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A NOTE ON SIGN-CHANGING SOLUTIONS FOR THE
SCHRODINGER POISSON SYSTEM
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(Communicated by Chunlai Mu)

ABSTRACT. We consider the following nonlinear Schrédinger-Poisson system
—Au+u+ Ap(z)u = f(u) zr € R3,
—A¢ =u?, limy e p(z) =0 x € R3,

where A > 0 and f is continuous. By combining delicate analysis and the
method of invariant subsets of descending flow, we prove the existence and
asymptotic behavior of infinitely many radial sign-changing solutions for odd
f. The nonlinearity covers the case of pure power-type nonlinearity f(u) =
|u|P~2u with the less studied situation p € (3,4). This result extends and
complements the ones in [Z. Liu, Z. Q. Wang, and J. Zhang, Ann. Mat. Pura
Appl., 2016] from the coercive potential case to the constant potential case.

1. INTRODUCTION

In this paper, we are concerned with the existence of sign-changing solutions for
the Schrodinger-Poisson system

— Au+u+ Ap(x)u = f(u) r € R3,
(1) ~Ap=ul lim 6r)=0 zcE
xr|—00
where A > 0 is fixed and f satisfies
(f1): f € C(R,R) and lir%M =0;
S—

S

(f2): limsup ||Sf‘£‘i)l < oo for some p € (3,6);
|s|—o0

(£3): there exists p > 3 such that sf(s) > pF(s) > 0 for all s # 0.
This system arises from the study of quantum mechanics and describes the inter-
action of a charged particle with an electromagnetic field. For more details on the
physical aspect of (1), one can refer to [3] and references therein.

System (1) has been studied extensively in the last twenty years, and there are

fruitful results on the existence, nonexistence and multiplicity of radial positive
solutions [1, 2, 9, 11]. In particular, when f(u) = |u|[P~2u, Ruiz [9] proved that if
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A > %, there is no nontrivial solution when p € (2, 3], and if A > 0, there is one
radial positive solution when p € (3,6). This result shows that p = 3 is a critical
value for the existence of positive solutions. Later, Ambrosetti and Ruiz [1] proved
that for any A > 0, system (1) admits infinitely many solutions for p € (3,6). Seok
[11] extended this result for general nonlinearity.

However, the signs of these solutions are not known in the above papers. When
f(u) = |u|P~2u and p € (4,6), Kim and Seok [6] and Ianni [5] proved the existence
of radial solutions of (1) with prescribed numbers of nodal domains by using Nehari
type manifold and heat flow method, respectively. Wang and Zhou [13] obtained
a least energy sign-changing solution of (1) in H}!(R?), and Guo [4] proved the
nonexistence of least energy nodal solution in H'(R?) and H},,(R?). Recall that
a solution (u, ¢) of (1) is called a sign-changing solution if u changes its sign. For
more related results, please see [4, 5, 6, 11, 13] and references therein. However, as
far as we know, when p € (3,4), there is few result on infinitely many sign-changing
solutions in the literature except [8]. In [8], Liu, Wang and Zhang obtained infinitely
many sign-changing solutions to the Schrodinger Poisson system

—Au+V(z)u+ ¢(x)u = f(u) r € R3,

(2) —Ap=u?, lim é(zx)=0 z € RY,
|| — o0

where f satisfies (f1)-(f3) and V is coercive, ie. lim o V(z) = +oo and
inf,ers V(x) > 0, and satisfies some suitable conditions. A natural and interest-
ing question arises whether system (2) admits a sign-changing solution or infinitely
many sign-changing solutions for odd f when V = constant. To the best of our
knowledge, this question is still unknown. In this paper, we shall give a positive
answer. For simplicity, we assume that V' =1 and our result is as follows.

Theorem 1.1. Assume that (f1)-(£3) hold. Then for any A > 0, problem (1)
has one radial sign-changing solution. Furthermore, if f is odd, then problem (1)
possesses infinitely many radial sign-changing solutions. Moreover, these solutions
converge to the solutions of the limit problem

(3) —Autu=f(u) inR3,
as A\ — 07.

When p € (3,4), the main difficulty lies in whether or not a (P.S.) sequence of
the action functional associated with (1) is bounded. Recall that Liu, Wang and
Zhang [8] overcame this difficulty by introducing a family of auxiliary equations
approximating (2). They can deduce that any (P.S.) sequence of these action func-
tionals associated with the family of auxiliary equations is bounded, which relies
essentially on the compactly embedding theorem E — L?(R3), where E := {u €
DYM2(R3) ¢ [fos V(z)u* < oo}. However, in view of (1), even if the radial Sobolev
space H}(R3) is considered, the arguments in [8] can not be applied directly, be-
cause H!(R3) — L?(R?) is not compact. This results in that we have to resort
to new techniques to overcome the difficulties in establishing the (P.S.) condition
and constructing the invariant subsets of the descending flow. So Strauss’s radial
lemma and some delicate analysis are needed to prove the existence and multiplic-
ity results for sign-changing solutions. Besides, the asymptotic behaviors of these
solutions will be also investigated.
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The outline of this paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, we prove the existence results for the auxiliary equation.
Based on these existence results, Section 4 is devoted to the proof of Theorem 1.1.

2. PRELIMINARIES

In this paper, we collect the following notations and assumptions.

e Let H'(R3) and D2(R3) be, respectively, endowed with the inner product
(u,v) = fR3 VuVv +uv and (u,v)prz = fR3 VuVwv. So their corresponding
norms are ||ul| 1= (fgs |Vul? + )2 and ||ul|pr2 = ([ps [Vul?)'/2, respec-
tively. Let H~1(R?) be the dual space of H'(R3) and (-, -) denote its duality
pairing.

o |jullzs := (f |u[*)"/* for u € L*(R?) and we use [ instead of [y, for simplic-
ity.

e (,C; denote possibly different positive constants.

For any given u € H'(R?), the Lax-Milgram theorem shows that there is a unique
a0
v = dy € DV (R?
b= 15 | pdy € D)
such that —A¢, = u?. As is well known, by substituting ¢ = ¢,,, the system (1) is
equivalent to a single equation
(4) — Au+u+ Apyu = f(u), u € H'(R?).

Its corresponding functional I* : H'(R3) — R is defined by

6 fﬁw:§MW+§/%f—/Fw,

where F(u) = [ f(s)ds. It is easy to see that (u,¢,) € H'(R?) x DM?(R?) is a
weak solutlon of (1) 1f and only if u € H'(R?) is a critical point of I*. By standard
regularity argument, the weak solutions are also classical solutions of (1)(see [9]).
We now list some properties of ¢,, for whose proofs one can refer to [2, 9].

Lemma 2.1. The following properties hold:
(1): ¢u >0, and ¢, is radial if u is radial;
(ii): [ @uu® < Cllull*;
(iii): Gu, — du if un — u in L*2/5(R3).

Denote D(u,v) = £ [ [~ o)) g dy. Then D(u2,u?) = [ ¢yu? for u € H(R?).

o=yl
Now we give the follovvmg lemma.

Lemma 2.2. The following statements are true:
(i): D?(u,v) < D(u,u)D(v,v) for any u,v € L5/5(R3);
(ii): D?*(uv,uv) < D?(u?,u?)D?(v?,v?) for any u,v € L'?/5(R3).

One can see [7, p.250] and [10] for the proofs of (i) and (ii). In the sequel, a
radial lemma is listed below, which is important for the proof of Theorem 1.1.

Lemma 2.3. (Radial lemma[l2]) Let N > 2. Then for all radial function u €
HY(RY), there holds

lu(z)| < aolz| P ~N/2|u|  for almost everywhere |x| > 1,

where ag depends only on N.



198 HUI GUO AND TAO WANG

3. THE AUXILIARY EQUATION AND ITS RESULTS

In this section, we always assume A > 0. Since g > 3, it is usually not easy to
verify the P.S. condition. Motivated by [8], we first study an auxiliary equation.
Let r € (max{4,p},6) and 0 € (0, 1], and consider the following auxiliary equation

(6) — Au+u+ Apyu = f(u) + 0lu|""u, u € H(R?).
Clearly, the corresponding functional is

B =) - [ e e 1), R),

where I*(u) is defined as in (5). By the principle of symmetric criticality, a critical
point of I} in H}(R3) is also a critical point of I} in H'(R?). So we consider it in
the radial space H}(R?).
Note that for any u € H!(R3), there exists a unique solution vg € H}(R?) to the
following equation
—Av 4+ v+ Apyv = f(u) + 0lu|""?u, u € HY(R?).

We define an operator Ag : H}(R?) — H!(R?) by vg = Ag(u). Obviously, if f is odd,
Ay is odd. Moreover, the following three statements are equivalent: u € H}!(R3) is
a solution of (6), u € H}(R?) is a critical point of functional I}, and u is a fixed
point of Ay.

Define the positive and negative cone

Pti={uc HR*) :u>0} and P~ :={uc H (R® :u <0}
For any € > 0, set
Pt = {uc H:(R?) : dist(u, P*) < e}andP. := {u € H}(R?) : dist(u, P~7) < ¢},
where dist(u, P¥) := vieI}Dfi |lu —v||. Clearly, P~ = —PF and W := P U P is

open, symmetric in H}(R3). As stated in [8, Lemmas 3.1, 4.1, 4.3], the operator Ay
is well defined and is continuous and compact; and there exists €5 > 0 such that for
any € € (0,6), Ag(OPF) C P*, and there exists C' > 0 independent of § such that

(7) 125 (W < lu = Ag(w)| (1 + Cllull®), ¥ u € H(R?).

Lemma 3.1. For any a < b and o > 0, if u € H}(R3) satisfies I} (u) € [a,b] and
(1) (w)|| > v, then there exists B > 0 depending on 6 such that |[u — Ag(u)|| > .

Proof. Take v € (4,7). Then for u € H}(R?), we have

1 1

B = 2 (= Aa(w) = = el + (G =) [ on? +2 [ duutu—Ao(w)

1 0 0 .
+ [Crau=Fa)+ =) [l

By (f1) and (f2), it yields

Jull? + 3 [ 6 +6 [ 1ul

<Ci 1@ + el = Aot + s + ‘A [ puntu- Ae(u))H .
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Since Lemma 2.2 (i) and the Hardy-Littlewood-Sobolev inequality [7] imply that

‘ [ ot - Aa(u))‘ < ol - A ( | qsuuz) "

by the Young inequality, we get that

A
U 2—}—7/ uuQ—l—G/u"
o s i
<Cs (|13 ()] + llulllu — Ag(w)]| + [lullf, + lull®[lu — Ag(u)[|*] -

Then we shall prove the lemma by contradiction. Suppose on the contrary that
there exists {u,}, C H(R?®) with I (u,) € [a,b] and ||(I)(u,)|| > « such that
|, — Ag(un)|| = 0 as n — oo. Then it follows from (8) that for large n,

A T
) fuall + 5 [ Gt 40 [ lunl < Calt + ual),

where C4 > 0 is independent of n.
Now, we claim that {u,}, is bounded in H}(R3). Otherwise, suppose that
ltn || = 00 as n — oo. Then it follows from (9) that for large n,

1 A 1
(10) HnlP+ 5 [ a2 + [ Gu+0lunl” = Calual?) <0
Define a function
1
h:RTU{0} =R, h(u)= §u2 + Olu|” — Cylul?.

Clearly, since p € (3,r), h is positive for u — 0% or u — +4o00. So the value

mo 1= £n1? , h > —oo. If my = 0, the claim follows immediately. Hence we assume
R+U{0

mo < 0. Obviously, the set {u > 0 : h(u) < 0} must be of the form (c,d) with
¢,d > 0. Tt follows from (10) that

1 A
02 fllual+ 5 [ 6w+ [ )

1 A

> il +5 [ ouide [ i)
4 2 un €(c,d)
1 A

> flhual+ 5 [ 00+ molt

where A, = {z € R? : u,(x) € (¢,d)} and |A,,| denotes its Lebesgue measure. Thus
we have

1 A
(11) |mol|An| > i”uﬂH? + §/¢unu,21 — 00 asmn — 00.

Note that the set A, is spherically symmetric. Let p, := sup{|z| : « € A,} and
take x € R? with |z| = p,. According to real analysis, the functions are identified
if they are equal almost everywhere. So u,(xz) = ¢ and by Lemma 2.3 and (11),

(12) 0 < ¢ = un(@) < aglpn| ™ lJunll < aolpa| ™' (2Imol|A))'/? = Cspp < |An['/?

for some C5 > 0 independent of n.
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On the other hand, the inequality (11) ylelds 5 [ du,uz < Imgl|Ay,| and then

A A u? (x) u?
Al > = | by u? > — Un () () dxd
moll '—2/¢"%—SWAWAR e —SW/ / e
et A2
> — .
87T 2p,
Thus,

Cepn > |An|

for some Cg > 0. Clearly, it yields a contradiction with (11) and (12). So the claim
is verified.

According to (7), it follows that ||(1})'(un)| — 0 as n — oo, which contradicts
our assumptions. Hence the proof is completed. O

Lemma 3.2. (P.S. condition) Let ¢ € R and {un}, C H}(R3) be a P.S. sequence
of (6) at level ¢, namely,

I} (uy) — ¢ and (I3) (u,) =0 asn — oo,
Then {un}n has a convergent subsequence.

Proof. Let v € (4,r). Then
I3 (un) = 7<(Ie)( n)sUn)

(= DMl +(§ = ) [ it [ Fn)un = Flun)) +

and by (f1) and (£2), it follows

0
Ol

b
v

I + A/aﬁuwi +0llunllyr < CUI (un)| + llunllll(23) (wn) |l + llunll0),

where C' > 0 is independent of n. Furthermore, by the conditions and Young in-
equality, it follows that for n large enough,

1 + /\/Géunugl +O0lunllzr < OO+ [JunllZy)-

As in the proof of Lemma 3.1, by using a similar argument as (9), one can deduce
that {u,}, is bounded in H!(R3). Thus, without loss of generality, we assume
up — u in H}(R3) up to a subsequence. Since the embedding H}(R3) — L*(R3)
(2 < s < 6) is compact, we deduce that [ F(u,) — [ F(u) and then u,, — u in
H!(R3). The proof is completed. O

With the aid of Lemmas 3.1 and 3.2, one can use similar arguments as [8, Corol-
lary 3.1, Theorem 1.2] to prove that {P;", P} is an admissible family of invariant
subsets for small € > 0 independent of A and v, and the following results hold true.
The interested readers can refer to [8] for the details, here we omit the proof.

Proposition 1. Suppose that f satisfies assumptions (f1) — (£3). Let € (0,1] and
r € (max{4,p},6). Then
(i): equation (6) has one sign-changing solution uy € H}(R?) such that I} (u}))
= ¢y, where

N

(13) AO) = inf  sup Ip(u) > >0

Vel ueyp(a)\Ww 2
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with small € > 0, where A = {(t1,t2) € R? 1 t1,ty > 0,t1 + 1t < 1}, HA =
{0} x [0,1], B2A = [0,1] x {0} and oA = {(t1,t2) € R? i t1,te > 0,t1 +t2 =
1}, T:={¢y € C(A, X) : Y(01A) C PF 4p(0:A) C P, 9Y|aga = Yolagat
and o (t, s)(-) = R2(tvy(R-) + sv2(R-)) with large R > 0.

(ii): if f is odd, then equation (6) has infinitely many sign-changing solutions
{up ;}j>2 C HH(R?) such that 17 (uy ;) = ¢;(0), where

[

(14) c}0) = inf sup Ip(u) > <

>0,
Bel; u€B\W 2

where

I'y:={Be€X:B=v¢(B,\Y) for some € G,,Y C B,

with n > j, such thatY = =Y and y(Y) <n —j}

with B, = {x € R" : |z| <1} and v denotes the genus of closed symmetric
subsets,

Gp:={¢Y € C(Bp,X) : Y(—t) = Gy(t) fort € By, ¥(0) € Mand
Ylop, = ¥nlos, },

the group G = {id, —id} and ¥, (t)(-) = RZ Y"1 | tivi(Ry,-) with large R, >
0 and t = (t1, - ,t,) € By.

4. PROOF OF THEOREM 1.1

We shall complete the proof by using Propositions 1 and passing to the limit as
60— 0t.

(Existence part and asymptotic behaviors): According to Proposition 1,
for given A > 0 and any 6 € (0, 1], equation (6) admits one radial sign-changing
solution uy such that I (uy) = ¢*(#). By the definition of ¢*(6) in (13), we see that

[

% <O < sup Ip(u) < sup IMu) < +oo.
u€to(A) uCto(A)

Observe that ¢*(#) is non-increasing in . Then
1 A= lim M0) € (+
(15) & = lim A6)  (5,00)

is well-defined. In addition, solutions {ug‘}ae(o,l] satisfy

1 A 0, .
(16) N6 = I+ 7 [ ouldl = [Py + T,

(17) 0= I+ [ oyl — [ (s rtad) + 811

and Pohozaev identity

1 3 5\ 30, 4.,
(18) 0= IV + Il + 2 [ ol - [EF)+ T,
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Since (f2) and (f3) imply 3 < u < p < r < 6, by multiplying (16) and (17) by u
and —2 respectively, and adding them to (18), we get that

p=3 p—1 Alp —3)
pe () = TIIVUQII%z + TIIU?H%z t=0 Do g

(19 + [ (2 - e mrag) + E=E= )

> L2 v e + e+ 2D o
This implies that {uj}ge (0,1 are bounded.

Without loss of generality, assume that up to a subsequence, ué‘n — o in
H!(R3) as 6,, — 0. Then by (iii) of Lemma 2.1 and a standard argument, we
have (I')'(u) = 0, 1*(u*) = ¢* and ug‘n — w® in HY(R®) as 6, — 0. Moreover,
u* € HY(R*)\(P} U P), because uy € H}(R*)\(P} U P-). Thus, u* is a radial
sign-changing solution of (4) with positive energy c*.

Note that ¢* is non-decreasing with respect to A > 0. Then it follows from (15)

that the limit

0 A

¢’ = lim ¢
A—0t

exists and ¢ > % Thus {c*} _o+ is bounded. Since I*(ut) = ¢* and (1) (u?) =
0, we can argue similarly as (16)-(18) to derive that {u*},_,o+ is bounded in H}!(R?).
Then there is a subsequence {\,} with A, — 0, such that u*» — v in H}!(R?)
as n — oo. It follows from (I*7)'(u*) that Z'(u") = 0, where Z is the functional
associated to (3). By the compactly embedding H}(R3) — L*(R3) with s € (2,6),
it is standard to conclude that u*» — u% in H}(R®) as n — oco. Then Z(u°) = °
and Z'(u%) = 0. So u° is a radial solution of (3).

(Multiplicity part and asymptotic behaviors): According to Proposition
1 (ii), for any 6 € (0, 1], equation (6) admits infinitely many radial sign-changing
solutions {ug"j}jzg such that Ié\(ug‘yj) = ¢}(0). In a similar way as (19), we can
prove that for any fixed j > 2, the sequence {ug\yj}ge(o,l] is bounded in H}!(R?).
Without loss of generality, we assume that up ; — u} for some u} € H}(R?) as
6 — 0". Note that c?‘(@) is decreasing in 6 and c?‘(@) < SUPyep\w I} (u) < +oo.
Then by (14), ¢} := limg_,o+ ¢}(0) is well defined and

(20) <) <} < sup IMu) < o

9 J =%
2 wEB\W

for all § € (0,1]. By the compactly embedding theorem and standard arguments,
it follows that uy ; — u} in H}(R?) as  — 0% for some u} € H}(R?*)\W. Thus
IMuy) = ¢} and (I")'(u}) = 0. Since ¢}(f) = +o0 as j — oo in (14), we see

that cj)-‘ — 400 as j — +oo. Therefore, (4) (or (1)) has infinitely many radial

sign-changing solutions {U;\}jzg.
Since c?‘ is non-decreasing in A > 0. Then by (20), the limit
¢; = lim ¢
J A—0+ 7
exists and % < ¢; < 0. Clearly, for fixed j > 2, {c;‘}kﬁm is bounded. We can
also argue similarly as (16)-(18) to deduce that {uj)-‘},\_>()Jr is bounded in FE, since

I’\(uj‘) = c?‘ and (I)‘)’(uj‘) = 0. Thus there exists a sequence {\,} tending to 0
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and some u; € H}(R?) such that u;‘" — u; in H}(R3) as n — oo. By the weakly
sequentially continuity, it follows immediately that Z’(u;) = 0, where 7 is the
functional for (3). By the compactly embedding H}!(R3) — L*(R?) with s € (2,6),
we can deduce from the standard arguments that ug\" — u; in H}(R?) as n — oo.
So Z(u;) = ¢j and Z’(u;) = 0. Namely, u; is a radial solution of (3). The proof is
complete. O
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