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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF BOUND
STATES FOR A CLASS OF NONAUTONOMOUS
SCHRODINGER-POISSON SYSTEM

LIRONG HUANG AND JIANQING CHEN*

ABSTRACT. This paper is concerned with the following Schrédinger-Poisson
system
(P : —Au+u+ K(x)pu = [ulP~u+ ph(z)u, —Ad = K(z)u?, = € R,

where p € (3,5), K(z) and h(z) are nonnegative functions, and p is a positive
parameter. Let p1 > 0 be an isolated first eigenvalue of the eigenvalue problem
—Au+u = ph(z)u, u € HY(R?). As 0 < pu < p1, we prove that (P,) has
at least one nonnegative bound state with positive energy. As p > p1, there
is § > 0 such that for any p € (u1,p1 + 6), (Pu) has a nonnegative ground
state ug,, with negative energy, and Ug (n) 0 in HY(R3) as ISORTIS
Besides, (P,) has another nonnegative bound state uz,, with positive energy,
and gy, (n) = Uy in HY(R3) as p(™) | p1, where u,, is a bound state of

(Pus)-

1. INTRODUCTION

In this paper, we study a class of Schrodinger-Poisson system with the following
version
(1) { —Au+u+ K(z)du = [ulP~tu + ph(z)u in R?,
—A¢ = K(x)u? in R3,

where p € (3,5), > 0, K(z) and h(z) are nonnegative functions. System (1) can
be looked on as a non-autonomous version of the system
2 —Au+u+ ou = f(u) in R3,

—A¢p = u? in R3,
which has been derived from finding standing waves of the Schrédinger-Poisson
system

Wy — A+ ¢ = f(¥) in R?,

—A¢ = [p|? in R3.

A starting point of studying system (1) is the following fact. For any u € H*(R?)

and K € L>°(R?), there is a unique ¢, € DV?(R3) with

1 K(y)|u(y)|?
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such that —A¢, = K (z)u?, see e.g. [11, 20]. Inserting this ¢,, into the first equation
of the system (1), we get that
(3) —Au+u+ K(@)pyu = [ulP" u+ ph(z)u, ue HY(R?).
Problem (3) can be also looked on as a usual semilinear elliptic equation with an
additional nonlocal perturbation K(z)¢,u. Our aim here is to prove some new
phenomenon of (3) due to the presence of the term K(z)¢p,u. Before giving the
main results, we state the following assumptions.

(A1): h(z) >0, h(z) # 0 in R3 and h(z) € LT (R3) N L= (R3).

(A2): There exist b > 0 and Hy > 0 such that h(z) > Hoe "1*l for all 2 € R?,

(A3): K(z) >0 and K(z) € L3(R3) N L*°(R?).

(A4): There exist a > 0 and K, > 0 such that K(z) < Kee~ | for all

x € R3.
From Lemma 2.1, we know that under the condition (A1), the following eigen-
value problem
—Au+u = ph(x)u, ue H'(R?)

has a first eigenvalue p1 > 0 and p; is simple. Denote

Pl = [ K@ou(@)lula) s

and introduce the energy functional I, : H'(R3) — R associated with (3)

1 1 1 [
) = gholP + 170 = [ (Sl 4 S ) de

where [|[u]|? = [5s(|Vu|? + u?)dz. From [11] and the Sobolev inequality, I, is well
defined and I, € C'(H'(R?),R). Moreover, for any v € H!(R?),

(I, (u),v) = / (VuVv + uv + K (2)gyuv — |ulP~'uww + ph(z)uv) da.
R3

It is known that there is a one to one correspondence between solutions of (3) and
critical points of I, in H'(R3). Note that if u € H*(R?) is a solution of (3), then
(u, ¢y,) is a solution of the system (1). If uw > 0 and u is a solution of (3), then
(u, ¢,) is a nonnegative solution of (1) since ¢, is always nonnegative. We call
u € H'(R?)\{0} a bound state of (3) if I,(u) = 0. At this time (u, ¢,) is called a
bound state of (1). A bound state u is called a ground state of (3) if I},(u) = 0 and
I,(u) < I,(w) for any bound state w. In this case, we call (u, ¢,) a ground state
of (1). The first result is about p less than p;.

Theorem 1.1. Suppose that the assumptions of (A1) - (A4) hold and 0 < b < a < 2.
If 0 < u < pq, then problem (3) has at least one nonnegative bound state.

The second result is about p in a small right neighborhood of ;.

Theorem 1.2. Under the assumptions of (A1) - (A4), if 0 < b < a < 1, then there
exists 6 > 0 such that, for any u € (u1,p1 +90),
(1) problem (3) has at least one nonnegative ground state ug,,, with I,,(ug,,) < 0.
Moreover, ug ) — 0 strongly in HY(R3) for any sequence ™ >y and
p™ = g
(2) problem (3) has another nonnegative bound state us,, with I,(ug,) > 0.
Moreover, uy ,n) — uy, strongly in HY(R3) for any sequence w™ >
and p™ — py, where u,, satisfies I, (uu,) =0 and 1, (u,,) > 0.
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The proofs of Theorem 1.1 and Theorem 1.2 are based on critical point theory.
There are several difficulties in the road of getting critical points of I, in H'(R?)
since we are dealing with the problem in the whole space R3, the embedding from
H(R?) into L4(R3) (2 < ¢ < 6) is not compact, the appearance of a nonlocal term
K (z)¢,u and the non coercive linear part. To explain our strategy, we review some
related known results. For the system (2), under various conditions of f, there are
a lot of papers dealing with the existence and nonexistence of positive solutions
(u, ) € HYR?) x DM2(R3), see for example [2, 23] and the references therein.
The lack of compactness from H'(R?) < LI(R3) (2 < ¢ < 6) was overcome by
restricting the problem in H}(R?) which is a subspace of H'(R?) containing only
radial functions. The existence of multiple radial solutions and non-radial solutions
have been obtained in [2, 13]. See also [6, 15, 16, 17, 18, 19, 24, 29, 30] for some
other results related to the system (2).

While for nonautonomous version of Schrédinger-Poisson system, only a few
results are known in the literature. Jiang et.al.[21] have studied the following
Schrodinger-Poisson system with non constant coefficient

—Au+ (1 + Ag(z))u+ 0p(z)u = |ulP"2u  in R3,
—A¢p=u? IR limp e () =0,

in which the authors prove the existence of ground state solution and its asymptotic
behavior depending on 6 and \. The lack of compactness was overcome by suitable
assumptions on g(x) and A large enough. The Schrédinger-Poisson system with
critical nonlinearity of the form

—Au+u+ ¢u = V(x)|lu/*u+ pP(zx)|u/?%u in R3,
—Ap=u?2 inR3 2<q¢<6,u>0

has been studied by Zhao et al. [31]. Besides some other conditions, Zhao et. al.
[31] assume that V(z) € C(R*,R), lim|;_o V(2) = Vi € (0,00) and V(z) > Vo
for x € R? and prove the existence of one positive solution for 4 < ¢ < 6 and each
w > 0. It is also proven the existence of one positive solution for ¢ = 4 and p large
enough. Cerami et. al. [11] study the following type of Schrédinger-Poisson system

4 —Au+u+ L(z)pu = g(z,u) in R3,
(4) —A¢ = L(x)u? in R3.

Besides some other conditions and the assumption L(z) € L?(R3), they prove
the existence and nonexistence of ground state solutions. We emphasize that
L(z) € L?(R3) will imply suitable compactness property of the coupled term
L(xz)¢u. Huang et. al. [20] have used this property to prove the existence of
multiple solutions of (4) when g(x,u) = a(x)|u|P~2u+ ph(r)u and p stays in a right
neighborhood of 111. The lack of compactness was overcome by suitable assumptions
on the sign changing function a(x). While for (3), none of the aboved mentioned
properties can be used. We have to analyze the energy level of the functional I,
such that the Palais-Smale ((P.S) for short) condition may hold at suitable interval.
Also for (3), another difficulty is to find mountain pass geometry for the functional
1,, in the case of ;1 > p1. We point out that for the semilinear elliptic equation

(5) — Au = a(z)|ulP"%u+ jik(z)u, inRY,

Costa et.al.[14] have proven the mountain pass geometry for the related func-
tional of (5) when & > [y, where fi; is the first eigenvalue of —Au = jk(z)u
in DV2(RY). Costa et. al. have managed to do these with the help of the condition
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Ja~ a(x)éldr < 0, where €, is a positive eigenfunction corresponding to fi;. In the
present paper, it is not possible to use such kind of condition. We will develop fur-
ther the techniques in [20] to prove the mountain pass geometry. A third difficulty is
to look for a ground state of (3). A usual method of getting a ground state is by min-
imizing the functional I, over the Nehari set {u € H'(R*)\{0} : (I/,(u),u) = 0}.
But in the case of 4 > ui1, one can not do like this because we do not know if
0 belongs to the boundary of this Nehari set. To overcome this trouble, we will
minimize the functional over the set {u € H'(R*)\{0} : I’ (u) = 0}.

This paper is organized as follows. In Section 2, we give some preliminaries. Spe-
cial attentions are focused on several lemmas analyzing the Palais-Smale conditions
of the functional I,,, which will play an important role in the proofs of Theorem 1.1
and Theorem 1.2. In Section 3, we prove Theorem 1.1. And Section 4 is devoted to
the proof of Theorem 1.2.

Notations. Throughout this paper, o(1) is a generic infinitesimal. The H~1(R?)
denotes dual space of H'(R3). LI(R?) (1 < ¢ < +00) is a Lebesgue space with the
norm denoted by |lu|/rs. The Sp4q is defined by

Jes (IVul? + [uf?) dz

Sp-‘rl = inf 2
u€H(R3)\{0} (fRS |u|p+1dx)m

For any p > 0 and @ € R3, B,(x) denotes the ball of radius p centered at z. C
or C; (j =1, 2, ---) denotes various positive constants, whose exact value is not
important.

2. PRELIMINARIES

In this section, we give some preliminary lemmas, which will be helpful to analyze
the (PS) conditions for the functional I,,. Firstly, for any u € H'(R?) and K €
L>(R3), defining the linear functional

Ly(v) = . K (x)u?vdz, v e DM(R?),

one may deduce from the Holder and the Sobolev inequalities that
(6) |La(0)] < Cllul? sz vl e < Cllull? sz [[v]lpre-

Hence, for any u € H*(R3), the Lax-Milgram theorem implies that there exists a

unique ¢, € DV2(R?) such that —A¢ = K(x)u? in DV2(R?). Moreover it holds

that )

1 K(y)u“(y

bule) = o= [ E W)
AT Jrs |z =yl

Clearly ¢, (z) > 0 for any x € R3. We also have that

dy.

g ullns = [ Voude = [ K)ot
R3 R3

Using (6) and (7), we obtain that

(8) 16ullze < Cligullpre < Cllull? 2 < Clul®.

Then we deduce that
(9) / K (2)gu(x)u(2)dz < Cllul*.
R3
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Hence on H'(R?), both the functional

(10) Pl = [ K@), (s
and
) g =gl P - [ (St fhe?) do

are well defined and C'. Moreover, for any v € H'(R3),
(I, (u),v) = / (VuVo + uwo + K(z)dyuv — |ulP~ uv — ph(z)uv) da.
R3

The following Lemma 2.1 is a direct consequence of [28, Lemma 2.13].

Lemma 2.1. Assume that the hypothesis (Al) holds. Then the functional u €
HY(R3) — [os h(z)udx is weakly continuous and for each v € H*(R?), the func-
tional u € Hl(R3 .—> Jgs h(z)uvdz is weakly continuous.

Using the spectral theory of compact symmetric operators on Hilbert space, the
above lemma implies the existence of a sequence of eigenvalues (un)nen of

—Au +u = ph(z)u, in H'(R?)
with g1 < pe < --- and each eigenvalue being of finite multiplicity. The associated
normalized eigenfunctions are denoted by ej,es, -+ with ||| = 1, ¢ = 1,2,---

Moreover, one has y; > 0 with an eigenfunction e; > 0 in R3. In addition, we have
the following variational characterization of fi,:

O 1 L
weHUEN\0) Jpo h(@)uPd’ 7" uest \(0} [za h(@)uda’
where St | = {span{ei, e, -+ ,en_1}}+.

Next we analyze the (PS) condition of the functional I,, in H!(R?). The following
definition is standard.

Definition 2.2. For d € R, the functional I, is said to satisfy (PS)4 condition if
for any (un)neny C H'(R?) with I,,(u,) = d and I}, (u,) = 0, the (up)nen contains
a convergent subsequence in H'(R®). The functional I, is said to satisfy (PS)
conditions if I, satisfies (P.S)4 condition for any d € R.

Lemma 2.3. Let (up)nen C H'(R?) be such that I,,(u,) = d € R and I}, (u,) = 0,
then (un)nen s bounded in H'(R3).

Proof. For n large enough, we have that

1
(12) d +14o()||unll = Lu(un) = 7 (L (un), un)
- 1 2 _ K p—3 p+1
= ||un|\ 4/}1@ h(z)u? dx+4( 1 ), |un| dz.

Note that Z i > 2 for p € (3,5). Then for any ¢ > 0, we obtain from h €
°)

—1 5
LE(R®) A L (R?) that

T
h(z)uldr < (/ un|p+1dx) (/ \h +dx)
RS RS

219
S*/ fun P+ e + B [ h(@) .
p+1 Jpa +1
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p—3

Choosing ¢ = G we get

p+1

1 b+l
(13) d+1+4o()|unll = Fllunll* = Dlp, R)urT,

. p+1

where D(p,h) = 4&;:1) (712;3) R |h(x)\TJ:1dx Hence (up)nen is bounded in
H(R3). O

The following lemma is a variant of Brezis-Lieb lemma. One may find the proof
in [20].
Lemma 2.4. [20] If a sequence (un)nen C HY(R3) and u,, — uo weakly in H*(R3),
then

lim F(up,) = F(ug)+ lim F(u, — up).

n— oo n— oo

Lemma 2.5. There is a 61 > 0 such that for any p € [u1, 1 + 61), any solution u
of (3) satisfies

p—1 25
I, (u) > —WS’;H.
Proof. Since u is a solution of (3), we get that
nt =g (1= u [ nentas) + 1ra - o [t
2 R3 4 p+1 Jrs
o (|u||2 - ”/]Rs h(x)u2dx) + 74&;31)1?@).

Noticing that |[ul|? > p1 [gs h(z)u?dz for any u € H'(R?), we deduce that for any
u # 0,
p—3
1, (u) > ——F(u) > 0.
Next, we claim: there is a §; > 0 such that for any u € [p1, 41 +81), any solution
u of (3) satisfies

I p-1 gis
pl(u) > —m ptl-

Suppose this claim is not true, then there is a sequence p(™ > pq with p( — 1y
and solutions ) of (3) such that
p— 1 ptl

p—1
Loy (uym ) < Top 1) Pt

Note that I:L(,,) (t,m) = 0. Then we deduce that for n large enough,

1
Iu(n) (Uu(n) ) — i <I;L(n) (Uu(n) )7 Uu(n)>

p+1
p—1

Y

]#(n) (u#(n) )+ 0(1) Hu#(m

1
> Z 12 = (n)
> Tl I = Do) (1)

This implies that (u,,(n) )Jnen is bounded in H'(R?). Since for any n € N, ||u,,m ||* >
p1 Jga h(x)(u,m))?dx, we obtain that as ™ — g

(n)
o P = ) [ o) 0 > (1 - “) o 2 = 0
R3 H1
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because (u,,(n) )nen is bounded in H'(R?). Noting that

p—1 2 (n)/ 2
I n n - n - n
() (Uyn)) S+ D) o I* = p . h(z)(w, o) dx
P
+ P70 plu,m),
d(p+1) (1)

we deduce that

. -3 .. .
liminf 7, (UM”)) > LP7° yim 1an(u#(n)) >0,

which contradicts to the

p—1 5
Ip.(") (Uﬂ(n)) S _m p+1°
This proves the claim and the proof of Lemma 2.5 is complete. O

Lemma 2.6. If 1 € [pu1, 1 + 1), then I, satisfies (PS)q condition for any d < 0.
Proof. Let (up)nen C H'(R?) be a (PS)4 sequence of I, with d < 0. Then for n
large enough,

1 I 1 1
d+o(1) = Zllun > = % [ h(x)uidz + ~F(u,) — —— WP
tolt) = lunl = § [ heide+ 1P = [ s

and
(B = P = [ W+ Fun) = [ a1
R3 R3
Then we can prove that (u,)ney is bounded in H!(R3). Without loss of generality,
we may assume that u,, — ug weakly in H!(R?) and u,, — ug a. e. in R?. Denoting
Wy, = Uy — Ug, We obtain from Brezis-Lieb lemma and Lemma 2.4 that for n large
enough,

lunll? = lluoll® + [lwn]|* + o(1),
F(un) = F(uo) + F(wn) + o(1)
and
unlles = lluollfhis + lwallfris + o(1).

Using Lemma 2.1, we also have that [p, h(z)uide — [ps h(z)udde as n — oo.
Therefore

1
(14) d+o(1) = Iu(un):I,J(uo)—kinnH2
1 1
ZF(wy) — —— WP dz.
+ 1P = = [ ol

Noticing (I}, (un), 1) — 0 for any ¢ € H'(R?), we obtain that I,(ug) = 0. From
which we deduce that

(15) ol ~ u/ h(z)uddr + F(ug) = / o [P+ da
R3 R3
Since (un)nen is bounded in H'(R?), we obtain from I, (u,) — 0 that
o(1) = [lunl|* - u/ h(x)uZdr + F(uy,) _/ lun [P+ d.
R3 R3

Combining this with (15) as well as Lemma 2.1, we obtain that

(16) o) = P+ Flw,) = [ a7+ do.
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Recalling the definition of Sp41, we have that [|ul|? > Spi1l|ul|7,.: for any u €
H'(R3). Now we distinguish two cases:

(i): / |w,|PTdz /5 0 as n — oo;
R3

(ii): / |w, [Ptz — 0 as n — oo.
R3

Suppose that the case (i) occurs. We may obtain from (16) that

[wnll® > Spa1 (lwnll® + Flwn) = o(1)) 7+ .

Hence we get that for n large enough,

(17) l|wnl? > S;A +o(1).

Therefore using (14), (16) and (17), we deduce that for n large enough,

d +o(1)=1( n)

— L(uo) + ||wnH2—|— Fwn _ /|w P14z
p—1 2 L p
(13) )+ 27+ 2 ()
p—1 _zH p—1 9 p—3
S S 2 P73 p,
sy e Tl g )

> 0,

which contradicts to the condition d < 0. This means that the case (i) does not
occur. Therefore the case (ii) occurs. Using (16), we deduce that |Jw,]|? — 0 as
n — oco. Hence we have proven that u, — ug strongly in H!(R3). O

Next we give a mountain pass geometry for the functional I,,.

Lemma 2.7. There exist 6o > 0 with d2 < 61, p > 0 and a > 0, such that for any
€ [, +02), Lulon, > a > 0.

Proof. For any u € H'(R?), there exist t € R and v € Si- such that

(19) u = te; + v, where / (VoVey +wvey)dz = 0.
R3

Hence we deduce that

(20) [ull®> =V (ter + v)||72 + [[ter + 0|7 = ¢* + [|v]]?,

(21) ug/ h@)da < o], ul/ h(z)edz = [ler]? = 1
R3 R3

and

(22) 1 / h(z)ejvdx = / (VoVe 4+ vep) dx = 0.
R3 R3
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We first consider the case of p = p;. Denoting 61 := (2 — p1)/2p2 > 0, then by
the relations from (19) to (22), we obtain that
1 1 [ 1
I, (u) = *||u|\2 +F) - . h(z)u*dx — ) JulP* da

§||tel +o||? + 4F(t61 +v)

H1 2 1 +1
——= | h(x)(t doe — —— t Prid
5 s (z)(ter +v)“dx p+1/Rs|el+v| x

1 1 2 1
>—1—=—=)|v|*+ -F(tes +v) — ——
5 (1= 2 ) IolP + g Fter +0) -

= Ou|ol|* + JF(ter +v) = CiltP™ = Collo["

te; + v|PTdx
R3

Next we estimate the term F'(te; + v). Using the expression of F'(u), we have that

T e1 v 2(teq (z v(z))?
Fley o) = i [ KOKO o) £ o) ese) £ o),

Since

(ter(y) + v(y))* (t€1(3)3)) + ()’ =7«‘4(61(y;f(@l(:ﬂ))z+(v(y))2(v(ﬂs))2

+2t% (e1(y)(e1(2))*v(y) + ex(z)(e1(y))?v(x))
+2t (e1(z)v(x)(v(y))? + er(y)v(y) (v(x))?)
+t* ((e1(2))*(v(y))? + dex (y)er (@)v(y)v(x) + (e1(y))? (v())?)

we know that

K(2)K(y) (e1(y)(er(x))*v(y) + er(z)(e1(y))*v(x)) _
@) | o dyds| < Clol)
K (2)K(y) (2(e1(2))*(v())* + der(y)er (@)v(y)v(x)) 2
(24) /]R3><R3 o dydz| < C|lv|
and
K(2)K(y) (ex(2)o(2)(v(y))* + er(y)v(y) (v(=))?) 3
(25) /R3><R3 o=y dydz| < C|lv||°.
Hence
Ly (u) > 610 + 0ot — Cft[PH — Cylo] P+ .
=G3[tP[lv]| = Calt?|[0]* = Cslt[lv]l® + 17 @),
where 0y = § [ K(2)¢.,eldx. Note that
20 112 Pl p— Z;P_“)
Clol® < mm * ?H”H ;
llol® < i 4+ Tl 5

and for some qg with 2 < ¢o < 4, we also have that

3]l < ol + L Ly
q0
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Therefore we deduce that
Cs (qo — 1) 340

C
Ly (u) = 01 [[o]* + Oz t[* = == o] — ¢ 70
0
(20) -2t = S B S
1?005 3(p+1) b 1 +1p
- [oll > = Cl¢P™ = Clf[P™.
p+1
340

From ¢p > 2 and 70-T > 4 (since qo < 4), we know that there are positive constants
03, 04 and 93, 6, such that
Ly (u) 2 O3[0]|* + Oaft]*

provided that ||v|| < 65 and |t| < 6. Hence there are positive constants 65 and 5
such that

(27) Ly (w) > Osull* for [|ul? < 63.

Set § = min{%956‘~§7 po — 1} > 0 and 8o := min{d,d;}. Then for any
p € [p1, u1 + d2), we deduce from (27) that

) = @)+ 500 =10 [ hla)ilds

H— 2
> Osl|ul* — —=—=||u
S L
2 2 KM
= ||u 05 ||u||* —
Jul® (Ballul? ~ £ )
1 =~ 1 =~ 1 -~
> Jul? 502 - 10002 ) = 502l

for %9? < ||lu|l* < 62. Choosing p?> = 162 and a = i959~§p2, we finish the proof of
Lemma 2.7. O

3. PROOF OF THEOREM 1.1

In this section, our aim is to prove Theorem 1.1. For 0 < pu < pq, it is standard
to prove that the functional I, contains mountain pass geometry. For p = p, as
we have seen in Lemma 2.7, with the help of the competing between the Poisson
term K (x)¢,u and the nonlinear term, the 0 is a local minimizer of the functional
1,,, and I, contains mountain pass geometry. To get a mountain pass type critical
point of the functional I,,, it suffices to prove the (PS)4 condition by the mountain
pass theorem of [3]. In the following we will focus our attention to the case of
= u1, since the case of 0 < p < py is similar.

Proposition 3.1. Let the assumptions (A1) —(A4) hold and 0 < b < a < 2. Define

d,, = inf sup I, (y(t))
7€l ¢e(0,1)
with
Iy = {ye (0,1, H'(R?)) : 7(0) =0, L., (v(1)) <0}.
Then d,,, is a critical value of I,
Before proving Proposition 3.1, we analyze the (PS)q, condition of I,,,. Let

U(z) be the unique positive solution of —Au + u = |u[P~ u in H*(R?). We know
that for any € € (0, 1), there is a C' = C(¢) > 0 such that U(z) < Ce~(1=)lel,
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Lemma 3.2. If the assumptions (A1) — (A4) hold and 0 < b < a < 2, then the d,,,

pt+1

defined in Proposition 3.1 satisfies d,,, < z(p__i_ll)S;_,_i

Proof. Tt suffices to find a path ~(¢) starting from 0 such that

sup I, (v(1)) < L1 gir
up v _-— :
te[0,1] - 2(p+ 1) PH

Define Ur(z) = U(x — Rf) with § = (0,0, 1). Note that for the Ur defined as above,
the I, (tUr) = —o0 as t — 400 and I, (tUg) — 0 as t — 0. We know that there
is a unique T > 0 such that 21, (tUg)|i=1, = 0, which is

URI2 = / h(2)Uda + T3F(Ug) — T2 / UPHdy = 0.

If TR — 0 as R — oo, then |[Ug||*> — 1 [ h(z)Ujdx — 0 as R — oo, which is
impossible. If TR — 00 as R — 0o, then as R — oo,

1
7 <||UR||2 — /h(x)U,%dx) + F(Ug) = T};*”/U};“dx — 00,
R

which is impossible either. Hence we only need to estimate I,,, (tUg) for ¢ in a finite
interval and we may write

1, (tUR) < g(t) + CF(Ur),

t? ¢+ 1
o) =5 (1012 [ e ) -2 [ wgria
i

p+1
Noting that under the assumptions (A1) — (A4) we obtain that for R large enough,

rwn < ([ xwvfe) ([ asURdx)

(28) <C (/R e~ sale RO (2)) d:c)

5
§ C (/ e*gaR (saf—(l 6))|:cdl,) S CefaR
R3

since 0 < a < 2. We can also prove that

/RB h(z)Uzdr = / h(z + RO)U?(z)dx

where

]RS
(29) >C | el ()de > O | et RUR (1) da
R3 R3
> Ce bF eib“"‘Uz(x)dx > Ce B
]R3

It is now deduced from (28) and (29) that

sup [, (tUr) < Sup g(t) + Ce™o"!
t>0

ol —a
< 2(p+1) (”URH — fRi" URdx) (||UR||Lp+1) -1 +Ce R

2@;11)5“1 Ce PR + o(e™PF) + CeaF
p—1 5

2(p+1) 7!
for R large enough since 0 < b < a. The proof is complete. O

\ /\

N
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Lemma 3.3. Under the assumptions (A1) —(A4), 1,,, satisfies (P.S)q condition for

1
any d < 2(p+1)51f+i

Proof. Let (up)nen C H'(R?) be a (PS)q sequence of I, with d < ppjrll SpJr1
Then we have that for n large enough,

1

d+o(1) = =|lun|?* - &/ h(z)u?dx + F (up) — / |, [P da

2 2 Jrs

and
(8 () = P = g1 [ b2+ Flwn) = [ Jual?*id
R? R?

Hence we can deduce that (uy,),en is bounded in H'(R?). Going if necessary to a
subsequence, we may assume that u, — ug weakly in H!(R3) and u,, — ug a. e.

in R3. Denote w,, := u, —ug. We then obtain from Brezis-Lieb lemma and Lemma
2.4 that for n large enough,

[unll® = lluoll* + wall* + o(1),  F(un) = F(uo) + F(wn) + o(1)

and

1 1 1
||Un||it+1 = ||u0||}£i+1 + ||wnHI;;+1 +o(1).

Since [ps h(z)uide — [os h(z)udde as n — oo, we deduce that
1
(30) d+0(1) = I, (un) = L, (o) + 5llwall*
1
+2 F(w,) — / |wy, [P da.

From (I}, (uy),1) — 0 for any ¢ € Hl(RS), one may deduce that I, (ug) = 0.

Therefore
Hu0||2 - ul/ h(:v)ugdx + F(up) = / |u0|p+1dm
R3 R3
and then

p—1 p—3
Bontu0) 2 52 (ol = [ bloniae) + 22 Fun) 2 0,

Now using an argument similar to the proof of (16), we obtain that
(31) o(1) = [[wn]]? + Fluw,) - / | Pz
R3
By the relation ||u[|? > Spi1||ul|?,.. for any u € H'(R?), we proceed our discussion

according to the following two cases:

(I): / lw, [P da 4 0 as n — oo;
R3

(IT): / |w,|PT dr — 0 as n — oo.
R3

Suppose that the case (I) occurs. Then up to a sbusequence, we may obtain from
(31) that

lwnl® = Spi1 (wall® + F(wn) = o(1)) 7,
which implies that for n large enough,

lwn ] > S;li +o(1).
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It is deduced from this and (30) that d > p 1 Szf_i_i, which is a contradiction.

Therefore the case (IT) must occur. This and (31) imply that ||w,|| — 0. Hence we
+

have proven that I,,, satisfies (P.S)q condition for any d < 50 +11 Syl O
Proof of Proposition 3.1. Since 0 is a local minimizer of I,,, and for v # 0, I,,, (sv) —

—o00 as § — +00, Lemma 3.2, Lemma 3.3 and the mountam pass theorem |3 [ | imply
that d,,, is a critical value of I, .

Proof of Theorem 1.1. By Proposition 3.1, the d,, is a critical value of I,,, and
d,, > 0. The proof of nonnegativity for at least one of the corresponding critical
point is inspired by the idea of [1]. In fact, since I, (u) = I, (Ju|) for any u €
H(R?), for every n € N, there exists v, € I'y with v,(¢) > 0 (a.e. in R?) for all
t € [0,1] such that

1

(32) dy, < tren[g}%] L, (v (1)) < dyy + w

By Ekeland’s variational principle [5], there exists v € 'y satisfying

dy, <maxeepo) Ly, (7 (1)) < maxee(o,1] Ly (7 () < dpuy + 333
maxseo.1] [ (8) = 73 ()] < L=

there exists t,, € [07 1] such that z, =~ (¢,) satisfies :

Ty, (2n) = maxse(o,1] Luy (77(2)), and |1}, (zn)[| < ﬁ

(33)

By Lemma 3.2 and Lemma 3.3 we get a convergent subsequence (still denoted by
(2n)nen). We may assume that z, — z in H*(R3) as n — oo. On the other hand,
by (33), we also arrive at v, (t,) — 2z in H'(R3) as n — oo. Since v, (t) > 0, we
conclude that z > 0, z # 0 in R® with I,,,(z) > 0 and it is a nonnegative bound
state of (3) in the case of p = ;.

4. GROUND STATE AND BOUND STATES FOR i > [i1

In this section, we always assume the conditions (A1) — (A4). We will prove
the existence of ground state and bound states of (3) as well as their asymptotical
behavior with respect to p. We emphasize that if 0 < g < pq, then one may consider
a minimization problem like

inf{l,(u) : ue M}, M={uecH'R? : (I (u),u) =0}

to get a ground state solution. But for u > u1, we can not do like this because for
> py, we do not know if 0 ¢ 9M. To overcome this difficulty, we define the set
of all nontrivial critical points of I,, in H'(R?):

N ={ue H'(R*)\{0} : I,(u) = 0}.
And then we consider the following minimization problem
(34) o, = Inf{I,(u) : u € N'}.

Lemma 4.1. Let é2 and p be as in Lemma 2.7 and p € (p1, pu1 + 02). Define the
following minimization problem

Then the dy,,, is achieved by a nonnegative function wy, € H*(R*®). Moreover this
wo,, s a nonnegative solution of (3).
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Proof. Firstly, we prove that —oo < dp, < 0 for g € (u1, 1 + 62). Keeping the
expression of I,,(u) in mind, we obtain from the Sobolev inequality that

1 " 1 1
I = gl =% [ hapide s 1P -

— |u|PT dx
p+1Jrs

1 I
> Sl = =—ul* = CllulP*t > -
z glhll® = g el = Cllel o0

as |lu|]| < p. Next, for any t > 0, we have that

Lite) = Sler? = 2 [ h(e)etde + EFe) = L [ el
pll€l) = D) €1 B s x)ejax 4 €1 p+1 s €1 xZ.

It is now deduced from gy [ps h(z)efdz = ||le1||* that

Litter) = 2 (1= Y e + S Fen) ”H/‘|ﬁw
e = — _ (&4 — (& _ e xZ.
e 2 1751 ! 4 ! p+1 R3 !

Since p > p1, we obtain that for ¢ small enough, the I,(te;) < 0. Thus we have
proven that —oo < dp,, < 0 for p € (p1, p1 + d2).

Secondly, let (vn)nen be a minimizing sequence, that is, ||v,|| < p and I, (v,) —
do,, as n — 00. By the Ekeland’s variational principle, we can obtain that there is
a sequence (U, )nen C HY(R3) with [Ju,|| < p such that as n — oo,

I(up) = do,  and I (u,) — 0.

Then we can prove that (u,)nen is bounded in H'(R?). Using Lemma 2.6, we
obtain that (u,)nen contains a convergent subsequence, still denoted by (un)nen,
such that w, — wug strongly in H'(R3). Noticing the fact that if (v,)nen is a
minimizing sequence, then (|v,|)nen is also a minimizing sequence, we may assume
that for each n € N, the u,, > 0 in R3. Therefore we may assume that ug > 0 in R3.
The I},(u,) = 0 and u,, — ug strongly in H'(R?) imply that I} (uo) = 0. Hence
choosing wy, ,, = up, we know that wy , is a nonnegative solution of the (3). g

We emphasize that the above lemma does NOT mean that wg, is a ground
state of (3). But it does imply that N # 0 for any p € (u1,p1 + d2). Now we are
in a position to prove that the ¢g , defined in (34) can be achieved.

Lemma 4.2. For p € (u1, 1 + 02), the co, is achieved by a nontrivial vo, €
HY(R3), which is a nontrivial critical point of I, and hence a solution of the (3).

Proof. By Lemma 4.1, we know that N # @ for u € (u1, 41 + d2). Hence we have
that cg,, < 0. Next we prove that the cg , > —oo.
For any u € N, since I}, (u) = 0, then (I} (u),u) = 0. Then we can deduce that

1
4

p+1

ull® = D(p, B)ur=r.

=~ =

Lu(u) = Iu(u)

Therefore the ¢y, > —o0.
Now let (u,)neny C N be a sequence such that

(L, (u),u) =

I, (un) = cop and IL(un) =0.

Since —oo < ¢, < 0, we know from Lemma 2.6 that (u,)n,en contains a convergent
subsequence in H!(R3) and then we may assume without loss of generality that
u, — vo strongly in H*(R?). Therefore we have that I,,(vo) = co,,, and I},(vo) = 0.
Choosing vg,;, = vp and we finish the proof of the Lemma 4.2.
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Next, to analyze further the (PS)q condition of the functional I,, we have to
prove a relation between the minimizer wy , obtained in Lemma 4.1 and the mini-
mizer vg,, obtained in Lemma 4.2.

Lemma 4.3. There exists 03 € (0,02] such that for any p € (pa, 1 + d3), the vo,,
obtained in Lemma 4.2 can be chosen to coincide the wg , obtained in Lemma 4.1.

Proof. The proof is divided into two steps. In the first place, for u # 0 and I}, (u) =
0, we have that

ull® - g / hapuPde + Flu / P dr

and hence
L () = Jull? = [ hapids ) + P2 P
- 2(p+1) 4(p+1) '
Since [[ul|? > p1 [gs h(z)udz for any u € H*(R?), we obtain that
p—3
I > ——F 0.
K1 (U) = 4(p+ 1) (U) >

In the second place, denoted by ug,, a ground state obtained in Lemma 4.2. For
any sequence (™ > py and p(™ — py as n — oo, we have that U, (n) Satisfies

I;L(") (UO’M(n)) =0

and we also have that
Co,p(m) = Ly (uo’#(n)) < 0.
Hence we deduce that (ug ,m )nen is bounded in H'(R?). Since I;Im) (ug,m) =0,
one also has that
_ p— 1 2 n 2
Imn)(uo,mn)) = m (Huo,u(n)H —M( )/]R3 h(x)(uo,uw) dfﬂ)
3

p
—F n ).
T’ oue)

Using the definition of p1, we obtain that, as n — oo,

(n)
n 14
||U0,u<n> ||2 - /J( ) /RS h(x)(uo,u(n>)2d$ > (1 - m) Huo,mn) ||2 —0

because (1 ,,(m )nen is bounded in H*(R?). Next since (g, )nen is bounded in
H'(R%), we may assume without loss of generality that wug ) — o weakly in
HY(R3).

Claim. Asn — oo, the ug ,m — g strongly in H'(R*) and G = 0.

Proof of the Claim. From wug ,m — 1o weakly in H'(R?), we may assume that
Ug ) = Up a. €. in R3. Using these and the fact of I’ (,L)(uo um) = 0, we deduce
that I}, (tig) = 0. Then similar to the proof in Lemma 2 6, we obtain that

- 1, .
o(1) + IM“‘) (UO,M(")) = Iu("> (tio) + 5”“’71”2
1 1
35 —F(i,) — —— by [P
(35) P ) = o [,

where w,, := Ug, () — Ug.
Now we distinguish two cases:
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(i): / |, |PT da /£ 0 as n — oo;
R3

(ii): / |, [P dx — 0 as n — oo.
R3

Suppose that the case (i) occurs. We may deduce from a proof similar to Lemma
2.6 that

_ p—1 %5
[N(n) (uo’u(n)) + 0(1) 2 IHI (UQ) + msfﬁ_i s
which is a contradiction because I,,, (iig) > — 2(p+11) S;’Jri by Lemma 2.5 and the fact

of I,,(m (g ) < 0. Therefore the case (ii) occurs, which implies that ug ) — @o
strongly in H!(R3) (the proof is similar to those in Lemma 2.6). From this we also
deduce that F(w,) — F(uo).

Next we prove that 4y = 0. Arguing by a contradiction, if %y # 0, then we know
from Ile(n) (ug,,m) = 0 that

-3
liminf 7, (ug ) > P

—F(u 0
n—oo ’ - 4(p+ 1) (UO) e

which is also a contradiction since I,,(m) (ug ;) < 0. Therefore iy = 0.

Hence there is d3 € (0, 62 such that for any p € (g1, 1 + 03), ||uo,ull < p, which
implies that cg , = do . Using Lemma 4.1, we can get a nonnegative ground state
of (3), called wo ,, and co,, = do,, = I, (wo,,). The proof is complete. O

Remark 4.4. The proof of Lemma 4.3 implies that (1) of Theorem 1.2 holds.

In the following, we are going to prove the existence of another nonnegative
bound state solution of (3). To obtain this goal, we have to analyze further the
(PS)q condition of the functional I,,.

Lemma 4.5. Under the assumptions of (Al) — ( ) ifu € (1,11 + 63), then I,
satisfies (PS)q condition for any d < co, + 2(p+1 S;’ﬁ

51°1

Proof. Let (uy)nen C H'(R?) be a (PS), sequence of I, with d < ¢g ,+ 5 p+11 il

Then we have that for n large enough,

1 M 1 1
d4+o(1) = Z||lu,||> = % [ h(zx)u?d an——/ WP
o) = glunlP =5 [ nepdde+ 1P =~ [l
and
(I =l = [ B+ Fun) = [ Jual*1d
R3 R3

Similar to the proof in Lemma 2.3, we can deduce that (u,)nen is bounded in
H'(R3). Going if necessary to a subsequence, we may assume that u, — ug weakly
in Hl(R?’) and u, — ug a. e. in R3. Denote w,, := u, — ug. We then obtain from
Brezis-Lieb lemma and Lemma 2.4 that for n large enough,

[unl? = [uoll® + [Jwnl1? + o(1),
F(up) = F(up) + F(wy) + o(1)

and

1 1 1
||un||it+1 = ||u0||ii+1 + ||wnH¢;+1 +o(1).
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Using Lemma 2.1, we also have that [p, h(z)udde — [ps h(z)udde as n — oo.
Therefore we deduce that

1
(36) d+o(1) = Lu(un) = Iu(UO) + 5 llwnl?
1
+4F wy) — / |wy, [P da.
Since (I}, (un), 1) — 0 for any ¢ € Hl(R3), we know that I/ (ug) = 0. Moreover we
have that

IH(U/O) Z CO,M

\wﬂQ—uA;M@%¢V+A;%w%=A;WW”W%

Note that (u,)nen is bounded in H!(R3). The Brezis-Lieb lemma, Lemma 2.4 and

o(1) = HunHQ — ,u/ h(;v)uida: + F(uy) —/ |un|p+1dx
R3 R3

and

imply that
(37) o(1) = ||lwa||® + F(wy) —/ |wy, [P d.
R3

Using ||ul|* > Spy1l|ul|3 11 for any u € H'(R?), we distinguish two cases:

(I): / lw, [P dx £ 0 as n — oo;

R3
(II): / |wy, [P dz — 0 as n — oo.
R3
Suppose (I) occurs. Up to a subsequence, we may obtain from (37) that
2
lwnl® > Spir (wall® + F(wn) —o(1)) 7.

Hence we get that for n large enough,

(38) Juwall? > S50 i L+ o(1).
Therefore using (36) and (38), we deduce that for n large enough,

d  +o(1) = I (un)
= Lwo) + gl + 3 Pwn) — [ e
o 2! 47 p+ 1 Jgs "
p—1 o, p—3
39 = IL(ug) + s——=|wnl||" + ——F(wy
p—1 2, P—3
> copt —0——|wn|] + —=F(wy
p—1 25
> — 57
o, + 2p+ 1) p+1>
pt+1
which contradicts to the assumption d < co,. + 5; +11) o1+ Therefore the case

(II) must occur, ie., [ps |wy|PT'dz — 0 as n — co. This and (37) imply that
lwn] — 0. Hence we have proven that I, satisfies (PS)q condition for any d <

—1 D 1
Cout 2(p+1 Sp+1 g



400 LIRONG HUANG AND JIANQING CHEN

Next, for the wop,, obtained in Lemma 4.3, we define

doy = mf sup I,(v(t))
T2 tef0,1)
with
Iy ={y € C([0,1], H'(R?)) : 7(0) = wo,u, Lu(v(1)) < cou}-
Lemma 4.6. Suppose that the conditions (A1) — (A4) hold and 0 < b < a < 1. If
€ (p1, 1 + 93), then
p—1 5

2(p+1) 7P
Proof. It suffices to find a path starting from wg , and the maximum of the energy

dg’# <coput

functional over this path is strictly less than co , + 50 +11 Slf’_;l To simplify the
notation, we denote wg := wy,,, which corresponds to the critical value cg ,. We
will prove that there is a Ty such that the path y(t) = wo + tToUg is what we
need, here Ur(z) = U(x — R0) is defined as before. Similar to the discussion in the
proof of Lemma 3.2, we only need to estimate I,,(wo +tUg) for positive ¢ in a finite
interval. By direct calculation, we have that

1
I,(wo+tUgr) = 5 (||w0 thURH2 — ;L/S h(zx)|wo + tUR|2d:c)
R

1 1
-F tUg) — —— tUg|PHd
+1 (wo + tUR) p+1/3|wo+ R| x

t
= I, (wo) + A1 + Ao + Az + EHUR||2 - %/ h(z)U3dz,
R3

where
Al = <’w0,tUR> — ,ut/ h(m)onRd:m
R3
1
Ap = 1 (F(wo +tUr) — F(wo))
and )
Aq = p+1 _ t p+1 dx.
3 il e (|wo| |U)0+ UR| ) X

Since wy is a solution of (3), we have that

A1=/ (wo)thRdx—/ K ()¢, wotUrdz.
R? R3

From an elementary inequality:
(a4 b)? —a? > b? + qa? b, g>1, a>0,b>0,

we deduce that
1
|As] < *7/ |tUR|p+1d17*/ lwo [PtU da.

For the estimate of A, using the expression of F(u ng x)p u?dr and the
symmetry property of the integral with respect to z and Yy, we can obtain that
2

| Ay <t/ K(z ¢w0w0URdx+ 5 K(m)¢w0(UR)2dm
/ K(z (Z)UR(UR) dl‘+t3/ (x)d)URwOURdaU

v [ KKl P Un(Un®)
R3 xR3 lz =y .
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Since wp is a nonnegative solution of (3) and wy € L>(R3), we obtain from the
assumption on K (x) that

[ KRGOl iy,
R3 xR3 |z —yl

= . K(x)(bmonRdx
R

< o mrrzles ([ K)ot t o)

<C / e~ 5aR ( a—g(1— 6))\z\dm s
> s

< Ce " gince 0<a<l.

6

Similarly we can deduce that for R large enough,

K (2)uowoUpgdr < Ce™ R, K (2)bu, (Ur)?*dx < Ce™
R3 R3

. K(2)¢u, (Ur)?dr < Ce™*F and 3K(x)¢URw0URd:r§Ce_aR
R R

Since [gs h(x)(Ug)?dx > Ce™"! for R large enough, we obtain that

t2
Iu<wo+tUR><I<w> SIValde = [ ne)Udo
]R3

/ [tUg|PT dx + Ce 8

— p+1
< I, (wp) + 2?’ )s T+ CemoF _ CembR 4 o(ebR)
p+
p—1 25

< ——S
Co,u + 2(p+ 1) p+1

for R large enough since 0 < b < a < 1. The proof is complete. g

Proposition 4.7. Under the conditions (A1)-(A4), if p € (p1, 1 + 93) and wo,,
be the minimizer obtained in Lemma 4.3, then the da , is a critical value of I,,.

Proof. Since for p € (u1, 1 + 03), we know from Lemma 4.1 and Lemma 4.3 that
the wq , is a local minimizer of I,,. Moreover, one has that I, (wo , + sUr) = —oc0
as s = +00. Therefore Lemma 4.5, Lemma 4.7 and the mountain pass theorem of
[3] imply that ds , is a critical value of I,,. O

Proof of Theorem 1.2. The conclusion (1) of Theorem 1.2 follows from Lemma 4.3
and Remark 4.4. It remains to prove (2) of Theorem 1.2. By Proposition 4.7, the
da,,, is a critical value of I, and dz, > 0. The proof of nonnegativity for at least
one of the corresponding critical point is inspired by the idea of [1]. In fact, since
I,(u) = I,(Ju]) for any u € H'(R®), for every n € N, there exists 7, € 'y with
Yn(t) > 0 (a.e. in R3) for all ¢ € [0, 1] such that

1
4 I -,
(40) da, < o Ly p(m (1)) < day+ -
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By Ekeland’s variational principle, there exists v, € I'y satisfying

da,u < maee(o.y 1u(77(0) < maxeepo,) L (1 (t)) < o + 1,
maXge(o,1] () — vE@®)| < I

there exists ¢, € [0,1] such that z, := 7 (¢,) satisfies :
L,(2n) = maxyepo1) L. (1 (), and [|I],(zn)] < ﬁ

(41)

By Lemma 4.6 we get a convergent subsequence (still denoted by (25, )nen). We may
assume that z, — z strongly in H(R3) as n — oo. On the other hand, by (41),
we also arrive at 7, (t,) — z strongly in H*(R3) as n — oo. Since v, (t) > 0, we
conclude that z > 0, z # 0 in R® with I,,(z) > 0 and it is a nonnegative solution of
problem (3).

Next, let us, be the nonnegative solution given by the above proof, that is,
IL(UQ’N) =0 and I,(u2,) = ds,. We claim that for any sequence w™ > 1y and
™ — pp, there exist a sequence of solution Ug o of (3) with = w™ and a Uy,
with I}, (u,,) = 0 such that uy ) — uy, strongly in H'(R?). In fact, denoted by
Wy, () the minimizer corresponding to dy ), according to the definition of dg ,
and the proof of Lemma 4.6, we deduce that for n large enough,

0<a< d2”u‘(n) < I£1>aé( Iu(n) (’LUO,M(H) + sUR)

and
p—1 25 —aR —bR —bR
I (wo,#(m + sUg) < WSPH + Ce —Ce +o(e™""),
. p—1 25
(42) h:is;ip dz’p‘(n) S msp_i_i .

Next, similar to the proof in Lemma 2.3, we can deduce that (u2,u<n))n€N is
bounded in H'(R?). Going if necessary to a subsequence, we may assume that
Uy ,m) — U weakly in H'(R3) and Uy ) — Tz a. €. in R3. Then we have that
I, (i) = 0. Moreover I,,, (tiz) > 0. If (uy ,m Jnen does not converge strongly to
g in H'(R3), then using an argument similar to the proof of Lemma 4.5, we may
deduce that

p—1

——FS
2(p+1) P
which contradicts to (42). Hence uy ,m) — G2 strongly in H'(R?) and hence

1, (tiz) > 0. The proof is complete by choosing Uy, = Usn.

IN(n) (U27M(n)) > Ilu (17‘2) +

ACKNOWLEDGMENTS

The author thanks the unknown referee for helpful comments.

REFERENCES

[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities,
Calc. Var. Partial Differential Equations, 1 (1993), no. 4, 439-475. MR 1383913

[2] A. Ambrosetti, On Schrodinger-Poisson systems, Milan J. Math., 76 (2008), 257-274. MR
2465993

[3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and
applications, J. Funct. Anal., 14 (1973), 349-381. MR 0370183

[4] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrodinger-Poisson problem,
Commun. Contemp. Math., 10 (2008), no. 3, 391-404. MR 2417922

[5] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York,
1984. MR 749753


http://dx.doi.org/10.1007/BF01206962
http://www.ams.org/mathscinet-getitem?mr=1383913&return=pdf
http://dx.doi.org/10.1007/s00032-008-0094-z
http://www.ams.org/mathscinet-getitem?mr=2465993&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2465993&return=pdf
http://dx.doi.org/10.1016/0022-1236(73)90051-7
http://dx.doi.org/10.1016/0022-1236(73)90051-7
http://www.ams.org/mathscinet-getitem?mr=0370183&return=pdf
http://dx.doi.org/10.1142/S021919970800282X
http://www.ams.org/mathscinet-getitem?mr=2417922&return=pdf
http://www.ams.org/mathscinet-getitem?mr=749753&return=pdf

(6]
7]
(8]
9
[10]
(11]
(12]
(13]

(14]

[15]

(16]
(17)
(18]
(19]

20]

(21]
(22]
23]
24]

[25]

[26]
27]
28]
29]
(30]

(31]

ASYMPTOTIC BEHAVIOR OF BOUND STATES 403

A. Azzollini, Concentration and compactness in nonlinear Schrédinger-Poisson system with a
general nonlinearity, J. Differential Equations, 249 (2010), no. 7, 1746-1765. MR 2677814
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrédinger-Maxwell
equations, J. Math. Anal. Appl., 345 (2008), no. 1, 90-108. MR 2422637

V. Benci and D. Fortunato, An eigenvalue problem for the Schrédinger-Maxwell equations,
Topol. Methods Nonlinear Anal., 11 (1998), no. 2, 283-293. MR 1659454

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled
with Maxwell equations, Rev. Math. Phys., 14 (2002), no. 4, 409-420. MR 1901222

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence
of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3, 486-490. MR 699419

G. Cerami and G. Vaira, Positive solution for some non-autonomous Schrédinger-Poisson
systems, J. Differential Equations, 248 (2010), no. 3, 521-543. MR 2557904

J. Chen, Z. Wang and X. Zhang, Standing waves for nonlinear Schrédinger-Poisson equation
with high frequency, Topol. Methods Nonlinear Anal., 45 (2015), no. 2, 601-614. MR 3408837
G. M. Coclite, A multiplicity result for the nonlinear Schrédinger-Maxwell equations, Com-
mun. Appl. Anal., 7 (2003), no. 2-3, 417-423. MR 1986248

D. G. Costa and H. Tehrani, Existence of positive solutions for a class of indefinite elliptic
problems in RN, Calc. Var. Partial Differential Equations, 13 (2001), no. 2, 159-189. MR
1861096

T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and
Schrodinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), no. 5, 893—
906. MR 2099569

T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell
equations, Adv. Nonlinear Stud., 4 (2004), no. 3, 307-322. MR 2079817

T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrodinger
equation, SIAM J. Math. Anal., 37 (2005), no. 1, 321-342. MR 2176935

P. D’Avenia, Non-radially symmetric solutions of nonlinear Schrédinger equation coupled
with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), no. 2, 177-192. MR 1896096

P. D’Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrédinger-
Poisson system, Nonlinear Anal., 74 (2011), no. 16, 5705-5721. MR, 2819312

L. Huang, E. M. Rocha and J. Chen, Two positive solutions of a class of Schrodinger-Poisson
system with indefinite nonlinearity, J. Differential Equations, 255 (2013), no. 8, 2463-2483.
MR 3082470

Y. Jiang and H.-S. Zhou, Schrédinger-Poisson system with steep potential well, J. Differential
Equations, 251 (2011), no. 3, 582-608. MR 2802025

G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrédinger-Poisson
system, J. Math. Phys., 52 (2011), no. 5, 053505, 19 pp. MR 2839086

D. Ruiz, The Schrodinger-Poisson equation under the effect of a nonlinear local term, J.
Funct. Anal., 237 (2006), no. 2, 655-674. MR 2230354

D. Ruiz, Semiclassical states for coupled Schrédinger-Maxwell equations: Concentration
around a sphere, Math. Model. Methods Appl. Sci., 15 (2005), no. 1, 141-164. MR 2110455
J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous
Schrodinger-Poisson systems, J. Differential Equations, 252 (2012), no. 5, 3365-3380. MR
2876656

G. Vaira, Ground states for Schrodinger-Poisson type systems, Ric. Mat., 60 (2011), no. 2,
263—297. MR 2852341

J. Wang, L. Tian, J. Xu and F. Zhang, Existence and concentration of positive solutions for
semilinear Schrédinger-Poisson systems in R3, Calc. Var. Partial Differential Equations, 48
(2013), no. 1-2, 243-273. MR 3090541

M. Willem, Minimax Theorems, Birkhduser Boston, Inc., Boston, MA, 1996. MR, 1400007
Z. Wang and H.-S. Zhou, Positive solution for a nonlinear stationary Schrodinger-Poisson
system in R3, Discrete Contin. Dyn. Syst., 18 (2007), no. 4, 809-816. MR 2318269

Z. Wang and H.-S. Zhou, Positive solutions for nonlinear Schrédinger equations with deepen-
ing potential well, J. Eur. Math. Soc., 11 (2009), no. 3, 545-573. MR 2505441

L. Zhao and F. Zhao, Positive solutions for Schrédinger-Poisson equations with a critical
exponent, Nonlinear Anal., 70 (2009), no. 6, 2150-2164. MR 2498302


http://dx.doi.org/10.1016/j.jde.2010.07.007
http://dx.doi.org/10.1016/j.jde.2010.07.007
http://www.ams.org/mathscinet-getitem?mr=2677814&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2008.03.057
http://dx.doi.org/10.1016/j.jmaa.2008.03.057
http://www.ams.org/mathscinet-getitem?mr=2422637&return=pdf
http://dx.doi.org/10.12775/TMNA.1998.019
http://www.ams.org/mathscinet-getitem?mr=1659454&return=pdf
http://dx.doi.org/10.1142/S0129055X02001168
http://dx.doi.org/10.1142/S0129055X02001168
http://www.ams.org/mathscinet-getitem?mr=1901222&return=pdf
http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3
http://dx.doi.org/10.1090/S0002-9939-1983-0699419-3
http://www.ams.org/mathscinet-getitem?mr=699419&return=pdf
http://dx.doi.org/10.1016/j.jde.2009.06.017
http://dx.doi.org/10.1016/j.jde.2009.06.017
http://www.ams.org/mathscinet-getitem?mr=2557904&return=pdf
http://dx.doi.org/10.12775/TMNA.2015.028
http://dx.doi.org/10.12775/TMNA.2015.028
http://www.ams.org/mathscinet-getitem?mr=3408837&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1986248&return=pdf
http://dx.doi.org/10.1007/PL00009927
http://dx.doi.org/10.1007/PL00009927
http://www.ams.org/mathscinet-getitem?mr=1861096&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1861096&return=pdf
http://dx.doi.org/10.1017/S030821050000353X
http://dx.doi.org/10.1017/S030821050000353X
http://www.ams.org/mathscinet-getitem?mr=2099569&return=pdf
http://dx.doi.org/10.1515/ans-2004-0305
http://dx.doi.org/10.1515/ans-2004-0305
http://www.ams.org/mathscinet-getitem?mr=2079817&return=pdf
http://dx.doi.org/10.1137/S0036141004442793
http://dx.doi.org/10.1137/S0036141004442793
http://www.ams.org/mathscinet-getitem?mr=2176935&return=pdf
http://dx.doi.org/10.1515/ans-2002-0205
http://dx.doi.org/10.1515/ans-2002-0205
http://www.ams.org/mathscinet-getitem?mr=1896096&return=pdf
http://dx.doi.org/10.1016/j.na.2011.05.057
http://dx.doi.org/10.1016/j.na.2011.05.057
http://www.ams.org/mathscinet-getitem?mr=2819312&return=pdf
http://dx.doi.org/10.1016/j.jde.2013.06.022
http://dx.doi.org/10.1016/j.jde.2013.06.022
http://www.ams.org/mathscinet-getitem?mr=3082470&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.05.006
http://www.ams.org/mathscinet-getitem?mr=2802025&return=pdf
http://dx.doi.org/10.1063/1.3585657
http://dx.doi.org/10.1063/1.3585657
http://www.ams.org/mathscinet-getitem?mr=2839086&return=pdf
http://dx.doi.org/10.1016/j.jfa.2006.04.005
http://www.ams.org/mathscinet-getitem?mr=2230354&return=pdf
http://dx.doi.org/10.1142/S0218202505003939
http://dx.doi.org/10.1142/S0218202505003939
http://www.ams.org/mathscinet-getitem?mr=2110455&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.12.007
http://dx.doi.org/10.1016/j.jde.2011.12.007
http://www.ams.org/mathscinet-getitem?mr=2876656&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2876656&return=pdf
http://dx.doi.org/10.1007/s11587-011-0109-x
http://www.ams.org/mathscinet-getitem?mr=2852341&return=pdf
http://dx.doi.org/10.1007/s00526-012-0548-6
http://dx.doi.org/10.1007/s00526-012-0548-6
http://www.ams.org/mathscinet-getitem?mr=3090541&return=pdf
http://dx.doi.org/10.1007/978-1-4612-4146-1
http://www.ams.org/mathscinet-getitem?mr=1400007&return=pdf
http://dx.doi.org/10.3934/dcds.2007.18.809
http://dx.doi.org/10.3934/dcds.2007.18.809
http://www.ams.org/mathscinet-getitem?mr=2318269&return=pdf
http://dx.doi.org/10.4171/JEMS/160
http://dx.doi.org/10.4171/JEMS/160
http://www.ams.org/mathscinet-getitem?mr=2505441&return=pdf
http://dx.doi.org/10.1016/j.na.2008.02.116
http://dx.doi.org/10.1016/j.na.2008.02.116
http://www.ams.org/mathscinet-getitem?mr=2498302&return=pdf

404 LIRONG HUANG AND JIANQING CHEN

LIRONG HUANG, COLLEGE OF MATHEMATICS AND PHYSICS, FUJIAN JIANGXIA UNIVERSITY,
Fuznou 350108, CHINA
Email address: 1rhuang515@126. com

JIANQING CHEN, COLLEGE OF MATHEMATICS AND INFORMATICS & FJKLMAA, FuJIAN NORMAL
UNIVERSITY, QISHAN CaMpUs, FuzHou 350117, CHINA
Email address: jqchen@f jnu.edu.cn



	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. Ground state and bound states for > 1 
	Acknowledgments
	References

