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EXISTENCE AND UNIFORM DECAY ESTIMATES FOR THE

FOURTH ORDER WAVE EQUATION WITH NONLINEAR

BOUNDARY DAMPING AND INTERIOR SOURCE

HUAFEI DI∗, YADONG SHANG AND JIALI YU

Abstract. In this paper, we consider the initial boundary value problem for

the fourth order wave equation with nonlinear boundary velocity feedbacks
f1(uνt), f2(ut) and internal source |u|ρu. Under some geometrical conditions,

the existence and uniform decay rates of the solutions are proved even if the

nonlinear boundary velocity feedbacks f1(uνt), f2(ut) have not polynomial
growth near the origin respectively. By the combination of the Galerkin ap-

proximation, potential well method and a special basis constructed, we first

obtain the global existence and uniqueness of regular solutions and weak solu-
tions. In addition, we also investigate the explicit decay rate estimates of the

energy, the ideas of which are based on the construction of a special weight

function φ(t) (that depends on the behaviors of the functions f1(uνt), f2(ut)
near the origin), nonlinear integral inequality and the Multiplier method.

1. Introduction

This paper is concerned with the existence and uniform decay rate estimates for
the following initial boundary value problem:

utt = −42u+ |u|ρu, (x, t) ∈ Ω× (0,∞),

u = uν = 0, (x, t) ∈ Γ0 × (0,∞),

uνν = −f1(uνt), uννν = f2(ut), (x, t) ∈ Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn with C4 boundary Γ. Let {Γ0,Γ1} be a partition
of its boundary Γ such that Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅ and Γ0,Γ1 are positive
measurable, endowed with the (n − 1)−dimentional Lebesgue measure. Here, ν
represents the unit outward normal to Γ, and fi (i = 1, 2) are given functions
satisfying certain conditions to be specified later.

For the linear second order wave equations with nonlinear boundary feedback,
there is an abounding literature about its initial boundary value problem. In [43],
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Zuazua studied the following second order wave equation
utt −4u = 0, (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ Γ0 × (0,∞),

uν = −{m(x) · ν(x)}f(ut), (x, t) ∈ Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω,

(1.2)

where x0 is a fixed point in Rn, and m(x) = x − x0. When f(y) = |y|p on [0,1]
for some p ≥ 1, he proved that the energy decays exponentially if p = 1 and
polynomially if p > 1. In the later case, he gave that there exists a positive constant
C such that

∀ t ≥ 0, E(t) ≤ C

(1 + t)2/(p+1)
.(1.3)

When the nonlinear boundary velocity feedback f(y) is weaker than any polynomial
near the origin, for instance, ∀ y ∈ (0, 1), f(y) = e−1/y. Lasiecka and Tataru [20]
showed that the energy of solutions decays with the following rate:

∀ t ≥ 0, E(t) ≤ S
(
t

T0
− 1

)
E(0),(1.4)

where S(t) is the solutions (contraction semigroup) of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0),(1.5)

and q is closely related to the behavior of the feedback f(y) near the origin. They
were the first to consider that the energy decay rate estimates associated to the
solutions of some differential equation and without assuming that the feedback
has a polynomial behavior near the origin. Martinez [26] complemented Lasiecka
and Tataru’s work in [20] concerning the linear wave equation subject to nonlinear
boundary feedback. He proved that the energy of problem (1.5) decays to zero with
an explicit decay rate estimates. The process of the proof relies on the construction
of some special weight functions and some nonlinear integral inequalities. The
method presented in [26], gives us a variety of explicit decay rate estimates, although
in some simple cases a direct application of the above method doesn’t give us optimal
decay rates. For instance, when f(y) = yp, p > 1, by the method of [26], the energy
decay is given by E(t) ≤ C(1+t)−2/p, which is less good estimate than the estimate
of (1.3). In spite of this, it is possible to obtain optimal decay rate estimates by
this method for some other example, see [26] for details.

The linear second order wave equations subject to nonlinear boundary feedback
and source terms have also been widely studied. For instance, Vitillaro [33] studied
the following problem

utt −4u = 0, (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ Γ0 × (0,∞),

uν = −|ut|m−2ut + |u|p−2u, (x, t) ∈ Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω.

(1.6)

He showed that the presence of the superlinear damping term −|ut|m−2ut, when
2 ≤ p ≤ m, implies the global existence of solutions for arbitrary initial data, in op-
position with the nonexistence phenomenon occurring when m = 2 < p. Zhang and
Hu [42] proved the asymptotic behavior of the solutions of problem (1.6), where the
initial data is inside a stable set. The blow up phenomenon of the solutions occurs
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when the initial data is inside an unstable set. More results on the second order
wave equations with nonlinear boundary source and damping terms, the reader can
see [2, 3, 25] and papers cited therein.

It is worth mentioning that the potential well theory (stable or unstable sets) is
a very important and popular way to study the qualitative properties of nonlinear
evolution equations. This method was first introduced by Sattinger [30] to inves-
tigate the global existence of solutions for nonlinear hyperbolic equations. Hence,
it has been widely used and extended by many authors to study different kinds of
evolution equations, we refer the reader to see [6,7,30,34–36,38–40] and references
therein.

Let us mention some known results about the second order wave equations with
nonlinear internal damping and source terms

utt −4u+ g(ut) = f(u), (x, t) ∈ Ω× (0,∞).(1.7)

Geogev and Todorova [13] investigated the initial boundary value problem of equa-
tion (1.7), where g(ut) = |ut|m−1ut, f(u) = |u|p−1u. They proved the existence
of global solutions under the condition 1 < p ≤ m. When p ≥ m > 1, they
also obtained the finite time blow up of solutions for sufficient large initial data.
Ikehata [15] studied the initial boundary value problem of equation (1.7), where
g(ut) = δ|ut|m−1ut and f(u) = |u|p−1u. He proved that 1 ≤ m < p < ∞ if
n = 1, 2, and 1 ≤ m < p ≤ n

n−2 if n ≥ 3, the problem has a global solution for

sufficiently small initial data. When g(ut) = aut(1 + |ut|m−2), f(u) = b|u|p−2u,
Messaoudi [1, 27] investigated the global existence and exponential decay behavior
of solutions respectively.

For the second order wave equations with nonlinear internal source and boundary
velocity feedback, Cavalcanti et al. [4] studied the following initial boundary value
problem 

utt −4u = |u|pu, (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ Γ0 × (0,∞),

uν = −f(ut), (x, t) ∈ Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω.

(1.8)

They proved the existence of global solutions and uniform decay rate estimates of the
energy provided that the nonlinear boundary feedback f(ut) has not a polynomial
growth near the origin by using the potential well method and the Galerkin approx-
imation. When f(ut) = −α(x)|ut|m−2ut or f(ut) = −α(x)(|ut|m−2ut + |ut|µ−2ut),
1 ≤ µ ≤ m, and α(x) ∈ L∞(Γ1), α(x) ≥ 0, Vitillaro [31] extended the potential well
theory. He obtained the local existence, blow up and global existence results of so-
lutions. More results on the initial boundary value problem for the wave equations
with nonlinear internal source and boundary velocity feedback, we refer readers to
see (Di and Shang [9], Feng and Li [11, 12], Liu, Sun and Li [24]) and the papers
cited therein.

There are some literature on the initial boundary value problem or Cauchy prob-
lem for the fourth order wave equations with source and damping terms in the
interior of Ω

utt +42u+ g(ut) = f(u), (x, t) ∈ Ω× (0,∞).(1.9)

For example, when g(ut) = a|ut|m−2ut, f(u) = −q(x)u(x, t) with q(x) > 0, Guesmia
[14] investigated the initial boundary value problem of equation (1.9). He obtained
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a global existence and a regularity result and proved that the solutions decay expo-
nentially if g(y) behaves like a linear functions. For more results on the qualitative
problem of the fourth order wave equations with interior source and damping terms,
the reader is referred to see [8, 37,41] and references therein.

When people studied the small transversal vibrations of a thin plate (Lagnese
and Lions [17], Lagnese [18]) and the strong or uniform stabilization of different
plate and beam models (Lasiecka [19], Puel and Tucsnak [28]), some nonlinear evo-
lution equations with the main part utt+42u = 0 and different nonlinear boundary
feedbacks were obtained. For example, Komornik [16] studied the following evolu-
tionary problem:

utt +42u = 0, (x, t) ∈ Ω× (0,∞),

u = uν = 0, (x, t) ∈ Γ0 × (0,∞),

uνν + uττ = 0, on Γ1 × (0,∞),

uννν + (2− µ)uττν = lf(ut), (x, t) ∈ Γ1 × (0,∞),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω,

(1.10)

where µ ∈ (0, 1), l ∈ C1(Γ1), and f : R → R is a non-decreasing, continuous func-
tion. The subscripts ν and τ stand for the normal and tangential derivatives to
Γ0 and Γ1. He proved the global existence, regularity results and gave some stabi-
lization properties for problem (1.10) by using the Multiplier method. It is worth
mentioning that the Multiplier method has already been used by many authors for
different reasons, we also refer to the related papers [5, 16,21] about the Multiplier
method.

Motivated by the above results, in the present work we study the initial boundary
value problem of the fourth order wave equation with an internal nonlinear source
|u|ρu, and nonlinear boundary velocity feedbacks f1(uνt), f2(ut). As far as we
know, there is little information on the well-posedness and energy decay estimates
for problem (1.1). Naturally, our attention of this paper is paid to the study of the
related qualitative properties to problem (1.1). Here, when the boundary velocity
feedbacks f1(uνt), f2(ut) have not the polynomial behaviour near the origin for
wave equation supplemented with an interior source |u|ρu acting in the domain,
we first investigate the global existence, uniqueness of regular solutions and weak
solutions by the combination of Galerkin approximation, potential well method and
a special basis constructed. In addition, we also prove that the energy of problem
(1.1) decays uniformly to zero, which is based on a weight function φ(t) constructed,
Multiplier method and nonlinear integral inequality.

Our paper is organized as follows. In Section 2, we introduce some potential wells,
basic definitions, important lemmas, and main results of this paper. In Section 3-
4, we show the global existence and uniqueness of the regular solutions and weak
solutions respectively. In the last Section, we investigate the explicit decay rate
estimates of the energy.

2. Preliminaries and main results

In order to state our results precisely, we first introduce some notations, basic
definitions, important lemmas and some functional spaces.

Let Ω be a bounded domain of Rn with C4 boundary Γ and x0 be a fix point in
Rn. We shall define

m(x) = x− x0, R = max
x∈Ω
|x− x0|,
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and introduce a partition of the boundary Γ such that

Γ0 = {x ∈ Γ : m(x) · ν(x) ≤ 0} , Γ1 = {x ∈ Γ : m(x) · ν(x) > 0} .
Throughout this paper, the following inner products and norms are used for precise
statement:

(u, v) =

∫
Ω

u(x)v(x)dx, (u, v)Γ1 =

∫
Γ1

u(x)v(x)dΓ,

‖u‖pp =

∫
Ω

|u(x)|pdx, ‖u‖pΓ1,p
=

∫
Γ1

|u(x)|pdΓ, ‖u‖∞ = ess sup
t≥0
|u(x)|,

and the Hilbert space

V =
{
u ∈ H2(Ω); u = uν = 0 on Γ0

}
.

Since Γ0 has positive (n−1) dimensional Lebesgue measure, by Poincaré inequality,
we can endow V with the equivalent norm ‖u‖V = ‖4u‖2 (see [22]).

To obtain the results of this paper, let us consider the potential energy

J(u) =
1

2
‖4u‖22 −

1

ρ+ 2
‖u‖ρ+2

ρ+2,(2.1)

and total energy

E(t) =
1

2
‖ut‖22 +

1

2
‖4u‖22 −

1

ρ+ 2
‖u‖ρ+2

ρ+2 =
1

2
‖ut‖22 + J(u),(2.2)

associated to the solutions of problem (1.1). We may define the (positive) number

d = inf
u∈V \{0}

{
sup
λ>0

J(λu)

}
,(2.3)

which is also called the depth of the potential well. Moreover, the value d is shown
to be the Mountain pass level associated to the elliptic problem

−42u = |u|ρu, x ∈ Ω,

u = uν = 0, x ∈ Γ0,

uνν = uννν = 0, x ∈ Γ1.

(2.4)

Here, let B1 > 0 be the optimal constant of Sobolev imbedding from V into Lρ+2(Ω),
which satisfies the inequality ‖u‖ρ+2 ≤ B1‖4u‖2, ∀ u ∈ V . From this inequality,
we discover that

1
ρ+2‖u‖

ρ+2
ρ+2

‖4u‖ρ+2
2

≤ Bρ+2
1

ρ+ 2
, ∀ u ∈ V \ {0}.(2.5)

Furthermore, setting

K0 = sup
u∈V \{0}

(
1
ρ+2‖u‖

ρ+2
ρ+2

‖4u‖ρ+2
2

)
≤ Bρ+2

1

ρ+ 2
,(2.6)

and the function

f(λ) =
1

2
λ2 −K0λ

ρ+2, λ > 0.(2.7)

We can easily see (the simple proof can be founded in [32]) that

λ1 =

(
1

K0(ρ+ 2)

) 1
ρ

, d = f(λ1) = λ2
1

(
1

2
− 1

ρ+ 2

)
,(2.8)

where λ1 is the absolute maximum point of function f .
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Now, we will give some basic hypotheses to establish the main results of this
paper.

(A1) Suppose that 0 < ρ < 4
n−4 , if n ≥ 5 and ρ > 0, if n = 1, 2, 3, 4. Then, we

have the following Sobolev imbedding

V ↪→ L2(ρ+1)(Ω) ↪→ Lρ+2(Ω).(2.9)

(A2) Assumptions on the functions fi (i = 1, 2) : fi: R→ R are nondecreasing
C1 functions such that fi(0) = 0. In addition, there exist some strictly increasing
and odd functions gi of C1 class on [−1, 1] satisfy

∀ s ∈ [−1, 1], |gi(s)| ≤ |fi(s)| ≤ |g−1
i (s)|,(2.10)

∀ |s| > 1, Ci1|s| ≤ |fi(s)| ≤ Ci2|s|,(2.11)

where g−1
i (s) denote the inverse functions of gi(s) and Ci1, Ci2 are positive con-

stants.
In order to obtain the global existence of regular solutions, we shall need the

following additional hypotheses.
(A3) Assumptions on the initial data: let us consider

{u0, u1} ∈ V ∩H4(Ω)× V,(2.12)

satisfying the compatibility conditions

u0
νν + f1(u1

ν) = 0, u0
ννν − f2(u1) = 0, on Γ1.(2.13)

Moreover, assume that
(A4) E(0) < d and ‖4u0‖2 < λ1.
The next lemma will play an essential role for proving the global existence of

regular (weak) solutions of problem (1.1).

Lemma 2.1. Suppose that (A1), (A2) and (A4) hold. Let u be a solution of problem
(1.1), then for all t ≥ 0, ‖4u(t)‖2 < λ1.
Proof. In view of (2.2), (2.6) and (2.7), we deduce that

E(t) ≥ J(u(t)) =
1

2
‖4u(t)‖22 −

1

ρ+ 2
‖u(t)‖ρ+2

ρ+2

=
1

2
‖4u(t)‖22 −

1
ρ+2‖u(t)‖ρ+2

ρ+2

‖4u(t)‖ρ+2
2

‖4u(t)‖ρ+2
2

≥ 1

2
‖4u(t)‖22 −K0‖4u(t)‖ρ+2

2 = f(‖4u(t)‖2),(2.14)

where f(λ) = 1
2λ

2 − K0λ
ρ+2, λ > 0, which is defined as (2.7). Of course, f is

increasing for 0 < λ < λ1, decreasing for λ > λ1, and f(λ1) = d. From the
definition of f , we also note that f(λ) → +∞ as λ → ∞. Since E(0) < d, there
exists λ′2 < λ1 < λ2 such that f(λ′2) = f(λ2) = E(0).

Multiplying the equation in (1.1) by ut(t), a direct computation gives that

1

2

d

dt
‖ut(t)‖22 +

1

2

d

dt
‖4u(t)‖22 −

1

ρ+ 2

d

dt
‖u(t)‖ρ+2

ρ+2

= −
∫

Γ1

f2(ut(t))ut(t)dΓ−
∫

Γ1

f1(uνt(t))uνt(t)dΓ.(2.15)
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By the hypotheses that fi are nondecreasing C1 functions such that fi(0) = 0, we
know that fi(s)s > 0 for s 6= 0. Hence, from the definition of E(t), it follows that

E′(t) = −
∫

Γ1

f2(ut(t))ut(t)dΓ−
∫

Γ1

f1(uνt(t))uνt(t)dΓ ≤ 0.(2.16)

So we have E(t) ≤ E(0) for all t ≥ 0. Denote λ0 = ‖4u0‖2, from the hypotheses
(A4) we have λ0 < λ1. Furthermore, by (2.14), we have f(λ0) ≤ E(0), which
together with f is increasing in [0, λ1) and f(λ′2) = E(0), it is easy to see that
λ0 = ‖4u0‖2 < λ′2.

Next, we prove that ‖4u(t)‖2 ≤ λ′2 for all t ≥ 0. In deed, by contradiction,
suppose that ‖4u(t0)‖2 > λ′2 for some t0 ≥ 0. Using the continuity of ‖4u(t)‖2,
we also may suppose that ‖4u(t0)‖2 < λ1. Thus, by (2.14) again, we see that

E(t0) ≥ f(‖4u(t0)‖2) > f(λ′2) = E(0),(2.17)

which contradicts (2.16). This completes the proof of Lemma 2.1. �

The following two technical lemmas are very crucial to derive the asymptotic
behavior of the energy to problem (1.1).

Lemma 2.2. Let E : R+ → R+ be a non-increasing function and φ : R+ → R+ a
strictly increasing function of C1 class such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.(2.18)

Suppose that there exist σ > 0, σ′ ≥ 0 and C > 0 such that∫ +∞

S

E(t)1+σφ′(t)dt ≤ CE(S)1+σ +
C

(1 + φ(S))σ′
E(0)σE(S), ∀ S ≥ 0.(2.19)

Then, there exists C > 0 such that

E(t) ≤ E(0)
C

(1 + φ(t))(1+σ′)/σ
, ∀ t > 0.(2.20)

Remark 2.1. Note that the above integral inequality was first introduced in Mar-
tinez [26], was used in Cavalcanti et al. [4] to prove the decay rate estimates of
energy.

Lemma 2.3. There exists a strictly increasing function φ : R+ → R+ of C2 class
on (0,+∞), and such that the following conditions hold

φ(t) is concave and φ(t)→ +∞ as t→ +∞,(2.21)

φ′(t)→ 0 as t→ +∞,(2.22)

∫ +∞

1

φ′(t)
(
g−1

1 (φ′(t))
)2
dt < +∞ and

∫ +∞

1

φ′(t)
(
g−1

2 (φ′(t))
)2
dt <∞,(2.23)

where the functions g−1
i (s) (i = 1, 2) were introduced in assumption (A2).

Proof. These properties of the function φ are closely related to the behaviors of
fi (i = 1, 2) near 0. We will present the construction method of a special weight
function φ in Section 5.

Now, we are ready to state the main results of this paper.
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Theorem 2.1 (Existence and uniqueness of regular solutions). Let the assumptions
(A1)− (A4) hold, then the problem (1.1) possesses a unique regular strong solution
u satisfying

u ∈ L∞(0,∞;V ), ut ∈ L∞(0,∞;V ),

utt ∈ L∞(0,∞;L2(Ω)), 42u ∈ L∞(0,∞;L2(Ω)), ‖4u‖2 < λ1,

for all t ≥ 0. Further, the following energy identity holds

E(t) +

∫ t

0

∫
Γ1

f2(ut(s))ut(s)dΓds+

∫ t

0

∫
Γ1

f1(uνt(s))uνt(s)dΓds = E(0),(2.24)

where the total energy E(t) has been defined by (2.2).

Theorem 2.2 (Existence and uniqueness of weak solutions). Given {u0, u1} ∈
V ∩L2(Ω). Assume that the hypotheses (A1), (A2) and (A4) hold, then the problem
(1.1) possesses a unique weak solution satisfying

u ∈ C(0,∞;V ) ∩ C1(0,∞;L2(Ω)), ‖4u‖2 < λ1,

for all t > 0. Besides, the weak solution has the same energy identity given as
(2.24).

Theorem 2.3 (Uniform decay rates of energy). Assume that the hypotheses (A1)−
(A4) hold. Let u be a solution to problem (1.1) with the properties listed in Theorem
2.1. Then, the energy of problem (1.1) has the following decay rate

∀ t ≥ 1, E(t) ≤ C
(
G−1

(
1

t

))2

,

where the function G(y) = y g1(y)g2(y)
g1(y)+g2(y) and the constant C only depending on the

initial data E(1) in a continuous way.

Remark 2.2. By a direct calculation, we can show that the G(y) = y g1(y)g2(y)
g1(y)+g2(y) is

an increasing function.

Remark 2.3. we also extend the decay rate estimate of regular solutions to the
weak solutions of problem (1.1) by using the standard arguments of density.

3. Existence, uniqueness of regular solutions

In this section, we study the global existence and uniqueness of regular solutions
of problem (1.1) by using the combination of the Galerkin approximation, potential
well method and a special basis constructed.

The proof of Theorem 2.1 is divided into five steps.

Proof. Step 1. Galerkin approximation.
The main idea is to use the Galerkin’s method. To do this, let us take a basis

{w∗j } to V . We construct a special basis {wj} from basis {w∗j } which are associated
with problem (1.1).

If u0, u1 are linearly independent, we take w1 = u0, w2 = u1, and wi, i ≥ 3
of {w∗j }, which are chosen to be linearly independent with u0, u1. If u0, u1 are

linearly dependent, we define w1 = u0, and wi, i ≥ 2 of {w∗j }, which are chosen

to be linearly independent with u0. Thus, we represent by Vm a subspace of {wj}
generated by [w1, · · · , wm].
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Next, we construct an approximate solution of problem (1.1) by

um(t) =

m∑
j=1

djmwj(x), m = 1, 2, · · · · · · .(3.1)

According to Galerkin’s method, these coefficients djm(t) need to satisfy the following
initial value problem of the nonlinear ordinary differential equation

(umtt (t), wj) + (4um(t),4wj) + (f1(umνt(t)), wjν)Γ1

+(f2(umt (t)), wj)Γ1
= (|um(t)|ρum(t), wj),

um(x, 0) = u0, umt (x, 0) = u1.

(3.2)

Note that we can solve system (3.2) by Picard’s iteration method. In fact, the
ordinary differential equation (3.2) has a local solution on the interval [0, Tm). The
extension of these solutions to the whole interval [0,+∞) is a consequence of a priori
estimate which we are going to prove below.

Step 2. The first estimate.
Replacing wj by umt in (3.2), a direct computation gives that

E′m(t) = −
∫

Γ1

f2(umt )umt dΓ−
∫

Γ1

f1(umνt)u
m
νtdΓ ≤ 0,(3.3)

which implies that Em(t) is a decreasing function.
Combining problem (3.2) and assumption (A4), we obtain that

‖4um(0)‖2 = ‖4u0‖2 < λ1.

Taking Lemma 2.1 into account, we conclude that ‖4um(t)‖2 < λ1, for all t ≥ 0.
Returning to the approximate problem, we deduce

1

2
‖umt (t)‖22 +

1

2
‖4um(t)‖22 −

1

ρ+ 2
‖um(t)‖ρ+2

ρ+2

≤ 1

2
‖u1‖22 +

1

2
‖4u0‖22 −

1

ρ+ 2
‖u0‖ρ+2

ρ+2.(3.4)

Considering assumption (A1), we have Sobolev inequality ‖um(t)‖ρ+2 ≤ B1

‖4um(t)‖2, which together with above inequality, a simple calculation reveals that

‖umt (t)‖22 ≤ ‖u1‖22 + 2λ2
1 +

4

ρ+ 2
(B1λ1)ρ+2.(3.5)

Step 3. The second estimate.

Multiplying (3.2) by d′′
j
m(0), summing for j = 1, 2, · · · · · · , and considering t = 0,

then we have

‖umtt (0)‖22 = −(4um(0),4umtt (0))− (f1(umνt(0)), umνtt(0))Γ1

− (f2(umt (0), umtt (0))Γ1
+ (|um(0)|ρum(0), umtt (0)).(3.6)

Using the generalized Green Theorem, it follows that

‖umtt (0)‖22 = −(42u0, umtt (0))− (u0
νν + f1(u1

ν), umνtt(0))Γ1

+ (u0
ννν − f2(u1), umtt (0))Γ1

+ (|u0|ρu0, umtt (0)).(3.7)

By Hölder inequality and the compatibility condition (A3), we discover that

‖umtt (0)‖2 ≤ ‖42u0‖2 + ‖u0‖ρ+1
2(ρ+1).(3.8)
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Differentiating equation in (3.2) with respect to t, and substituting wj by umtt , we
deduce that

1

2

d

dt
‖umtt (t)‖22 +

1

2

d

dt
‖4umt (t)‖22 +

∫
Γ1

f1t(u
m
νt(t))(u

m
νtt(t))

2dΓ

+

∫
Γ1

f2t(u
m
t (t))(umtt (t))

2dΓ ≤ (ρ+ 1)

∫
Ω

|um|ρ|umt ||umtt |dx.(3.9)

We will give the estimate of K1 = (ρ + 1)
∫

Ω
|um|ρ|umt ||umtt |dx. From now on,

we will denote by C various positive constants which may be different at different
occurrences.

In view of the generalized Hölder inequality ( ρ
2(ρ+1) + 1

2(ρ+1) + 1
2 = 1), Sobolev

imbedding V ↪→ L2(ρ+1)(Ω) and Lemma 2.1, we conclude that

|K1| ≤ (ρ+ 1)‖um(t)‖ρ2(ρ+1)‖u
m
t (t)‖2(ρ+1)‖umtt (t)‖2

≤ C‖4um(t)‖ρ2‖4umt (t)‖2‖umtt (t)‖2
≤ C[‖4umt (t)‖22 + ‖umtt (t)‖22],(3.10)

where the constant C are positive constants independent of m and t. By (3.9) and
(3.10), it is inferred that

1

2

d

dt
‖umtt (t)‖22 +

1

2

d

dt
‖4umt (t)‖22 +

∫
Γ1

f1t(u
m
νt(t))(u

m
νtt(t))

2dΓ

+

∫
Γ1

f2t(u
m
t (t))(umtt (t))

2dΓ ≤ C[‖4umt (t)‖22 + ‖umtt (t)‖22].(3.11)

Integrating the above inequality over (0, t), and taking (3.8) into account, we get
that

‖umtt (t)‖22 + ‖4umt (t)‖22 + 2

∫ t

0

∫
Γ1

f1t(u
m
νt(s))(u

m
νtt(s))

2dΓds

+ 2

∫ t

0

∫
Γ1

f2t(u
m
t (s))(umtt (s))

2dΓds

≤ ‖42u0‖22 + ‖u0‖2(ρ+1)
2(ρ+1) + ‖42u1‖22 + 2C

∫ t

0

[‖umtt ‖22 + ‖4umt ‖22]ds

+ 2C

∫ t

0

∫ s

0

∫
Γ1

[f1t(u
m
νt(η))(umνtt(η))2 + f2t(u

m
t (η))(umtt (η))2]dΓdηds.(3.12)

The Gronwall Lemma guarantees that

‖umtt (t)‖22 + ‖4umt (t)‖22 + 2

∫ t

0

∫
Γ1

f1t(u
m
νt(s))(u

m
νtt(s))

2dΓds

+ 2

∫ t

0

∫
Γ1

f2t(u
m
t (s))(umtt (s))

2dΓds ≤ C.(3.13)

From the inequality (3.13) and Trace Theorem [10], we also obtain the following
estimate

‖∇umt (t)‖2Γ1,2 ≤ C‖4u
m
t (t)‖22 ≤ C,(3.14)

where the constant C > 0 is independent of m and t. Furthermore, taking assump-
tion (A2) into account, we know that if |umt (t)| > 1, then |f2(umt (t))| ≤ C22|umt (t)|.
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If |umt (t)| ≤ 1, we obtain from the continuity of the function f2 that |f2(umt (t))| ≤ C.
Thereby, we obtain that

‖f2(umt (t))‖2Γ1,2

=

∫
|umt (t)|≤1

|f2(umt (t))|2dΓ +

∫
|umt (t)|>1

|f2(umt (t))|2dΓ

≤ C + C2
22

∫
Γ1

|umt (t)|2dΓ ≤ C.(3.15)

Using analogous arguments, from the assumption (A2) and (3.14), we also obtain
that

‖f1(umνt(t))‖2Γ1,2 ≤ C.(3.16)

Step 4. Global existence.
From the above estimates, we can show that there exists a subsequences of {um}

which from now on will be also denoted by {um} and function u : Ω × [0, T ] such
that

um −→ u in L∞(0, T ;V ) weakly star, m −→∞,(3.17)

umt −→ ut in L∞(0, T ;V ) weakly star, m −→∞,(3.18)

umtt −→ utt in L∞(0, T ;L2(Ω)) weakly star, m −→∞.(3.19)

Since V ↪→ L2(ρ+1)(Ω) ↪→ L2(Ω) is compact, thanks to Aubin-Lions Theorem [38,
Chapter 1], we have that

um −→ u in L2(0, T ;L2(Ω)) strongly, m −→∞,(3.20)

um −→ u a.e. in QT = Ω× (0, T ), m −→∞,(3.21)

umt −→ ut in L2(0, T ;L2(Ω)) strongly, m −→∞,(3.22)

umt −→ ut a.e. in QT = Ω× (0, T ), m −→∞.(3.23)

Consequently, making use of Lion’s Lemma [38, Lemma 1.3, Chapter 1], it follows
that

|um|ρum −→ |u|ρu in L∞(0, T ;L2(Ω)) weakly star, m −→∞.(3.24)

In addition, we also obtain

umt −→ ut in L∞(0, T ;H1(Γ1)) weakly star, m −→∞,(3.25)

f1(umνt) −→ χ1 in L∞(0, T ;L2(Γ1)) weakly star, m −→∞,(3.26)

f2(umt ) −→ χ2 in L∞(0, T ;L2(Γ1)) weakly star, m −→∞.(3.27)

Therefore, (3.19)-(3.27) permit us to pass to the limit in equation (3.2). Since {wj}
is a basis of V , then for all T > 0, for all d(t) ∈ D(0, T ) and for all w ∈ V , we have∫ T

0

(utt(t), w)d(t)dt+

∫ T

0

(4u(t),4w)d(t)dt+

∫ T

0

∫
Γ1

χ1wνdΓd(t)dt

+

∫ T

0

∫
Γ1

χ2wdΓd(t)dt =

∫ T

0

(|u(t)|ρu(t), w)d(t)dt.(3.28)
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Taking into account w ∈ D(Ω) and (3.28), we deduce that

utt +42u = |u|ρu, in D′(Ω× (0, T )).

Utilizing the convergences of (3.19) and (3.24), there appear the relations that
utt ∈ L∞(0, T ;L2(Ω)) and |u|ρu ∈ L∞(0, T ;L2(Ω)). Hence, we deduce that 42u ∈
L∞(0, T ;L2(Ω)) and

utt +42u = |u|ρu, in L∞(0, T ;L2(Ω)).(3.29)

Combining (3.19) and (3.26), it is easy to see that the approximate solutions {um}
possess the following property

0 =

∫ T

0

(umνν + f1(umνt), w)dt→
∫ T

0

(uνν + χ1, w)dt as m→∞,

for all w ∈ V , which implies that

uνν + χ1 = 0 in D′(0, T ;H
3
2 (Γ1)).(3.30)

Taking (3.28)-(3.30) into account, and making use of generalized Green formula, we
discover that

uννν − χ2 = 0 in D′(0, T ;H
1
2 (Γ1)).(3.31)

Since χ1, χ2 ∈ L∞(0, T ;L2(Γ1)), we deduce that

uνν + χ1 = 0 and uννν − χ2 = 0 in L∞(0, T ;L2(Γ1)).(3.32)

Next, we need to prove that

χ1 = f1(uνt) and χ2 = f2(ut).(3.33)

In deed, replacing wj by um in equation (3.2), and integrating the obtained expres-
sion over (0, T ), it is inferred that∫ T

0

(umtt (t), u
m(t))dt+

∫ T

0

‖4um‖22dt+

∫ T

0

(f1(umνt(t)), u
m
ν (t))Γ1

dt

+

∫ T

0

(f2(umt (t)), um(t))Γ1
dt =

∫ T

0

(|um(t)|ρum(t), um(t))dt.(3.34)

In view of the first and second estimates, Sobolev imbedding, Poincaré inequality,
and Trace Theorem [10], it follows that

V ↪→ H
3
2 (Γ1) ↪→ H1(Γ1) ↪→ L2(Γ1),

which implies that

‖um(t)‖Γ1,2 ≤ C‖∇um(t)‖Γ1,2 ≤ C‖um(t)‖
H

3
2 (Γ1)

≤ C‖4um(t)‖2,(3.35)

‖umt (t)‖Γ1,2 ≤ C‖∇umt (t)‖Γ1,2 ≤ C‖umt (t)‖
H

3
2 (Γ1)

≤ C‖4umt (t)‖2.(3.36)

Making use of the Aubin-Lions Theorem [23, Chapter 1] again, we have that

um −→ u in L2(0, T ;H1(Γ1)) strongly, m −→∞,(3.37)

umt −→ ut in L2(0, T ;H1(Γ1)) strongly, m −→∞.(3.38)

Then, from the convergences (3.19), (3.24), (3.26), (3.27) and (3.37), we can pass
to the limit in equation (3.34) to obtain

lim
m→∞

∫ T

0

‖4um‖22dt = −
∫ T

0

(utt(t), u(t))dt−
∫ T

0

(χ1, uν(t))Γ1
dt
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−
∫ T

0

(χ2, u(t))Γ1dt+

∫ T

0

(|u(t)|ρu(t), u(t))dt.(3.39)

Combining (3.29), (3.32), (3.39) and the generalized Green formula, it is found that

lim
m→∞

∫ T

0

‖4um‖22dt =

∫ T

0

‖4u‖22dt,

which implies that

4um −→ 4u in L2(0, T ;L2(Ω)) strongly, m −→∞.(3.40)

Now, in view of (3.26), (3.27), (3.38), and using the standard Lebesgue control-
convergent Theorem, we obtain that

lim
m→∞

∫ T

0

(f1(umνt(t)), u
m
νt(t))Γ1

dt =

∫ T

0

(χ1, uνt(t))Γ1
dt,(3.41)

lim
m→∞

∫ T

0

(f2(umt (t)), umt (t))Γ1
dt =

∫ T

0

(χ2, ut(t))Γ1
dt.(3.42)

Utilizing the non-decreasing monotonicity of functions fi (i = 1, 2), it follows that∫ T

0

(f1(umνt(t))− f1(ψ), umνt(t)− ψ)Γ1
dt ≥ 0,(3.43)

∫ T

0

(f2(umt (t))− f2(ψ), umt (t)− ψ)Γ1dt ≥ 0,(3.44)

for all ψ ∈ L2(Γ1). Then, from the inequalities (3.43), (3.44), we discover that

∫ T

0

(f1(umνt(t)), ψ)Γ1
dt+

∫ T

0

(f1(ψ), umνt(t)− ψ)Γ1
dt ≤

∫ T

0

(f1(umνt(t)), u
m
νt(t))Γ1

dt,

(3.45)

∫ T

0

(f2(umt (t)), ψ)Γ1
dt+

∫ T

0

(f2(ψ), umt (t)− ψ)Γ1
dt ≤

∫ T

0

(f2(umt (t)), umt (t))Γ1
dt,

(3.46)

and then passing to the limit as m→∞,∫ T

0

(χ1 − f1(ψ), uνt(t)− ψ)Γ1
dt ≥ 0,(3.47)

∫ T

0

(χ2 − f2(ψ), ut(t)− ψ)Γ1dt ≥ 0.(3.48)

In order to prove (3.33) from (3.47) and (3.48), we use the semi-continuous [23,
Chapter 2]. Let ψ = uνt − λϕ, ∀ ϕ ∈ L2(Γ1) and λ ≥ 0, then we have

λ

∫ T

0

(χ1 − f1(uνt − λϕ), ϕ)Γ1dt ≥ 0,

and ∫ T

0

(χ1 − f1(uνt − λϕ), ϕ)Γ1
dt ≥ 0.(3.49)



234 HUAFEI DI, YADONG SHANG AND JIALI YU

Pass to the limit as λ→ 0 gives that∫ T

0

(χ1 − f1(uνt), ϕ)Γ1
dt ≥ 0, ∀ ϕ ∈ L2(Γ1).(3.50)

In a similar way, let ψ = uνt − λϕ, λ ≤ 0 and ∀ ϕ ∈ L2(Γ1), we obtain∫ T

0

(χ1 − f1(uνt), ϕ)Γ1
dt ≤ 0, ∀ ϕ ∈ L2(Γ1).(3.51)

From (3.50) and (3.51), we see that

χ1 = f1(uνt).

Using the analogous arguments, taking ψ = uνt−λϕ, and ∀ ϕ ∈ L2(Γ1), we also
get from (3.48) that∫ T

0

(χ2 − f2(ut), ϕ)Γ1
dt ≤ 0 and

∫ T

0

(χ2 − f2(ut), ϕ)Γ1
dt ≥ 0,(3.52)

which implies that

χ2 = f2(ut).

Thus, we obtain that u is a global regular solutions of problem (1.1).

Step 5. Uniqueness.
Let u, ũ be two solutions of problem (1.1). Then, y = u− ũ satisfies

(ytt(t), w) + (4y(t),4w) + (f1(uνt(t))− f1(ũνt(t)), wν)Γ1

+ (f2(ut(t))− f2(ũt(t)), w)Γ1
= (|u(t)|ρu(t)− |ũ(t)|ρũ(t), w),(3.53)

for all w ∈ V . Replacing w by yt in the above identity, and noting that fi (i = 1, 2)
are monotone functions, it follows that

1

2

d

dt
‖yt(t)‖22 +

1

2

d

dt
‖4y(t)‖22

≤
∫

Ω

(
|u(t)|ρu(t)− |ũ(t)|ρũ(t)

)
ytdx

≤ (ρ+ 1)

∫
Ω

sup{|u(t)|ρ, |ũ(t)|ρ}|y(t)||yt(t)|dx

≤ (ρ+ 1)

∫
Ω

(|u(t)|ρ + |ũ(t)|ρ)|y(t)||yt(t)|dx.

Using the Hölder inequality, Sobolev imbedding V ↪→ L2(ρ+1)(Ω) and taking the
first estimate into account, we thereby deduce that

d

dt

{
‖yt(t)‖22 + ‖4y(t)‖22

}
≤ C

(
‖u(t)‖ρ2(ρ+1) + ‖ũ(t)‖ρ2(ρ+1)

)
‖y(t)‖2(ρ+1)‖yt(t)‖2

≤ C
(
‖4y(t)‖22 + ‖yt(t)‖22

)
.(3.54)

Then, apply the Gronwall Lemma yields that ‖yt(t)‖22 = ‖4y(t)‖22 = 0. This
completes the proof of Theorem 2.1. �
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4. Existence, uniqueness of weak solutions

Our attention in this section is turned to the existence, uniqueness of weak so-
lutions for problem (1.1). Applying the standard density argument, we extend the
existence, uniqueness results of regular solutions to the weak solutions.

Proof. The main idea of this proof is the density method. We will divided it into
four steps.

Step 1. Galerkin approximation.
We start to approximate the initial data u0 and u1 with more regular data u0

µ

and u1
µ, respectively. Indeed, let us assume that

{u0, u1} ∈ V ∩ L2(Ω),(4.1)

such that

‖4u0‖2 < λ1 and E(0) < d.

Hence, we choose

{u0
µ, u

1
µ} ∈ D(42) ∩ V,(4.2)

where D(42) = {u ∈ V ∩H4(Ω); uννν = uνν = 0 on Γ1} such that

u0
µ → u0, in V and u1

µ → u1, in L2(Ω), as µ→∞.(4.3)

Thus, it is easy to see that {u0
µ, u

1
µ} satisfies the compatibility conditions

u0
µνν + f1(u1

µν) = 0, u0
µννν − f2(u1

µ) = 0, on Γ1.(4.4)

Moreover, using the continuity of functionals ‖4u‖2, E(u), we have

lim
µ→∞

‖4u0
µ‖2 = ‖4u0‖2 < λ1 and lim

µ→∞
Eµ(0) = E(0) < d,

where Eµ(0) = E(u0
µ). Therefore, for sufficiently large µ ≥ µ0, we get

‖4u0
µ‖2 < λ1 and Eµ(0) < d.(4.5)

Thus, for each µ ≥ µ0, let uµ be the solutions of problem (1.1) with the initial date
{u0

µ, u
1
µ}, which satisfies all the conditions of Theorem 2.1, so we obtain

uµ ∈ L∞(0,∞;V ), uµt ∈ L∞(0,∞;V ),

uµtt ∈ L∞(0,∞;L2(Ω)), 42uµ ∈ L∞(0,∞;L2(Ω)), ‖4uµ‖2 < λ1,(4.6)

and verifies 
uµtt = −42uµ + |uµ|ρuµ, (x, t) ∈ Ω× (0,∞),

uµ = uµν = 0, (x, t) ∈ Γ0 × (0,∞),

uµνν = −f1(uµνt), u
µ
ννν = f2(uµt ), (x, t) ∈ Γ1 × (0,∞),

uµ(x, 0) = u0
µ, u

µ
t (x, 0) = u1

µ, x ∈ Ω.

(4.7)

Step 2. Energy estimates and global existence.
Applying the analogous arguments used to prove the first estimate of the above

section, we deduce that there exist constants C (various positive constants C may
be different at different occurrences) which are independent of µ and t ∈ [0, T ], such
that

‖uµt (t)‖22 ≤ C, ‖4uµ(t)‖22 ≤ C,
‖uµνt‖Γ1,2 ≤ C, ‖f1(uµνt(t))‖2 ≤ C, ‖f2(uµt (t))‖2 ≤ C.(4.8)
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Let us define yµ,σ(t) = uµ(t) − uσ(t), µ, σ ∈ N . From the monotonicity of
functions fi, (i = 1, 2), it follows that

1

2

d

dt
‖yµ,σ(t)‖22 +

1

2

d

dt
‖4yµ,σ(t)‖22

≤ (ρ+ 1)

∫
Ω

(|uµ(t)|ρ + |uσ(t)|ρ)|yµ,σ(t)||yµ,σt (t)|dx,(4.9)

which together with the Hölder inequality, Sobelev imbedding from V ↪→ L2(ρ+1)(Ω)
and (4.8) gives that

d

dt

{
‖yµ,σ(t)‖22 + ‖4yµ,σ(t)‖22

}
≤ C

(
‖uµ(t)‖ρ2(ρ+1) + ‖uσ(t)‖ρ2(ρ+1)

)
‖yµ,σ(t)‖2(ρ+1)‖yµ,σt (t)‖2

≤ C(‖yµ,σ(t)‖22 + ‖4yµ,σ(t)‖22).(4.10)

Then, the Gronwall Lemma reveals that

‖uµt (t)− uσt (t)‖22 + ‖4uµ(t)−4uσ(t)‖22
≤ C

[
‖u1

µ − u1
σ‖22 + ‖4u0

µ −4u0
σ‖22
]
,(4.11)

where the constant C > 0 is independent of µ, σ ∈ N .
Consequently, the estimates (4.11) and (4.3) permit us to obtain a subsequences

of uµ which from now on will be also denoted by uµ and function u such that for
all T > 0,

uµ −→ u in C(0, T ;V ) strongly, µ −→∞,(4.12)

uµt −→ ut in C(0, T ;L2(Ω)) strongly, µ −→∞.(4.13)

On the other hand, from (4.8) and (4.12), we also obtain

uµt −→ ut in L∞(0, T ;H1(Γ1)) weakly star, µ −→∞,(4.14)

f1(uµνt) −→ χ1 in L∞(0, T ;L2(Γ1)) weakly star, µ −→∞,(4.15)

f2(uµt ) −→ χ2 in L∞(0, T ;L2(Γ1)) weakly star, µ −→∞,(4.16)

|uµ|ρuµ −→ |u|ρu in L∞(0, T ;L2(Ω)) weakly star, µ −→∞.(4.17)

Considering the above convergences, making use of the arguments of compactness
and generalized Green formula, we deduce that

utt +42u = |u|ρu, in D′(Ω× (0, T )).

Combining (4.3), (4.12), (4.13) and (4.17), it follows that 42u ∈ C(0, T ;H−2(Ω)),
|u|ρu ∈ C(0, T ;L2(Ω)), and

utt +42u = |u|ρu, in C(0, T ;H−2(Ω)).(4.18)

From the identity (4.18), making use of the Bochner’s integral in H−2(Ω), it follows
that

ut(t)− ut(0) =

∫ t

0

42u(s)ds+

∫ t

0

|u(s)|ρu(s)ds.(4.19)
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Defining Z(t) =
∫ t

0
u(s)ds, so we obtain from (4.19) that

ut(t)− ut(0) = 42Z(t) +

∫ t

0

|u(s)|ρu(s)ds.(4.20)

Furthermore, thanks to (4.12), (4.13) and (A1), we discover that∫ t

0

|u(s)|ρu(s)ds ∈ C(0, T ;L2(Ω)) and ut(t) ∈ C(0, T ;L2(Ω)).(4.21)

By the first equation of problem (1.1), we note that42Z(t) ∈ C(0, T ;L2(Ω)), which
implies that

Z(t) ∈ C(0, T ;H(Ω)),(4.22)

where H(Ω) = {u ∈ H2(Ω); 42u ∈ L2(Ω)}. Together with the definition of Z(t),
we have that

Z ′(t) = u(t) ∈ H−1(0, T ;H(Ω)),

uνν ∈ H−1(0, T ;H−
1
2 (Γ1)), uννν ∈ H−1(0, T ;H−

3
2 (Γ1)).(4.23)

Similarly, if we define Zµ(t) =
∫ t

0
uµ(s)ds, using the same arguments as (4.12),

(4.13) and (4.17), we obtain that

Zµ(t) ∈ C(0, T ;H(Ω)), 42Zµ(t) ∈ C(0, T ;L2(Ω)),

uµνν ∈ H−1(0, T ;H−
1
2 (Γ1)), uµννν ∈ H−1(0, T ;H−

3
2 (Γ1)).(4.24)

In view of (4.22)-(4.24), making use of Lion’s Lemma [38, Lemma 1.3, Chapter 1]
yields that

Zµ(t) −→ Z(t) in C(0, T ;H(Ω)) weakly star, µ −→∞,(4.25)

42Zµ(t) −→ 42Z(t) in C(0, T ;L2(Ω)) weakly star, µ −→∞,(4.26)

Zµt (t) −→ Zt(t) in H−1(0, T ;H(Ω)) weakly, µ −→∞,(4.27)

f1(uµνt) = −uµνν −→ −uνν in H−1(0, T ;H−
1
2 (Γ1)) weakly, µ −→∞,(4.28)

f2(uµt ) = −uµννν −→ −uννν in H−1(0, T ;H−
3
2 (Γ1)) weakly, µ −→∞.(4.29)

Combining (4.15), (4.16) and the above convergences, it is inferred that

uνν = −χ1, uννν = χ2, in L∞(0, T ;L2(Γ1)).(4.30)

On the other hand, from the convergences of (4.13) and (4.17), we know that
ut(t) ∈ C(0, T ;L2(Ω)) and |u|ρu ∈ L∞(0, T ;L2(Ω)). By the Sobolev embedding re-
lations C(0, T ;L2(Ω)) ↪→ L2(0, T ;L2(Ω)) and L∞(0, T ;L2(Ω)) ↪→ H−1(0, T ;L2(Ω)),
if follows that ut(t) ∈ L2(0, T ;L2(Ω)) and |u|ρu ∈ H−1(0, T ;L2(Ω)). Hence, it is
easy to see that utt(t) ∈ H−1(0, T ;L2(Ω)) and

utt +42u = |u|ρu, in H−1(0, T ;L2(Ω)).(4.31)

Utilizing the above identity, the generalized Green formula and (4.25), it is found
that

〈42u, v〉H−1(0,T ;L2(Ω))×H1
0 (0,T ;L2(Ω)) = (4u,4v)L2(0,T ;L2(Ω))

+ (uννν , v)L2(0,T ;L2(Γ1)) − (uνν , vν)L2(0,T ;L2(Γ1)) ,(4.32)
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which along with Trace Theorem, Sobolev imbedding L2(0, T ;V ) ↪→ L2(0, T ;

H
3
2 (Γ1)) ↪→ L2(0, T ;L

1
2 (Γ1)) and Hölder inequality leads to

|〈42u, v〉H−1(0,T ;L2(Ω))×H1
0 (0,T ;L2(Ω))| ≤ C‖v‖L2(0,T ;V ),(4.33)

for all v ∈ H1
0 (0, T ;V ). Thus, the term 42u possess a continuous extension to the

space L2(0, T ;V ′) such that

utt +42u = |u|ρu, in L2(0, T ;V ′).(4.34)

Next, our goal is to show that

χ1 = f1(uνt) and χ2 = f2(ut).

In deed, multiplying the first equation in (4.7) by uµt and integrating over Ω, we
have

1

2

d

dt
‖uµt (t)‖22 +

1

2

d

dt
‖4uµ(t)‖22 +

∫
Γ1

f1(uµνt(t))u
µ
νt(t)dΓ

+

∫
Γ1

f2(uµt (t))uµt (t)dΓ =
1

(ρ+ 2)

d

dt
‖uµ(t)‖ρ+2

ρ+2.(4.35)

Integrate (4.35) over (0, t) leads to

1

2
‖uµt (t)‖22 +

1

2
‖4uµ(t)‖22 −

1

(ρ+ 2)

d

dt
‖uµ(t)‖ρ+2

ρ+2

+

∫ t

0

∫
Γ1

f1(uµνt(s))u
µ
νt(s)dΓds+

∫ t

0

∫
Γ1

f2(uµt (s))uµt (s)dΓds

=
1

2
‖u1

µ‖22 +
1

2
‖4u0

µ‖22 −
1

(ρ+ 2)
‖u0

µ‖
ρ+2
ρ+2.(4.36)

Considering the convergences (4.3), (4.12) and (4.13), we deduce that

lim
µ→∞

∫ t

0

∫
Γ1

f1(uµνt(s))u
µ
νt(s)dΓds+ lim

µ→∞

∫ t

0

∫
Γ1

f2(uµt (s))uµt (s)dΓds

= −1

2
‖ut(t)‖22 −

1

2
‖4u(t)‖22 +

1

(ρ+ 2)
‖u(t)‖ρ+2

ρ+2

+
1

2
‖u1‖22 +

1

2
‖4u0‖22 −

1

(ρ+ 2)
‖u0‖ρ+2

ρ+2.(4.37)

On the other hand, we assume that u is a weak solution to the problem
utt = −42u+ |u|ρu, in L2(0,∞;V ′),

u = uν = 0, on Γ0 × (0,∞),

uνν = −χ1, uννν = χ2, in L∞(0,∞;L2(Γ1)),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω.

(4.38)

Adapting the ideas of Lasiecka and Tataru [2, Proposition 2.1], Komornik [33, The-
orem 7.9] or Lions [38, Lemma 6.1], we obtain that the weak solutions u satisfy
energy identity∫ t

0

∫
Γ1

χ1uνt(s)dΓds+

∫ t

0

∫
Γ1

χ2ut(s)dΓds = −1

2
‖ut(t)‖22 −

1

2
‖4u(t)‖22

+
1

(ρ+ 2)
‖u(t)‖ρ+2

ρ+2 +
1

2
‖u1‖22 +

1

2
‖4u0‖22 −

1

(ρ+ 2)
‖u0‖ρ+2

ρ+2,(4.39)
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which along with (4.37) yields to

lim
µ→∞

∫ t

0

(f1(uµνt(s)), u
µ
νt(s))Γ1

ds+ lim
µ→∞

∫ t

0

(f2(uµt (s)), uµt (s))Γ1
ds

=

∫ t

0

(χ1, uνt(s))ds+

∫ t

0

(χ2, ut(s))ds.(4.40)

Taking (4.14)-(4.16) into account, we get that

lim
µ→∞

∫ t

0

(f1(uµνt(s)), u
µ
νt(s))Γ1

ds =

∫ t

0

(χ1, uνt(s))ds,(4.41)

and

lim
µ→∞

∫ t

0

(f2(uµt (s)), uµt (s))Γ1
ds =

∫ t

0

(χ2, ut(s))ds.(4.42)

By the analogous arguments which have been used in the proof’s process of regular
solutions. we also obtain from (4.36) and (4.37) that χ1 = f1(uνt), and χ2 = f2(ut).
Thus, we prove that there exists the global weak solutions u satisfying

utt = −42u+ |u|ρu, in L2(0,∞;V ′),

u = uν = 0, on Γ0 × (0,∞),

uνν = −f1(uνt), uννν = f2(ut), in L∞(0,∞;L2(Γ1)),

u(x, 0) = u0 ∈ V, ut(x, 0) = u1 ∈ L2(Ω),

(4.43)

with ‖4u(t)‖2 < λ1 for all t ≥ 0.

Step 3. Uniqueness.
Finally, we will use the standard energy estimate to get the uniqueness of weak

solutions. Let u and ũ be the solutions of problem (4.43), then y = u− ũ satisfies
ytt = −42y + |u|ρu− |ũ|ρũ, in L2(0,∞;V ′),

y = yν = 0, on Γ0 × (0,∞),

yνν = −f1(uνt) + f1(ũνt), yννν = f2(ut)− f2(ũt), in L∞(0,∞;L2(Γ1)),

y(x, 0) = 0, yt(x, 0) = 0.

(4.44)

Making use of the same procedure to prove (4.39), we have the energy identity∫ t

0

(f1(uνt(s))− f1(ũνt(s)), yνt(s))Γ1
ds+

∫ t

0

(f2(ut(s))− f2(ũt(s)), yt(s))Γ1
ds

=− 1

2
‖yt(t)‖22 −

1

2
‖4y(t)‖22 +

∫ t

0

(|u(s)|ρu(s)− |ũ(s)|ρũ(s), yt(s))ds,

which together with the Hölder inequality, assumptions (A2) and (4.8) leads to

‖yt(t)‖22 + ‖4y(t)‖22

≤ 2(ρ+ 1)

∫ t

0

∫
Ω

(|u(s)|ρ + |ũ(s)|ρ)|y(s)||yt(s)|dxds

− 2

∫ t

0

(f1(uνt(s))− f1(ũνt(s)), yνt(s))Γ1
ds

− 2

∫ t

0

(f2(ut(s))− f2(ũt(s)), yt(s))Γ1
ds

≤ C
∫ t

0

(
‖u(s)‖ρ2(ρ+1) + ‖ũ(s)‖ρ2(ρ+1)

)
‖y(s)‖2(ρ+1)‖yt(s)‖2ds
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≤ C
∫ t

0

(‖yt(s)‖22 + ‖4y(s)‖22)ds.(4.45)

Employing the Gronwall Lemma, we get that ‖yt(t)‖22+‖4y(t)‖22 = 0, which implies
the uniqueness of weak solutions. This completes the proof of Theorem 2.2. �

5. Uniform decay rates of solutions

The focus of the development in this section is the decay rate estimates of the
energy to problem (1.1). The proofs are based on the construction of a special
weight function φ, nonlinear integral inequality and the Multiplier method.

First, by the virtue of Theorem 2.1, it is known that the solution u of problem
(1.1) possesses the some properties listed in Theorem 2.1 and Theorem 2.2. Thus,
we can apply the following energy identity

E′(t) = −
∫

Γ1

f2(ut(t))ut(t)dΓ−
∫

Γ1

f1(uνt(t))uνt(t)dΓ.(5.1)

Taking into account that fi(s)s > 0 if s 6= 0, we see that E(t) is a non-increasing
function. Moreover, the weight function φ appeared in Lemma 2.3 (construction
method of φ will be presented in the sequel) will play key role in the proof of energy
decay rate estimates.

Now, let us multiply the equation in (1.1) by Eφ′Mu, where the function Mu is
defined by

Mu = 2(m · ∇u) + (n− 1)u.(5.2)

Then, considering 0 ≤ S < T < +∞ and applying the generalized Green formula,
we deduce that

0 =

∫ T

S

Eφ′
∫

Ω

(utt +42u− |u|ρu)Mudxdt

=

∫ T

S

Eφ′
∫

Ω

(utt +42u− |u|ρu)(2m · ∇u+ (n− 1)u)dxdt

= 2

∫ T

S

Eφ′
∫

Ω

utt(m · ∇u)dxdt+ 2

∫ T

S

Eφ′
∫

Ω

4u4(m · ∇u)dxdt

+ 2

∫ T

S

Eφ′
∫

Γ

uννν(m · uν)dΓdt− 2

∫ T

S

Eφ′
∫

Γ

uνν(m · uν)νdΓdt

− 2

∫ T

S

Eφ′
∫

Ω

|u|ρu(m · ∇u)dxdt+ (n− 1)

∫ T

S

Eφ′
∫

Ω

uttudxdt

+ (n− 1)

∫ T

S

Eφ′
∫

Ω

|4u|2dxdt+ (n− 1)

∫ T

S

Eφ′
∫

Γ1

uνννudΓdt

− (n− 1)

∫ T

S

Eφ′
∫

Γ1

uννuνdΓdt− (n− 1)

∫ T

S

Eφ′
∫

Ω

|u|ρ+2dxdt.(5.3)

Estimate of I1 = 2
∫ T
S
Eφ′

∫
Ω
utt(m · ∇u)dxdt.

Applying integration by parts and Gauss Theorem, it follows that

I1 = 2

[
Eφ′

∫
Ω

ut(m · ∇u)dx

]T
S

− 2

∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

ut(m · ∇u)dxdt

− 2

∫ T

S

Eφ′
∫

Ω

ut(m · ∇ut)dxdt
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= 2

[
Eφ′

∫
Ω

ut(m · ∇u)dx

]T
S

− 2

∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

ut(m · ∇u)dxdt

−
∫ T

S

Eφ′
∫

Γ1

|ut|2(m · ν)dΓdt+ n

∫ T

S

Eφ′
∫

Ω

|ut|2dxdt.(5.4)

Estimate of I2 = 2
∫ T
S
Eφ′

∫
Ω
4u · 4(m · ∇u)dxdt.

The application of Gauss Theorem gives that

I2 = 2

∫ T

S

Eφ′
∫

Ω

n∑
i=1

∂2u

∂xi∂xi
·
n∑
j=1

∂2(m · ∇u)

∂xj∂xj

= 2

∫ T

S

Eφ′
∫

Ω

n∑
i=1

∂2u

∂xi∂xi
·
n∑
j=1

n∑
k=1

∂2(mk
∂u
∂xk

)

∂xj∂xj

= 4

∫ T

S

Eφ′
∫

Ω

n∑
i=1

∂2u

∂xi∂xi
·
n∑
j=1

∂2u

∂xj∂xj

+ 2

∫ T

S

Eφ′
∫

Ω

n∑
i=1

∂2u

∂xi∂xi
·
n∑
j=1

n∑
k=1

mk
∂2u

∂xj∂xj∂xk

= 4

∫ T

S

Eφ′
∫

Ω

|4u|2dxdt+

∫ T

S

Eφ′
∫

Ω

m · ∇(|4u|2)dxdt

= (4− n)

∫ T

S

Eφ′
∫

Ω

|4u|2dxdt+

∫ T

S

Eφ′
∫

Γ

(m · ν)|uνν |2dΓdt.(5.5)

Estimate of I3 = (n− 1)
∫ T
S
Eφ′

∫
Ω
uttudxdt.

By the integration by parts again, we also obtain that

I3 = (n− 1)

[
Eφ′

∫
Ω

utudx

]T
S

− (n− 1)

∫ T

S

Eφ′
∫

Ω

|ut|2dxdt

− (n− 1)

∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

utudxdt.(5.6)

Inserting (5.4)-(5.6) into (5.3), noting that uνν = −f1(uνt), uννν = f2(ut) on Γ1

and ∇u = uν · ν on Γ0, it follows that

0 =

[
Eφ′

∫
Ω

utMudx

]T
S

−
∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

utMudxdt

+

∫ T

S

Eφ′
∫

Ω

|ut|2dxdt+ 3

∫ T

S

Eφ′
∫

Ω

|4u|2dxdt

+

∫ T

S

Eφ′
∫

Γ1

f2(ut)MudΓdt+

∫ T

S

Eφ′
∫

Γ1

f1(uνt)(Mu)νdΓdt

−
∫ T

S

Eφ′
∫

Γ1

|ut|2(m · ν)dΓdt+

∫ T

S

Eφ′
∫

Γ0

(m · ν)|uνν |2dΓdt

+

∫ T

S

Eφ′
∫

Γ1

(m · ν)|uνν |2dΓdt+ 2

∫ T

S

Eφ′
∫

Γ0

uνννuν(m · ν)dΓdt

− 2

∫ T

S

Eφ′
∫

Γ0

(m · ν)|uνν |2dΓdt− 2

∫ T

S

Eφ′
∫

Ω

|u|ρu(m · ∇u)dxdt
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− (n− 1)

∫ T

S

Eφ′
∫

Ω

|u|ρ+2dxdt.(5.7)

Using the definition of energy E(t) and the identity (5.7), we obtain that

2

∫ T

S

E2(t)φ′(t)dt+ 2

∫ T

S

Eφ′
∫

Ω

|4u|2dxdt

= −
[
Eφ′

∫
Ω

utMudx

]T
S

+

∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

utMudxdt

−
∫ T

S

Eφ′
∫

Γ1

f2(ut)MudΓdt−
∫ T

S

Eφ′
∫

Γ1

f1(uνt)(Mu)νdΓdt

+

∫ T

S

Eφ′
∫

Γ1

(m · ν)(|ut|2 − |uνν |2)dΓdt+

∫ T

S

Eφ′
∫

Γ0

(m · ν)|uνν |2dΓdt

+

[
n− 1 +

2

ρ+ 2

] ∫ T

S

Eφ′
∫

Ω

|u|ρ+2dxdt+ 2

∫ T

S

Eφ′
∫

Ω

|u|ρu(m · ∇u)dxdt.(5.8)

Next, we shall estimate the last two terms of the right hand side of the above
identity (5.8).

Estimate of D1 =
[
n− 1 + 2

ρ+2

] ∫ T
S
Eφ′

∫
Ω
|u|ρ+2dxdt.

Taking into account that 1
p = α

2 + 1−α
q , α ∈ [0, 1], then by the interpolation

inequality of Lp(Ω) spaces, ‖s‖p ≤ ‖s‖α2 ‖s‖1−αq with p = ρ + 2, q = 2(ρ + 1) and

α = 1
ρ+2 , we deduce that

‖u‖ρ+2 ≤ ‖u‖
1
ρ+2

2 ‖u‖
ρ+1
ρ+2

2(ρ+1).(5.9)

Setting h = n − 1 + 2
ρ+2 , by Poincaré inequality, Sobolev embedding from V into

L2(ρ+1)(Ω) and Young inequality, we obtain that

h‖u‖ρ+2
ρ+2 ≤ n‖u‖2‖u‖

ρ+1
2(ρ+1) ≤ C‖∇u‖2‖4u‖

ρ+1
2

≤ C(ε)‖∇u‖22 +
ε

B2
‖4u‖2(ρ+1)

2 ,(5.10)

for all ε > 0 and B2 =
(

2(ρ+2)
ρ

)ρ+1

E(0)ρ. Combining (2.8) and (2.14), a direct

computation gives that

E(t) ≥ J(u) =
1

2
‖4u‖22 −

1

ρ+ 2
‖u‖ρ+2

ρ+2

≥ 1

2
‖4u‖22 −K0‖4u‖ρ+2

2 > ‖4u‖22
[

1

2
− λρ1K0

]
= ‖4u‖22

[
1

2
− 1

K0(ρ+ 2)
K0

]
= ‖4u‖22

[
1

2
− 1

ρ+ 2

]
,(5.11)

which implies that

‖4u‖22 ≤
2(ρ+ 2)

ρ
E(t) ≤ 2(ρ+ 2)

ρ
E(0).(5.12)

Furthermore, replace (5.12) in (5.10) gives that

h‖u‖ρ+2
ρ+2 ≤ C(ε)‖∇u‖22 +

ε

B2
‖4u‖22‖4u‖

2ρ
2 ≤ C(ε)‖∇u‖22 + εE(t).(5.13)
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From (5.13), we obtain that

D1 ≤ ε
∫ T

S

E2(t)φ′(t)dt+ C(ε)

∫ T

S

Eφ′
∫

Ω

|∇u|2dxdt.(5.14)

Estimate of D2 = 2
∫ T
S
Eφ′

∫
Ω
|u|ρu(m · ∇u)dxdt.

By the Hölder inequality and Poincaré inequality, we have that

D2 ≤ 2R

∫ T

S

Eφ′
∫

Ω

|u|ρ+1|∇u|dxdt ≤ 2CR

∫ T

S

Eφ′‖4u‖2‖u‖ρ+1
2(ρ+1)dt.(5.15)

Taking into account that 0 < ρ < 4
n−4 , if n > 4, and 0 < s < 2n

n−4 − 2(ρ + 1),

and considering the interpolation inequality ‖s‖p ≤ ‖s‖α2 ‖s‖1−αq with p = 2(ρ+ 1),
q = 2(ρ+ 1) + s, we discover that

‖u‖2(ρ+1) ≤ ‖u‖1−α2 ‖u‖α2(ρ+1)+s,(5.16)

where α ∈ (0, 1) is given by α = 1 + s
(ρ+1)[2−2(ρ+1)−s] , which implies that

‖u‖ρ+1
2(ρ+1) ≤ ‖u‖

(1−α)(ρ+1)
2 ‖u‖α(ρ+1)

2(ρ+1)+s.(5.17)

Applying Poincaré inequality and Sobolev embedding from V ↪→ L2(ρ+1)+s(Ω)(
2(ρ+ 1) + s < 2n

n−4

)
, then we have

‖u‖ρ+1
2(ρ+1) ≤ C‖∇u‖

(1−α)(ρ+1)
2 ‖4u‖α(ρ+1)

2 .(5.18)

Combining (5.15) and (5.18), we conclude that

D2 ≤ CR
∫ T

S

Eφ′‖∇u‖(1−α)(ρ+1)
2 ‖4u‖α(ρ+1)+1

2 dt.(5.19)

From the Young inequality,

ab ≤ 1

εp/p′p
ap +

ε

p′
bp
′
,

1

p
+

1

p′
= 1,(5.20)

for all ε > 0. Let us take p = 2
(1−α)(ρ+1) and p′ = 2

2−(1−α)(ρ+1) , then we have

CR‖∇u‖(1−α)(ρ+1)
2 ‖4u‖α(ρ+1)+1

2

≤ (CR)2(1−α)−1(ρ+1)−1

pε
2−(1−α)(ρ+1)

1−α)(ρ+1)

‖∇u‖22 +
ε

p′
‖4u‖

2[α(ρ+1)+1]
2−(1−α)(ρ+1)

2

= C(ε)‖∇u‖22 +KεE(t),(5.21)

where

C(ε) =
(CR)2(1−α)−1(ρ+1)−1

pε
2−(1−α)(ρ+1)

1−α)(ρ+1)

, K =
2(ρ+ 2)

p′ρ

[
2(ρ+ 2)

ρ
E(0)

] ρ
2−(1−α)(ρ+1)

.

Combining (5.19) and (5.21), we have that

D2 ≤ Kε
∫ T

S

E2(t)φ′(t)dt+ C(ε)

∫ T

S

Eφ′
∫

Ω

|∇u|2dxdt.(5.22)

Therefore, in view of (5.8), (5.14) and (5.22), when m · ν ≤ 0 on Γ0 and ε small
enough, we can conclude that there exists δ1, δ2 > 0 such that

δ1

∫ T

S

E2(t)φ′(t)dt
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≤ −
[
Eφ′

∫
Ω

utMudx

]T
S

+

∫ T

S

(E′φ′ + Eφ′′)

∫
Ω

utMudxdt

−
∫ T

S

Eφ′
∫

Γ1

f2(ut)MudΓdt−
∫ T

S

Eφ′
∫

Γ1

f1(uνt)(Mu)νdΓdt

+

∫ T

S

Eφ′
∫

Γ1

(m · ν)(|ut|2 − |uνν |2)dΓdt+ δ2

∫ T

S

Eφ′
∫

Ω

|∇u|2dxdt.(5.23)

In order to estimate the last term of (5.23), let us give the following lemma.

Lemma 5.1. Under the hypotheses of Theorem 2.1. Let u be a solution to problem
(1.1). Then for T > T0, where T0 is sufficiently large, we have∫ T

S

φ′
∫

Ω

|∇u|2dxdt ≤ C(T0)

{∫ T

S

φ′
∫

Γ1

(f1(uνt))
2dΓdt

+

∫ T

S

φ′
∫

Γ1

(f2(ut))
2dΓdt+

∫ T

S

φ′
∫

Γ1

|uνt|2dΓdt

}
,(5.24)

for all 0 ≤ S < T < +∞.

Proof. We shall argue by contradiction. Suppose that (5.24) is not verified. Let uk
be a sequence of solutions to problem (1.1) such that

lim
k→∞

∫ T
S
φ′

∫
Ω
|∇uk|2dxdt∫ T

S
φ′

∫
Γ1

(f1(ukνt))
2dΓdt+

∫ T
S
φ′

∫
Γ1

(f2(ukt ))2dΓdt+
∫ T
S
φ′

∫
Γ1

|ukνt|2dΓdt
= +∞,

(5.25)

while the total energy Ek(0) with initial data {uk(0), ukt (0)} remains uniformly

bounded in k, that is , there exists M̃ > 0 such that Ek(0) < M̃ .

Since Ek(0) < M̃ , by the non-increasing property of Ek(t), we have Ek(t) < M̃ .
Hence, there exists a subsequence of the sequence {uk}, still denoted by {uk}, which
satisfies

uk −→ u in H1(0, T ;H2(Ω)) weakly, k −→∞,(5.26)

uk −→ u in L∞(0, T ;V ) weakly star, k −→∞.(5.27)

Applying the similar methods used to prove (3.18) and (3.25), we have that

ukt −→ ut in L∞(0, T ;V ) weakly star, k −→∞,(5.28)

ukt −→ ut in L∞(0, T ;H1(Γ1)) weakly star, k −→∞.(5.29)

Notice that the Aubin-Lions type compactness gives us

uk −→ u in L∞(0, T ;L2(Ω)) strongly, k −→∞,(5.30)

uk −→ u in L∞(0, T ;H1(Γ)) strongly, k −→∞.(5.31)

In what follows, we will apply the ideas contained in Lasiecka and Tataru [20] or
Cavalcanti et al [4] to our context.

Case (i). Let us consider that u 6= 0. By (5.30), it follows that

|uk|ρuk −→ |u|ρu , a.e. in QT = Ω× (0, T ), k −→∞.(5.32)
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Since the sequence {|uk|ρuk} is bounded in L∞(0, T ;L2(Ω)), together with (5.32)
and Lion’s Lemma [23, Lemma 1.3, Chapter 1], we have

|uk|ρuk −→ |u|ρu in L∞(0, T ;L2(Ω)) weakly star, k −→∞.(5.33)

Taking into account that the Poincaré inequality and the boundedness of Ek(t), it
is found that

‖∇uk‖22 ≤ C‖4uk‖22 ≤ CEk(t),(5.34)

where C is a positive constant independent of k and t. Thus, we can deduce that

the term
∫ T
S
φ′
∫

Ω
|∇uk|2dxdt is bounded. Therefore, we have from (5.25) that

∫ T

S

φ′
∫

Γ1

(f1(ukνt))
2dΓdt+

∫ T

S

φ′
∫

Γ1

(f2(ukt ))2dΓdt+

∫ T

S

φ′
∫

Γ1

|ukνt|2dΓdt→ 0,

(5.35)

as k →∞. Especially, (5.35) implies that∫ T

S

φ′
∫

Γ1

(f1(ukνt))
2dΓdt→ 0, as k → +∞.(5.36)

Since φ(t) is concave, it follows that φ′(t) ≥ φ′(T ), t ∈ [S, T ], for any T > 0, we
also get

0 ≤ φ′(T )

∫ T

S

∫
Γ1

(f1(ukνt))
2dΓdt ≤

∫ T

S

φ′
∫

Γ1

(f1(ukνt))
2dΓdt.(5.37)

Thus, combining (5.36) and (5.37), it follows that

lim
k→+∞

∫ T

S

∫
Γ1

(f1(ukνt))
2dΓdt = 0.(5.38)

Considering that S is chosen in the interval [0, T ], so we write

lim
k→+∞

∫ T

0

∫
Γ1

(f1(ukνt))
2dΓdt = 0.

Therefore, we conclude

f1(ukνt) −→ 0 in L2(0, T ;L2(Γ1)) strongly, k −→∞.(5.39)

In a similar way, we also conclude that

f2(ukt ) −→ 0 in L2(0, T ;L2(Γ1)) strongly, k −→∞,(5.40)

ukt −→ 0 in L2(0, T ;H1(Γ1)) strongly, k −→∞.(5.41)

Taking k → +∞ in the equation, we get for u
utt = −42u+ |u|ρu, (x, t) ∈ Ω× (0,∞),

u = uν = 0, (x, t) ∈ Γ0 × (0,∞),

uνν = uννν = 0, ut = uνt = 0, (x, t) ∈ Γ1 × (0,∞),

(5.42)

and for ut = v,
vtt = −42v + (ρ+ 1)|u|ρv, (x, t) ∈ Ω× (0,∞),

v = vν = 0, (x, t) ∈ Γ0 × (0,∞),

vνν = vννν = 0, v = vν = 0, (x, t) ∈ Γ1 × (0,∞).

(5.43)
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Note that u ∈ L∞(0, T ;V ) implies u ∈ L
4

n−4 (Ω) and (ρ+ 1)|u|ρ ∈ L∞(0, T ;Ln(Ω)).
Applying the standard uniqueness results of [16, see Chapter 6] or the uniqueness
results of [29] to our context, we conclude that v = 0, which means ut = 0, for T
suitably large.

Hence, the equation (5.42) reduce to the elliptic equation
42u = |u|ρu, x ∈ Ω,

u = uν = 0, x ∈ Γ0,

uνν = uννν = 0, x ∈ Γ1.

(5.44)

Multiplying the above elliptic equation by u, we have∫
Ω

|4u|2dx−
∫

Ω

|u|ρ+2dx = 0,(5.45)

which implies that J(u) = ρ
2(ρ+2)‖4u‖

2
2. But according to (5.11), it follows that

E(t) ≥ J(u) ≥ ρ

2(ρ+ 2)
‖4u‖22,(5.46)

for all u 6= 0. This is a contradiction.

Case (ii). Let us assume that u ≡ 0. Setting

ck =

[∫ T

S

φ′
∫

Ω

|∇uk|2dxdt

] 1
2

and ũk =
uk
ck
,(5.47)

which implies ∫ T

S

φ′
∫

Ω

|∇ũk|2dxdt =

∫ T

S

φ′
∫

Ω

|∇uk|2

c2k
dxdt = 1.(5.48)

Besides,

Ẽk(t) =
1

2
‖ũkt ‖22 +

1

2
‖4ũk‖22 −

1

ρ+ 2
‖ũk‖ρ+2

ρ+2 ≤
1

2c2k

(
‖ukt ‖22 + ‖4uk‖22

)
.(5.49)

By the similar argument as (5.46), we deduce that

1

2
‖4uk‖22 ≤

ρ+ 2

ρ
J(uk) =

ρ+ 2

ρ

(
1

2
‖4uk‖22 −

1

ρ+ 2
‖uk‖ρ+2

ρ+2

)
,(5.50)

which along with (5.49) yields that

Ẽk(t) ≤ 1

c2k

(
1

2
‖ukt ‖22 +

ρ+ 2

2ρ
‖4uk‖22 −

1

ρ
‖uk‖ρ+2

ρ+2

)
=
ρ+ 2

ρc2k

(
ρ

2(ρ+ 2)
‖ukt ‖22 +

1

2
‖4uk‖22 −

1

ρ+ 2
‖uk‖ρ+2

ρ+2

)
≤ ρ+ 2

ρc2k
Ek(t).(5.51)

Also,

Ẽk(t) =
1

2
‖ũkt ‖22 +

1

2
‖4ũk‖22 −

1

ρ+ 2
‖ũk‖ρ+2

ρ+2

≥ 1

2
‖ũkt ‖22 +

ρ

2(ρ+ 2)
‖4ũk‖22 ≥

ρ

(ρ+ 2)c2k
Ek(t).(5.52)

Furthermore, when u ≡ 0, we deduce that ck → 0 as k → +∞.
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On the other hand, considering the energy identity,

E′k(t) = −
∫

Γ1

f2(ukt (t))ukt (t)dΓ−
∫

Γ1

f1(ukνt(t))u
k
νt(t)dΓ,(5.53)

and multiplying this identity by Ek(t), then we obtain

1

2

d

dt
[Ek(t)]2 = −Ek(t)

∫
Γ1

f2(ukt (t))ukt (t)dΓ− Ek(t)

∫
Γ1

f1(ukνt(t))u
k
νt(t)dΓ.(5.54)

Integrating (5.54) with respect to t from S to T , we discover that

E2
k(T )− E2

k(S) = −2

∫ T

S

Ek(t)

∫
Γ1

f2(ukt (t))ukt (t)dΓdt

− 2

∫ T

S

Ek(t)

∫
Γ1

f1(ukνt(t))u
k
νt(t)dΓdt.(5.55)

In view of (5.54) and (5.55), we deduce that∫ T

S

E2
k(t)φ′(t)dt

≥
∫ T

S

E2
k(T )φ′(t)dt = [φ(T )− φ(S)]E2

k(S)

− 2[φ(T )− φ(S)]

∫ T

S

Ek(t)

∫
Γ1

f2(ukt (t))ukt (t)dΓdt

− 2[φ(T )− φ(S)]

∫ T

S

Ek(t)

∫
Γ1

f1(ukνt(t))u
k
νt(t)dΓdt.(5.56)

Replacing Muk = 2(m · ∇uk) + (n− 1)uk in inequality (5.23), we obtain that

δ1

∫ T

S

E2
k(t)φ′(t)dt

≤ −2

[
Ekφ

′
∫

Ω

ukt (m · ∇uk)dx

]T
S

− (n− 1)

[
Ekφ

′
∫

Ω

ukt u
kdx

]T
S

+

∫ T

S

(E′kφ
′ + Ekφ

′′)

∫
Ω

uktMukdxdt− 2

∫ T

S

Ekφ
′
∫

Γ1

f2(ut)(m · ukν)dΓdt

− (n− 1)

∫ T

S

Ekφ
′
∫

Γ1

f2(ukt )ukdΓdt− 2

∫ T

S

Ekφ
′
∫

Γ1

f1(ukνt)(m · ukν)νdΓdt

− (n− 1)

∫ T

S

Ekφ
′
∫

Γ1

f1(ukνt)u
k
νdΓdt+

∫ T

S

Ekφ
′
∫

Γ1

|ukt |2(m · ν)dΓdt

−
∫ T

S

Ekφ
′
∫

Γ1

|ukνν |2(m · ν)dΓdt+ δ2

∫ T

S

Ekφ
′
∫

Ω

|uk|2dxdt.(5.57)

Estimate of G1 = −2
∫ T
S
Ekφ

′ ∫
Γ1
f2(ukt )(m · ukν)dΓdt.

Using Young inequality and a direct calculation gives that

G1 ≤ 2R

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )||ukν |dΓdt

≤ η
∫ T

S

Ekφ
′
∫

Γ1

|ukν |2dΓdt+
R2

η

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt.(5.58)
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for all η > 0.

Estimate of G2 = −2
∫ T
S
Ekφ

′ ∫
Γ1
f1(ukνt)(m · ukν)νdΓdt.

Applying integration by parts and the Young inequality, it follows that

G2 = −2

∫ T

S

Ekφ
′
∫

Γ1

n∑
j=1

∂
(∑n

i=1mi
∂uk

∂xi

)
∂xj

νjf1(ukνt)dΓdt

− 2

∫ T

S

Ekφ
′
∫

Γ1

 n∑
j=1

∂uk

∂xj
+

n∑
j=1

n∑
i=1

mi
∂2uk

∂xi∂xj

 νjf1(ukνt)dΓdt

− 2

∫ T

S

Ekφ
′
∫

Γ1

ukνf1(ukνt)dΓdt− 2

∫ T

S

Ekφ
′
∫

Γ1

m · ukννf1(ukνt)dΓdt

≤ η
∫ T

S

Ekφ
′
∫

Γ1

|ukν |2dΓdt+
1

η

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt

+ η

∫ T

S

Ekφ
′
∫

Γ1

|ukνν |2dΓdt+
R2

η

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt.(5.59)

Estimate of G3 = −2Ekφ
′ ∫

Ω
ukt (m · ∇uk)dx.

Considering Young inequality and Poincaré inequality, we obtain from the defi-
nition of Ek(t) that

G3 ≤ | − 2Ekφ
′
∫

Ω

ukt (m · ∇uk)dx| ≤ 2Ek(t)LR

∫
Ω

|ukt ||∇uk|dx

≤ Ek(t)LR

∫
Ω

[|ukt |2 + |∇uk|2]dx ≤ CE2
k(t),(5.60)

where L is a positive constant which verifies |φ′(t)| ≤ |φ′(0)| = L, ∀ t ≥ 0. Therefore,
we have

−2

[
Ekφ

′
∫

Ω

ukt (m · ∇uk)dx

]T
S

≤ CE2
k(T ) + CE2

k(S) ≤ CE2
k(S).(5.61)

Estimate of G4 = −(n− 1)
[
Ekφ

′ ∫
Ω
ukt u

kdx
]T
S

.

Analogously, considering the same procedure used to prove (5.61), we also get
that

−(n− 1)

[
Ekφ

′
∫

Ω

ukt u
kdx

]T
S

≤ CE2
k(S).(5.62)

Estimate of G5 =
∫ T
S

(E′kφ
′ + Ekφ

′′)
∫

Ω
uktMukdxdt.

By Young inequality and Poincaré inequality, a simple computation reveals that∫
Ω

uktMukdx = 2

∫
Ω

(m · ∇uk)ukdx+ (n− 1)

∫
Ω

ukt u
kdx

≤ 2R

∫
Ω

|∇uk||uk|dx+ (n− 1)

∫
Ω

|ukt ||uk|dx ≤ CEk(t).(5.63)

We thereby conclude that

G5 =

∫ T

S

(E′kφ
′ + Ekφ

′′)

∫
Ω

uktMukdxdt

≤ C
∫ T

S

|E′kφ′ + Ekφ
′′|Ek(t)dt
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≤ LC
∫ T

S

−E′kEkdt+ CEk
2(S)

∫ T

S

−φ′′dt

=
LC

2

∫ T

S

− d

dt
E2
k(t)dt+ CEk

2(S)

∫ T

S

−φ′′dt

=
LC

2

[
Ek

2(S)− Ek2(T )
]

+ CEk
2(S) [φ′(S)− φ′(T )]

≤ LC

2
Ek

2(S) + CEk
2(S)φ′(S).(5.64)

Estimate of G6 = −(n− 1)
∫ T
S
Ekφ

′ ∫
Γ1
f2(ukt )ukdΓdt.

Using Young inequality, there appears the relation

G6 ≤ γ
∫ T

S

Ekφ
′
∫

Γ1

|uk|2dΓdt+
(n− 1)2

4γ

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt,(5.65)

for any γ > 0. Taking into account that the continuity of the linear trace operator
B: V ↪→ H1(Γ1) ↪→ L2(Γ1), there exist two positive constants ξ1, ξ2 such that

‖u‖L2(Γ1) ≤ ξ1‖4u‖2, ‖∇u‖L2(Γ1) ≤ ξ2‖4u‖2,(5.66)

for all u ∈ V . Hence, we deduce that

G6 ≤ Cγ
∫ T

S

E2
kφ
′dt+

(n− 1)2

4γ

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt.(5.67)

Estimate of G7 = −(n− 1)
∫ T
S
Ekφ

′ ∫
Γ1
f1(ukνt)u

k
νdΓdt.

Analogously, we obtain that

G7 ≤ Cγ
∫ T

S

E2
kφ
′dt+

(n− 1)2

4γ

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt.(5.68)

Since m · ν are sufficiently smooth and Γ1 is compact, there exists δ > 0 such
that m · ν ≥ δ > 0 for all x ∈ Γ1. Consequently, inserting the estimates (G1)− (G7)
into (5.57), we conclude that

δ1

∫ T

S

E2
k(t)φ′(t)dt

≤ Cη

δ

∫ T

S

Ekφ
′
∫

Γ1

(m · ν)|ukνν |2dΓdt+
R2

η

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt

+
Cη

δ

∫ T

S

Ekφ
′
∫

Γ1

(m · ν)|ukνν |2dΓdt+
1

η

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt

+
η

δ

∫ T

S

Ekφ
′
∫

Γ1

(m · ν)|ukνν |2dΓdt+
R2

η

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt

+ Cγ

∫ T

S

E2
kφ
′dt+

(n− 1)2

4γ

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt

+ Cγ

∫ T

S

E2
kφ
′dt+

(n− 1)2

4γ

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt

+ (
LC

2
+ C)Ek

2(S) + CEk
2(S)φ′(S) + δ2

∫ T

S

Ekφ
′
∫

Ω

|uk|2dxdt

+

∫ T

S

Ekφ
′
∫

Γ1

|ukt |2(m · ν)dΓdt−
∫ T

S

Ekφ
′
∫

Γ1

|ukνν |2(m · ν)dΓdt.(5.69)
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Taking η, γ small enough such that δ1 − 2Cγ > 0 and 1 − η
δ −

2Cη
δ > 0, then we

have ∫ T

S

E2
k(t)φ′(t)dt

≤ C1

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt+ C2

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt

+ C3Ek
2(S) + C4Ek

2(S)φ′(S) + C5

∫ T

S

Ekφ
′
∫

Γ1

|ukt |2(m · ν)dΓdt

+ C6

∫ T

S

Ekφ
′
∫

Ω

|uk|2dxdt,(5.70)

where Ci, i = 1, · · · , 6 are positive constants. Combining (5.56) and (5.70), it is
found that

[φ(T )− φ(S)]E2
k(S)

≤ C1

∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt )|2dΓdt

+ C2

∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt)|2dΓdt+ C3Ek
2(S) + C4Ek

2(S)φ′(S)

+ C5

∫ T

S

Ekφ
′
∫

Γ1

|ukt |2(m · ν)dΓdt+ C6

∫ T

S

Ekφ
′
∫

Ω

|uk|2dxdt

− 2[φ(T )− φ(S)]
1

φ′(T )
φ′(T )

∫ T

S

Ek(t)

∫
Γ1

f2(ukt (t))ukt (t)dΓdt

− 2[φ(T )− φ(S)]
1

φ′(T )
φ′(T )

∫ T

S

Ek(t)

∫
Γ1

f1(ukνt(t))u
k
νt(t)dΓdt.(5.71)

Furthermore, considering that φ′(t) is a non-increasing function, it is inferred that

[φ(T )− φ(S)− C3 − C4φ
′(S)]E2

k(S)

≤
(
C1 +

φ(T )

φ′(T )

)∫ T

S

Ekφ
′
∫

Γ1

|f2(ukt (t))|2dΓdt

+

(
C1 +

φ(T )

φ′(T )

)∫ T

S

Ekφ
′
∫

Γ1

|f1(ukνt(t))|2dΓdt

+

(
C5 +

φ(T )

φ′(T )

)∫ T

S

Ekφ
′
∫

Γ1

|ukt (t)|2dΓdt

+
φ(T )

φ′(T )

∫ T

S

Ekφ
′
∫

Γ1

|ukνt(t)|
2dΓdt+ C6

∫ T

S

Ekφ
′
∫

Ω

|uk|2dxdt.(5.72)

Since φ(t) → +∞ as t → +∞, for a large T , it is noted that φ(T ) − φ(S) − C3 −
C4φ

′(S) > 0. Thus, using Poincaré inequality again, we deduce that

Ek(S) ≤ C(S, T, φ, φ′)

{∫ T

S

φ′
∫

Γ1

|f2(ukt )|2dΓdt+

∫ T

S

φ′
∫

Γ1

|f1(ukνt)|2dΓdt

+

∫ T

S

φ′
∫

Γ1

|ukνt|
2dΓdt+

∫ T

S

φ′
∫

Ω

|ukν |2dxdt

}
.
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Dividing both sides of the last inequality by
∫ T
S
φ′
∫

Ω
|∇uk|2dxdt, then for very

t ∈ [S, T ], where 0 ≤ S < T < +∞, we have that

Ek(t)∫ T
S
φ′
∫

Ω
|∇uk|2dxdt

≤ C(S, T, φ, φ′)

×

{∫ T
S
φ′
∫

Γ1
|f2(ukt )|2dΓdt+

∫ T
S
φ′
∫

Γ1
|f1(ukνt)|2dΓdt+

∫ T
S
φ′
∫

Γ1
|ukνt|2dΓdt∫ T

S
φ′
∫

Ω
|∇uk|2dxdt

+ 1

}
.

(5.73)

By (5.25), we know that
(5.74)

lim
k→∞

∫ T
S
φ′
∫

Γ1
(f1(ukνt))

2dΓdt+
∫ T
S
φ′
∫

Γ1
(f2(ukt ))2dΓdt+

∫ T
S
φ′
∫

Γ1
|ukνt|2dΓdt∫ T

S
φ′
∫

Ω
|∇uk|2dxdt

= 0,

therefore, there exists Ñ > 0 such that

Ek(t)

c2k
≤ C(S, T, φ, φ′)(Ñ + 1),(5.75)

for all t ∈ [S, T ], 0 ≤ S < T < +∞. Combining (5.51) and (5.75), we have that

Ẽk(t) ≤ ρ+ 2

ρ

1

c2k
Ek(t) ≤ ρ+ 2

ρ
C(S, T, φ, φ′)(N + 1),(5.76)

which implies

‖ũkt ‖22 + ‖4ũk‖22 ≤
2(ρ+ 2)

ρ
C(S, T, φ, φ′)(N + 1),(5.77)

for all t ∈ [S, T ], 0 ≤ S < T < +∞.
Hence, there exists a subsequence of the sequence {ũk}, still denoted by {ũk},

which satisfies

ũk −→ ũ in L∞(0, T ;V ) weakly star, k −→∞,(5.78)

ũkt −→ ũt in L∞(0, T ;L2(Ω)) weakly star, k −→∞,(5.79)

ũk −→ ũ in L2(0, T ;L2(Ω)) strongly, k −→∞.(5.80)

In addition, ũk also satisfies
ũktt = −42ũk + |uk|ρũk, (x, t) ∈ Ω× (0,∞),

ũk = ũkν = 0, (x, t) ∈ Γ0 × (0,∞),

ũkνν = −f1(ukνt)
1
ck
, ũkννν = f2(ukt ) 1

ck
, (x, t) ∈ Γ1 × (0,∞).

(5.81)

From (5.74), we see that

lim
k→∞

∫ T
S
φ′
∫

Γ1
(f2(ukt ))2dΓdt

c2k
= 0.(5.82)

Since

0 ≤ φ′(T )

∫ T

S

∫
Γ1

∣∣∣∣f2(ukt )

ck

∣∣∣∣2 dΓdt ≤
∫ T
S
φ′
∫

Γ1
|f2(ukt )|2dΓdt

c2k
,(5.83)
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we thereby have

lim
k→∞

∫ T

S

∫
Γ1

∣∣∣∣f2(ukt )

ck

∣∣∣∣2 dΓdt = 0,(5.84)

which implies

f2(ukt )

ck
→ 0 in L2(0, T ;L2(Γ1)) as k → +∞.(5.85)

Making use of the same procedure used to prove (5.85), we deduce that

f1(ukνt)

ck
→ 0 in L2(0, T ;L2(Γ1)) as k → +∞.(5.86)

Further, there appear the relation∫ T

0

∫
Ω

||uk|ρũk|2dxdt =

∫
QT

|uk|2ρ|ũk|2dxdt

=

∫
|uk|≤ε

|uk|2ρ|ũk|2dxdt+

∫
|uk|>ε

|uk|2ρ|ũk|2dxdt.(5.87)

Considering that |y|ρ is a continuous in R, so we define M̃ε = sup|y|≤ε |y|ρ. There-
fore, we obtain∫ T

0

∫
Ω

||uk|ρũk|2dxdt ≤ M̃2
ε ‖ũk‖2L2(Q) + c2ρk ‖ũ

k‖2ρ+2
L2ρ+2(Q).(5.88)

Combining (5.77) and hypotheses (A1), we deduce from the (5.88) that∫ T

0

∫
Ω

||uk|ρũk|2dxdt ≤ C[M2
ε + c2ρk ].(5.89)

Then, taking ε→ 0 and k → +∞, we get that

|uk|ρũk → 0 in L2(0, T ;L2(Ω)).(5.90)

From what has been discussed above, passing to the limit in (5.81) as k → +∞, we
have 

ũtt +42ũ = 0, (x, t) ∈ Ω× (0,∞),

ũ = ũν = 0, (x, t) ∈ Γ0 × (0,∞),

ũνν = 0, ũννν = 0, (x, t) ∈ Γ1 × (0,∞).

(5.91)

Differentiating (5.91) with respect to t and taking v = ũt, we conclude that
vtt +42v = 0, (x, t) ∈ Ω× (0,∞),

v = vν = 0, (x, t) ∈ Γ0 × (0,∞),

vνν = 0, vννν = 0, (x, t) ∈ Γ1 × (0,∞).

(5.92)

Applying the standard uniqueness results of [16](see Chapter 6) or the uniqueness
results of [29] to our context again, it comes that v = 0, that is ũt = 0. Returning
to the equation (5.91), we obtain

42ũ = 0, x ∈ Ω,

ũ = ũν = 0, x ∈ Γ0,

ũνν = 0, ũννν = 0, x ∈ Γ1.

(5.93)
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Multiplying the above problem by ũ, we see that

0 = −
∫

Ω

(42ũ)ũdx = −
∫

Ω

|4ũ|2dx = −‖ũ‖2V ,(5.94)

which implies that ũ = 0. But from the (5.48) and (5.80), we conclude that ũ 6= 0.
This is a contraction. This completes the proof of Lemma 5.1. �

On the basis of Lemma 5.1, we are now in positive to give the straightforward
proof of Theorem 2.3.

Proof of Theorem 2.3. Inserting the results of Lemma 5.1 into (5.23) and then using
the similar calculation as (5.57) to (5.70), we have that∫ T

S

E2(t)φ′(t)dt

≤ C̃1E(S)

∫ T

S

φ′
∫

Γ1

|f2(ut)|2dΓdt+ C̃2E(S)

∫ T

S

φ′
∫

Γ1

|f1(uνt)|2dΓdt

+ C̃3E
2(S) + C̃4E

2(S)φ′(S) + C̃5E(S)

∫ T

S

φ′
∫

Γ1

|ut|2(m · ν)dΓdt

+ C̃6E(S)

∫ T

S

φ′
∫

Γ1

|uνt|2dΓdt.(5.95)

Analysis of J1 =
∫ T
S
φ′
∫

Γ1
|uνt|2dΓdt.

For every t ≥ 1, let us define the following partition of Γ1:
Γ1,1 = {x ∈ Γ1 : |uνt| ≤ h1(t)},
Γ1,2 = {x ∈ Γ1 : h1(t) < |uνt| ≤ h1(1)},
Γ1,3 = {x ∈ Γ1 : |uνt| > h1(1)},

(5.96)

where Γ1,1,Γ1,2,Γ1,3 depend on t ∈ R+ and h1(t) = g−1
1 (φ′(t)) is a decreasing

positive function and satisfies h1(t)→ 0, as t→ +∞.
Estimate of Γ1,3 : we note that h1(1) = 0⇔ g−1

1 (φ′(1)) = 0⇔ φ′(1) = g1(0) = 0.
But, if φ′(1) = 0, we have for t ≥ 0 that φ′(t) ≤ φ′(1) = 0. Consequently, φ′(t) = 0,
∀ t ≥ 1, which contradicts the fact that φ is a strictly increasing function. Thus,
we have h1(1) > 0.

If h1(1) > 1, we obtain from the hypotheses (A2) that |f1(uνt)| ≥ C11|uνt|.
If h1(1) ≤ 1, we observe that the function F : y → f1(y)

y is a positive and

continuous on [−1,−h1(1)]∪ [h1(1), 1], which implies that there exists a constant

β1 > 0 such that f1(y)
y ≥ β1, that means |f1(uνt)| ≥ β1|uνt|.

So we conclude that |uνt| ≤ 1
d0
|f1(uνt)|, where d0 = min{C11, β1}. Therefore, we

have ∫ T

S

φ′
∫

Γ1,3

|uνt|2dΓdt ≤ 1

d0

∫ T

S

φ′
∫

Γ1,3

|uνt||f1(uνt)|dΓdt

≤ 1

d0
φ′(S)

∫ T

S

∫
Γ1,3

uνtf1(uνt)dΓdt

≤ 1

d0
φ′(S)

∫ T

S

−E′(t)dt ≤ φ′(S)

d0
E(S).(5.97)
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Estimate of Γ1,2 : considering that g1 is an increasing function, it follows that
φ′(t) = g1(h1(t))≤ g1(|uνt|)≤ |g1(uνt)|.

If h1(1) < 1, we deduce that |uνt| < 1. By the hypotheses (A2), we get
that |g1(uνt)| ≤ |f1(uνt)| ≤ |g−1

1 (uνt)|. Thus, it follows that |uνt|2|g1(uνt)| ≤
|uνt|2|f1(uνt)| ≤ |uνt||f1(uνt)|.

If h1(1) ≥ 1 and |uνt| ∈ [1, h1(1)], we have that −h1(1) ≤ uνt ≤ h1(1). Since
g1 is an increasing and odd function, it is found that |g1(uνt)| ≤ |g1(h1(1))|. Thus,
taking into account that C11|uνt| ≤ |f1(uνt)|, we have

1

g1(h1(1))
≤ 1

|g1(uνt)|
≤ |f1(uνt)|
C11|uνt||g1(uνt)|

=
|f1(uνt)||uνt|

C11|uνt|2|g1(uνt)|
,(5.98)

which implies that

|uνt|2|g1(uνt)| ≤
g1(h1(1))

C11
uνtf1(uνt).

Hence, we discover that |uνt|2|g1(uνt)| ≤ d1uνtf1(uνt), where d1 =

min{1, g1(h1(1))
C11

}. Furthermore, taking into account that |φ′(t)| = |g1(h1(t))| ≤
|g1(uνt)|, we obtain that∫ T

S

φ′
∫

Γ1,2

|uνt|2dΓdt ≤
∫ T

S

∫
Γ1,2

|uνt|2|g1(uνt)|dΓdt

≤ d1

∫ T

S

∫
Γ1,2

|uνt||f1(uνt)|dΓdt

≤ d1

∫ T

S

∫
Γ1

|uνt||f1(uνt)|dΓdt

≤ d1

∫ T

S

−E′(t)dt ≤ d1E(S).(5.99)

Estimate of Γ1,1 : thanks to the definition of this part of the boundary, we have
that ∫ T

S

φ′
∫

Γ1,1

|uνt|2dΓdt ≤
∫ T

S

∫
Γ1,1

|h1(t)|2dΓdt

≤ meas(Γ)

∫ T

S

φ′(t)(g−1
1 (φ′(t)))2dt.(5.100)

Therefore, in view of (5.97)-(5.100), there appears the relation∫ T

S

φ′
∫

Γ1

|uνt|2dΓdt ≤ L1E(S) + L2

∫ T

S

φ′(t)(g−1
1 (φ′(t)))2dt,(5.101)

where L1, L2 are positive constants.

Analysis of J2 =
∫ T
S
φ′
∫

Γ1
|ut|2dΓdt.

For every t ≥ 1, let us define the following partition of Γ1:
Γ1,4 = {x ∈ Γ1 : |uνt| ≤ h1(t)},
Γ1,5 = {x ∈ Γ1 : h1(t) < |uνt| ≤ h1(1)},
Γ1,6 = {x ∈ Γ1 : |uνt| > h1(1)},

(5.102)

where Γ1,4,Γ1,5,Γ1,6 depend on t ∈ R+ and h2(t) = g−1
2 (φ′(t)) is a decreasing

positive function which satisfies h2(t)→ 0, as t→ +∞.
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By a straightforward adaptation of the above result (5.101), we also obtain that∫ T

S

φ′
∫

Γ1

|ut|2dΓdt ≤ L3E(S) + L4

∫ T

S

φ′(t)(g−1
2 (φ′(t)))2dt,(5.103)

where L3, L4 are positive constants.

Analysis of J3 =
∫ T
S
φ′
∫

Γ1
|f1(uνt)|2dΓdt.

For every t ≥ 1, let us define the following partition of Γ1:
Γ1,7 = {x ∈ Γ1 : |uνt| ≤ φ′(t)},
Γ1,8 = {x ∈ Γ1 : φ′(t) < |uνt| ≤ φ′(1)},
Γ1,9 = {x ∈ Γ1 : |uνt| > φ′(1)},

(5.104)

where Γ1,7,Γ1,8,Γ1,9 depend on t ∈ R+.
Estimate of Γ1,9 : if φ′(1) = 0, we have that for all t ≥ 1, φ′(t) ≤ φ′(1) = 0.

Consequently, φ′(t) = 0, ∀ t ≥ 1, which contradicts the fact that φ(t) is a strictly
increasing function. Then, φ′(1) > 0.

If φ′(1) > 1, we obtain from the hypotheses (A2) that |f1(uνt)| ≤ C12|uνt|.
If φ′(1) ≤ 1, we observe that the function F : y → f1(y)

y is a positive and

continuous on [−1,−φ′(1)]∪ [φ′(1), 1] which implies that there exists a constant

β2 > 0 such that f1(y)
y ≤ β2, that means |f1(uνt)| ≤ β2|uνt|.

We conclude that |f1(uνt)| ≤ d3|uνt|, where d3 = max{C12, β2}. Therefore, we
have that∫ T

S

φ′
∫

Γ1,9

|f1(uνt)|2dΓdt ≤ d3

∫ T

S

φ′
∫

Γ1,9

|uνt||f1(uνt)|dΓdt

≤ d3φ
′(S)

∫ T

S

∫
Γ1,9

uνtf1(uνt)dΓdt

≤ d3φ
′(S)

∫ T

S

−E′(t)dt ≤ d3φ
′(S)E(S).(5.105)

Estimate of Γ1,8 : considering the monotonicity of f1, f1(φ′(t)) < f1(|uνt|) ≤
f1(φ′(1)), and the boundary conditions of this part, we discover that∫ T

S

φ′
∫

Γ1,8

|f1(uνt)|2dΓdt ≤ f1(φ′(1))

∫ T

S

∫
Γ1,8

|uνt||f1(uνt)|dΓdt

≤ C
∫ T

S

∫
Γ1,8

uνtf1(uνt)dΓdt ≤ CE(S).(5.106)

Estimate of Γ1,7 : if φ′(1) ≤ 1, we have from the hypotheses (A2) that |f1(uνt)| ≤
|g−1

1 (uνt)| ≤ |g−1
1 (φ′(t))|. Then,∫ T

S

φ′
∫

Γ1,7

|f1(uνt)|2dΓdt ≤
∫ T

S

φ′
∫

Γ1,7

|g−1
1 (uνt)|2dΓdt

≤
∫ T

S

φ′
∫

Γ1,7

|g−1
1 (φ′(t))|2dΓdt

≤ meas(Γ)

∫ T

S

φ′(t)(g−1
1 (φ′(t)))2dt.(5.107)
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If φ′(1) > 1, then |uνt| ∈ [1, φ′(t)]. From the hypotheses (A2), we obtain
|f1(uνt)| ≤ C12|uνt|, and∫ T

S

φ′
∫

Γ1,7

|f1(uνt)|2dΓdt ≤ C12

∫ T

S

φ′
∫

Γ1,7

|uνt||f1(uνt)|dΓdt

≤ C12φ
′(S)

∫ T

S

∫
Γ1,7

uνtf1(uνt)dΓdt

≤ C12φ
′(S)

∫ T

S

−E′(t)dt ≤ φ′(S)C12E(S).(5.108)

Therefore, combining (5.105)-(5.108), we have∫ T

S

φ′
∫

Γ1

|f1(uνt)|2dΓdt ≤ L5E(S) + L6

∫ T

S

φ′(t)(g−1
1 (φ′(t)))2dt,(5.109)

where L5, L6 are positive constants.

Analysis of J4 =
∫ T
S
φ′
∫

Γ1
|f2(ut)|2dΓdt.

For every t ≥ 1, let us define the following partition of Γ1:
Γ1,10 = {x ∈ Γ1 : |ut| ≤ φ′(t)},
Γ1,11 = {x ∈ Γ1 : φ′(t) < |ut| ≤ φ′(1)},
Γ1,12 = {x ∈ Γ1 : |ut| > φ′(1)},

(5.110)

where Γ1,10,Γ1,11,Γ1,12 depend on t ∈ R+.
Using the analogous arguments as (5.109), we obtain∫ T

S

φ′
∫

Γ1

|f2(ut)|2dΓdt ≤ L7E(S) + L8

∫ T

S

φ′(t)(g−1
2 (φ′(t)))2dt,(5.111)

where L7, L8 are positive constants.
Inserting (5.101), (5.103), (5.109) and (5.111) into inequality (5.95), it follows

that ∫ T

S

E2(t)φ′(t)dt ≤ C̃ ′1E2(S) + C̃ ′2E
2(S)φ′(S)

+ C̃ ′3E(S)

∫ T

S

φ′(t)(g−1
1 (φ′(t)))2dt

+ C̃ ′4E(S)

∫ T

S

φ′(t)(g−1
2 (φ′(t)))2dt.(5.112)

Now assume that φ satisfies the following additional properties:∫ ∞
1

φ′(t)(g−1
1 (φ′(t)))2dt and

∫ ∞
1

φ′(t)(g−1
2 (φ′(t)))2dt are convergence.(5.113)

These properties are closely related to the behavior of gi (i = 1, 2) near 0 and the
decay rate of φ′ at infinity. Thus, we deduce from (5.112) and (5.113) that there
exists positive constants C such that

∀ S ≥ 1,

∫ ∞
S

E2(t)φ′(t)dt ≤ CE2(S) + CE(S)

∫ ∞
S

φ′(t)(g−1
1 (φ′(t)))2dt

+ CE(S)

∫ ∞
S

φ′(t)(g−1
2 (φ′(t)))2dt.(5.114)
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Next, the main problem is to find a strictly increasing function, which satisfies
the following conditions:

φ(t) is concave and φ(t)→ +∞ as t→ +∞,

φ′(t)→ 0 as t→ +∞,∫ ∞
1

φ′(t)(g−1
1 (φ′(t)))2dt and

∫ ∞
1

φ′(t)(g−1
2 (φ′(t)))2dt are convergence.

We consider, without loss of generality, that φ(1) = 1. From this fact, observing
that φ−1(t) → +∞ as t → +∞ and taking into account the change of variable
τ = φ(t), one have that
(5.115)∫ ∞

1

φ′(t)(g−1
1 (φ′(t)))2dt =

∫ ∞
1

(g−1
1 (φ′(φ−1(τ))))2dτ =

∫ ∞
1

(g−1
1 (

1

(φ−1)′(τ)
))2dτ,

(5.116)∫ ∞
1

φ′(t)(g−1
2 (φ′(t)))2dt =

∫ ∞
1

(g−1
2 (φ′(φ−1(τ))))2dτ =

∫ ∞
1

(g−1
2 (

1

(φ−1)′(τ)
))2dτ.

Let us define the auxiliary functions ψ1, ψ2 on [1,∞) by

∀ t ≥ 1, ψ1(t) =
1

2
+

∫ t

1

1

g1( 1
τ )
dτ,(5.117)

∀ t ≥ 1, ψ2(t) =
1

2
+

∫ t

1

1

g2( 1
τ )
dτ.(5.118)

Then ψ1, ψ2 are strictly increasing functions of C2 on [1,∞) and satisfy

∀ t ≥ 1, ψ′1(t) =
1

g1( 1
t )
→ +∞, as t→ +∞,(5.119)

∀ t ≥ 1, ψ′2(t) =
1

g2( 1
t )
→ +∞, as t→ +∞,(5.120)

and
(5.121)∫ ∞

1

(g−1
1 (

1

ψ′1(τ) + ψ′2(τ)
))2dτ ≤

∫ ∞
1

(g−1
1 (

1

ψ′1(τ)
))2dτ =

∫ ∞
1

1

τ2
dτ < +∞,

(5.122)∫ ∞
1

(g−1
2 (

1

ψ′1(τ) + ψ′2(τ)
))2dτ ≤

∫ ∞
1

(g−1
2 (

1

ψ′2(τ)
))2dτ =

∫ ∞
1

1

τ2
dτ < +∞.

By a direct computation, we can show that ψ′′1 (t), ψ′′2 (t) ≥ 0 which imply that ψ′1, ψ
′
2

are non-increasing functions and ψ1, ψ2 are convex. Furthermore, let ψ = ψ1 + ψ2,
then it is easy to verify that ψ−1(t) is concave on [1,∞). Take two derivatives of
the expression ψ(ψ−1(t)) = t, we deduce that

(ψ−1)′′(t) = −ψ
′′(ψ−1(t))((ψ−1)′(t))2

ψ′(ψ−1(t))
= − ψ′′(ψ−1(t))

(ψ′(ψ−1(t)))3
≤ 0.(5.123)

That is why we define φ on [1,∞) by

φ(t) = (ψ1 + ψ2)−1(t) = (ψ)−1(t).(5.124)
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Thus φ is a strictly increasing concave function of class C2 on [1,∞), which satisfies
all the assumptions we made in our computation. In addition, we deduce that

φ′(t) =
1

ψ′(φ(t))
=

1

ψ′1(φ(t)) + ψ′2(φ(t))

=
1

1
g1( 1

φ(t)
)

+ 1
g2( 1

φ(t)
)

=
g1( 1

φ(t) )g2( 1
φ(t) )

g1( 1
φ(t) ) + g2( 1

φ(t) )
→ 0.(5.125)

Note that φ(1) = 1, because ψ(1) = ψ1(1) +ψ2(1) = 1, and φ′(1) = g1(1)g2(1)
g1(1)+g2(1) ≤

1
2 ,

so it is easy to extend φ on [0,∞) such that it remains a concave and strictly
increasing nonnegative function on [0,∞). Thus, we have explicitly constructed a
function φ that satisfies the all the conditions of Lemma 2.3.

Furthermore, we deduce from the (5.114) that∫ ∞
S

E2(t)φ′(t)dt ≤ CE2(S) + CE(S)

∫ ∞
φ(S)

φ′(t)(g−1
1 (φ′(t)))2dt

+ CE(S)

∫ ∞
S

φ′(t)(g−1
2 (φ′(t)))2dt

= CE2(S) + CE(S)

∫ ∞
φ(S)

(
g−1

1

(
φ′(φ−1(t)

))2
dt

+ CE(S)

∫ ∞
φ(S)

(
g−1

2

(
φ′(φ−1(t)

))2
dt

= CE2(S) + CE(S)

∫ ∞
φ(S)

(
g−1

1

(
1

(φ−1)′(τ)

))2

dt

+ CE(S)

∫ ∞
φ(S)

(
g−1

2

(
1

(φ−1)′(τ)

))2

dt

≤ CE2(S) + CE(S)

∫ ∞
φ(S)

1

t2
dt

= CE2(S) +
CE(S)

φ(S)
, ∀ S ≥ 1.(5.126)

We define F (t) = E(t+ 1) and Φ(t) = φ(t+ 1)− 1 on [0,+∞), then (5.126) implies
that ∫ ∞

S

F 2(t)Φ′(t)dt ≤ CF 2(S) +
CF (S)

1 + Φ(S)
, ∀ S ≥ 0.(5.127)

Noting that the function F (t) and Φ(t) satisfy all the assumptions of Lemma 2.2
with σ = σ′ = 1, so we obtain a decay rate estimate:

∀ t ≥ 0, F (t) ≤ C

(1 + Φ(t))2
.(5.128)

By the method of variable substitution, we also obtain

∀ t ≥ 1, E(t) ≤ C

φ2(t)
,(5.129)

where C is depending on E(1) in a continuous way.
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Finally, it remains to estimate the growth of φ. Setting τ0 such that

g1

(
1

τ0

)
≤ 2 and g2

(
1

τ0

)
≤ 2.(5.130)

Using the monotonicity of gi i = 1, 2, we have

∀ τ ≥ τ0, ψ1(τ) =
1

2
+

∫ τ

1

1

g1( 1
s )
ds ≤ 1

2
+ (τ − 1)

1

g1( 1
τ )

=
1

2
+ τ

1

g1( 1
τ )
− 1

g1( 1
τ )
≤ τ 1

g1( 1
τ )
,

∀ τ ≥ τ0, ψ2(τ) =
1

2
+

∫ τ

1

1

g2( 1
s )
ds ≤ 1

2
+ (τ − 1)

1

g2( 1
τ )

=
1

2
+ τ

1

g2( 1
τ )
− 1

g2( 1
τ )
≤ τ 1

g2( 1
τ )
.

Hence, we have that

ψ1(τ) + ψ2(τ) = ψ(τ) ≤ τ 1

g1( 1
τ )

+ τ
1

g2( 1
τ )
,(5.131)

which implies that

τ ≤ ψ−1

(
τ

1

g1( 1
τ )

+ τ
1

g2( 1
τ )

)
= φ

(
τ

1

g1( 1
τ )

+ τ
1

g2( 1
τ )

)
.(5.132)

Taking into account that

t = τ
1

g1( 1
τ )

+ τ
1

g2( 1
τ )

= τ
g1( 1

τ ) + g2( 1
τ )

g1( 1
τ )g2( 1

τ )
=

1

G( 1
τ )
,(5.133)

so we have

1

φ(t)
≤ 1

τ
= G−1(

1

t
),(5.134)

where the function G(y) = y g1(y)g2(y)
g1(y)+g2(y) . Thus, we thereby conclude that

∀ t ≥ 1, E(t) ≤ C
(
G−1

(
1

t

))2

,(5.135)

which completes the proof of Theorem 2.3. �
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