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BLOW-UP CRITERION FOR THE 3D VISCOUS POLYTROPIC
FLUIDS WITH DEGENERATE VISCOSITIES

YUE CAO*

ABSTRACT. In this paper, the Cauchy problem of the 3D compressible Navier-
Stokes equations with degenerate viscosities and far field vacuum is considered.
We prove that the L> norm of the deformation tensor D(u) (u: the velocity
of fluids) and the L% norm of Vlog p (p: the mass density) control the possible
blow-up of regular solutions. This conclusion means that if a solution with
far field vacuum to the Cauchy problem of the compressible Navier-Stokes
equations with degenerate viscosities is initially regular and loses its regularity
at some later time, then the formation of singularity must be caused by losing
the bound of D(u) or Vlogp as the critical time approaches; equivalently, if
both D(u) and V log p remain bounded, a regular solution persists.

1. INTRODUCTION

We consider the compressible isentropic Navier-Stokes equations with degenerate
viscosities in R?, which gives the conservation laws of mass and momentum of fluids.
This model comes from the Boltzmann equations through the Chapman-Enskog
expansion to the second order, and the viscosities depend on the density p > 0 by
the laws of Boyle and Gay-Lussac for ideal gas. This system can be written as

pi + div(pu) = 0,
(1) . .

(pu)y + div(pu @ u) + VP = divT,
where z € R? is the spatial coordinate; ¢t > 0 is the time; p is the density of the
fluid; v = (u(l),u(Q),u(3))T € R3 is the velocity of the fluid; P is the pressure, and
for the polytropic fluid

(2) P=Ap", v>1,

where A is a positive constant, v is the adiabatic index; T is the stress tensor given
by

3) T = u(p)(Vu+ (Vu) ") + A(p)divuls,

where I3 is the 3 x 3 unit matrix, u(p) is the shear viscosity, A(p) is the second
viscosity, and

(4) u(p) = ap,  Ap) = Bp,
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where the constants o and 3 satisfy
a>0, 2a+36>0.
Here, the initial data are given by
(5) (p,u)le=0 = (po,uo)(z), = €R?
and the far field behavior is given by
(6) (p,u) = (0,0) as |z| = o0, t>0.

The aim of this paper is to prove a blow-up criterion for the regular solution to
the Cauchy problem (1) with (5)-(6).

Throughout the paper, we adopt the following simplified notations for the stan-
dard homogeneous and inhomogeneous Sobolev space:

D" = {f € Ljoo(R?) : | flprr = |VF flrr < +o00},
D*=D"*(k>2), D'={fe LR’ :|flp =|Vflzz < oo},
1 llxny = 1Flx + 1Ay W lls = 11z ).

|f|p = ||fHLP(R3)7 |flpr = ||fHDk(R3)~

A detailed study of homogeneous Sobolev space can be found in [5].

The compressible isentropic Navier-Stokes system is a well-known mathematical
model, which has attracted great attention from the researchers, and some signifi-
cant processes have been made in the well-posedness for this system.

When (i, A) are both constants, with the assumption that there is no vacuum, the
local existence of the classical solutions to system (1) follows from a standard Banach
fixed point argument. For the existence results with vacuum and general data,
the main breakthrough is due to Lions [16]. He established the global existence of
weak solutions in R?, periodic domains or bounded domains, under the homogenous
Dirichlet boundary conditions and the restriction v > 9/5. Later, the restriction
on v was improved to v > 3/2 by Feireisl-Novotny-Petzeltovéa [4]. Recently, Cho-
Choe-Kim [2] introduced the following initial layer compatibility condition

~divTo + VP(py) = \/7og

for some g € L? to deal with the vacuum. They proved the local existence of the
strong solutions in R® or bounded domains with homogenous Dirichlet boundary
conditions. Moreover, Huang-Li-Xin proved the global existence of the classical
solutions to the Cauchy problem of the isentropic system with small energy and
vacuum in [8].

When (u, A) depend on density in the following form

(7) u(p) = ap’™, Xp) = Bp”,

where §; > 0, d2 > 0, @ > 0 and S are all real constants, system (1) has received a
lot of attention. However, except for the 1D problems, there are few results on the
strong solutions for the multi-dimensional problems, since the possible degeneracy
of the Lamé operator caused by initial vacuum. This degeneracy gives rise to
some difficulties in the regularity estimates because of the less regularizing effect
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of the viscosity on the solutions. Recently, Li-Pan-Zhu [11] have obtained the local
existence of the classical solutions to system (1) in 2D space under

(8) =1, 6=00rl, a>0, a+p>0,

and (6), where the vacuum cannot appear in any local point. They [12] also prove
the same existence result in 3D space under

(9) (p;u) = (p,0) as |z[ = oo,

with initial vacuum appearing in some open set or the far field, the constant p > 0
and

v+l

(10) 1<&=ﬁggmm(& .

) a>0, a+B>0.
We also refer readers to [3], [6], [10], [13], [18], [26] and references therein for other
interesting progress for this compressible degenerate system, corresponding radia-
tion hydrodynamic equations and magnetohydrodynamic equations.

It should be noted that one should not always expect the global existence of
solutions with better regularities or general initial data because of Xin’s results [23]
and Rozanova’s results [20]. It was proved that there is no global smooth solutions
to (1), if the initial density has nontrivial compact support (1D) or the solutions
are highly decreasing at infinity(dD, d > 1). These motivate us to find the blow-up
mechanisms and singularity structures of the solutions.

For constant viscosity, Beale-Kato-Majda [1] first proved that the maximum norm
of the vorticity controls the blow-up of the smooth solutions to 3D incompressible
Euler equations

T

(11) lim |curluy| o dt = o0,
T-T* Jo

where T™ is the maximum existence time. Later, for the same problem, Ponce [19]
proved that the maximum norm of the deformation tensor controls the blow-up of
the smooth solutions

T

(12) Jm [ D) st = o,

where the deformation tensor D(u) = £(Vu + (Vu)"). Huang-Li-Xin [7] proved
that the criterion (12) holds for the strong solutions to the system (1). Sun-Wang-
Zhang [22] proved that the upper bound of the density controls the blowup of the
strong solution to the system (1). There are some other interesting results about
infinite time blowup and finite time blowup results on the nonlinear wave equation
with different initial energy levels, refer to [14], [15], [24] and references therein for
detailed study.

When the viscosities depend on density in the form of (4), S. Zhu [25] introduced
the regular solutions, which can be defined as

Definition 1.1. [25] Let T' > 0 be a finite constant, (p,u) is called a regular solution
to the Cauchy problem (1) with (5)-(6) on [0,7] x R3 if (p,u) satisfies
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(A) (p,u) in[0,7] x R® satisfies the Cauchy problem (1)with (5) — (6)
in the sense of distributions;

=1

(B) p>0, p'= €C(0,T);H?), (p°= ) € C((0,T); H");

(C) Vlogpe C([0,T];D"), (Vlogp): € C([0,T]; L?);

(D) we C(0,T): B2) N L([0,T]; D), w, € C([0,T); L) 1 L2([0, T]; DY).
The local existence of the regular solutions has been obtained by Zhu [25].

Theorem 1.2. [25] Let 1 < v < 2 or~ = 3. If the initial data (po,uo) satisfies the
regularity conditions

y—1 y—1

(13) po® >0, (po? ,uo) € H? Vlogp € D',

then there exist a small time T, and a unique regular solution (p,u) to the Cauchy
problem (1) with (5)-(6). Moreover, we also have p(t,x) € C([0,Ty] x R?) and

p € C(0,T.]; H?), preC(0,T.];H").

Based on Theorem 1.2, we establish the blow-up criterion for the regular solu-
tion in terms of Vlog p and the deformation tensor D(w), which is similar to the
Beale-Kato-Majda criterion for the ideal incompressible Euler equations and the
compressible Navier-Stokes equations.

Theorem 1.3. Let (p,u) be a regular solution obtained in Theorem 1.2. Then if
T < +o00 is the mazimal existence time, one has both

T
(14) lim< sup \Vlog,o\e-i-/ |D(u)]oo dt) = 400,
TT \ 0<t<T 0
and
T
(15) tim sup [ D)l de = +oc.
T—T J0

The rest of the paper can be organized as follows. In Section 2, we will give
the proof for the criterion (14). Section 3 is an appendix which will present some
important lemmas which are frequently used in our proof, and also give the detail
derivation for the desired system used in our following proof.

2. BLOW-UP CRITERION

In this section, we give the proof for Theorem 1.3. We use a contradiction
argument to prove (14), let (p,u) be the unique regular _solution to the CatEhy
problem (1) with (5)-(6) and the maximal existence time 7. We assume that T’ <
400 and

T
(16) lim< sup |Vlogpls +/ |D(u)oodt> =Ch < 400
0

T—T \ 0<t<T

for some constant 0 < Cy < oo. If we prove that under assumption (16), T is
actually not the maximal existence time for the regular solution, there will be a
contradiction, thus (14) holds.
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Notice that, one can also prove (15) by contradiction argument. Assume that

T
(17) lim sup / | D(w)||poonprs dt = Cj < +00
T—TJ0

for some constant 0 < C} < co. Combing (17) with the mass equation, we know
that

lim sup |Vlogpls < CCY,
T—T 0<t<T

which implies that under assumption (17), we have (16). Thus, if we prove that
(14) holds, then (15) holds immediately.

In the rest part of this section, based on the assumption (16), we will prove that
T is not the maximal existence time for the regular solution.

From the definition of the regular solution, we know for

y—1 2
(18) (b:p ) ¢: VIOg¢7
v—1

(¢, 1, u) satisfies
¢ +u- Vo + T gdivu = 0,

(19) Yy + V(u-9) + Vdivu = 0,

ug +u-Vu+200Veo + Lu = - Q(u),
where L is the so-called Lamé operator given by
(20) Lu = —div(a(Vu + (Vu) ") + Bdivuls),
and terms (Q(u),@) are given by

A
(21) Q(u) = a(Vu+ (Vu) ") + gdivuls, 6= 'yi—vl
See our appendix for the detailed process of the reformulation.
For (19)2, we have the equivalent form
3
(22) Ui+ A + By + Vdivu = 0.

=1
Here A; = (q; { ))3X3 (i,4,0 = 1,2,3) are symmetric with al(é) = u® when i = j; and

g) =0, otherwise. B = (Vu) ", so (22) is a positive symmetric hyperbolic system.

By direct computation, one knows

\%
(23) p=—"—F=— :l:VIng,
= P
combing this with (16), one has v € L>([0,T7]; L°).
Under (16) and (19), we first show that the density p is uniformly bounded.

Lemma 2.1. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then

o0l o= o, 11xR3) + @Ml oo (o, 1i00) < C, 0T < T,
where C' > 0 depends on Cy, constant q € [2,+o00] and T.
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Proof. First, it is obvious that ¢ can be represented by

—1 [t
(24) B(t,z) = ¢o(W(0,t,2)) exp ( - ’YT/ divu(s, W(s,t,x))ds),
0
where W € C1([0,T] x [0,T] x R?) is the solution to the initial value problem

d
aW(zt,s,;z;) =u(t,W(t,s,z)), 0<t<T,

W(s,s,x) =z, 0<s<T, zeR3.

Then it is clear that

(25) H¢||L°°([O,T]><R3) S |¢O|oo GXp(CC()) S C
Similarly,
(26) l[oll o< (o, 11 <R3y < C-.

Next, multiplying (19); by 2¢ and integrating over R?, we get
d :
@7 1ol < Cldivulull

from (16), (27) and the Gronwall’s inequality, we immediately obtain
(28) |6l o< (f0,77;22) < C.
Combing (25)-(28) together, one has

9l o< (f0,73:9) < €, q € [2,+00].

We complete the proof of this lemma. O

Before go further, notice that

2
Vole = |pV log dls = ﬁ|¢v1ogp\6
< Clp|oo|Viog pls < C,

(29)

where we have used (16) and Lemma 2.1. Next, we give the basic energy estimates
on u.

Lemma 2.2. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then

T
sup |u(t)|3 +/ Vu(t)3dt <C, 0<T<T,
0<t<T 0

where C only depends on Cy and T.
Proof. Multiplying (19)3 by 2u and integrating over R?, we have

d
CJul+2 /]R (aVul + (a + B)(dive)?) dz
(30)

/ 2(—u~Vu-u—0V¢2-u+w-Q(u)-u)dx
R3
=:L1+Ly+ Ls.
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The right-hand side terms can be estimated as follows.
L =- / 2u - Vu - udz < Cldivu|o |ul3,
R3

Lo :2/ 0¢*divudzr < C|¢|3]divule < Oldivu|s,
R3

(31) L =/R 2 - Q(u) - udz < Cloble|Vulaluls

1 1
<CIVuls[ul3|Vul3 < Z|Vul3 + Cluls| Vulz
<a|Vul + Clul3,

where we have used (16), (23) and the facts

1 1

(32) uls < Clul3|Vul3.

Thus (30) and (31) yield

(33) %|u|§ + a|Vulz < O(|divule + 1)|ul3 + Cldivu s -

By the Gronwall’s inequality, (16) and (33), we have

(34) lu(t)|% + /Ot |Vu(s)|3ds < C, 0<t<T.

This completes the proof of this lemma. g

The next lemma provides the key estimates on V¢ and Vu.

Lemma 2.3. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then
T
sup (IVu)ff +[V6(0B) + [ (V2ulf + lwB)dr <C. 0<T<T.
0<t<T 0
where C only depends on Cy and T.
Proof. Multiplying (19)3 by —Lu — §V¢? and integrating over R?, we have
Ld 2 2 212
—— (a\Vu| + (a+ B)|divu| )dx—i— (—Lu — 6V ¢©)” dx
2dt R3 R3
:—a/ (u-Vu) -V x curlu dx—i—/ (20 + B)(u - Vu) - Vdivu dz
R3 R3
(35) ) )
+46 (@b-Q(u))-ngdx—H/ (u-Vu)-V¢© dx
R3

R3
9
+/RS(1ZJ~Q(U))~Ludm—0/Rgut~V¢>2 dmz:;Li,

where we have used the fact that

—Au ~+ Vdivu = curl(curlu) = V x curlu.
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First, from the standard elliptic estimate shown in Lemma 3.3, we have
V2l — CloVe*3
<C|div(a(Vu + (Vu) ) + Bdivul) |2 — C|oVS?[3
(36) <Cldiv(a(Vu+ (Vu) ") + Bdivuls) — 0V¢2|§

=C RS(—Lu — OV $?)da.
Second, we estimate the right-hand side of (35) term by term. According to
u X curlu = %V(|u|2) —u-Vu,
V x(axb)=(b-V)a—(a-V)b+ (divb)a — (diva)b,

Holder’s inequality, Young’s inequality, (16), (23), (29), Lemma 2.2, Lemma 3.1 and
(19)1, one can obtain that

|Ls| = / (u-V)u-V x curlu dm‘
R3
=« / (curlu -V x ((u- V)u))dm‘
R3

=« / (curlu -V x (u x curlu))dx‘
R3

1
=« / (5 |curlu|?divu — curly - D(u) - curlu) dw‘
R3

<C|Vuloo|Vul3,

|Ls

| /Rs(za +B)(u- V)u- Vdivu dal

1
S’ / 20+ B)(— Vu: Vu " dive + §(divu)3)daj‘
R3
<C(|Vul3ldivds + ulf [Vulf [Vulo|divul.c)
<C(|Vul3 + |ul2|Vul2) [dive|s
<O|divu|o (|Vul3 + 1),

Lo =0 | (¢-Q(u)) V¢ du < Cly|e|Vuls|V?|2

R3
<C|Vul3 [VZul} [Vla|¢] o
<C|Vo[5 + C(e)|Vul3 + e[ Vul3,

|L7|:0‘/ (u~Vu)-V¢2dx‘

R3

:e‘— Vau: (Vu) ¢?dz — | ¢*u- V(divu)de
R3 R3
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:0’ —/ Vu : (Vu)Tngder/ (divu)?¢?dx
R3 R3
+/ u- Vétdivu dac‘
R2

<C(IVul319? oo + ]2 V|2|¢loo [divulo )
<C(|Vul3 + |divu|s [V)2)
<C(IVul3 + |divuo + [dive|o|[Vo[3),

L= [ (- Q)-Luds
]R.
<C|Yle|Vul3|Vuls
<CIV2ul2|Vul2 < C(0)|Vul} + € V2ul2,

B8) L= —0 [ w-VeRdr =0 / $2divu, dz
R3 R3

d
=0— [ ¢>divu dz — 6 / (¢?)divu da
dt R3 R3

291 p*divu dx — 9/ 2¢¢divu dx
dt R3 R3

:91 p*dive de +60 | w-Ve3divu dx
dt Jps R3

+0(y — 1)/ #?(divu)?dz
R3
d . .
<0 [ G de + O(lulo Vo loloc divulo + [Vu3167)-0)
R3

S9% ¢*divu dz + C(|Ve|2|divule + [Vul3)
R.?)

ge%/ ¢*divu dz + C(|Vul3 + |divu|eo + |divu|e|V@[3),
R3

where € > 0 is a sufficiently small constant. Thus (35)-(38) imply
1d

(39) 2dt Jps

<C((IVul3 + [Vo[3) (|divul e + 1) + |divule).

(a|Vu|2 + (a + B)|divul* — 29¢2divu) dz + C|V?ul3

Third, applying V to (19); and multiplying by (V¢) T, we have

(IVol*)s + div([Vo[*u) + (v — 2)|Vo[*divu
(40) =—2(Ve)" -Vu- (Vo) — (v — 1)¢V¢ - Vdivu
=—2(Ve)" - D(u) - (Vo) — (y = 1)¢V¢ - Vdivu.

Integrating (40) over R3, we get

(41) %IVM% <C()(ID(w)l + 1)|VO[; + €| VZul3.



36 YUE CAO
Adding (41) to (39), from the Gronwall’s inequality and (16), we immediately obtain

t
a|Vu(t)[3 - 29/ *divu dx + C|Vo(t)[3 +/ |V2u(s)|3ds < C,
R3 0
that is

t
alVu(t) 3 + CIVe(D)3 + / V2u(s) [2ds
0
<C+20 [ ¢*divu dz < C(1 + |Vula|é|2|¢]o)
R3

<C+ ZIVu()l,

which implies
t
V(O + Vo + [ [Viul)ds <. 0<t<T.
0
Finally, due to uy = —Lu — u - Vu — 2096V + ¢ - Q(u), we deduce that

t t
| s <0 [ (92l + [Vuu + 162 V0 + [ Vuui)s
<C.
Thus we complete the proof of this lemma. O

Next, we proceed to improve the regularity of ¢, ¥ and u. First, we start with
the estimates on the velocity.

Lemma 2.4. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then

(42) sup ([ue(t)[3 + [u(t)|p2) + /T Vul3dt<C, 0<T<T,
0<t<T 0
where C only depends on Cy and T.
Proof. From the standard elliptic estimate shown in Lemma 3.3 and
(43) Lu=—u; —u-Vu—200Vd+ ¢ - Qu),
one has
u[p2 <O (Jugla + [u- Vuls + [dV ]2 + |1 - Q(u)]2)
<C(lurla + uls|Vuls + 0[5V els + [¢]6]Vuls)
(U fuels + uls | Vul3 [92ul + [Vul3 [V2ul3)

(44) <C(
<O(1+ Juls + [V?ul3)

IN

1
C(l + |Ut|2) + §‘U|D2,

where we have used Sobolev inequalities, (16), (23), (29) and Lemmas 2.1-2.3. Then
we immediately obtain that
(45) Julps < C(1+ [uel).

Next, differentiating (19)3 with respect to ¢, it reads

(46) uy + Lug = —(u - Vu)y — 20(¢Ve): + (¥ - Q(u));.
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Multiplying (46) by u; and integrating over R?, one has

1d
2dt
1d

cLdy 2 2 .2
_2dt|ut|2+/Rs (a\Vut| + (a4 B)|divug| )dx

|uel3 + o Vg3

(47) - /]Rs ( - (u : Vu)t s U+ (¢ : Q(u))t CUg — 29(¢V¢)t ' ut)dx

12
=: ZLi‘

=10

Similarly, based on (16), (23), (29) and Lemmas 2.1-2.3, we estimate the right-
hand side of (47) term by term as follows.

Lloz—/ (u-Vu)s - uy do
R3
:—/ ((ut-Vu)~ut+(u~Vut)~ut)dx
R3

1
= / (Ut -D(u) - up — f(ut)Qdivu)da:
s 2
<C|D(u)]ooluel3,

Ly, :/ (Y- Q(w))t - ug da
]RS
= P Qu)y - up dr + Py - Qu) - uy d
R3 R3
— [ Q)i do— / Vdive - Q(u) - us da
R3 R3

+ / - Ydiv(Q(u) - ug)dx
R3
<C([0]6|Vuel2|uels + [Vul2|Q () |oo|ue]2
+ [9]6luls |V ul2ludls + [l uls|Q(w)ls|Vuel2)
<C(IVueloluel 3 [Vuel3 + [VZul2]Q(w)|oo |ur]o
+ [Vuls|Vurls + [V2ul2| Vugl)

«
<3Vl + O+ [D(w)]oo) (el + [ul ),

(48)

Lip =~ / 20(6V9); - uy do
Rf}
:9/ (p?)divugdr = 20 | poidivuda
R3 R3
vy—1 .. .
=-20 o(u- Vo + T¢d1VU)dlvutd$
R3

=—0 [ (u-Ve?+ (v — 1)¢*divu)divuda
R3
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__0b-1) ¢*(divu)ide — 0 | - V*divuda
2 R3 R3
—-1
__fh-1d ¢*(divu)*dz + 0(y — 1)/ upy(divu)*dz
2 dt R3 R3
—0 u - V¢>2divutdm
R3
=D [ a0t -1) [ o Vo) v
2 dt Jps R3
—1)2
_fo- / ug? (divu)®dr — 0 | u- Ve divude
2 R3 R3
49)  —_ 0=V ogzae + PO [ evdiveae
2 dt Jps 2 RS
—1)(3—
L0 VB=D [ edivuyde — 0 [ w- VePdivade
2 R3 R3
0(y—1) d
< =D d / ¢ (div)dz + C(Juloo 9% [Vuls |Vl
2 dt Jps
+ (L3 D (1) oo Vtul3 + [6]oo |V Blaful oo Vue|2)
O(y—1) d 207 0\2
< SRR /]R3 ¢~ (divu)“dx

+ O(Juloo| [V2ul2 + [D(w) oo + [uloo| Ve |2)
9(7_ 1) d 2/ 1: 2 a 2
(50) = 2 dt /R ¢"(divu)"dz + 7Vl

+C(1+ D)oo + ufp2),
where we also used Hélder’s inequality, Young’s inequality and

(51) [uloe < Clulws < C(Jul3 [Vl +[Vul*|V2ul?).
It is clear from (47)-(50) and (45) that
d .
(52) 2 (w3 + [odivul3) + [V [3 < C(1+ [V2ulz + [D(u)|oo ) 3.
Integrating (52) over (7,t) (7 € (0,t)), we have
¢

(@) + lodivu()f + [ [Vua(s) s
(53) T
<Jur(r) g+ ledivu(r)f + € [ (14 Vula + D))l (5)ds.
From the momentum equations (19)3, we obtain
[ue(r)]2 <C(lu- Vula +[6Vel2 + | Lulz + v - Q(u)]2) (1)

<C(Juloo|Vulz +[¢]oc| VEl2 + [ul p2 + []6Vuls) (),

which, together with the definition of regular solution, gives

(54)

lim sup |u¢(7)|2
7—0

<C(Juoloo | Vol + [doloc | Vo2 + 1ol p2 + |06 Vuols) < Co.
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Letting 7 — 0 in (53), applying the Gronwall’s inequality, (16) and Lemma 2.3, we
arrive at

t
(56) W+ o+ [ [VulBas<c, 0<e<T,

0
This completes the proof of this lemma. O

The following lemma gives bounds of V¢ and V2.
Lemma 2.5. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then
T
67 sup (lo@wro+ jor(ble) + [ u(Ofpeedt <, 0<T<T,
0<t<T 0

where C only depends on Cy and T.
Proof. First, taking ¢ = 6 in Lemma 2.1, combing with (29) we have
sup |[o(t)|[we <C, 0T <T.
0<t<T

Second, one has

-1
Pt l6 :|u~V¢—|—L2 ¢d1vu’6
<C(|Vlslt|oo + |¢]oo|divule) < C

where we have used Lemmas 2.3-2.4 and (29).
Third, according to

(59) Lu=—u —u-Vu—200Vo+ - Qu),
and the standard elliptic estimate shown in Lemma 3.3, one has
|V?uls <O(|uf|6 + u- Vulg + [0Vl + [¢ - Q(u)le)
SC(IVuelz + |uloo| Vuls + [¢]oo[VSl6 + [1]6]1Q(u)]0)
(60) <O(1 + [Vuglz + | D)5 VD))
(
(1

(58)

<C(1 4+ |Vugls + |V? u\G)

O + \Vut|2) + §|V2u|6,

where we have used (16), (23), (29), Lemmas 2.1-2.4 and
|[divie|oo < C1D (1) |00,

(61) 1 3

[D(W)|oo < CID(u)]3[VD(u)lg -

Thus, (60) implies that

(62) |V2ulg < C(1+ |Vug|2).

Combing (62) with Lemma 2.4, one has

(63) /|u |D26ds<c/ (14 [Vus(s)D)ds <C, 0<t<T.

The proof of this lemma is completed. O
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Lemma 2.5 implies that
t
(64) / [Vu(-, s)|sods < C,
0

for any t € [0,T) with C > 0 a finite number. Noting that (19) is essentially
a parabolic-hyperbolic system, it is then standard to derive other higher order
estimates for the regularity of the regular solutions. We will show this fact in the
following lemma.

Lemma 2.6. Let (p,u) be the unique regular solution to the Cauchy problem (1)
with (5)-(6) on [0,T) x R3 satisfying (16). Then

sup ([6(t)[D2 + [W(O)[Ds + e (DT + [:(1)]3)

0<t<T

- T
+ [ (w0 +lonB) @t <, 0<T<T,
0

where C only depends on Cy and T.
Proof. From (19), and Lemma 3.3, we have
‘U|D3 §C’(|ut|D1 + ‘U . VU|D1 + |¢>V¢|D1 —+ |w . Q(u)|D1)
<C(lutl pr + [uloo|V?ulz + [Vuls| Vuls + 9] VZuls
) + V616l V013 + ¢l V212 + [V1zI Dl1) )
<C(1+ |uepr + | p2 + [ul s + []pr[D(u)] )
1
<O+ |l pr + 6|2 + []p1 [D(W)]o0) + 5lulps,

where we have used Young’s inequality, Lemma 2.5, (16), (23), (29) and (61). Thus
(65) offers that

Next, applying 0; (i = 1,2,3) to (19)2 with respect to x, we obtain

3
(0i))e + Z A10,0;% + Bo;jy + 0;Vdivu
=1

3
=( = 0:(BY) + Bop) + > (— 0i(A)ary).

=1

(67)

Multiplying (67) by 2(9;4) ", integrating over R3, and then summing over i, noting
that A; (I =1,2,3) are symmetric, it is not difficult to show that

d .
G100 <C [ (1aivAIV R + 90V + V6PVl

(63) +10:(BY) — BOWI|VY| ) do
<C(|divA| V|3 + [VPul2| Vb2 + [V |3 Vs
+10;(BY) — Bow|2|VY2),
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3
where divA = ZalAl. When |¢| = 1, choosing r = 2, a = 3, b = 6 in (83), we
=1

have
) |0:(BY) — Bopla = |D(Byp) — BDply < C|V2uls|¢hls
< CIV2u|2 |V3ul3 < C|V3ul3.
Thus
d 1
(70) T VO <C(Vulso| VUL + [VPula| VO |2 + [VPulZ[VE]).

Combining (70) with (66) and Lemma 3.1, we have
d
Wl CO A+ [Vuloo)[¢l i + C(1+ [Viula) ¢ o1
<C(1+ |Vuloo) [ + C(A+[0]D2 + [Vuel3).

(71)

On the other hand, let V¢ = G = (G, G?, GG T, Applying V2 to (19)1, we
have

-1
(72)  0=(VG) +V(Vu-G)+V(VG u)+ %V(Gdivu + ¢Vdivu),

similarly to the previous step, we multiply (72) by 2VG and integrate it over R3 to
derive

d

@IGI% SC/RS (IV?ul|G| + |Vul VG| + [Vo[|[VZu| + |¢||VPul) [ VG|da
<C(|Gs|V?ul3 + |Vulso| VG2 + |0]|VPul2) VG2

C(IV2?ul3|V3ul3 + |Vuloo|Glpr + |u|ps) |G| pr

<
1
<C(|ul3s + |ulp2)|G|pr + C| Voo |G|3:

(
C(1 + |u|ps)|Glpr + C| V| |G|%:
C(1+ |uelpr + [9]p2 + [D(1) oo [V]2) |Gl p1 + C|Vuls |Gl
C(1+ | pr + |Vuloo|¥)| p1)|Glpr + C(1 + |Vulso)|G |0
C(1+ [Vuloo)(IGID1 + [9[11) + C(1+ [Vu3),

where we have used the Young’s inequality, (29) and (66). This estimate, together
with (71), gives that

d
(T4) IGb + [PlDr) SCO+[Vuloo) (1G] + [¢151) + C(L+ [V 3).
Then the Gronwall’s inequality, (42), (64) and (74) imply
(75) 6() e + 6B <C, 0<t<T.

Combing (75) with (66) and Lemma 2.4, one has

t t
(76) / [u(s)|%sds < C/ (1+|Vu(s)3)ds < C, 0<t<T.
0 0
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Finally, using the following relations

= —V(u-¥) — Vdiva, ¢y = —u-Vep— %(bdivu,

v -

(77)
1 1
—rdivu - %qﬁdivuh

O =—u- Vo —u-Vo —
according to Holder’s inequality, (16), (29), Lemmas 2.1-2.5, one has

[te]e <C(|Vu - l2 + |u - V|2 + |Vdivuls)
<C(IVulsltls + uloo| V|2 + [V?ul2) < C,

|pel2 <C(Ju- V|2 + [¢divulz)
<C(Juloo| V|2 + [¢|c|Vul2) < C,

[Voela <C(IV(u- Vo)|2 + |V(ddivu)ls)

(78) <C(|[Vu-Vela + V3¢ - uls + |Vodivu|s + |¢Vdivuls)
<O(|Vul3|Vols + [uloo| V22 + [Vl Vulz + [¢]oc| Vul2)
<C,

Guelz SC(Jug - Vol + [u- Vyla + |gedivulz + [¢diviy2)
<C(luel6|Vols + |uloc | Vr]2 + [del6| Vuls + [@loo| Vuel2)
<C(1 4 [Vuila).

Thus

S, (loe@IF + [ (1)) < C,

and according to (42), one has

T T
/ \%(t)@dts/ (14 V() 2)dt < C.
0 0

The proof of this lemma is completed. O

Now we know from Lemmas 2.1-2.6 that, if the regular solution (p,u)(z,t) exists
up to the time T > 0, with the maximal time T < +oc such that the assumption
(16) holds, then

(p77, Viog p,u)|,_7 = lim (p"= , Vlog p, u)
t—T

satisfies the conditions imposed on the initial data (13). If we solve the system (1)
with the initial time T, then Theorem 1.1 ensures that (p,u)(x,t) extends beyond
T as the unique regular solution. This contradicts to the fact that T is the maximal
existence time. We thus complete the proof of Theorem 1.3.

3. APPENDIX

3.1. Some important lemmas. In this subsection, we present some important
lemmas which are frequently used in our previous proof. The first one is the well-
known Gagliardo-Nirenberg inequality, which can be found in [9].

Lemma 3.1. [9] Let r € (1,+00) and h € WHP(R3) N L"(R3). Then the following
inequality holds for some constant C(c,p,r)

(79) |nly < CIVR[|AIL,
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where

+2)7, 0<e<l

(80) = ( % :

)(

If p < 3, then q € [r,%] when r < %; and q € [;’fpp,r] when r > 22 Ifp =3,
then g € [r,+00). If p > 3, then q € [r,+].

1 1
r r

1
q

Some common versions of this inequality can be written as

(81) [fls < CIfIZIVAS, [fle <CIVIl2 [fle < CIfIZIVSG,

which have be used frequently in our previous proof.
The second one can be found in Majda [17], and we omit its proof.

Lemma 3.2. [17] Let positive constants r, a and b satisfy the relation

11
r a b
and 1 < a, b, r < +oo. Vs > 1, if f,g € WSR3 N W**(R3), then we have
(82) 1D*(fg) = [D*gl, < Cs(IVflal D* " gls + [D* fls]9la)
(83) 1D*(fg) = fD*gl, < Cs(IVflal D* " gls + [D* flalgls)

where Cs > 0 is a constant depending only on s, and V?°f means that the set of all
elements of 8 f with (| = s.

The third one is on the regularity estimates for Lamé operator. For the elliptic
problem

—aAu — (a+ p)Vdivu = f,
(84)
u—0 as|z|] = +oo,

one has

Lemma 3.3. [21] If u € D9 with 1 < q < 400 is a weak solution to the problem
(84), then

(85) ‘U|Dk+27q S O|f|Dk,q7

where k is an integer and the constant C' > 0 depend on o, and q. Moreover, if
u € D¥9 is a weak solution to the following problem

(86) —Au=f, u—0 as|z]—> +oo,
then (85) holds and if f = divg, we also have
(87) ulpra < Clg|La.

The proof can be obtained via the classical estimates from harmonic analysis,
which can be found in [21] or [22]. We omit it here.
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3.2. Reformulation of the system (1). Now we show that, via introducing new

variables

(8) b= p"T, = Viogp = %ww,

the system (1) can be rewritten as

~1
¢t+%¢divu+u.v¢:o,

(89) Y+ V(u-¢) + Vdive =0,

w +u- Vu+200Ve + Lu = - Qu).

Proof. First, from the momentum equation, one has
pur + pu-Vu+ VP — pdiv(a(Vu—l—VuT) + Bdivuls)
=Vp - [a(Vu+ Vu') + Bdivuls],
where P = Ap”, divide both side by p, one has
g 4+ u - Vu+ AypT™3Vp — div(a(Vu + Vu') + Bdivuls)

_ve, [a(Vu+ Vu) + Bdivuls)].
Denote
Lu = —div(a(Vu+ Vu') + Bdivuls),
Q(u) = a(Vu+ Vu') + gdivuls, 6= Ai’yl,
N -

we have

(90) ug +u - Vu+200Ve + Lu = - Q(u).

Second, for ¢ = V log p, one has

- - _ (P = (vl
Yy = (Vlog p)y = V(logp); = V( p) = V( ; )

—Vp - u— pdivu
=V(———F—)=-

(91) r
= —Vdivu — u-V(Vlogp) — Vlegp - Vu '

= —Vdivu —u -V — - Vu'
= —Vdivu — V(u - ).

V(Viogp - u+ divu)

Third, for ¢ = p%l, one has

-1 ¥y—1 1=
br=(p7 )tZTP 2 pe
= lapp o=l —divipu)
(92) 2 P2 p
_’y—l —pdivu — Vp - u
2 p

-1
= —FYngSdivu —u-Vo.
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mbing (90)-(92) together, we complete the proof of the transformation. O
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