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A NOTE ON SIGN-CHANGING SOLUTIONS FOR THE

SCHRÖDINGER POISSON SYSTEM
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(Communicated by Chunlai Mu)

Abstract. We consider the following nonlinear Schrödinger-Poisson system{
−∆u+ u+ λφ(x)u = f(u) x ∈ R3,

−∆φ = u2, lim|x|→∞ φ(x) = 0 x ∈ R3,

where λ > 0 and f is continuous. By combining delicate analysis and the

method of invariant subsets of descending flow, we prove the existence and

asymptotic behavior of infinitely many radial sign-changing solutions for odd
f . The nonlinearity covers the case of pure power-type nonlinearity f(u) =

|u|p−2u with the less studied situation p ∈ (3, 4). This result extends and

complements the ones in [Z. Liu, Z. Q. Wang, and J. Zhang, Ann. Mat. Pura
Appl., 2016] from the coercive potential case to the constant potential case.

1. Introduction

In this paper, we are concerned with the existence of sign-changing solutions for
the Schrödinger-Poisson system

(1)

−∆u+ u+ λφ(x)u = f(u) x ∈ R3,

−∆φ = u2, lim
|x|→∞

φ(x) = 0 x ∈ R3,

where λ > 0 is fixed and f satisfies

(f1): f ∈ C(R,R) and lim
s→0

f(s)
s = 0;

(f2): lim sup
|s|→∞

|f(s)|
|s|p−1 <∞ for some p ∈ (3, 6);

(f3): there exists µ > 3 such that sf(s) ≥ µF (s) > 0 for all s 6= 0.

This system arises from the study of quantum mechanics and describes the inter-
action of a charged particle with an electromagnetic field. For more details on the
physical aspect of (1), one can refer to [3] and references therein.

System (1) has been studied extensively in the last twenty years, and there are
fruitful results on the existence, nonexistence and multiplicity of radial positive
solutions [1, 2, 9, 11]. In particular, when f(u) = |u|p−2u, Ruiz [9] proved that if
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λ > 1
4 , there is no nontrivial solution when p ∈ (2, 3], and if λ > 0, there is one

radial positive solution when p ∈ (3, 6). This result shows that p = 3 is a critical
value for the existence of positive solutions. Later, Ambrosetti and Ruiz [1] proved
that for any λ > 0, system (1) admits infinitely many solutions for p ∈ (3, 6). Seok
[11] extended this result for general nonlinearity.

However, the signs of these solutions are not known in the above papers. When
f(u) = |u|p−2u and p ∈ (4, 6), Kim and Seok [6] and Ianni [5] proved the existence
of radial solutions of (1) with prescribed numbers of nodal domains by using Nehari
type manifold and heat flow method, respectively. Wang and Zhou [13] obtained
a least energy sign-changing solution of (1) in H1

r (R3), and Guo [4] proved the
nonexistence of least energy nodal solution in H1(R3) and H1

odd(R3). Recall that
a solution (u, φ) of (1) is called a sign-changing solution if u changes its sign. For
more related results, please see [4, 5, 6, 11, 13] and references therein. However, as
far as we know, when p ∈ (3, 4), there is few result on infinitely many sign-changing
solutions in the literature except [8]. In [8], Liu, Wang and Zhang obtained infinitely
many sign-changing solutions to the Schrodinger Poisson system

(2)

−∆u+ V (x)u+ φ(x)u = f(u) x ∈ R3,

−∆φ = u2, lim
|x|→∞

φ(x) = 0 x ∈ R3,

where f satisfies (f1)-(f3) and V is coercive, i.e. lim|x|→∞ V (x) = +∞ and
infx∈R3 V (x) > 0, and satisfies some suitable conditions. A natural and interest-
ing question arises whether system (2) admits a sign-changing solution or infinitely
many sign-changing solutions for odd f when V ≡ constant. To the best of our
knowledge, this question is still unknown. In this paper, we shall give a positive
answer. For simplicity, we assume that V ≡ 1 and our result is as follows.

Theorem 1.1. Assume that (f1)-(f3) hold. Then for any λ > 0, problem (1)
has one radial sign-changing solution. Furthermore, if f is odd, then problem (1)
possesses infinitely many radial sign-changing solutions. Moreover, these solutions
converge to the solutions of the limit problem

(3) −∆u+ u = f(u) in R3,

as λ→ 0+.

When p ∈ (3, 4), the main difficulty lies in whether or not a (P.S.) sequence of
the action functional associated with (1) is bounded. Recall that Liu, Wang and
Zhang [8] overcame this difficulty by introducing a family of auxiliary equations
approximating (2). They can deduce that any (P.S.) sequence of these action func-
tionals associated with the family of auxiliary equations is bounded, which relies
essentially on the compactly embedding theorem E ↪→ L2(R3), where E := {u ∈
D1,2(R3) :

∫
R3 V (x)u2 < ∞}. However, in view of (1), even if the radial Sobolev

space H1
r (R3) is considered, the arguments in [8] can not be applied directly, be-

cause H1
r (R3) ↪→ L2(R3) is not compact. This results in that we have to resort

to new techniques to overcome the difficulties in establishing the (P.S.) condition
and constructing the invariant subsets of the descending flow. So Strauss’s radial
lemma and some delicate analysis are needed to prove the existence and multiplic-
ity results for sign-changing solutions. Besides, the asymptotic behaviors of these
solutions will be also investigated.
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The outline of this paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, we prove the existence results for the auxiliary equation.
Based on these existence results, Section 4 is devoted to the proof of Theorem 1.1.

2. Preliminaries

In this paper, we collect the following notations and assumptions.

• Let H1(R3) and D1,2(R3) be, respectively, endowed with the inner product
(u, v) =

∫
R3 ∇u∇v+ uv and (u, v)D1,2 =

∫
R3 ∇u∇v. So their corresponding

norms are ‖u‖ := (
∫
R3 |∇u|2 + u2)1/2 and ‖u‖D1,2 = (

∫
R3 |∇u|2)1/2, respec-

tively. Let H−1(R3) be the dual space of H1(R3) and 〈·, ·〉 denote its duality
pairing.
• ‖u‖Ls := (

∫
|u|s)1/s for u ∈ Ls(R3) and we use

∫
instead of

∫
R3 for simplic-

ity.
• C,Cj denote possibly different positive constants.

For any given u ∈ H1(R3), the Lax-Milgram theorem shows that there is a unique

φu =
1

4π

∫
R3

u2(y)

|x− y|
dy ∈ D1,2(R3)

such that −∆φu = u2. As is well known, by substituting φ = φu, the system (1) is
equivalent to a single equation

(4) −∆u+ u+ λφuu = f(u), u ∈ H1(R3).

Its corresponding functional Iλ : H1(R3)→ R is defined by

(5) Iλ(u) :=
1

2
‖u‖2 +

λ

4

∫
φuu

2 −
∫
F (u),

where F (u) =
∫ u

0
f(s)ds. It is easy to see that (u, φu) ∈ H1(R3) × D1,2(R3) is a

weak solution of (1) if and only if u ∈ H1(R3) is a critical point of Iλ. By standard
regularity argument, the weak solutions are also classical solutions of (1)(see [9]).
We now list some properties of φu for whose proofs one can refer to [2, 9].

Lemma 2.1. The following properties hold:

(i): φu ≥ 0, and φu is radial if u is radial;
(ii):

∫
φuu

2 ≤ C‖u‖4;

(iii): φun → φu if un → u in L12/5(R3).

Denote D(u, v) = 1
4π

∫ ∫ u(x)v(y)
|x−y| dxdy. Then D(u2, u2) =

∫
φuu

2 for u ∈ H1
r (R3).

Now we give the following lemma.

Lemma 2.2. The following statements are true:

(i): D2(u, v) ≤ D(u, u)D(v, v) for any u, v ∈ L6/5(R3);
(ii): D2(uv, uv) ≤ D2(u2, u2)D2(v2, v2) for any u, v ∈ L12/5(R3).

One can see [7, p.250] and [10] for the proofs of (i) and (ii). In the sequel, a
radial lemma is listed below, which is important for the proof of Theorem 1.1.

Lemma 2.3. (Radial lemma[12]) Let N ≥ 2. Then for all radial function u ∈
H1
r (RN ), there holds

|u(x)| ≤ a0|x|(1−N)/2‖u‖ for almost everywhere |x| ≥ 1,

where a0 depends only on N.
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3. The auxiliary equation and its results

In this section, we always assume λ > 0. Since µ > 3, it is usually not easy to
verify the P.S. condition. Motivated by [8], we first study an auxiliary equation.
Let r ∈ (max{4, p}, 6) and θ ∈ (0, 1], and consider the following auxiliary equation

(6) −∆u+ u+ λφuu = f(u) + θ|u|r−2u, u ∈ H1
r (R3).

Clearly, the corresponding functional is

Iλθ (u) = Iλ(u)− θ

r

∫
|u|rdx ∈ C1(H1

r (R3),R),

where Iλ(u) is defined as in (5). By the principle of symmetric criticality, a critical
point of Iλθ in H1

r (R3) is also a critical point of Iλθ in H1(R3). So we consider it in
the radial space H1

r (R3).
Note that for any u ∈ H1

r (R3), there exists a unique solution vθ ∈ H1
r (R3) to the

following equation

−∆v + v + λφuv = f(u) + θ|u|r−2u, u ∈ H1
r (R3).

We define an operator Aθ : H1
r (R3)→ H1

r (R3) by vθ = Aθ(u). Obviously, if f is odd,
Aθ is odd. Moreover, the following three statements are equivalent: u ∈ H1

r (R3) is
a solution of (6), u ∈ H1

r (R3) is a critical point of functional Iλθ , and u is a fixed
point of Aθ.

Define the positive and negative cone

P+ := {u ∈ H1
r (R3) : u ≥ 0} and P− := {u ∈ H1

r (R3) : u ≤ 0}.

For any ε > 0, set

P+
ε := {u ∈ H1

r (R3) : dist(u, P+) < ε}andP−ε := {u ∈ H1
r (R3) : dist(u, P−) < ε},

where dist(u, P±) := inf
v∈P±

‖u − v‖. Clearly, P−ε = −P+
ε and W := P+

ε ∪ P−ε is

open, symmetric in H1
r (R3). As stated in [8, Lemmas 3.1, 4.1, 4.3], the operator Aθ

is well defined and is continuous and compact; and there exists ε̄0 > 0 such that for
any ε ∈ (0, ε̄0), Aθ(∂P

±
ε ) ⊂ P±ε , and there exists C > 0 independent of θ such that

(7) ‖(Iλθ )′(u)‖ ≤ ‖u−Aθ(u)‖(1 + C‖u‖2), ∀ u ∈ H1
r (R3).

Lemma 3.1. For any a < b and α > 0, if u ∈ H1
r (R3) satisfies Iλθ (u) ∈ [a, b] and

‖(Iλθ )′(u)‖ ≥ α, then there exists β > 0 depending on θ such that ‖u−Aθ(u)‖ ≥ β.

Proof. Take γ ∈ (4, r). Then for u ∈ H1
r (R3), we have

Iλθ (u)− 1

γ
(u, u−Aθ(u)) =(

1

2
− 1

γ
)‖u‖2 + (

λ

4
− λ

γ
)

∫
φuu

2 +
λ

γ

∫
φuu(u−Aθ(u))

+

∫
(
1

γ
f(u)u− F (u)) + (

θ

γ
− θ

r
)

∫
|u|r.

By (f1) and (f2), it yields

‖u‖2 + λ

∫
φuu

2 + θ

∫
|u|r

≤C1

[
|Iλθ (u)|+ ‖u‖‖u−Aθ(u)‖+ ‖u‖pLp +

∣∣∣∣λ ∫ φuu(u−Aθ(u))

∣∣∣∣] .



SIGN-CHANGING SOLUTIONS FOR THE SCHRÖDINGER POISSON SYSTEM 199

Since Lemma 2.2 (i) and the Hardy-Littlewood-Sobolev inequality [7] imply that∣∣∣∣∫ φuu(u−Aθ(u))

∣∣∣∣ ≤ C2‖u‖‖u−Aθ(u)‖
(∫

φuu
2

)1/2

,

by the Young inequality, we get that

(8)
‖u‖2 +

λ

2

∫
φuu

2 + θ

∫
|u|r

≤C3

[
|Iλθ (u)|+ ‖u‖‖u−Aθ(u)‖+ ‖u‖pLp + ‖u‖2‖u−Aθ(u)‖2

]
.

Then we shall prove the lemma by contradiction. Suppose on the contrary that
there exists {un}n ⊂ H1

r (R3) with Iλθ (un) ∈ [a, b] and ‖(Iλθ )′(un)‖ ≥ α such that
‖un −Aθ(un)‖ → 0 as n→∞. Then it follows from (8) that for large n,

(9) ‖un‖2 +
λ

2

∫
φunu

2
n + θ

∫
|un|r ≤ C4(1 + ‖un‖pLp),

where C4 > 0 is independent of n.
Now, we claim that {un}n is bounded in H1

r (R3). Otherwise, suppose that
‖un‖ → ∞ as n→∞. Then it follows from (9) that for large n,

(10)
1

4
‖un‖2 +

λ

2

∫
φunu

2
n +

∫
(
1

2
u2
n + θ|un|r − C4|un|p) ≤ 0.

Define a function

h : R+ ∪ {0} → R, h(u) =
1

2
u2 + θ|u|r − C4|u|p.

Clearly, since p ∈ (3, r), h is positive for u → 0+ or u → +∞. So the value
m0 := min

R+∪{0}
h > −∞. If m0 = 0, the claim follows immediately. Hence we assume

m0 < 0. Obviously, the set {u > 0 : h(u) < 0} must be of the form (c, d) with
c, d > 0. It follows from (10) that

0 ≥ 1

4
‖un‖2 +

λ

2

∫
φunu

2
n +

∫
h(un)

≥ 1

4
‖un‖2 +

λ

2

∫
φunu

2
n +

∫
un∈(c,d)

h(un)

≥ 1

4
‖un‖2 +

λ

2

∫
φunu

2
n +m0|An|

where An = {x ∈ R3 : un(x) ∈ (c, d)} and |An| denotes its Lebesgue measure. Thus
we have

(11) |m0||An| ≥
1

4
‖un‖2 +

λ

2

∫
φunu

2
n →∞ as n→∞.

Note that the set An is spherically symmetric. Let ρn := sup{|x| : x ∈ An} and
take x ∈ R3 with |x| = ρn. According to real analysis, the functions are identified
if they are equal almost everywhere. So un(x) = c and by Lemma 2.3 and (11),

(12) 0 < c = un(x) ≤ a0|ρn|−1‖un‖ ≤ a0|ρn|−1(2|m0||An|)1/2 ⇒ C5ρn ≤ |An|1/2

for some C5 > 0 independent of n.
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On the other hand, the inequality (11) yields λ
2

∫
φunu

2
n ≤ |m0||An| and then

|m0||An| ≥
λ

2

∫
φunu

2
n ≥

λ

8π

∫
An

∫
An

u2
n(x)u2

n(y)

|x− y|
dxdy ≥ λc4

8π

∫
An

∫
An

1

|x− y|
dxdy

≥ λc4

8π

|An|2

2ρn
.

Thus,

C6ρn ≥ |An|
for some C6 > 0. Clearly, it yields a contradiction with (11) and (12). So the claim
is verified.

According to (7), it follows that ‖(Iλθ )′(un)‖ → 0 as n → ∞, which contradicts
our assumptions. Hence the proof is completed. �

Lemma 3.2. (P.S. condition) Let c ∈ R and {un}n ⊂ H1
r (R3) be a P.S. sequence

of (6) at level c, namely,

Iλθ (un)→ c and (Iλθ )′(un)→ 0 as n→∞.

Then {un}n has a convergent subsequence.

Proof. Let γ ∈ (4, r). Then

Iλθ (un)− 1

γ
〈(Iλθ )′(un), un〉

=(
1

2
− 1

γ
)‖un‖2 + (

λ

4
− λ

γ
)

∫
φunu

2
n +

∫
(
1

γ
f(un)un − F (un)) + (

θ

γ
− θ

r
)‖un‖rLr ,

and by (f1) and (f2), it follows

‖un‖2 + λ

∫
φunu

2
n + θ‖un‖rLr ≤ C(|Iλθ (un)|+ ‖un‖‖(Iλθ )′(un)‖+ ‖un‖pLp),

where C > 0 is independent of n. Furthermore, by the conditions and Young in-
equality, it follows that for n large enough,

‖un‖2 + λ

∫
φunu

2
n + θ‖un‖rLr ≤ C(1 + ‖un‖pLp).

As in the proof of Lemma 3.1, by using a similar argument as (9), one can deduce
that {un}n is bounded in H1

r (R3). Thus, without loss of generality, we assume
un ⇀ u in H1

r (R3) up to a subsequence. Since the embedding H1
r (R3) ↪→ Ls(R3)

(2 < s < 6) is compact, we deduce that
∫
F (un) →

∫
F (u) and then un → u in

H1
r (R3). The proof is completed. �

With the aid of Lemmas 3.1 and 3.2, one can use similar arguments as [8, Corol-
lary 3.1, Theorem 1.2] to prove that {P+

ε , P
−
ε } is an admissible family of invariant

subsets for small ε > 0 independent of λ and ν, and the following results hold true.
The interested readers can refer to [8] for the details, here we omit the proof.

Proposition 1. Suppose that f satisfies assumptions (f1)− (f3). Let θ ∈ (0, 1] and
r ∈ (max{4, p}, 6). Then

(i): equation (6) has one sign-changing solution uλθ ∈ H1
r (R3) such that Iλθ (uλθ )

= cθ, where

(13) cλ(θ) = inf
ψ∈Γ

sup
u∈ψ(∆)\W

Iλθ (u) ≥ ε2

2
> 0
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with small ε > 0, where ∆ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1∆ =
{0}× [0, 1], ∂2∆ = [0, 1]×{0} and ∂0∆ = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 =
1}, Γ := {ψ ∈ C(∆, X) : ψ(∂1∆) ⊂ P+

ε , ψ(∂2∆) ⊂ P−ε , ψ|∂0∆ = ψ0|∂0∆}
and ψ0(t, s)(·) = R2(tv1(R·) + sv2(R·)) with large R > 0.

(ii): if f is odd, then equation (6) has infinitely many sign-changing solutions
{uλθ,j}j≥2 ⊂ H1

r (R3) such that Iλθ (uλθ,j) = cj(θ), where

(14) cλj (θ) = inf
B∈Γj

sup
u∈B\W

Iλθ (u) ≥ ε2

2
> 0,

where

Γj := {B ∈ X : B = ψ(Bn\Y ) for some ψ ∈ Gn, Y ⊂ Bn
with n ≥ j, such that Y = −Y and γ(Y ) ≤ n− j}

with Bn = {x ∈ Rn : |x| ≤ 1} and γ denotes the genus of closed symmetric
subsets,

Gn := {ψ ∈ C(Bn, X) : ψ(−t) = Gψ(t) for t ∈ Bn, ψ(0) ∈Mand

ψ|∂Bn = ψn|∂Bn},

the group G = {id,−id} and ψn(t)(·) = R2
n

∑n
i=1 tivi(Rn·) with large Rn >

0 and t = (t1, · · · , tn) ∈ Bn.

4. Proof of Theorem 1.1

We shall complete the proof by using Propositions 1 and passing to the limit as
θ → 0+.

(Existence part and asymptotic behaviors): According to Proposition 1,
for given λ > 0 and any θ ∈ (0, 1], equation (6) admits one radial sign-changing
solution uλθ such that Iλθ (uλθ ) = cλ(θ). By the definition of cλ(θ) in (13), we see that

ε2

2
≤ cλ(θ) ≤ sup

u∈ψ0(∆)

Iλθ (u) ≤ sup
u∈ψ0(∆)

Iλ(u) < +∞.

Observe that cλ(θ) is non-increasing in θ. Then

(15) cλ = lim
θ→0+

cλ(θ) ∈ (
ε2

2
,∞)

is well-defined. In addition, solutions {uλθ}θ∈(0,1] satisfy

(16) cλ(θ) =
1

2
‖uλθ‖2 +

λ

4

∫
φuλθ |u

λ
θ |2 −

∫
(F (uλθ ) +

θ

r
|uλθ |r),

(17) 0 = ‖uλθ‖2 + λ

∫
φuλθ |u

λ
θ |2 −

∫
(uλθf(uλθ ) + θ|uλθ |r)

and Pohozaev identity

(18) 0 =
1

2
‖∇uλθ‖2L2 +

3

2
‖uλθ‖2L2 +

5λ

4

∫
φuλθ |u

λ
θ |2 −

∫
(3F (uλθ ) +

3θ

r
|uλθ |r).
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Since (f2) and (f3) imply 3 < µ ≤ p ≤ r < 6, by multiplying (16) and (17) by µ
and −2 respectively, and adding them to (18), we get that

µcλ(θ) =
µ− 3

2
‖∇uλθ‖2L2 +

µ− 1

2
‖uλθ‖2L2 +

λ(µ− 3)

4

∫
φuλθ |u

λ
θ |2

+

∫ (
2uλθf(uλθ )− (µ+ 3)F (uλθ ) +

(2r − µ− 3)θ

r
|uλθ |r

)
≥ µ− 3

2
‖∇uλθ‖2L2 +

µ− 1

2
‖uλθ‖2L2 +

λ(µ− 3)

4

∫
φuλθ |u

λ
θ |2.

(19)

This implies that {uλθ}θ∈(0,1] are bounded.

Without loss of generality, assume that up to a subsequence, uλθn ⇀ uλ in

H1
r (R3) as θn → 0+. Then by (iii) of Lemma 2.1 and a standard argument, we

have (Iλ)′(uλ) = 0, Iλ(uλ) = cλ and uλθn → uλ in H1
r (R3) as θn → 0+. Moreover,

uλ ∈ H1
r (R3)\(P+

ε ∪ P−ε ), because uλθn ∈ H
1
r (R3)\(P+

ε ∪ P−ε ). Thus, uλ is a radial

sign-changing solution of (4) with positive energy cλ.
Note that cλ is non-decreasing with respect to λ > 0. Then it follows from (15)

that the limit
c0 := lim

λ→0+
cλ

exists and c0 ≥ ε2

2 . Thus {cλ}λ→0+ is bounded. Since Iλ(uλ) = cλ and (Iλ)′(uλ) =

0, we can argue similarly as (16)-(18) to derive that {uλ}λ→0+ is bounded inH1
r (R3).

Then there is a subsequence {λn} with λn → 0+ such that uλn ⇀ u0 in H1
r (R3)

as n → ∞. It follows from (Iλn)′(uλn) that I ′(u0) = 0, where I is the functional
associated to (3). By the compactly embedding H1

r (R3) → Ls(R3) with s ∈ (2, 6),
it is standard to conclude that uλn → u0 in H1

r (R3) as n → ∞. Then I(u0) = c0

and I ′(u0) = 0. So u0 is a radial solution of (3).
(Multiplicity part and asymptotic behaviors): According to Proposition

1 (ii), for any θ ∈ (0, 1], equation (6) admits infinitely many radial sign-changing
solutions {uλθ,j}j≥2 such that Iλθ (uλθ,j) = cλj (θ). In a similar way as (19), we can

prove that for any fixed j ≥ 2, the sequence {uλθ,j}θ∈(0,1] is bounded in H1
r (R3).

Without loss of generality, we assume that uλθ,j ⇀ uλj for some uλj ∈ H1
r (R3) as

θ → 0+. Note that cλj (θ) is decreasing in θ and cλj (θ) ≤ supu∈B\W Iλθ (u) < +∞.

Then by (14), cλj := limθ→0+ cλj (θ) is well defined and

(20)
ε2

2
≤ cλj (θ) ≤ cλj ≤ sup

u∈B\W
Iλ(u) <∞

for all θ ∈ (0, 1]. By the compactly embedding theorem and standard arguments,
it follows that uλθ,j → uλj in H1

r (R3) as θ → 0+ for some uλj ∈ H1
r (R3)\W. Thus

Iλ(uλj ) = cλj and (Iλ)′(uλj ) = 0. Since cλj (θ) → +∞ as j → ∞ in (14), we see

that cλj → +∞ as j → +∞. Therefore, (4) (or (1)) has infinitely many radial

sign-changing solutions {uλj }j≥2.

Since cλj is non-decreasing in λ > 0. Then by (20), the limit

cj := lim
λ→0+

cλj

exists and ε2

2 ≤ cj < ∞. Clearly, for fixed j ≥ 2, {cλj }λ→0+ is bounded. We can

also argue similarly as (16)-(18) to deduce that {uλj }λ→0+ is bounded in E, since

Iλ(uλj ) = cλj and (Iλ)′(uλj ) = 0. Thus there exists a sequence {λn} tending to 0
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and some uj ∈ H1
r (R3) such that uλnj ⇀ uj in H1

r (R3) as n → ∞. By the weakly

sequentially continuity, it follows immediately that I ′(uj) = 0, where I is the
functional for (3). By the compactly embedding H1

r (R3)→ Ls(R3) with s ∈ (2, 6),

we can deduce from the standard arguments that uλnj → uj in H1
r (R3) as n → ∞.

So I(uj) = cj and I ′(uj) = 0. Namely, uj is a radial solution of (3). The proof is
complete.
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