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THE EXISTENCE, GENERAL DECAY AND BLOW-UP FOR A

PLATE EQUATION WITH NONLINEAR DAMPING AND A

LOGARITHMIC SOURCE TERM

GONGWEI LIU∗

Abstract. In this paper, we consider a plate equation with nonlinear damping

and logarithmic source term. By the contraction mapping principle, we estab-
lish the local existence. The global existence and decay estimate of the solution

at subcritical initial energy are obtained. We also prove that the solution with
negative initial energy blows up in finite time under suitable conditions. More-

over, we also give the blow-up in finite time of solution at the arbitrarily high

initial energy for linear damping (i.e. m = 2).

1. Introduction

In this paper, we deal with the following plate equation with nonlinear damping
and a logarithmic source term

(1)


utt + ∆2u+ |ut|m−2ut = |u|p−2u log |u|k, (x, t) ∈ Ω× R+,

u = ∂u
∂ν = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with sufficiently smooth boundary ∂Ω,
ν is the unit outer normal to ∂Ω and k is a positive real number, u0(x), and u1(x)
are given initial data. The parameter m ≥ 2 and p satisfies

(2) 2 < p <
2(n− 2)

n− 4
if n ≥ 5; 2 < p < +∞ if n ≤ 4.

The logarithmic nonlinearity is of much interest in many branches of physics
such as nuclear physics, optics and geophysics (see [5, 6, 15] and references therein).
It has also been applied in quantum field theory, where this kind of nonlinearity
appears naturally in cosmological inflation and in super symmetric field theories
[4, 13].

Let us review somework with logarithmic term which is closely related to the
problem (1). Birula and Mycielski[6, 7] studied the following problem
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(3)


utt − uxx + u− εu log |u|2 = 0, (x, t) ∈ [a, b]× (0, T ),

u(a, t) = u(b, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [a, b],

which is a relativistic version of logarithmic quantum mechanics and can also be
obtained by taking the limit p→ 1 for the p-adic string equation [16, 36]. Cazenave
and Haraux [8] established the existence and uniqueness of a solution to the Cauchy
problem for the following equation

(4) utt −∆u = u log |u|k,

in R3. Using some compactness method, Gorka [15] established the global existence
of weak solutions for all (u0, u1) ∈ H1

0 × L2 to the initial boundary value problem
of equation (4) in the one-dimensional case. In [5], Bartkowski and Gorka obtained
the existence of classical solutions and investigated weak solutions for the corre-
sponding Cauchy problem of equation (4) in the one-dimensional case. Recently,
using potential well combined with logarithmic Sobolev inequality, Lian et al. [25]
derived the global existence and infinite time blow up of the solution to the initial
boundary value problem of (4) in finite dimensional case under suitable assump-
tions on initial data. Similar results were obtained by Lian et al. [26] for nonlinear
wave equation with weak and strong damping terms and logarithmic source term.
Hiramatsu et al. [19] also introduced the following equation

(5) utt −∆u+ u+ ut + |u|2u = u log |u|

to study the dynamics of Q-ball in theoretical physics. A numerical research was
given in that work, while, there was no theoretical analysis for this problem. For
the initial boundary value problem of(5), Han [17] obtained the global existence of
weak solution in R3, and Zhang et al. [40] obtained the decay estimate of energy for
the problem (5) in finite dimensional case. Later, the authors in [20] considered the
initial boundary problem of (5) in Ω ⊂ R3, they proved that the solution will grow
exponentially as time goes to infinity if the solution lies in unstable set or the initial
energy is negative; the decay rate of the energy was also obtained if the solution
lies in a smaller set compared with the stable set. Peyravi[35] extended the results
obtained in [20] to the following logarithmic wave equation

utt −∆u+ u+ (g ∗∆u)(t) + h (ut)ut + |u|2u = u log |u|k.

Recently, Al-Gharabli and Messaoudi [1] considered the following plate equation
with logarithmic source term

(6)


utt + ∆2u+ u+ h(ut) = u log |u|k, (x, t) ∈ Ω× R+,

u = ∂u
∂ν = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain in R2, and obtained the global existence and decay
rate of the solution using the multiplier method. As the special case , i.e. h(ut) = ut
in (6), the same authors [2] established the global existence and the decay estimate
by constructing a Lyapunov function. Moreover, Al-Gharabli et al. [3] considered
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the following initial boundary value problem of viscoelastic plate equation with with
logarithmic source term

(7) utt + ∆2u+ u−
∫ t

0

g(t− s)∆2u(s)ds = u log |u|k, (x, t) ∈ Ω× R+,

they established the existence of solutions and proved an explicit and general decay
rate result. However, there is no information on the finite or infinite blow up results
in these researches [1, 2, 3].

At the same time, there are many results concerning the existence and nonexis-
tence on evolution equation with polynomial source term. For example, for plate
equation with polynomial source term |u|p−2u, Messaoudi [31] considered the fol-
lowing problem

utt + ∆2u+ |ut|m−2ut = |u|p−2u, (x, t) ∈ Ω× R+,

u = ∂u
∂ν = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

established an existence result and showed that the solution continues to exist glob-
ally if m ≥ p and blows up in finite time if m < p and the initial energy is negative.
This result was later improved by Chen and Zhou [12], see also Wu and Tsai [37].
Here, we also mention that there are a lot of results on the global well-posedness of
solutions to the initial boundary value problem of nonlinear wave equations can be
found [30, 39] and papers cited therein by using of potential well method.

To the best of our knowledge, there are few results on the evolution equation with
the nonlinear logarithmic source term |u|p−2u log |u|k (p > 2). Kafini and Messaoudi
[22] studied the following delayed wave equation with nonlinear logarithmic source

(8) utt −∆u+ µ1ut(x, t) + µ2ut(x, t− τ) = |u|p−2u log |u|k,

obtained the local existence by using the semigroup theory and proved a finite time
blow-up result when the initial energy is negative. Of course, these results also hold
for the equation (8) without delay term (i.e. µ2 = 0). However, there are no results
on general decay and blow-up for positive initial energy. Chen et al. [9, 10] stud-
ied parabolic type equations with logarithmic nonlinearity u log |u|k, and obtained
the global existence of solution and the solutions cannot blow up in finite time.
Recently, Chen and Xu [11] study the initial-boundary value problem for infinitely
degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity and
obtain the similar results. Nhan and Truong studied parabolic p-Laplacian equation
[23] and pseudo-parabolic p-Laplacian equation [24] with logarithmic nonlinearity
|u|p−2u log |u|k where they need the p-Laplacian term to control the logarithmic
nonlinearity. We also refer to [18], where pseudo-parabolic p-Laplacian equation
with logarithmic nonlinearity |u|q−2u log |u|k was considered.

Motivated by the above mentioned papers, our purpose in this research is to
investigative the existence, energy decay and finite time blow-up of the solution to
the initial boundary value problem (1). We note here that (i) the term u plays an
important role in the studying the problem (6)( see [1, 2]) and (7) (see [3]) when
the Logarithmic Sobolev inequality is used, while we do not care the term u in this
paper; (ii) The constant k in (6) and (7) should satisfy 0 < k < k0, where k0 is

defined by 2π
k0cp

= e−3− 2
k0 ( see details in [1, 2, 3]), while we only need k > 0.



266 GONGWEI LIU

The rest of this article is organized as follows: Section 2 is concerned with some
notation and some properties of the potential well. In Sect. 3, we present the
existence and uniqueness of local solutions to (1) by using the contraction mapping
principle. In Sect. 4, we prove the global existence and energy decay results.
The proof of global existence result is based on the potential well theory and the
continuous principle; while for energy decay result, the proof is based on the Nakao’s
inequality and some techniques on logarithmic nonlinearity. In Sect. 5, we prove the
the finite time blow-up when the initial energy is negative. In Sect. 6, we establish
the finite time blow-up result for problem (1) with m = 2 under the arbitrarily high
initial energy level (E(0) > 0).

2. Preliminaries

We give some material needed in the proof of our results. We use the standard
Lebesgue space Lp(Ω) and Sobolev space H2

0 (Ω) with their usual scalar products
and norms. In particular, we denote ‖.‖ = ‖.‖2. By Poincaré ’s inequality [27],
we have that ‖∆ · ‖ is equivalent to ‖ · ‖H2

0
and we will use ‖∆ · ‖ as the norm of

‖ · ‖H2
0
, the corresponding duality between H2

0 and H−2 is denote by 〈·, ·〉. We also
use C and Ci to denote various positive constant that may have different values in
different places.

Firstly, we introduce the Sobolev’s embedding inequality : assume that p be a
constant such that 1 ≤ p ≤ 2n

n−4 if n ≥ 5; p ≥ 1 if n ≤ 4, then H2
0 (Ω) ↪→ Lp(Ω)

continuously, and

(9) ‖u‖p ≤ Cp‖∆u‖2, for u ∈ H2
0 (Ω)

where Cp denotes the best embedding constant.
Suppose (2) holds, we define

α∗ :=

{
2n
n−4 − p if n ≥ 5,

+∞ if n ≤ 4

for any α ∈ [0, α∗), then H2
0 (Ω) ↪→ Lp+α(Ω) continuously. And we denote Cp+α by

C∗.

Definition 2.1. A function u ∈ C
(
[0, T ], H2

0 (Ω)
)
∩ C1

(
[0, T ], L2(Ω)

)
∩ C2([0, T ],

H−2(Ω)) with ut ∈ Lm([0, T ], Lm(Ω)) is called a weak solution to (1) if the following
conditions hold

u(0) = u0, ut(0) = u1

and

(10) 〈utt, v〉+ (∆u,∆v) +

∫
Ω

|ut|m−2
utvdx =

∫
Ω

(|u|p−2u log |u|k)vdx

for any v ∈ H2
0 (Ω) and a.e. t ∈ [0, T ].

Now, we introduce the energy functional J and the Nehari functional I defined
on H2

0 (Ω) \ {0} by

(11) J(u) = J(u(t)) = J(t) =
1

2
‖∆u‖2 − 1

p

∫
Ω

|u|p log |u|kdx+
k

p2
‖u‖pp,

and

(12) I(u) = I(u(t)) = I(t) = ‖∆u‖2 −
∫

Ω

|u|p log |u|kdx.
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From the definitions (11) and (12), we have

(13) J(u) =
1

p
I(u) +

(
1

2
− 1

p

)
‖∆u‖2 +

k

p2
‖u‖pp.

The following lemmas play an important role in the studying the properties of
the potential well.

Lemma 2.2. Let u ∈ H2
0 (Ω) \ {0} and g(λ) = J(λu). Then we have

(i): limλ→0+ J(λu) = 0, limλ→+∞ J(λu) = −∞;
(ii): there exists a unique λ∗ = λ∗(u) > 0 such that d

dλJ(λu) |λ=λ∗= 0,
and J(λu) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the
maximum at λ∗.

(iii): I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ < +∞ and I(λ∗u) = 0.

Proof. We know

g(λ) = J(λu)

==
1

2
λ2‖∆u‖2 − k

p
λp
∫

Ω

|u|p log |u|dx− k

p
λp log λ ‖u‖pp +

k

p2
λp‖u‖pp.

It is obvious that (i) holds due to p ≥ 2 and ‖u‖p 6= 0. Taking derivative of g(λ) we
obtain

(14) g′(λ) = λ

(
‖∆u‖2 − kλp−2

∫
Ω

|u|p log |u|dx− kλp−2 log λ ‖u‖pp
)

and

g′′(λ) = ‖∆u‖2−k(p−1)λp−2

∫
Ω

|u|p log |u|dx−k(p−1)λp−2 log λ ‖u‖pp−kλp−2 ‖u‖pp.

From (14) and p ≥ 2, we see that there exists a unique positive λ∗ such that

g′(λ)|λ=λ∗ = 0,

then we obtain

‖∆u‖2 = kλ∗p−2

∫
Ω

u2 log |u|dx+ kλ∗p−2 log λ∗ ‖u‖pp.

Substituting the above equation into g′′(λ), we have

g′′(λ∗) =− k(p− 2)λ∗p−2

∫
Ω

|u|p log |u|dx

− k(p− 2)λ∗p−2 log λ∗ ‖u‖pp − kλ∗p−2 ‖u‖pp

=− (p− 2)‖∆u‖2 − kλ∗p−2 ‖u‖pp < 0.

From these and (i), we can yield that g(λ) has a maximum value at λ = λ∗ and
J(λu) increasing on 0 < λ ≤ λ∗ and decreasing on λ∗ ≤ λ < +∞. So (ii) holds.

From (12) and (14), we have

I(λu) = λ
d

dλ
J(λu) = λg′(λ)

 > 0, 0 < λ < λ,
= 0, λ = λ∗,
< 0, λ∗ < λ < +∞.

�
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Then, we could define the potential well depth of the functional J (also known
as mountain pass level ) by

(15) d = inf

{
sup
λ≥0

J(λu)|u ∈ H2
0 (Ω)\{0}

}
.

We also define the well-known Nehari manifold

N =
{
u|u ∈ H2

0 (Ω)\{0}, I(u) = 0
}
.

As in [29, 34], that the mountain pass level d defined in (15) can also be characterized
as

d = inf
u∈N

J(u).

It is easy to see that d ≥ 0 from (13). Now, we will prove that d is strictly
positive.

Lemma 2.3. Assume that p > 2 holds. Let α ∈ (0, α∗), and

r(α) :=

(
α

kCp+α∗

) 1
p+α−2

.

Then, for any u ∈ H2
0 (Ω)\{0}, we have

(i): if ‖∇u‖2 ≤ r(α), then I(u) > 0
(ii): if I(u) ≤ 0, then ‖∆u‖2 > r(α).

Proof. Since log y < y for any constant y > 0, using (9) and the definition of I(u)
in (12), we obtain that

(16)

I(u) = ‖∇u‖22 − k
∫

Ω

|u|p log |u|dx

> ‖∇u‖22 −
k

α
‖u‖p+αp+α

≥ ‖∇u‖22 −
kCp+α∗
α
‖∇u‖p+α2

=
kCp+α∗
α
‖∇u‖22

(
rp+α−2(α)− ‖∇u‖p+α−2

2

)
.

Obviously, the results can be obtained from the above inequality (16). �

Lemma 2.4. Assume the notations in Lemma 2.2 hold, we have

0 < r∗ := sup
α∈(0,α∗)

=

(
α

kCp+α∗

) 1
p+α−2

≤ r∗ := sup
α∈(0,α∗)

( α

kBp+α

) 1
p+α−2 |Ω|

α
p(p+α−2)

< +∞,

where B = Cp as in (9) and |Ω| is the measure of Ω.

Proof. It is obvious that r∗ > 0 (if exists), hence, we only need to prove r(α) ≤ γ(α),
r∗ exists and r∗ < +∞, where

γ(α) =
( α

kBp+α

) 1
p+α−2 |Ω|

α
p(p+α−2) , α ∈ (0,+∞) .
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For any u ∈ H2
0 (Ω), using the Hölder’s inequality, we have

‖u‖p ≤ |Ω|
α

p(p+α) ‖u‖p+α.

Then, noticing C∗ = Cp+α and B = Cp , we deduce

C∗ = sup
u∈H2

0\{0}

‖u‖p+α
‖∆u‖2

≥ |Ω|
−α

p(p+α) sup
u∈H2

0\{0}

‖u‖p
‖∆u‖2

≥ |Ω|
−α

P (p+α)B

,

which implies (
α

kCp+α∗

) 1
p+α−2

≤
( α

kBp+α

) 1
p+α−2 |Ω|

α
p(p+α−2) ,

that is r(α) ≤ γ(α).
Now, we will prove r∗ exists and r∗ < +∞. For this purpose, we divide the proof

into two cases.

Case a. If n ≥ 5, we see that α ∈ (0, α∗) =
(

0, 2n
n−4 − p

)
and γ(α) is continuous

on closed interval [0, 2n
n−4 − p]. Hence, we have r∗ exists and

r∗ = sup
α∈(0, 2n

n−4−p)
γ(α) ≤ max

α∈[0, 2n
n−4−p]

γ(α) < +∞

Case b. If n ≤ 4, we define the following auxiliary function

h(α) := log[γ(α)] =
1

p+ α− 2
[logα− log k − (p+ α) logB] +

α

p(p+ α− 2)
log |Ω|.

Hence

h′(α) =
p2 + pα− 2p+ pα log k − pα logα+ 2pα logB + pα log |Ω| − 2α log |Ω|

pα(p+ α− 2)2
.

For simplicity, we set

g(α) := p2 + pα− 2p+ pα log k − pα logα+ 2pα logB + pα log |Ω| − 2α log |Ω|,

then

g′(α) = p+ p log k − p logα− p+ 2p logB + p log |Ω| − 2 log |Ω|

= p log
kB2|Ω|1−

2
p

α
,

which yields that the function g(α) is strictly increasing on
(

0, kB2|Ω|1−
2
p

)
and

strictly decreasing on
(
kB2|Ω|1−

2
p ,+∞

)
.

On the one hand, due to p > 2, it is easy to see that

lim
α→0+

g(α) = p2 − 2p > 0

which implies that g(α) > 0 for α ∈
(

0, kB2|Ω|1−
2
p

)
by g(α) is strictly increasing

on
(

0, kB2|Ω|1−
2
p

)
.
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While on the other hand, we can deduce that

lim
α→+∞

g(α) = lim
α→+∞

(
p2 − 2p+ pα[1 + log(kB2|Ω|1−

2
p )]− logα

)
= −∞,

which together with g
(
kB2|Ω|1−

2
p

)
> 0 and g(α) is strictly decreasing on(

kB2|Ω|1−
2
p ,+∞

)
, implies that there exists a unique α∗ ∈

(
kB2|Ω|1−

2
p ,+∞

)
such that g (α∗) = 0.

Noting the relation between h′(α) and g(α), we deduce that h′(α) > 0 for α ∈
(0, α∗) , and h′(α) < 0 for α ∈ (α∗,+∞). Therefore, h(α) achieves its maximum
value at α = α∗ , that is

r∗ = sup
α∈(0,+∞)

σ(α) = eh(α∗) < +∞.

�

Making using of the Lemmas 2.2 and 2.3, we obtain the following corollary.

Corollary 1. Assume that p > 2 holds. Then, we have

(i): if ‖∇u‖2 < r∗, then I(u) > 0;
(ii): if I(u) ≤ 0, then ‖∇u‖2 ≥ r∗

for any u ∈ H2
0 (Ω) \ {0}, where r∗ is the positive constant defined in Lemma 2.3.

Lemma 2.5. Assume that p ≥ 2 holds. Then the constant d defined in (15) is
strictly positive.

Proof. (i) For the case p = 2, we have d ≥ k
4

(
2π
k

)n
2 en( see [9, 20, 25] for details).

(ii) For the case p > 2, by (ii) of Corollary 2.1, we get that ‖∇u‖2 ≥ r∗ if u ∈ N .
Then, making using of (13) with I(u) > 0, we obtian

J(u) =

(
1

2
− 1

p

)
‖∆u‖22 +

k

p2
‖u‖pp ≥

(
p− 2

2p

)
r2
∗ > 0.

�

We define energy for the problem (1), which obeys the following energy equality
of the weak solution u

(17) E(t) +

∫ t

0

‖uτ‖mmdτ = E(0), for all t ∈ [0, T )

where

E(t) =
1

2
‖ut‖2 +

1

2
‖∆u‖2 − 1

p

∫
Ω

|u|p log |u|kdx+
k

p2
‖u‖pp,

E(0) =
1

2
‖u1‖2 +

1

2
‖∆u0‖2 −

1

p

∫
Ω

|u0|p log |u0|kdx+
k

p2
‖u0‖pp.

It is obvious that

E(t) =
1

2
‖ut‖2 + J(u).

Taking v = ut in (10), after a simple calculation, we get

(18)
d

dt
E(t) = −‖ut‖mm .
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Now, we define the subsets of H2
0 (Ω) related to problem (1). Set

W =
{
u ∈ H1

0 (Ω)|J(u) < d, I(u) > 0
}
,

V =
{
u ∈ H1

0 (Ω)|J(u) < d, I(u) < 0
}
,

(19)

where W and V are called the stable and unstable set, respectively [21] .
In order to establish the global existence and blow-up results of solution, we have

to prove the following invariance sets of W and V .

Lemma 2.6. If u0 ∈ H2
0 , u1 ∈ L2, p ≥ 2, E(0) < d, and u is a weak solution of

problem (1) on [0, T ), where T is the maximal existence time of weak solution, then

(i): u ∈W if I (u0) > 0;
(ii): u ∈ V if I (u0) < 0.

Proof. It follows from the definition of weak solution and (17) that

(20)
1

2
‖ut‖2 + J(u) ≤ 1

2
‖u1‖2 + J (u0) < d, for any t ∈ [0, T ).

(i) Arguing by contradiction, we assume that there exists a number t0 ∈ (0, T )
such that u(t) ∈ W on [0, t0) and u (t0) /∈ W. Then, by the continuity of J(u(t))
and I(u(t)) with respect to t, we have either (a)J (u (t0)) = d or (b) I (u (t0)) = 0
and ‖u (t0)‖ 6= 0.

It follows from (20) that (a) is impossible. If (b) holds, then by the definition of
d, we have J(u(t0)) ≥ d, which contradicts (20) again. Thus, we have u(t) ∈W for
all t ∈ [0, T ).

(ii) The proof is similar to the proof of (i). We omit it. �

3. Local existence

In this section, we are concerned with the local existence and uniqueness for the
solution of the problem (1). The idea comes from [14, 28, 38], where the source
term is polynomial. First, we give a technical lemma given in [22] which plays an
important role in the uniqueness of the solution.

Lemma 3.1. ([22]) For every ε > 0, there exists A > 0, such that the real function

j(s) = |s|p−2 log |s|, p > 2

satisfies

|j(s)| ≤ A+ |s|p−2+ε.

Theorem 3.2. Suppose that u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω), and p > 2, then there is

T > 0, such that the problem (1) admits a unique local weak solution on [0, T ].

Proof. For every T > 0, we consider the space

H := C([0, T ];H2
0 (Ω)) ∩ C1

(
[0, T ];L2(Ω)

)
endowed with the norm

‖u(t)‖H =

(
max
t∈[0,T ]

(
‖∆u(t)‖22 + ‖ut(t)‖22

)) 1
2

.
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For every given u ∈ H, we consider the following initial boundary value problem

(21)


vtt + ∆2v + |vt|m−2vt = |u|p−2u log |u|k, (x, t) ∈ Ω× R+,

v = ∂v
∂ν = 0, (x, t) ∈ ∂Ω× R+,

v(x, 0) = u0(x), vt(x, 0) = u1(x), x ∈ Ω.

We shall prove that the problem (21) admits a unique solution v ∈ H ∩ C2(|0, T |,
H−2(Ω)) with vt ∈ Lm(|0, T |, Lm(Ω)).

Let Wh = Span {w1, . . . , wh}, where {ωi}∞i=1 is the orthogonal complete system
of eigenfunctions of ∆2 in H2

0 (Ω) with ‖wi‖ = 1 for all i. Then, {wi} is orthogonal
and complete in L2(Ω) and in H2

0 (Ω); denote by {λi} the related eigenvalues to
their multiplicity. Let

u0h =

h∑
i=1

(∫
Ω

∆u0∆wi

)
wi and u1h =

h∑
i=1

(∫
Ω

u1wi

)
wi

such that u0h ∈ Wh, u1k ∈ Wh, u0h → u0 in H2
0 (Ω) and u1h → u1 in L2(Ω) as

h→∞. For each h > 0 we seek h functions γ1h, . . . , γhh ∈ C2[0, T ] such that

(22) vh(t) =

h∑
i=1

γih(t)ωi,

solves the following problem

(23)

{ ∫
Ω

(
v′′h + ∆2vh + |v′h|

m−2
v′h − |u|p−2u log |u|k

)
ηdx = 0,

vk(0) = u0h, v′h(0) = u1h.

For i = 1, . . . , h, taking η = wi in (23) yields the following Cauchy problem for a
nonlinear ordinary differential equation with unknown γih{

γ′′ih(t) + λiγih(t) + ci |γ′ih(t)|m−2
γ′ih(t) = ψi(t),

γih(0) =
∫

Ω
u0ωi, γ′ih(0) =

∫
Ω
u1ωi,

where

ci = ‖ωi‖mm , ψi(t) =

∫
Ω

|u(t)p−2u(t) log |u|kωidx ∈ C[0, T ].

Then the above problem admits a unique local solution γih ∈ C2[0, T ] for all i,
which in turn implies a unique vh defined by (22) satisfying (23).

Taking η = v′h(t) into (23) and integrating over [0, t] ⊂ [0, T ], we have

‖v′h(t)‖2 + ‖∆vh(t)‖2 + 2

∫ t

0

‖v′h(τ)‖mm dτ

= ‖v1h‖2 + ‖∆v0h‖2 + 2

∫ t

0

∫
Ω

|u|p−2u log |u|kv′h

(24)

for every h ≥ 1. We estimate the last term in the right-hand side of (24) thanks to
Young’s and Sobolev’s inequalities

2

∫ t

0

∫
Ω

|u|p−2u log |u|kv′h
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(25)

≤2

∫ t

0

∫
Ω

∣∣|u|p−1 log |u|k
∣∣ |v′h|

≤
∫ t

0

∫
Ω

(
C
∣∣|u|p−1 log |u|

∣∣ m
m−1 +

∫ t

0

‖v′h‖
m
m

)
.

In order to estimate (25), we focus on the logarithmic term. Here we denote Ω :=
Ω1 ∪ Ω2, where Ω1 = {x ∈ Ω||u(x)| < 1} and Ω2 = {x ∈ Ω||u(x)| ≥ 1}. Then we
have∫

Ω

‖ u|p−1
log |u||

m
m−1 dx =

∫
Ω1

‖ u|p−1
log |u||

m
m−1 dx+

∫
Ω2

‖ u|p−1
log |u||

m
m−1 dx.

By a simple calculation, we obtain

inf
s∈(0,1)

sp−1 log s = − 1

e(p− 1)
,

which implies ∫
Ω1

‖ u|p−1
log |u||

m
m−1 dx ≤ [e(p− 1)]−

m
m−1 |Ω|.

Let

ρ =
2n

n− 4
· m− 1

m
− p+ 1 > 0 for n ≥ 5; any positive ρ, n ≤ 4.

By the Sobolev embedding from H2
0 (Ω) to L

2n
n−4 (Ω) if n ≥ 5 and to Lq(Ω) for any

q ≥ 1 if n ≤ 4, recalling u ∈ H := C([0, T ];H2
0 (Ω)), we have∫

Ω2

‖ u|p−1
log |u||

m
m−1 dx

≤ρ−
m−1
m

∫
Ω2

(
|u|p−1+ρ

)m−1
m dx

≤ρ−
m−1
m

∫
Ω2

|u|
2n
n−4 dx

≤ρ−
m−1
m

∫
Ω

|u|
2n
n−4 dx

=ρ−
m−1
m ‖u‖

2n
n−4
2n
n−4

≤C‖u‖
2n
n−4

H2
0
≤ C.

The proof of the case n ≤ 4 is similar. From the above discussion, (25) yields

(26) 2

∫ t

0

∫
Ω

|u|p−2u log |u|kv′h ≤ CT +

∫ t

0

‖v′h‖
m
m .

Substituting this inequality into (24), we obtain

(27) ‖v′h(t)‖2 + ‖∆vh(t)‖2 +

∫ t

0

‖v′h(τ)‖mm dτ ≤ C,
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where C > 0 is independent of h. It follows from (27) that

(28)

vh(t) is bounded in L∞
(
[0, T ], H2

0 (Ω)
)
,

v′h(t) is bounded in Lm [(0, T ], Lm(Ω)) ∩ L∞
(
[0, T ], L2(Ω)

)
,

vh
′′(t) is bounded in L2([0, T ], H−2(Ω)).

Hence, up to a subsequence, we could pass to the limit in (23) and obtain a weak
solution v of (21) with regularity (28). Then, we have v ∈ C

(
[0, T ], H2

0 (Ω)
)
∩

C1
(
[0, T ], L2(Ω)

)
with vt ∈ Lm([0, T ], Lm(Ω)). Finally, from (21), we obtain v′′ ∈

C0([0, T ], H−2(Ω)). Then the weak local solution of problem (21) has been obtained.
To prove the uniqueness, arguing by contradiction: if w and v were two solutions

of (21) which have the same initial data. Subtracting these two equations and
testing the result by wt − vt, we could obtain

(29) ‖wt − vt‖2+‖∆w−∆v‖2+2

∫ t

0

∫
Ω

(
|wτ |m−2

wτ − |vτ |m−2
vτ

)
(wτ − vτ ) = 0.

It follows from the following element inequality(
|ϕ|m−2ϕ− |ψ|m−2ψ

)
(ϕ− ψ) ≥ C|ϕ− ψ|m for m ≥ 2,

that (29) can make to be

‖wt − vt‖2 + ‖v − w‖2H2
0

+ C

∫ T

0

‖wτ − vτ‖mm ≤ 0.

Therefore, we have w = v, i.e. the problem (21) obeys a unique weak solution.
Now, we are in the position to prove Theorem 3.1. For u0 ∈ H2

0 (Ω), u1 ∈ L2(Ω),
we denote

R2 := 2
(
‖u1‖2 + ‖∆u0‖2

)
,

and

BRT := {u ∈ H|u(0, x) = u0(x), ut(0, x) = u1(x), ‖u‖H ≤ R}
for every T > 0. From the above discussion, for any u ∈ BRT , we could introduce
a map Φ : H → H defined by v = Φ(u), where v is the unique solution to (21).

Claim. Φ is a contract map satisfying Φ (BRT ) ⊆ BRT , for small T > 0.
In fact, assume that u ∈ BRT , the corresponding solution v = Φ(u) satisfies (21)

for all t ∈ [0, T ]. Thus, as did the proof (26) and (27), we have

‖vt(t)‖2 + ‖∆v(t)‖2 ≤ ‖u1‖2 + ‖∆u0‖2 + CR
2n
n−4T

≤ R2

2
+ CR

2n
n−4T

for n ≥ 5, For the case n ≤ 4, the index 2n
n−4 of R in the last inequality can be

replaced by any fixed positive number. If T is sufficiently small, then ‖v‖H ≤ R,
which implies that Φ (BRT ) ⊆ BRT

Next we show that Φ is contractive in BRT . We set v1 = Φ (w1) , v2 = Φ (w2)
with w1, w2 ∈ BRT , and v = v1 − v2, then, v satisfies

(30)

〈vtt, η〉+ (∆v,∆η) +

∫
Ω

(
|v1t|m−2

v1t − |v2t|m−2
v2t

)
ηdx

=

∫
Ω

(
|w1|p−2

w1 log |w1|k − |w2|p−2
w2 log |w2|k

)
ηdx,

for any η ∈ H2
0 (Ω) and a.e. t ∈ [0, T ].
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Taking η = vt = v1t − v2t, noticing∫
Ω

(
|v1t|m−2

v1t − |v2t|m−2
v2t

)
(v1t − v2t) dx ≥ 0,

and integrating both sides of (30) over (0, t), we have

(31)
‖vt‖2 + ‖∆v‖2

≤2k
∥∥∥|w1|p−2w1 log |w1| − |w2|p−2

w2 log |w2|
∥∥∥ ‖vt‖,

We need estimating the logarithmic term in (31) by using Lemma 3.1. By the
similar argument as [22], we give the sketch of the proof.

Making use of mean value theorem, we have, for 0 < θ < 1,∣∣∣|w1|p−2w1 log |w1| − |w2|p−2
w2 log |w2|

∣∣∣
=k |1 + (p− 1) log |θw1 + (1− θ)w2|| |θw1 + (1− θ) w2|p−2 |w1 − w2|.

Then, it follows from Lemma 3.1 that∣∣∣|w1|p−2w1 log |w1| − |w2|p−2
w2 log |w2|

∣∣∣
≤k|θw1 + (1− θ) w2|p−2 |w1 − w2|+ k(p− 1)A|w1 − w2|

+ k(p− 1)|θw1 + (1− θ)w2|p−2+ε|w1 − w2|

≤k(|w1|+ |w2|)p−2|w1 − w2|+ k(p− 1)A|w1 − w2|

+ k(p− 1)(|w1|+ |w2|)p−2+ε|w1 − w2|.

Since w1, w2 ∈ BRT , using Hölder’s inequality and the Sobolev embedding, we can
obtain∫

Ω

[
(|w1|+ |w2|)p−2|w1 − w2|

]2
dx

≤C
(∫

Ω

(|w1|+ |w2|)2(p−1)dx

)(p−2)/(p−1)

×
(∫

Ω

|w1 − w2|2(p−1)dx

)1/(p−1)

≤C
[
‖w1‖2(p−1)

L2(p−1) + ‖w2‖2(p−1)

L2(p−1)

](p−2)/(p−1)

‖w1 − w2‖2L2(p−1)

≤C
[
‖w1‖2(p−1)

H2
0 (Ω)

+ ‖w2‖2(p−1)

H2
0 (Ω)

](p−2)/(p−1)

‖w1 − w2‖2H2
0 (Ω)

≤CR2(p−2)‖w1 − w2‖2H2
0 (Ω).

By the similar argument, we have∫
Ω

[
(|w1|+ |w2|)p−2+ε |w1 − w2|

]2
dx

≤C
(∫

Ω

(|w1|+ |w2|)2(p−2+ε)(p−1)/(p−2)
dx

)(p−2)/(p−1)
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×
(∫

Ω

|w1 − w2|2(p−1)
dx

)1/(p−1)

≤
(∫

Ω

(|w1|+ |w2|)2(p−1)+2ε(p−1)/(p−2)dx

)(p−2)/(p−1)

‖w1 − w2‖2L2(p−1) .

Using (2), we can choose sufficiently small ε > 0 such that

p̄ = 2(p− 1) +
2ε(p− 1)

p− 2
≤ 2n

n− 4
,

which yields that∫
Ω

[
(|w1|+ |w2|)p−2+ε |w1 − w2|

]2
dx

≤C
[
‖w1‖p̄Lp̄(Ω) + ‖w2‖p̄Lp̄(Ω)

](p−2)/(p−1)

‖w1 − w2‖2L2(p−1)

≤CRp̄(p−2)/(p−1) ‖w1 − w2‖2H2
0 (Ω) .

Noticing ‖w1−w2‖ ≤ C‖w1−w2‖H2
0 (Ω), from the above discussions, we can deduce

that ∥∥∥|w1|p−2w1 log |w1| − |w2|p−2
w2 log |w2|

∥∥∥
≤C

(
Rp−2 + 1 +Rp̄(p−2)/2(p−1)

)
‖w1 − w2‖H2

0 (Ω) .

Thus, it follows from (31) that

‖Φ(w1)− Φ(w2)‖H = ‖v1 − v2‖H

≤ C
(
Rp−2 + 1 +Rp̄(p−2)/2(p−1)

)
T‖w1 − w2‖H.

(32)

We choose T sufficiently small such that C
(
Rp−2 + 1 +Rp̄(p−2)/2(p−1)

)
T < 1. Thus

from (32) we obtain Φ is a contract map in BRT . The contraction mapping principle
then shows that there exists a unique u ∈ BRT satisfying u = Φ(u) which is a
solution to problem (1). The proof is complete. �

4. Global existence and energy decay

In this section, we consider the global existence and energy decay of the solution
for problem (1). First, we introduce the following lemmas which play an important
role in studying the decay estimate of global solution for the problem (1).

Lemma 4.1. [33] Let φ(t) be a nonincreasing and nonnegative function on [0, T ],
T > 1, such that

φ(t)1+r ≤ ω0(φ(t)− φ(t+ 1)) on [0, T ],

where ω0 is a positive constant and r is a nonnegative constant. Then we have

(i): if r > 0, then

φ(t) ≤
(
φ(0)−r + ω−1

0 r[t− 1]+
)− 1

r on [0, T ];
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(ii): if r = 0, then

φ(t) ≤ φ(0)e−ω1[t−1]+ on [0, T ],

where ω1 = log
(

w0

ω0−1

)
, here ω0 > 1.

Now, we establish the global existence and energy decay results.

Theorem 4.2. Let u be the unique local solution to problem (1). Assume (2) and
2 ≤ m < p hold. If u0 ∈ W , u1 ∈ L2(Ω) and E(0) < d, then u(t) is the global
solution to the problem (1). Moreover it has the following decay property

E(t) ≤ Ke−κt, if m = 2;

and

E(t) ≤
(
E(0)−

m−2
2 +

(m− 2)τ

2
[t− 1]+

)− 2
m−2

, if m > 2,

where K and κ are positive constants, τ is given by (47).

Proof. Step 1. Global existence. It suffices to show that ‖ut‖2+‖∆u‖2 is uniformly
bounded with respect to t. It follows from Lemma 2.5 (i) that u(t) ∈ W on [0, T ].
Using (13), we have the following estimate

d > E(0) ≥ E(t) =
1

2
‖ut‖2 + J(u)

=
1

2
‖ut‖2 +

1

p
I(u) +

(
1

2
− 1

p

)
‖∆u‖2 +

k

p2
‖u‖pp

>
1

2
‖ut‖2 +

p− 2

2p
‖∆u‖2,

(33)

which yields that

‖ut‖2 + ‖∆u‖2 ≤ 2p

p− 2
d < +∞.

The above inequality and the continuation principle imply the global existence, i.e.
T = +∞.

Step 2. We claim that there exists constant θ ∈ (0, 1) such that

(34) I(u) ≥ θ‖∆u‖2.
In fact, it follows from I(u(t)) > 0 for all t ≥ 0 and Lemma 2.1 that there exists a
λ0 > 1 such that I(λ0u(t)) = 0. Making use of (33), we have

d ≤ J(λ0u(t)) =
1

p
I(λ0u) +

(
1

2
− 1

p

)
‖∆(λ0u)‖2 +

k

p2
‖λ0u‖pp

=
p− 2

2p
λ2

0‖∆u‖2 +
k

p2
λp0‖u‖pp

= λp0

(
p− 2

2p
λ2−p

0 ‖∆u‖2 +
k

p2
‖u‖pp

)

≤ λp0
(
p− 2

2p
‖∆u‖2 +

k

p2
‖u‖pp

)
< λp0E(0),
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which implies that

(35) λ0 >

(
d

E(0)

) 1
p

> 1.

It follows from (12) that

0 = I(λ0u) = ‖∆(λ0u)‖2 −
∫

Ω

|λ0u|p log |λ0u|kdx

= λ2
0‖∆u‖2 − λ

p
0k

∫
Ω

|u|p log |u|dx− (λp0k log λ0)‖u‖pp

= λp0I(u)− λp0‖∆u‖2 + λ2
0‖∆u‖2 − (λp0k log λ0) ‖u‖pp

= λp0I(u)− (λp0 − λ2
0)‖∆u‖2 − (λp0k log λ0) ‖u‖pp.

Combining this equality with (35), we have

λp0I(u) = (λp0 − λ2
0)‖∆u‖2 + (λp0k log λ0)‖u‖pp

≥ (λp0 − λ2
0)‖∆u‖2,

which implies that

I(u) ≥ (1− λ2−p
0 )‖∆u‖2.

Hence, the inequality (34) holds with θ = 1− λ2−p
0 .

Step 3. Energy decay. By integrating (18) over [t, t+ 1], t > 0, we obtain

(36) E(t)− E(t+ 1) ≡ D(t)m,

where

(37) D(t)m =

∫ t+1

t

‖uτ‖mm dτ.

In view of (37) and the embedding Lm(Ω) ↪→ L2(Ω), we obtain

(38)

∫ t+1

t

∫
Ω

|ut|2 dxdt ≤ c(Ω)D(t)2.

Thus, from (38), there exist t1 ∈
[
t, t+ 1

4

]
and t2 ∈

[
t+ 3

4 , t+ 1
]

such that

(39) ‖ut (ti)‖22 ≤ 4c(Ω)D(t)2, i = 1, 2.

On the other hand, multiplying (1.1)1 by u and integrating over Ω × [t1, t2] , we
have ∫ t2

t1

I(u)dt =

∫ t2

t1

‖ut‖2 dt+ (ut (t1) , u (t1))− (ut (t2) , u (t2))

−
∫ t2

t1

∫
Ω

|ut|m−2
utudxdt.

(40)
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It follows from (33) that∣∣∣∣∫ t2

t1

∫
Ω

|um−2
t utudxdt

∣∣∣∣ ≤ ∫ t2

t1

‖u‖m ‖ut‖m−1
m dt

≤ C
∫ t2

t1

‖∆u‖ ‖ut‖m−1
m dt

≤ C
(

2p

p− 2

) 1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

‖ut‖m−1
m dt

≤ C
(

2p

p− 2

) 1
2

sup
t1≤s≤t2

E(s)
1
2D(t)m−1.

(41)

By using (33) and (39), we also have

(42) ‖ut (ti)‖2 ‖u (ti)‖2 ≤ C1D(t) sup
t1≤s≤t2

E(s)
1
2 , i = 1, 2.

Combining (38), (41) with (42), we have from (40) that∫ t2

t1

I(u)dt ≤c(Ω)D(t)2 + 2C1D(t) sup
t1≤s≤t2

E(s)
1
2

+ C

(
2p

p− 2

) 1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2 .

(43)

Moreover, using (33) and (34), it is easy to see that

‖u‖pp ≤ Cpp‖∆u‖p ≤ Cpp
(

2p

p− 2
E(0)

) p−2
2 1

θ
I(u).

Thus, we deduce that

(44) E(t) ≤ 1

2
‖ut‖2 + C2I(u),

where C2 = 1
p + p−2

2pθ +
kCpp
p2θ

(
2p
p−2E(0)

) p−2
2

. By integrating (44) over (t1, t2) , we

have

(45)

∫ t2

t1

E(t)dt ≤ 1

2

∫ t2

t1

‖ut‖22 dt+ C2

∫ t2

t1

I(u)dt.

By integrating (18) over [t, t2], we obtain

E(t) = E (t2) +

∫ t2

t

‖ut‖mm ds

Since t2 − t1 ≥ 1
2 , it easy to see that

E (t2) ≤ 2

∫ t2

t1

E(t)dt.

Then, in view of (36), we have

E(t) = E(t+ 1) +D(t)m ≤ E (t2) +D(t)m ≤ 2

∫ t2

t1

E(t)dt+D(t)m.
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Thus, combining (38) with (45), we get that

E(t) ≤ (c(Ω) + 2c(Ω)C2)D(t)2 +D(t)m2

+ C2

[
2C1D(t) + C

(
2p

(p− 2)

) 1
2

D(t)m−1

]
sup

t1≤s≤t2
E(s)

1
2

≤ (c(Ω) + 2c(Ω)C2)D(t)2 +D(t)m

+ 2C2

[
2C1D(t) + C

(
2p

(p− 2)

) 1
2

D(t)m−1

]
E(t)

1
2 .

Hence, it follows from Young’s inequality that

(46) E(t) ≤ C3

[
D(t)2 +D(t)m +D(t)2(m−1)

]
holds with some positive constant C3 > 1. It follows from (36) and (46), we deduce
that

E(t) ≤ C3

[
1 +D(t)m−2 +D(t)2m−4

]
D(t)2

≤ C3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
D(t)2,

which implies that

E(t)
m
2 ≤ (C4(E(0)))

m
2 D(t)m = (C4(E(0)))

m
2
(
E(t)− E(t+ 1)

)
,

where C4(E(0)) = C3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
. Notice that

lim
E(0)→0

C4(E(0)) = C3

Hence, the energy decay estimates hold with

(47) K = E(0)eκ, κ = log
3C3

3C3 − 1
and τ = (C4(E(0)))

−m2 .

�

5. Blow up for negative energy

In this section, we will establish that the solution of problem (1) blows up in
finite time provided E(0) < 0. For this purpose, we give some useful lemmas.

Lemma 5.1. Assume that (2) holds. Then there exists a positive constant C such
that (∫

Ω

|u|p log |u|kdx

)s/p
≤ C

[∫
Ω

|u|p log |u|kdx+ ‖∆u‖22
]
,

for any u ∈ H2
0 (Ω) and 2 ≤ s ≤ p, provided that

∫
Ω
|u|p log |u|kdx ≥ 0.

Lemma 5.2. Assume that (2) holds. Then there exists a positive constant C such
that

‖u‖pp ≤ C
[∫

Ω

|u|p log |u|kdx+ ‖∆u‖2
]
,

for any u ∈ H2
0 (Ω), provided that

∫
Ω
|u|p log |u|kdx ≥ 0.
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Lemma 5.3. Assume that (2) holds. Then there exists a positive constant C > 1
such that

‖u‖sp ≤ C
[
‖u‖pp + ‖∇u‖22

]
,

for any u ∈ H2
0 (Ω) and 2 ≤ s ≤ p.

The proof of lemma 5.1-5.3 is similar to the proof in [22], we omit the details.

Lemma 5.4. Assume that (2) and m < p hold. Then there exists a positive constant
C such that

‖u‖mm ≤ C

[(∫
Ω

|u|p log |u|kdx

)m
p

+ ‖∆u‖
2m
p

]
,

for any u ∈ H2
0 (Ω), provided that

∫
Ω
|u|p log |u|kdx ≥ 0.

Proof. Noting m ≤ p and using the fact that ‖u‖mm ≤ C
(
‖u‖pp

)m
p , we can obtain

the result from Lemma 5.2. �

Now we are in the position to state and prove the blow up result for E(0) < 0.

Theorem 5.5. Suppose that the conditions in Lemma 5.4 hold. Then the solution
to the problem (1) blows up in finite time provided that E(0) < 0.

Proof. We denote H(t) = −E(t). It follows from (17) and (18) that

E(t) ≤ E(0) < 0, H ′(t) = −E′(t) = ‖ut‖mm.
and

(48) 0 < H(0) ≤ H(t) ≤ 1

p

∫
Ω

|u|p log |u|kdx.

We define

L(t) = H1−β(t) + ε

∫
Ω

uutdx, t ≥ 0,

where ε > 0 to be determined later and

(49)
2(p−m)

(m− 1)p2
< β <

p−m
2(m− 1)p

< 1.

By taking a derivation of L(t), we get

L′(t) =(1− β)H−β(t)H ′(t) + ε‖ut‖2 − ε‖∆u‖2

− ε
∫

Ω

|ut|m−2utudx+ ε

∫
Ω

|u|p log |u|kdx.

Adding and subtracting εp(1− a)H(t) for some a ∈ (0, 1) in the RHS of the above
equation, then using the definition of H(t), we obtain

L′(t) =(1− β)H−β(t)H ′(t) + ε
p(1− a) + 2

2
‖ut‖2 + ε

p(1− a)− 2

2
‖∆u‖2

+ εp(1− a)H(t)− ε
∫

Ω

|ut|m−2utudx+ εa

∫
Ω

|u|p log |u|kdx

+ ε
(1− a)k

p
‖u‖pp.

(50)

In view of Young’s inequality, we have∫
Ω

|ut|m−2utudx ≤ δm

m
‖u‖mm +

m− 1

m
δ−m/(m−1) ‖ut‖mm
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for any δ > 0, which yields, by substitution in (50),

L′(t) ≥
[
(1− β)H−β(t)− m− 1

m
εδ−m/(m−1)

]
‖ut‖mm − ε

δm

m
‖u‖mm

+ ε
p(1− a) + 2

2
‖ut‖2 + ε

p(1− a)− 2

2
‖∆u‖2 + εp(1− a)H(t)

+ εa

∫
Ω

|u|p log |u|kdx+ ε
(1− a)k

p
‖u‖pp.

(51)

Since the integral is taken over the x variable, (50) holds even if δ is time dependent.
Thus by choosing δ so that δ−m/(m−1) = MH−β(t), for large M to be determined
later, substituting in (51), we obtain

L′(t) ≥
[
(1− β)− m− 1

m
εM

]
H−β(t) ‖ut‖mm − ε

M1−m

m
Hβ(m−1)‖u‖mm

+ ε
p(1− a) + 2

2
‖ut‖2 + ε

p(1− a)− 2

2
‖∆u‖2 + εp(1− a)H(t)

+ εa

∫
Ω

|u|p log |u|kdx+ ε
(1− a)k

p
‖u‖pp.

(52)

Making using of (48), Lemma 5.4 and Young’s inequality, we find

Hβ(m−1)‖u‖mm

≤
(∫

Ω

|u|p log |u|kdx

)β(m−1)

‖u‖mm

≤C

[(∫
Ω

|u|p log |u|kdx

)β(m−1)+m
p

+

(∫
Ω

|u|p log |u|kdx

)β(m−1)

‖∆u‖
2m
p

]

≤C

[(∫
Ω

|u|p log |u|kdx

)β(m−1)+m
p

+

(∫
Ω

|u|p log |u|kdx

)β(m−1)· p
p−m

+ ‖∆u‖2
]
.

Hence, it follows from Lemma 5.1 that

2 < β(m− 1)p+m ≤ p and 2 <
β(m− 1)p2

p−m
≤ p.

Thus, Lemma 5.1 implies

(53) Hβ(m−1)‖u‖mm ≤ C
(∫

Ω

|u|p log |u|kdx+ ‖∆u‖2
)
.

Combining (52) and (53), we have

L′(t)

≥
[
(1− β)− m− 1

m
εM

]
H−β(t) ‖ut‖mm + ε

p(1− a) + 2

2
‖ut‖2
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+ ε

[
p(1− a)− 2

2
− M1−m

m
C

]
‖∆u‖2 + ε

[
a− M1−m

m
C

] ∫
Ω

|u|p log |u|kdx

+ εp(1− a)H(t) + ε
(1− a)k

p
‖u‖pp.

(54)

Now, we choose a > 0 sufficiently small that

p(1− a)− 2

2
> 0

and M sufficiently large that

p(1− a)− 2

2
− M1−m

m
C > 0 and a− M1−m

m
C > 0.

Once M and a are fixed, we choose ε sufficiently small that

(1− β)− m− 1

m
εM > 0 and L(0) = H1−β(0) + ε

∫
Ω

u0u1dx > 0.

Thus, for some constant γ > 0, (54) has the form

(55) L′(t) ≥ γ
[
H(t) + ‖ut‖2 + ‖∆u‖2 + ‖u‖pp +

∫
Ω

|u|p log |u|kdx

]
.

Consequently we have

L(t) ≥ L(0), for all t > 0.

On the other hand, using Lemma 5.3, by the same method as in [32], we can
deduce

(56) L
1

1−β (t) ≤ C
[
H(t) + ‖ut‖2 + ‖∆u‖2 + ‖u‖pp

]
, t ≥ 0.

Combining (55) and (56), we obtain

(57) L′(t) ≥ λL
1

1−β (t), t ≥ 0.

where λ > 0 is constant depending only on γ and C. By a simple integration of
(57) over (0, t), we have

Lβ/(1−β)(t) ≥ 1

L−β/(1−β)(0)− λtβ/(1− β)
.

which implies that L(t) blow up in finite time

T ≤ T ∗ =
1− β

λβLβ/(1−β)(0)
.

This completes the proof of Theorem 5.1. �

6. Arbitrarily high initial energy for linear damping

In this section, we consider the problem (1) with the linear damping term, i.e.
m = 2. We will establish the finite time blow-up result by the method of the so
called concavity method. For simplicity, we denote ‖u‖2 ≤ B0‖∆u‖2.

Lemma 6.1. [14] Let δ ≥ 0, T > 0 and h be a Lipschitzian function over [0, T ).
Assume that h(0) ≥ 0 and h′(t) + δh(t) > 0 for a.e. t ∈ [0, T ). Then h(t) > 0 for
all t ∈ (0, T ).
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Lemma 6.2. Suppose that m = 2. Let I(u0) < 0 and u1 ∈ L2(Ω) such that∫
Ω

u0u1dx ≥ 0.

Let u(t) be the solution with the initial data (u0, u1). Then the map {t→ ‖u(t)‖2}
is strictly increasing provided I(u(t)) < 0.

Proof. Let F (t) = ‖u(t)‖2 and G(t) = F ′(t) = 2
∫

Ω
uutdx. A direct computation

yields

〈utt, u〉 =
d

dt
(ut, u)− ‖ut‖2 for a.e.t ≥ 0,

Moreover, by testing the equation with u(t), we have

〈utt, u〉+ ‖∆u‖2 + (ut, u) =

∫
Ω

|u|p log |u|kdx,

which implies
d

dt

(
(ut, u) +

1

2
‖u‖2

)
= ‖ut‖2 − I(u).

Hence, if I(u(t)) > 0, we can deduce

G′(t) +G(t) = 2‖ut‖2 − 2I(u(t)) > 0 for a.e.t ∈ [0, T ).

Therefore, it follows from Lemma 6.1 with δ = 1 that G(t) = F ′(t) > 0. Hence F (t)
is strictly increasing provided I(u(t)) < 0 . �

Lemma 6.3. Let m = 2. Assume that u0 ∈ H2
0 (Ω) , u1 ∈ L2(Ω) and (2) holds.

Assume that the initial data satisfies

(58) ‖u1‖2 − 2(u1, u0) + ΛE(0) < 0,

where Λ = 2B0p
p−2 . Then the solution u(t) of the problem (1) with E(0) > 0 satisfies

I(u(t)) < 0 provided I(u0) < 0.

Proof. If this was not the case, by the continuity of I(u(t)) in t, then there would
exist a first time t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u(t)) < 0 for t ∈ [0, t0).
It follows form the Cauchy-Schwarz inequality that

(59) (u1, u0) ≤ ‖u1‖‖u0‖ ≤
1

2

(
‖u1‖2 + ‖u0‖2

)
.

By Lemma 6.2, (58) and (59), we deduce that

(60) F (t) = ‖u(t)‖2 > ‖u0‖2 ≥ 2(u1, u0)− ‖u1‖2 > ΛE(0) for t ∈ (0, t0),

which implies

(61) F (t0) = ‖u(t0)‖2 > ΛE(0)

by the continuity of u(t) in t. Moreover, it follows from (13) and (17) that

E(0) ≥ E(t0) =
1

p
I(u(t0)) +

(
1

2
− 1

p

)
‖∆u(t0)‖2 +

k

p2
‖u(t0)‖pp

≥ p− 2

2p
‖∆u(t0)‖2

that is

‖∆u(t0)‖2 ≤ 2p

p− 2
E(0).
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Hence, we have

F (t0) = ‖u(t0)‖2 ≤ B0‖∆u(t0)‖2 ≤ 2B0p

p− 2
E(0) = ΛE(0),

which is a contradiction with (61). The proof is complete. �

We now present the main blow-up result for the weak solution of problem (1)
with m = 2 with arbitrary positive initial energy.

Theorem 6.4. Assume the conditions of Lemma 6.3 hold. Then the weak solution
u(t) of the problem (1) blows up in finite time provided that E(0) > 0 and I(u0) < 0.

Proof. It follows from Lemma 6.3 that I(u(t)) < 0 for t ∈ [0, T ). By contradiction,
we assume now that u(t) is global, namely T = ∞. Then, for any T0 > 0, we may
consider η : [0, T0]→ R+ defined by

η(t) = ‖u‖2 +

∫ t

0

‖u(τ)‖2dτ + (T0 − t)‖u0‖2.

Notice η(t) > 0 for all t ∈ [0, T0]; hence, since η is continuous, there exists % > 0
(independent of the choice of T0) such that

(62) η(t) ≥ % for all t ∈ [0, T0].

Moreover,

(63) η′(t) = 2(ut, u) + ‖u‖2 − ‖u0‖2 = 2(ut, u) + 2

∫ t

0

(uτ , u)dτ,

hence, we have

η′′(t) = 2‖ut‖2 + 2〈utt, u〉+ 2(ut, u)

= 2

(
‖ut‖2 − ‖∆u‖2 +

∫
Ω

|u|p log |u|kdx

)
= 2‖ut‖2 − 2I(u(t)).

(64)

It follows from (63) that

(η′(t))2 = 4

(
(ut, u)2 + 2(ut, u)

∫ t

0

(uτ , u)dτ +
( ∫ t

0

(uτ , u)dτ
)2)

.

By the Cauchy-Schwarz inequality, we obtain

‖ut‖2 ‖u‖2 ≥ (ut, u)2∫ t

0

‖u‖2dτ

∫ t

0

‖uτ‖2 dτ ≥
(∫ t

0

(uτ , u) dτ

)2

and

2(ut, u)

∫ t

0

(uτ , u)dτ

≤2‖ut‖‖u‖
( ∫ t

0

‖uτ‖2dτ
) 1

2
( ∫ t

0

‖u‖2dτ
) 1

2

≤‖ut‖2
∫ t

0

‖u‖2dτ + ‖u‖2
∫ t

0

‖uτ‖2dτ.
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Combining the above inequalities, we have

η′(t)2

≤4

(
‖ut‖2‖u‖2 + ‖ut‖2

∫ t

0

‖u‖2dτ + ‖u‖2
∫ t

0

‖uτ‖2dτ +

∫ t

0

‖uτ‖2dτ

∫ t

0

‖u‖2dτ

)

=4

(
‖u‖2 +

∫ t

0

‖u‖2dτ

)(
‖ut‖2 +

∫ t

0

‖uτ‖2dτ

)

≤4η(t)

(
‖ut‖2 +

∫ t

0

‖uτ‖2dτ

)
.

(65)

Hence, it follows from (64) and (65) that

η′′(t)η(t)− p+ 2

4
η′(t)2

≥η(t)

(
η′′(t)− (p+ 2)

(
‖ut‖2 +

∫ t

0

‖uτ‖2dτ
))

=η(t)

(
−p‖ut‖2 − 2‖∆u‖2 + 2

∫
Ω

|u|p log |u|kdx− (p+ 2)

∫ t

0

‖uτ‖2dτ

)
.

(66)

Now, we define

ξ(t) = −p‖ut‖2 − 2‖∆u‖2 + 2

∫
Ω

|u|p log |u|kdx− (p+ 2)

∫ t

0

‖uτ‖2dτ.

Noticing m = 2 in this section, using (13) and (17), we obtain

ξ(t) = (p− 2)‖∆u‖2 − 2pE(t)− (p+ 2)

∫ t

0

‖uτ‖2dτ +
2k

p
‖u‖pp

= (p− 2)‖∆u‖2 − 2pE(0) + (p− 2)

∫ t

0

‖uτ‖2dτ +
2k

p
‖u‖pp

≥ (p− 2)‖∆u‖2 − 2pE(0).

From (60) and Lemma 6.2, we deduce that

2pE(0) <
p− 2

B0
‖u0‖2 <

p− 2

B0
‖u‖2 < (p− 2)‖∆u‖2.

which yields that ξ(t) ≥ ς > 0. Then, (66) can be rewritten as

η′′(t)− p+ 2

4
η′(t)2 ≥ %ς, t ∈ [0, T0],

which implies that (
η−

p−2
4 (t)

)′′ ≤ −p− 2

4
%ς(η(t))−

p+6
4 < 0.

Hence, it follows that there exists a T ∗ > 0 such that

lim
t→T∗

η−
p−2

4 (t) = 0,

that is
lim
t→T∗

η(t) = +∞.
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In turn, this implies that

(67) lim
t→T∗

‖∆u(t)‖2 = +∞.

In fact, if ‖u(t)‖ → +∞ as t→ T ∗, then (67) immediately follows. On the contrary,
if ‖u(t)‖ remains bounded on [0, T ∗), then

lim
t→T∗

∫ t

0

‖u(τ)‖2dτ = +∞

so that (67) is also satisfied. Hence (67) is a contraction with T = +∞. The proof
is complete. �
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