+1

(
‖wn‖2 + F (wn)− o(1)

) 2
p+1 ,

which implies that for n large enough,

‖wn‖2 ≥ S
p+1
p−1

p+1 + o(1).
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It is deduced from this and (30) that d ≥ p−1
2(p+1)S

p+1
p−1

p+1 , which is a contradiction.

Therefore the case (II) must occur. This and (31) imply that ‖wn‖ → 0. Hence we

have proven that Iµ1
satisfies (PS)d condition for any d < p−1

2(p+1)S
p+1
p−1

p+1 . �

Proof of Proposition 3.1. Since 0 is a local minimizer of Iµ1
and for v 6= 0, Iµ1

(sv)→
−∞ as s→ +∞, Lemma 3.2, Lemma 3.3 and the mountain pass theorem [3] imply
that dµ1 is a critical value of Iµ1 .

Proof of Theorem 1.1. By Proposition 3.1, the dµ1 is a critical value of Iµ1 and
dµ1

> 0. The proof of nonnegativity for at least one of the corresponding critical
point is inspired by the idea of [1]. In fact, since Iµ1

(u) = Iµ1
(|u|) for any u ∈

H1(R3), for every n ∈ N, there exists γn ∈ Γ1 with γn(t) ≥ 0 (a.e. in R3) for all
t ∈ [0, 1] such that

(32) dµ1
≤ max
t∈[0,1]

Iµ1
(γn(t)) < dµ1

+
1

n
.

By Ekeland’s variational principle [5], there exists γ∗n ∈ Γ1 satisfying

(33)


dµ1 ≤ maxt∈[0,1] Iµ1(γ∗n(t)) ≤ maxt∈[0,1] Iµ1(γn(t)) < dµ1 + 1

n ;
maxt∈[0,1] ‖γn(t)− γ∗n(t)‖ < 1√

n
;

there exists tn ∈ [0, 1] such that zn = γ∗n(tn) satisfies :
Iµ1

(zn) = maxt∈[0,1] Iµ1
(γ∗n(t)), and ‖I ′µ1

(zn)‖ ≤ 1√
n
.

By Lemma 3.2 and Lemma 3.3 we get a convergent subsequence (still denoted by
(zn)n∈N). We may assume that zn → z in H1(R3) as n → ∞. On the other hand,
by (33), we also arrive at γn(tn) → z in H1(R3) as n → ∞. Since γn(t) ≥ 0, we
conclude that z ≥ 0, z 6≡ 0 in R3 with Iµ1(z) > 0 and it is a nonnegative bound
state of (3) in the case of µ = µ1.

4. Ground state and bound states for µ > µ1

In this section, we always assume the conditions (A1) − (A4). We will prove
the existence of ground state and bound states of (3) as well as their asymptotical
behavior with respect to µ. We emphasize that if 0 < µ < µ1, then one may consider
a minimization problem like

inf{Iµ(u) : u ∈M}, M = {u ∈ H1(R3) : 〈I ′µ(u), u〉 = 0}
to get a ground state solution. But for µ ≥ µ1, we can not do like this because for
µ > µ1, we do not know if 0 6∈ ∂M. To overcome this difficulty, we define the set
of all nontrivial critical points of Iµ in H1(R3):

N = {u ∈ H1(R3)\{0} : I ′µ(u) = 0}.
And then we consider the following minimization problem

(34) c0,µ = inf{Iµ(u) : u ∈ N}.

Lemma 4.1. Let δ2 and ρ be as in Lemma 2.7 and µ ∈ (µ1, µ1 + δ2). Define the
following minimization problem

d0,µ = inf
‖u‖<ρ

Iµ(u).

Then the d0,µ is achieved by a nonnegative function w0,µ ∈ H1(R3). Moreover this
w0,µ is a nonnegative solution of (3).
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Proof. Firstly, we prove that −∞ < d0,µ < 0 for µ ∈ (µ1, µ1 + δ2). Keeping the
expression of Iµ(u) in mind, we obtain from the Sobolev inequality that

Iµ(u) =
1

2
‖u‖2 − µ

2

∫
R3

h(x)u2dx+
1

4
F (u)− 1

p+ 1

∫
R3

|u|p+1dx

≥ 1

2
‖u‖2 − µ

2µ1
‖u‖2 − C‖u‖p+1 > −∞

as ‖u‖ < ρ. Next, for any t > 0, we have that

Iµ(te1) =
t2

2
‖e1‖2 −

µt2

2

∫
R3

h(x)e2
1dx+

t4

4
F (e1)− tp+1

p+ 1

∫
R3

|e1|p+1dx.

It is now deduced from µ1

∫
R3 h(x)e2

1dx = ‖e1‖2 that

Iµ(te1) =
t2

2

(
1− µ

µ1

)
‖e1‖2 +

t4

4
F (e1)− tp+1

p+ 1

∫
R3

|e1|p+1dx.

Since µ > µ1, we obtain that for t small enough, the Iµ(te1) < 0. Thus we have
proven that −∞ < d0,µ < 0 for µ ∈ (µ1, µ1 + δ2).

Secondly, let (vn)n∈N be a minimizing sequence, that is, ‖vn‖ < ρ and Iµ(vn)→
d0,µ as n→∞. By the Ekeland’s variational principle, we can obtain that there is
a sequence (un)n∈N ⊂ H1(R3) with ‖un‖ < ρ such that as n→∞,

Iµ(un)→ d0,µ and I ′µ(un)→ 0.

Then we can prove that (un)n∈N is bounded in H1(R3). Using Lemma 2.6, we
obtain that (un)n∈N contains a convergent subsequence, still denoted by (un)n∈N,
such that un → u0 strongly in H1(R3). Noticing the fact that if (vn)n∈N is a
minimizing sequence, then (|vn|)n∈N is also a minimizing sequence, we may assume
that for each n ∈ N, the un ≥ 0 in R3. Therefore we may assume that u0 ≥ 0 in R3.
The I ′µ(un) → 0 and un → u0 strongly in H1(R3) imply that I ′µ(u0) = 0. Hence
choosing w0,µ ≡ u0, we know that w0,µ is a nonnegative solution of the (3). �

We emphasize that the above lemma does NOT mean that w0,µ is a ground
state of (3). But it does imply that N 6= ∅ for any µ ∈ (µ1, µ1 + δ2). Now we are
in a position to prove that the c0,µ defined in (34) can be achieved.

Lemma 4.2. For µ ∈ (µ1, µ1 + δ2), the c0,µ is achieved by a nontrivial v0,µ ∈
H1(R3), which is a nontrivial critical point of Iµ and hence a solution of the (3).

Proof. By Lemma 4.1, we know that N 6= ∅ for µ ∈ (µ1, µ1 + δ2). Hence we have
that c0,µ < 0. Next we prove that the c0,µ > −∞.

For any u ∈ N , since I ′µ(u) = 0, then 〈I ′µ(u), u〉 = 0. Then we can deduce that

Iµ(u) = Iµ(u)− 1

4
〈I ′µ(u), u〉 ≥ 1

4
‖u‖2 −D(p, h)µ

p+1
p−1 .

Therefore the c0,µ > −∞.
Now let (un)n∈N ⊂ N be a sequence such that

Iµ(un)→ c0,µ and I ′µ(un) = 0.

Since −∞ < c0,µ < 0, we know from Lemma 2.6 that (un)n∈N contains a convergent
subsequence in H1(R3) and then we may assume without loss of generality that
un → v0 strongly in H1(R3). Therefore we have that Iµ(v0) = c0,µ and I ′µ(v0) = 0.
Choosing v0,µ ≡ v0 and we finish the proof of the Lemma 4.2. �



ASYMPTOTIC BEHAVIOR OF BOUND STATES 397

Next, to analyze further the (PS)d condition of the functional Iµ, we have to
prove a relation between the minimizer w0,µ obtained in Lemma 4.1 and the mini-
mizer v0,µ obtained in Lemma 4.2.

Lemma 4.3. There exists δ3 ∈ (0, δ2] such that for any µ ∈ (µ1, µ1 + δ3), the v0,µ

obtained in Lemma 4.2 can be chosen to coincide the w0,µ obtained in Lemma 4.1.

Proof. The proof is divided into two steps. In the first place, for u 6= 0 and I ′µ1
(u) =

0, we have that

‖u‖2 − µ1

∫
R3

h(x)u2dx+ F (u) =

∫
R3

|u|p+1dx

and hence

Iµ1(u) =
p− 1

2(p+ 1)

(
‖u‖2 − µ1

∫
R3

h(x)u2dx

)
+

p− 3

4(p+ 1)
F (u).

Since ‖u‖2 ≥ µ1

∫
R3 h(x)u2dx for any u ∈ H1(R3), we obtain that

Iµ1(u) ≥ p− 3

4(p+ 1)
F (u) > 0.

In the second place, denoted by u0,µ a ground state obtained in Lemma 4.2. For

any sequence µ(n) > µ1 and µ(n) → µ1 as n→∞, we have that u0,µ(n) satisfies

I ′µ(n)(u0,µ(n)) = 0

and we also have that

c0,µ(n) = Iµ(n)(u0,µ(n)) < 0.

Hence we deduce that (u0,µ(n))n∈N is bounded in H1(R3). Since I ′
µ(n)(u0,µ(n)) = 0,

one also has that

Iµ(n)(u0,µ(n)) =
p− 1

2(p+ 1)

(
‖u0,µ(n)‖2 − µ(n)

∫
R3

h(x)(u0,µ(n))2dx

)
+

p− 3

4(p+ 1)
F (u0,µ(n)).

Using the definition of µ1, we obtain that, as n→∞,

‖u0,µ(n)‖2 − µ(n)

∫
R3

h(x)(u0,µ(n))2dx ≥
(

1− µ(n)

µ1

)
‖u0,µ(n)‖2 → 0

because (u0,µ(n))n∈N is bounded in H1(R3). Next since (u0,µ(n))n∈N is bounded in

H1(R3), we may assume without loss of generality that u0,µ(n) ⇀ ũ0 weakly in

H1(R3).

Claim. As n→∞, the u0,µ(n) → ũ0 strongly in H1(R3) and ũ0 = 0.

Proof of the Claim. From u0,µ(n) ⇀ ũ0 weakly in H1(R3), we may assume that

u0,µ(n) → ũ0 a. e. in R3. Using these and the fact of I ′
µ(n)(u0,µ(n)) = 0, we deduce

that I ′µ1
(ũ0) = 0. Then similar to the proof in Lemma 2.6, we obtain that

o(1) + Iµ(n)(u0,µ(n)) = Iµ(n)(ũ0) +
1

2
‖w̃n‖2

+
1

4
F (w̃n)− 1

p+ 1

∫
R3

|w̃n|p+1dx,(35)

where w̃n := u0,µ(n) − ũ0.
Now we distinguish two cases:



398 LIRONG HUANG AND JIANQING CHEN

(i):

∫
R3

|w̃n|p+1dx 6→ 0 as n→∞;

(ii):

∫
R3

|w̃n|p+1dx→ 0 as n→∞.

Suppose that the case (i) occurs. We may deduce from a proof similar to Lemma
2.6 that

Iµ(n)(u0,µ(n)) + o(1) ≥ Iµ1
(ũ0) +

p− 1

2(p+ 1)
S
p+1
p−1

p+1 ,

which is a contradiction because Iµ1
(ũ0) > − p−1

2(p+1)S
p+1
p−1

p+1 by Lemma 2.5 and the fact

of Iµ(n)(u0,µ(n)) < 0. Therefore the case (ii) occurs, which implies that u0,µ(n) → ũ0

strongly in H1(R3) (the proof is similar to those in Lemma 2.6). From this we also
deduce that F (w̃n)→ F (ũ0).

Next we prove that ũ0 = 0. Arguing by a contradiction, if ũ0 6= 0, then we know
from I ′

µ(n)(u0,µ(n)) = 0 that

lim inf
n→∞

Iµ(n)(u0,µ(n)) ≥
p− 3

4(p+ 1)
F (ũ0) > 0,

which is also a contradiction since Iµ(n)(u0,µ(n)) < 0. Therefore ũ0 = 0.
Hence there is δ3 ∈ (0, δ2] such that for any µ ∈ (µ1, µ1 + δ3), ‖u0,µ‖ < ρ, which

implies that c0,µ = d0,µ. Using Lemma 4.1, we can get a nonnegative ground state
of (3), called w0,µ and c0,µ = d0,µ = Iµ(w0,µ). The proof is complete. �

Remark 4.4. The proof of Lemma 4.3 implies that (1) of Theorem 1.2 holds.

In the following, we are going to prove the existence of another nonnegative
bound state solution of (3). To obtain this goal, we have to analyze further the
(PS)d condition of the functional Iµ.

Lemma 4.5. Under the assumptions of (A1)− (A4), if µ ∈ (µ1, µ1 + δ3), then Iµ

satisfies (PS)d condition for any d < c0,µ + p−1
2(p+1)S

p+1
p−1

p+1 .

Proof. Let (un)n∈N ⊂ H1(R3) be a (PS)d sequence of Iµ with d < c0,µ+ p−1
2(p+1)S

p+1
p−1

p+1 .

Then we have that for n large enough,

d+ o(1) =
1

2
‖un‖2 −

µ

2

∫
R3

h(x)u2
ndx+

1

4
F (un)− 1

p+ 1

∫
R3

|un|p+1dx

and

〈I ′µ(un), un〉 = ‖un‖2 − µ
∫
R3

h(x)u2
ndx+ F (un)−

∫
R3

|un|p+1dx.

Similar to the proof in Lemma 2.3, we can deduce that (un)n∈N is bounded in
H1(R3). Going if necessary to a subsequence, we may assume that un ⇀ u0 weakly
in H1(R3) and un → u0 a. e. in R3. Denote wn := un − u0. We then obtain from
Brezis-Lieb lemma and Lemma 2.4 that for n large enough,

‖un‖2 = ‖u0‖2 + ‖wn‖2 + o(1),

F (un) = F (u0) + F (wn) + o(1)

and

‖un‖p+1
Lp+1 = ‖u0‖p+1

Lp+1 + ‖wn‖p+1
Lp+1 + o(1).



ASYMPTOTIC BEHAVIOR OF BOUND STATES 399

Using Lemma 2.1, we also have that
∫
R3 h(x)u2

ndx →
∫
R3 h(x)u2

0dx as n → ∞.
Therefore we deduce that

d+ o(1) = Iµ(un) = Iµ(u0) +
1

2
‖wn‖2(36)

+
1

4
F (wn)− 1

p+ 1

∫
R3

|wn|p+1dx.

Since 〈I ′µ(un), ψ〉 → 0 for any ψ ∈ H1(R3), we know that I ′µ(u0) = 0. Moreover we
have that

Iµ(u0) ≥ c0,µ
and

‖u0‖2 − µ
∫
R3

h(x)u2
0dx+

∫
R3

φu0
u2

0 =

∫
R3

|u0|p+1dx.

Note that (un)n∈N is bounded in H1(R3). The Brezis-Lieb lemma, Lemma 2.4 and

o(1) = ‖un‖2 − µ
∫
R3

h(x)u2
ndx+ F (un)−

∫
R3

|un|p+1dx

imply that

(37) o(1) = ‖wn‖2 + F (wn)−
∫
R3

|wn|p+1dx.

Using ‖u‖2 ≥ Sp+1‖u‖2Lp+1 for any u ∈ H1(R3), we distinguish two cases:

(I):

∫
R3

|wn|p+1dx 6→ 0 as n→∞;

(II):

∫
R3

|wn|p+1dx→ 0 as n→∞.

Suppose (I) occurs. Up to a subsequence, we may obtain from (37) that

‖wn‖2 ≥ Sp+1

(
‖wn‖2 + F (wn)− o(1)

) 2
p+1 .

Hence we get that for n large enough,

(38) ‖wn‖2 ≥ S
p+1
p−1

p+1 + o(1).

Therefore using (36) and (38), we deduce that for n large enough,

d +o(1) = Iµ(un)

= Iµ(u0) +
1

2
‖wn‖2 +

1

4
F (wn)− 1

p+ 1

∫
R3

|wn|p+1dx

= Iµ(u0) +
p− 1

2(p+ 1)
‖wn‖2 +

p− 3

4(p+ 1)
F (wn)(39)

≥ c0,µ +
p− 1

2(p+ 1)
‖wn‖2 +

p− 3

4(p+ 1)
F (wn)

> c0,µ +
p− 1

2(p+ 1)
S
p+1
p−1

p+1 ,

which contradicts to the assumption d < c0,µ + p−1
2(p+1)S

p+1
p−1

p+1 . Therefore the case

(II) must occur, i.e.,
∫
R3 |wn|p+1dx → 0 as n → ∞. This and (37) imply that

‖wn‖ → 0. Hence we have proven that Iµ satisfies (PS)d condition for any d <

c0,µ + p−1
2(p+1)S

p+1
p−1

p+1 . �
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Next, for the w0,µ obtained in Lemma 4.3, we define

d2,µ = inf
γ∈Γ2

sup
t∈[0,1]

Iµ(γ(t))

with
Γ2 = {γ ∈ C([0, 1], H1(R3)) : γ(0) = w0,µ, Iµ(γ(1)) < c0,µ}.

Lemma 4.6. Suppose that the conditions (A1)− (A4) hold and 0 < b < a < 1. If
µ ∈ (µ1, µ1 + δ3), then

d2,µ < c0,µ +
p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Proof. It suffices to find a path starting from w0,µ and the maximum of the energy

functional over this path is strictly less than c0,µ + p−1
2(p+1)S

p+1
p−1

p+1 . To simplify the

notation, we denote w0 := w0,µ, which corresponds to the critical value c0,µ. We
will prove that there is a T0 such that the path γ(t) = w0 + tT0UR is what we
need, here UR(x) ≡ U(x−Rθ) is defined as before. Similar to the discussion in the
proof of Lemma 3.2, we only need to estimate Iµ(w0 + tUR) for positive t in a finite
interval. By direct calculation, we have that

Iµ(w0 + tUR) =
1

2

(
‖w0 + tUR‖2 − µ

∫
R3

h(x)|w0 + tUR|2dx
)

+
1

4
F (w0 + tUR)− 1

p+ 1

∫
R3

|w0 + tUR|p+1dx

= Iµ(w0) +A1 +A2 +A3 +
t2

2
‖UR‖2 −

µ

2

∫
R3

h(x)U2
Rdx,

where

A1 = 〈w0, tUR〉 − µt
∫
R3

h(x)w0URdx,

A2 =
1

4
(F (w0 + tUR)− F (w0))

and

A3 =
1

p+ 1

∫
R3

(
|w0|p+1 − |w0 + tUR|p+1

)
dx.

Since w0 is a solution of (3), we have that

A1 =

∫
R3

(w0)ptURdx−
∫
R3

K(x)φw0w0tURdx.

From an elementary inequality:

(a+ b)q − aq ≥ bq + qaq−1b, q > 1, a > 0, b > 0,

we deduce that

|A3| ≤ −
1

p+ 1

∫
R3

|tUR|p+1dx−
∫
R3

|w0|ptURdx.

For the estimate of A2, using the expression of F (u) =
∫
R3 K(x)φuu

2dx and the
symmetry property of the integral with respect to x and y, we can obtain that

|A2| ≤ t
∫
R3

K(x)φw0w0URdx+
t2

2

∫
R3

K(x)φw0(UR)2dx

+
t4

4

∫
R3

K(x)φUR(UR)2dx+ t3
∫
R3

K(x)φURw0URdx

+t2
∫
R3×R3

K(x)K(y)w0(x)w0(y)UR(x)UR(y)

|x− y|
dxdy.
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Since w0 is a nonnegative solution of (3) and w0 ∈ L∞(R3), we obtain from the
assumption on K(x) that∫

R3×R3

K(x)K(y)w0(x)w0(y)UR(x)UR(y)

|x− y|
dxdy

=

∫
R3

K(x)φ√w0UR
w0URdx

≤ ‖φ√w0UR
‖L6

(∫
R3

K(x)
6
5 (w0UR)

6
5 dx

) 5
6

≤ C
(∫

R3

e−
6
5aRe(

6
5a−

6
5 (1−δ))|x|dx

) 5
6

≤ Ce−aR since 0 < a < 1.

Similarly we can deduce that for R large enough,∫
R3

K(x)φw0
w0URdx ≤ Ce−aR,

∫
R3

K(x)φw0
(UR)2dx ≤ Ce−aR,

∫
R3

K(x)φUR(UR)2dx ≤ Ce−aR and

∫
R3

K(x)φURw0URdx ≤ Ce−aR.

Since
∫
R3 h(x)(UR)2dx ≥ Ce−bR for R large enough, we obtain that

Iµ(w0 + tUR) ≤ Iµ(w0) +
t2

2
‖UR‖2dx−

µ

2

∫
R3

h(x)U2
Rdx

− 1

p+ 1

∫
R3

|tUR|p+1dx+ Ce−aR

≤ Iµ(w0) +
p− 1

2(p+ 1)
S
p+1
p−1

p+1 + Ce−aR − Ce−bR + o(e−bR)

< c0,µ +
p− 1

2(p+ 1)
S
p+1
p−1

p+1

for R large enough since 0 < b < a < 1. The proof is complete. �

Proposition 4.7. Under the conditions (A1)-(A4), if µ ∈ (µ1, µ1 + δ3) and w0,µ

be the minimizer obtained in Lemma 4.3, then the d2,µ is a critical value of Iµ.

Proof. Since for µ ∈ (µ1, µ1 + δ3), we know from Lemma 4.1 and Lemma 4.3 that
the w0,µ is a local minimizer of Iµ. Moreover, one has that Iµ(w0,µ + sUR)→ −∞
as s→ +∞. Therefore Lemma 4.5, Lemma 4.7 and the mountain pass theorem of
[3] imply that d2,µ is a critical value of Iµ. �

Proof of Theorem 1.2. The conclusion (1) of Theorem 1.2 follows from Lemma 4.3
and Remark 4.4. It remains to prove (2) of Theorem 1.2. By Proposition 4.7, the
d2,µ is a critical value of Iµ and d2,µ > 0. The proof of nonnegativity for at least
one of the corresponding critical point is inspired by the idea of [1]. In fact, since
Iµ(u) = Iµ(|u|) for any u ∈ H1(R3), for every n ∈ N, there exists γn ∈ Γ2 with
γn(t) ≥ 0 (a.e. in R3) for all t ∈ [0, 1] such that

(40) d2,µ ≤ max
t∈[0,1]

Iµ(γn(t)) < d2,µ +
1

n
.
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By Ekeland’s variational principle, there exists γ∗n ∈ Γ2 satisfying

(41)


d2,µ ≤ maxt∈[0,1] Iµ(γ∗n(t)) ≤ maxt∈[0,1] Iµ(γn(t)) < d2,µ + 1

n ;
maxt∈[0,1] ‖γn(t)− γ∗n(t)‖ < 1√

n
;

there exists tn ∈ [0, 1] such that zn := γ∗n(tn) satisfies :
Iµ(zn) = maxt∈[0,1] Iµ(γ∗n(t)), and ‖I ′µ(zn)‖ ≤ 1√

n
.

By Lemma 4.6 we get a convergent subsequence (still denoted by (zn)n∈N). We may
assume that zn → z strongly in H1(R3) as n → ∞. On the other hand, by (41),
we also arrive at γn(tn) → z strongly in H1(R3) as n → ∞. Since γn(t) ≥ 0, we
conclude that z ≥ 0, z 6≡ 0 in R3 with Iµ(z) > 0 and it is a nonnegative solution of
problem (3).

Next, let u2,µ be the nonnegative solution given by the above proof, that is,

I ′µ(u2,µ) = 0 and Iµ(u2,µ) = d2,µ. We claim that for any sequence µ(n) > µ1 and

µ(n) → µ1, there exist a sequence of solution u2,µ(n) of (3) with µ = µ(n) and a uµ1

with I ′µ1
(uµ1

) = 0 such that u2,µ(n) → uµ1
strongly in H1(R3). In fact, denoted by

w0,µ(n) the minimizer corresponding to d0,µ(n) , according to the definition of d2,µ

and the proof of Lemma 4.6, we deduce that for n large enough,

0 < α ≤ d2,µ(n) ≤ max
s>0

Iµ(n)(w0,µ(n) + sUR)

and

Iµ(n)(w0,µ(n) + sUR) ≤ p− 1

2(p+ 1)
S
p+1
p−1

p+1 + Ce−aR − Ce−bR + o(e−bR),

(42) lim sup
n→∞

d2,µ(n) ≤
p− 1

2(p+ 1)
S
p+1
p−1

p+1 .

Next, similar to the proof in Lemma 2.3, we can deduce that (u2,µ(n))n∈N is

bounded in H1(R3). Going if necessary to a subsequence, we may assume that
u2,µ(n) ⇀ ũ2 weakly in H1(R3) and u2,µ(n) → ũ2 a. e. in R3. Then we have that
I ′µ1

(ũ2) = 0. Moreover Iµ1
(ũ2) ≥ 0. If (u2,µ(n))n∈N does not converge strongly to

ũ2 in H1(R3), then using an argument similar to the proof of Lemma 4.5, we may
deduce that

Iµ(n)(u2,µ(n)) ≥ Iµ1
(ũ2) +

p− 1

2(p+ 1)
S
p+1
p−1

p+1 ,

which contradicts to (42). Hence u2,µ(n) → ũ2 strongly in H1(R3) and hence
Iµ1

(ũ2) > 0. The proof is complete by choosing uµ1
= ũ2.
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