

RICCI SOLITONS OF THE $\mathbb{H}^2 \times \mathbb{R}$ LIE GROUP

LAKEHAL BELARBI*

(Communicated by Abdou Atangana)

ABSTRACT. In this work we consider the three-dimensional Lie group denoted by $\mathbb{H}^2 \times \mathbb{R}$, equipped with left-invariant Riemannian metric. The existence of non-trivial (i.e., not Einstein) Ricci solitons on three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ is proved. Moreover, we show that there are not gradient Ricci solitons.

1. INTRODUCTION

The notion of Ricci solitons is introduced by Hamilton in [16], which is a natural generalization of Einstein metrics. A Ricci soliton is a pseudo-Riemannian metric g on a smooth manifold \mathcal{M} such that there exists a smooth vector field X on \mathcal{M} satisfying the following equation:

$$(1) \quad \mathcal{L}_X g + Ric = \lambda g,$$

where \mathcal{L}_X denotes the Lie derivative in the direction of X , Ric denotes the Ricci tensor and λ is a real number. A Ricci soliton is said to be a shrinking, steady or expanding, respectively, if $\lambda > 0$, $\lambda = 0$ or $\lambda < 0$. Moreover, we say that a Ricci soliton (M, g) is a *gradient Ricci soliton* if it admits a vector field X satisfying $X = \text{grad } h$, for some potential function h .

The description of Ricci solitons can be regarded as a first step in understanding the Ricci flow, since they are the fixed points of the flow. Moreover, they are important in understanding singularities of the Ricci flow. Under suitable conditions, type *I* singularity models correspond to shrinking solitons, type *II* models correspond to steady Ricci solitons, while type *III* models correspond to expanding Ricci solitons.

In the special case that \mathcal{M} is a Lie group and g is a left-invariant metric, we say that g is a left-invariant Ricci soliton on \mathcal{M} if the above equation (1) holds.

Study of Ricci soliton, over different geometric spaces is one of interesting topics in geometry and mathematical physics. In particular, it has become more important after Grigori Perelman applied Ricci solitons to solve the long standing Poincaré conjecture. Ricci solitons correspond to self-similar solutions of Hamilton's Ricci flow [17], play a fundamental role in the formation of singularities of the flow and have been studied by several authors (see [12], [13]). They can be viewed as fixed points of the Ricci flow, as a dynamical system, on the space of Riemannian metrics modulo diffeomorphisms and scalings. Ricci solitons are of interests to physicists as well and are called quasi-Einstein metrics in physics literature. In fact, Theoretical

Received by the editors October, 2019 and, in revised form, February, 2020.

2010 *Mathematics Subject Classification.* 53C50, 53B30.

Key words and phrases. $\mathbb{H}^2 \times \mathbb{R}$ Lie group, Ricci soliton, Riemannian metrics.

* Corresponding author: Lakehal Belarbi.

physicists have been looking into the equation of Ricci solitons in relation with String Theory. A seminal contribution in this direction is due to Friedan ([15]).

Lorentzian Ricci solitons have been intensively studied, showing many essential differences with respect to the Riemannian case (see [2], [4], [3], [8], [23],[22]). In fact, although there exist three-dimensional Riemannian homogeneous Ricci solitons [1], [20], there are no left-invariant Riemannian Ricci solitons on three-dimensional Lie groups [14] (see also [18] and [24]). Moreover, the Lorentzian case is much richer, allowing the existence of expanding, steady and shrinking left-invariant Ricci soliton [7]. In [22] prove that Lorentzian and Riemannian five-dimensional solvable Lie groups admit different vector fields resulting in expanding Ricci solitons. Also has proved that those Ricci solitons are not gradient.

In this paper, we consider the left-invariant Riemannian metric admitted by the three-dimensional Lie group denoted by $\mathbb{H}^2 \times \mathbb{R}$ and we prove the existence of vector field for which the soliton equation (1) holds. In Section 3, Ricci solitons of three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ are characterized via a system of partial differential equations. In particular, we show that three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ admit a vector fields in expanding Ricci solitons. Finally, we show that there are not gradient Ricci solitons.

2. CONNECTION AND CURVATURE OF THE $\mathbb{H}^2 \times \mathbb{R}$ LIE GROUP

Let \mathbb{H}^2 be represented by the upper half-plane model $\{(x, y) \in \mathbb{R}^2 | y > 0\}$ equipped with the metric $g_{\mathbb{H}^2} = \frac{1}{y^2}(dx^2 + dy^2)$. The space \mathbb{H}^2 , with the group structure derived by the composition of proper affine map, is a Lie group and the metric $g_{\mathbb{H}^2}$ is left invariant. Therefore the Riemannian product space $\mathbb{H}^2 \times \mathbb{R}$ is a Lie group with respect to the operation

$$(x, y, z) \star (x', y', z') = (x'y + x, yy', z + z')$$

and the left invariant product metric

$$(2) \quad g = \frac{1}{y^2}(dx^2 + dy^2) + dz^2.$$

With respect to the metric g an orthonormal basis of left invariant vector fields on $\mathbb{H}^2 \times \mathbb{R}$ is

$$(3) \quad E_1 = y \frac{\partial}{\partial x}, E_2 = y \frac{\partial}{\partial y}, E_3 = \frac{\partial}{\partial z}.$$

From this, the Lie brackets are given by

$$[E_1, E_2] = -E_1, [E_2, E_3] = 0, [E_3, E_1] = 0.$$

Throughout the paper, we shall endow the three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ with left-invariant Riemannian g .

We will denote by ∇ the Levi-Civita connection of $(\mathbb{H}^2 \times \mathbb{R}, g)$, by R its curvature tensor, taken with the sign convention:

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z,$$

and by Ric the Ricci tensor of $(\mathbb{H}^2 \times \mathbb{R}, g)$, which is defined by

$$Ric(X, Y) = \sum_{k=1}^3 g(E_k, E_k) g(R(E_k, X)Y, E_k),$$

where $\{E_k\}_{k=1, \dots, 3}$ is an orthonormal basis.

The Levi-Civita connection ∇ of the $\mathbb{H}^2 \times \mathbb{R}$ Lie group with respect to this frame (3) is

$$(4) \quad \begin{cases} \nabla_{E_1} E_1 = E_2, \nabla_{E_1} E_2 = -E_1, \nabla_{E_1} E_3 = 0 \\ \nabla_{E_2} E_1 = 0, \nabla_{E_2} E_2 = 0, \nabla_{E_2} E_3 = 0 \\ \nabla_{E_3} E_1 = 0, \nabla_{E_3} E_2 = 0, \nabla_{E_3} E_3 = 0. \end{cases}$$

The non-vanishing curvature tensor R components are computed as

$$(5) \quad R(E_1, E_2)E_1 = E_2, R(E_1, E_2)E_2 = -E_1.$$

The Ricci curvature components $\{Ric_{ij}\}$ are computed as

$$(6) \quad Ric_{11} = Ric_{22} = -1, \quad Ric_{12} = Ric_{13} = Ric_{23} = Ric_{33} = 0.$$

The scalar curvature τ of the $\mathbb{H}^2 \times \mathbb{R}$ Lie group is constant and we have

$$(7) \quad \tau = \text{tr} Ric = \sum_{i=1}^3 g(E_i, E_i) Ric(E_i, E_i) = -2.$$

3. RICCI SOLITONS OF 3-DIMENSIONAL $\mathbb{H}^2 \times \mathbb{R}$ LIE GROUP

In this section we analyze the existence of Ricci solitons on three-dimensional Riemannian Lie group $(\mathbb{H}^2 \times \mathbb{R}, g)$ equipped with the left-invariant Riemannian metric (2).

Let $X = f_1 E_1 + f_2 E_2 + f_3 E_3$ be an arbitrary vector field on $(\mathbb{H}^2 \times \mathbb{R}, g)$, where f_1, \dots, f_3 are smooth functions of the variables x, y, z . We will denote the coordinate basis $\left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\}$ by $\{\partial_x, \partial_y, \partial_z\}$.

The Lie derivative of the metric (2) with respect to X is given by :

$$(8) \quad \begin{cases} (\mathcal{L}_X g)(E_1, E_1) = -2(f_2 - \partial_x f_1), \\ (\mathcal{L}_X g)(E_1, E_2) = f_1 + \partial_y f_1 + \partial_x f_2, \\ (\mathcal{L}_X g)(E_1, E_3) = \partial_z f_1 + \partial_x f_3, \\ (\mathcal{L}_X g)(E_2, E_2) = 2\partial_y f_2, \\ (\mathcal{L}_X g)(E_2, E_3) = \partial_z f_2 + \partial_y f_3, \\ (\mathcal{L}_X g)(E_3, E_3) = 2\partial_z f_3. \end{cases}$$

Thus, by using (2), (6) and (8) in (1), a standard calculation gives that the three-dimensional Lie group $(\mathbb{H}^2 \times \mathbb{R}, g)$ is a Ricci soliton if and only if the following system holds,

$$(9) \quad \begin{cases} -2(f_2 - \partial_x f_1) - 1 = \lambda, \\ f_1 + \partial_y f_1 + \partial_x f_2 = 0, \\ \partial_z f_1 + \partial_x f_3 = 0, \\ 2\partial_y f_2 - 1 = \lambda, \\ \partial_z f_2 + \partial_y f_3 = 0, \\ 2\partial_z f_3 = \lambda. \end{cases}$$

We deriving the third equation in (9) with respect to z , we get

$$(10) \quad \partial_z^2 f_1 = 0.$$

The equation (10) yields that

$$(11) \quad f_1 = \varphi(x, y)z + \psi(x, y),$$

where φ and ψ are smooth functions.

Deriving the first equation with respect to y and used the fourth equation in (9), we find

$$(12) \quad \partial_x \partial_y f_1 = \frac{1}{2}(1 + \lambda).$$

Next, deriving the second equation with respect to y in (9) and used equation in (12), we find

$$(13) \quad \partial_y f_1 + \partial_y^2 f_1 = 0.$$

Replacing f_1 in equations (12) and (13), we get

$$(14) \quad \begin{cases} (\partial_y \varphi + \partial_y^2 \varphi)z + \partial_y \psi + \partial_y^2 \psi = 0, \\ \partial_x \partial_y \varphi z + \partial_x \partial_y \psi = \frac{1}{2}(1 + \lambda). \end{cases}$$

By derivation of the equations (14) with respect to z , we get

$$(15) \quad \begin{cases} \partial_y \varphi + \partial_y^2 \varphi = 0, \\ \partial_y \psi + \partial_y^2 \psi = 0, \\ \partial_x \partial_y \varphi = 0, \\ \partial_x \partial_y \psi = \frac{1}{2}(1 + \lambda). \end{cases}$$

We deriving the second equation with respect to x and used the fourth equation in (15), we find

$$(16) \quad \lambda = -1$$

Integrating the first and second equations in (15), we find

$$(17) \quad \begin{cases} \varphi(x, y) = \alpha_1 e^{-y} + \varphi_1(x), \\ \psi(x, y) = \alpha_2 e^{-y} + \psi_1(x), \end{cases}$$

where $\alpha_i \in \mathbb{R}$, and φ_1, ψ_1 are smooth functions with only one variable x . Thus

$$(18) \quad f_1 = (\alpha_1 e^{-y} + \varphi_1(x))z + \alpha_2 e^{-y} + \psi_1(x).$$

Next, we replace f_1 in the second equation in (9), we get

$$(19) \quad (\varphi_1(x) + \varphi_1''(x))z + \psi_1(x) + \psi_1''(x) = 0.$$

We derive equation (19) with respect to z , we get

$$(20) \quad \begin{cases} \varphi_1(x) + \varphi_1''(x) = 0, \\ \psi_1(x) + \psi_1''(x) = 0. \end{cases}$$

By integration of (20) with respect to x , we find that

$$(21) \quad \begin{cases} \varphi_1(x) = \alpha_3 \cos(x) + \alpha_4 \sin(x), \\ \psi_1(x) = \alpha_5 \cos(x) + \alpha_6 \sin(x), \end{cases}$$

where $\alpha_i \in \mathbb{R}$. Thus

$$(22) \quad f_1 = (\alpha_1 e^{-y} + \alpha_3 \cos(x) + \alpha_4 \sin(x))z + \alpha_2 e^{-y} + \alpha_5 \cos(x) + \alpha_6 \sin(x).$$

From the first equation in (9), gives

$$(23) \quad f_2 = (-\alpha_3 \sin(x) + \alpha_4 \cos(x))z - \alpha_5 \sin(x) + \alpha_6 \cos(x).$$

The last equation in (9) gives

$$(24) \quad f_3 = -\frac{1}{2}z + \xi(x, y),$$

where ξ is a smooth function depending to x and y . We replacing f_1, f_2 , and f_3 in the third and fifth equations in (9), we get

$$(25) \quad \begin{cases} \partial_x \xi = \alpha_1 e^{-y} + \alpha_3 \cos(x) + \alpha_4 \sin(x), \\ \partial_y \xi = -\alpha_3 \sin(x) + \alpha_4 \cos(x). \end{cases}$$

Integrating the first equation in (25) with respect to x , we get

$$\xi(x, y) = -\alpha_1 x e^{-y} - \alpha_3 \sin(x) + \alpha_4 \cos(x) + \alpha_7,$$

and replace ξ in the second equation in (25), we find that

$$\alpha_1 = \alpha_3 = \alpha_4 = 0.$$

finally for arbitrary reals constants α_i we have

$$(26) \quad \begin{cases} f_1 = \alpha_2 e^{-y} + \alpha_5 \cos(x) + \alpha_6 \sin(x), \\ f_2 = -\alpha_5 \sin(x) + \alpha_6 \cos(x), \\ f_3 = -\frac{1}{2}z + \alpha_7, \end{cases}$$

Thus, it easily follows that the vector field $X = f_1 E_1 + f_2 E_2 + f_3 E_3$ where f_1, \dots, f_3 are given by (26) satisfies (9). Note that $\lambda = -1$. Summarizing, we proved that the three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ admits appropriate vector fields for which (1) holds, obtaining the following result.

Theorem 3.1. *Let $(\mathbb{H}^2 \times \mathbb{R}, g)$ be the three-dimensional Lie group equipped with the left-invariant Riemannian metric g given by (2). Then, $(\mathbb{H}^2 \times \mathbb{R}, g)$ is an Expanding Ricci soliton.*

Now, let $X = \text{grad } h$ be an arbitrary gradient vector field on $(\mathbb{H}^2 \times \mathbb{R}, g)$ with potential function h , X is then given by

$$(27) \quad \text{grad } h = y^2 \partial_x h \partial_x + y^2 \partial_y h \partial_y + \partial_z h \partial_z.$$

From (26) it follows that $(\mathbb{H}^2 \times \mathbb{R}, g)$ is gradient soliton if and only if the potential function h satisfy the following systems

$$(28) \quad \begin{cases} \partial_x h = \frac{\alpha_2}{y} e^{-y} + \frac{\alpha_5}{y} \cos(x) + \frac{\alpha_6}{y} \sin(x), \\ \partial_y h = -\frac{\alpha_5}{y} \sin(x) + \frac{\alpha_6}{y} \cos(x), \\ \partial_z h = -\frac{1}{2}z + \alpha_7. \end{cases}$$

Hence, with direct integration we prove that

$$(29) \quad h(x, y, z) = \ln(y)[\alpha_5 \sin(x) - \alpha_6 \cos(x)] - \frac{1}{4}z^2 + \alpha_7 z + \alpha_8, \quad \alpha_i \in \mathbb{R}.$$

But the function h does not verify the first equation in (28), we proved the following result.

Corollary 1. *Let $(\mathbb{H}^2 \times \mathbb{R}, g)$ be the three-dimensional Lie group equipped with the left-invariant Riemannian metric g given by (2). Then, $(\mathbb{H}^2 \times \mathbb{R}, g)$ is not gradient Ricci soliton.*

4. CONCLUSION

Our study on the Ricci solitons of three-dimensional Lie group denoted by $\mathbb{H}^2 \times \mathbb{R}$, equipped with left-invariant Riemannian metric. The existence of non-trivial (i.e., not Einstein) Ricci solitons on three-dimensional Lie group $\mathbb{H}^2 \times \mathbb{R}$ is proved. More precisely, we proved that there are not gradient Ricci solitons.

ACKNOWLEDGMENTS

We would like to thank the referee for valuable suggestions regarding both the contents and exposition of this article.

REFERENCES

- [1] P. Baird and L. Danielo, [Three-dimensional Ricci solitons which project to surfaces](#), *J. Reine Angew. Math.*, **608** (2007), 65–91. [MR 2339469](#)
- [2] W. Batat, [Curvature properties and Ricci soliton of Lorentzian pr-waves manifolds](#), *J. Geom. Phys.*, **75** (2014), 7–16. [MR 3126931](#)
- [3] W. Batat, M. Brozos-Vazquez, E. García-Río and S. Gavino-Fernández, [Ricci solitons on Lorentzian manifolds with large isometry groups](#), *Bull. Lond. Math. Soc.*, **43** (2011), 1219–1227. [MR 2861543](#)
- [4] W. Batat and K. Onda, [Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups](#), *J. Geom. Phys.*, **114** (2017), 138–152. [MR 3610038](#)
- [5] L. Belarbi, [On the symmetries of the \$Sol_3\$ Lie group](#), *J. Korean Math. Soc.*, **57** (2020), 523–537.
- [6] M. Božek, [Existence of generalized symmetric Riemannian spaces with solvable isometry group](#), *Časopis Pěst. Mat.*, **105** (1980), 368–384. [MR 597914](#)
- [7] M. Brozos-Vázquez, G. Calvaruso, E. García-Río and S. Gavino-Fernández, [Three-dimensional Lorentzian homogeneous Ricci solitons](#), *Israel J. Math.*, **188** (2012), 385–403. [MR 2897737](#)
- [8] G. Calvaruso and B. De Leo, [Ricci solitons on Lorentzian Walker three-manifolds](#), *Acta Math. Hungar.*, **132** (2011), 269–293. [MR 2818908](#)
- [9] G. Calvaruso and A. Fino, [Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces](#), *Canad. J. Math.*, **64** (2012), 778–804. [MR 2957230](#)
- [10] G. Calvaruso and A. Fino, [Four-dimensional pseudo-Riemannian homogeneous Ricci solitons](#), *Int. J. Geom. Methods Mod. Phys.*, **12** (2015), 21pp. [MR 3349925](#)
- [11] G. Calvaruso, O. Kowalski and A. Marinosci, [Homogeneous geodesics in solvable Lie groups](#), *Acta Math. Hungar.*, **101** (2003), 313–322. [MR 2017938](#)
- [12] H. D. Cao, [Recent progress on Ricci solitons](#), in *Recent Advances in Geometric Analysis*, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010, 1–38. [MR 2648937](#)
- [13] H. D. Cao, [Geometry of complete gradient shrinking Ricci solitons](#), in *Geometry and Analysis*, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2011, 227–246. [MR 2882424](#)
- [14] L. F. Cerbo, [Generic properties of homogeneous Ricci solitons](#), *Adv. Geom.*, **14** (2014), 225–237. [MR 3263424](#)
- [15] D. Friedan, [Nonlinear models in \$2 + \varepsilon\$ dimensions](#), *Ann. Physics*, **163** (1985), 318–419. [MR 811072](#)
- [16] R. S. Hamilton, [The Ricci flow on surfaces](#), in *Mathematics and General Relativity*, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262. [MR 954419](#)
- [17] R. S. Hamilton, [Three manifolds with positive Ricci curvature](#), *J. Differential Geometry*, **17** (1982), 255–306. [MR 664497](#)
- [18] S. Hervik, [Ricci nilsoliton black holes](#), *J. Geom. Phys.*, **58** (2008), 1253–1264. [MR 2451283](#)
- [19] O. Kowalski, [Generalized Symmetric Spaces](#), Lectures Notes in Mathematics, 805, Springer-Verlag, Berlin-New York, 1980. [MR 579184](#)
- [20] J. Lauret, [Ricci soliton solvmanifolds](#), *J. Reine Angew. Math.*, **650** (2011), 1–21. [MR 2770554](#)
- [21] A. Mostafaoui and L. Belarbi, [On the symmetries of five-dimensional Solvable Lie group](#), *J. Lie Theory*, **30** (2020), 155–169.
- [22] A. Mostafaoui, L. Belarbi and W. Batat, [Ricci solitons of five-dimensional Solvable Lie group](#), *PanAmer. Math. J.*, **29** (2019), 1–16. [MR 3930977](#)

- [23] K. Onda, [Lorentz Ricci solitons on 3-dimensional Lie groups](#), *Geom. Dedicata*, **147** (2010), 313–322. [MR 2660582](#)
- [24] T. L. Payne, [The existence of soliton metrics for nilpotent Lie groups](#), *Geom. Dedicata*, **145** (2010), 71–88. [MR 2600946](#)

LAKEHAL BELARBI, DEPARTMENT OF MATHEMATICS, LABORATORY OF PURE AND APPLIED MATHEMATICS, UNIVERSITY OF MOSTAGANEM (U.M.A.B.), B.P.227,27000, MOSTAGANEM, ALGERIA
Email address: lakehalbelarbi@gmail.com