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ON THE EXISTENCE OF PERMUTATIONS CONDITIONED BY

CERTAIN RATIONAL FUNCTIONS

GUO-NIU HAN

(Communicated by Zhi-Wei Sun)

Abstract. We prove several conjectures made by Z.-W. Sun on the existence
of permutations conditioned by certain rational functions. Furthermore, we

fully characterize all integer values of the “inverse difference” rational func-
tion. Our proofs consist of both investigation of the mathematical properties

of the rational functions and brute-force attack by computer for finding special

permutations.

1. Introduction

Permutations (see, for example, [1, 3]) are studied in almost every branch of
mathematics and also in computer science. The number of permutations π =
(π(1), π(2), . . . , π(n)) ∈ Sn of {1, 2, . . . , n} is n!. In [4] Z.-W. Sun made several
conjectures about the existence of permutations conditioned by certain rational
functions. In the paper we confirm three of them by proving the following theorem.

Theorem 1. (i) For any integer n > 5, there is a permutation π ∈ Sn such that

(1.1)

n−1∑
k=1

1

π(k)− π(k + 1)
= 0.

(ii) For any integer n > 7, there is a permutation π ∈ Sn such that

(1.2)

n−1∑
k=1

1

π(k)− π(k + 1)
+

1

π(n)− π(1)
= 0.

(iii) For any integer n > 5, there is a permutation π ∈ Sn such that

(1.3)

n−1∑
k=1

1

π(k)π(k + 1)
= 1.

Since n! is a huge number for large n, the generation of all n! permutations of n
by computer is already a challenge [2]. For this reason (1.1)-(1.3) have only been
verified for very small n. Our proof of Theorem 1 consists of both investigation
of the mathematical properties of the rational functions and brute-force attack by
computer for finding certain special permutations.
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Furthermore, we can fully characterize all integer values of the “inverse differ-
ence” rational function given in the left-hand side of (1.1). We define

(1.4) Vn =

{
n−1∑
k=1

1

π(k)− π(k + 1)
: π ∈ Sn

}
.

Since a ∈ Vn implies −a ∈ Vn by the reverse of permutation, we only need to study
the nonnegative integer values of Vn. For example, n = 5, the value set V5 contains
the following nonnegative rational numbers:

1

12
,

1

6
,

1

4
,

1

3
,

1

2
,

7

12
,

2

3
,

3

4
, 1,

7

6
,

4

3
,

3

2
,

19

12
,

7

4
,

11

6
,

23

12
, 2,

13

6
,

11

4
, 4.

We see that there are three integers 1, 2, 4 in the above list.

Theorem 2. We have V3 ∩ N = {2}, V5 ∩ N = {1, 2, 4}, and for n 6= 3, 5,

(1.5) Vn ∩ N = {0 ≤ j ≤ n− 1 | j 6= n− 2}.

The proofs of Theorems 1 and 2 will be given in Section 2. Notice that we are
still not able to prove three other conjectures of Sun. Let us reproduce them below
for interested readers.

Conjecture 3. (i) [4, Conj. 4.7(ii)] For any integer n > 6, there is a permutation
π ∈ Sn such that

(1.6)

n−1∑
k=1

1

π(k) + π(k + 1)
= 1.

Also, for any integer n > 7, there is a permutation π ∈ Sn such that

(1.7)

n−1∑
k=1

1

π(k) + π(k + 1)
+

1

π(n) + π(1)
= 1.

(ii) [4, Conj. 4.8(ii)] For any integer n > 7, there is a permutation π ∈ Sn such
that

(1.8)

n−1∑
k=1

1

π(k)2 − π(k + 1)2
= 0.

Motivated by (1.8), we make the following conjecture.

Conjecture 4. For any integer n > 11, there is a permutation π ∈ Sn such that

(1.9)

n−1∑
k=1

1

π(k)2 − π(k + 1)2
+

1

π(n)2 − π(1)2
= 0.

Conjecture 4 has been checked for 11 < n < 28 by computer. We list below the
permutations satisfying (1.9), which are found by our computer program in a highly
non-trivial way.

π12 = (1, 4, 3, 5, 7, 2, 12, 8, 10, 11, 9, 6),

π13 = (1, 2, 12, 8, 9, 6, 11, 10, 7, 5, 13, 4, 3),

π14 = (1, 2, 12, 9, 6, 4, 3, 13, 8, 7, 5, 10, 14, 11),

π15 = (1, 9, 2, 3, 12, 10, 11, 5, 4, 14, 6, 15, 13, 8, 7),

π16 = (1, 3, 2, 4, 5, 11, 16, 14, 10, 8, 6, 12, 9, 15, 13, 7),

π17 = (1, 3, 2, 4, 5, 9, 15, 6, 12, 16, 11, 10, 14, 13, 8, 7, 17),
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π18 = (1, 3, 2, 4, 6, 5, 7, 13, 8, 14, 12, 16, 10, 18, 17, 9, 11, 15),

π19 = (1, 3, 2, 4, 6, 5, 7, 8, 12, 18, 17, 13, 9, 15, 11, 10, 16, 19, 14),

π20 = (1, 3, 2, 4, 6, 5, 7, 18, 8, 13, 12, 17, 9, 20, 16, 19, 10, 11, 15, 14),

π21 = (1, 3, 2, 4, 6, 5, 7, 17, 8, 20, 16, 9, 12, 18, 15, 13, 19, 21, 11, 14, 10),

π22 = (1, 3, 2, 4, 6, 5, 7, 8, 20, 13, 17, 22, 18, 12, 9, 15, 21, 19, 16, 11, 10, 14),

π23 = (1, 3, 2, 4, 6, 14, 10, 18, 12, 8, 20, 7, 5, 21, 15, 11, 17, 13, 22, 23, 16, 19, 9),

π24 = (1, 3, 2, 4, 6, 14, 10, 18, 12, 8, 5, 9, 21, 11, 24, 16, 20, 22, 17, 15, 13, 19, 23, 7),

π25 = (1, 3, 2, 4, 6, 14, 10, 18, 12, 8, 5, 16, 24, 9, 21, 23, 7, 17, 15, 11, 13, 22, 20, 19, 25),

π26 = (1, 3, 2, 4, 6, 14, 10, 18, 12, 8, 22, 13, 5, 23, 16, 20, 19, 21, 9, 7, 17, 11, 25, 15, 24, 26),

π27 = (1, 3, 2, 4, 6, 14, 10, 18, 12, 8, 22, 13, 9, 5, 11, 21, 23, 16, 26, 19, 25, 27, 17, 15, 24, 20, 7).

2. Proofs

Let Φdif(π), Φcycdif(π), and Φprod(π) denote the three rational functions ex-
pressed in the left-hand side of (1.1), (1.2), and (1.3), respectively. The following
Link lemma is useful for our construction.

Lemma 5 (Link). Let σ ∈ Ss and τ ∈ St be two permutations on {1, 2, . . . , s} and
{1, 2, . . . , t}, respectively, such that σ(s) = s, τ(1) = 1 and Φdif(σ) = Φdif(τ) = 0.
We define the “link” of the two permutations ρ ∈ Ss+t−1 by

ρ(k) =

{
σ(k), if 1 ≤ k ≤ s
s− 1 + τ(k − s+ 1). if s+ 1 ≤ k ≤ s+ t− 1

Then, we have Φdif(ρ) = 0. Furthermore, if τ(t) = t, we have ρ(s+t−1) = s+t−1.

Proof. Notice that in the definition of ρ, if we allow k = s in the second case, the
expression will give the same definition of ρ(s) as in the first case, since σ(s) = s =
s− 1 + τ(1). Hence,

Φdif(ρ) =

s−1∑
k=1

1

ρ(k)− ρ(k + 1)
+

s+t−2∑
k=s

1

ρ(k)− ρ(k + 1)

=

s−1∑
k=1

1

σ(k)− σ(k + 1)
+

t−1∑
k=1

1

τ(k)− τ(k + 1)

= Φdif(σ) + Φdif(τ)

= 0.

Furthermore, if τ(t) = t, it is easy to see that ρ(s+ t− 1) = s+ t− 1. �

Let us write the link ρ of σ and τ by 〈σ, τ〉.
Example. Take σ = (1, 4, 2, 5, 3, 6) and τ = (1, 3, 2, 4). We verify that

Φdif(σ) = −1

3
+

1

2
− 1

3
+

1

2
− 1

3
= 0,

Φdif(τ) = −1

2
+

1

1
− 1

2
= 0.
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We have ρ = 〈σ, τ〉 = (1, 4, 2, 5, 3, 6, 8, 7, 9) and

Φdif(ρ) =

(
−1

3
+

1

2
− 1

3
+

1

2
− 1

3

)
+

(
−1

2
+

1

1
− 1

2

)
= 0.

If τ(t) = t, since the link ρ = 〈σ, τ〉 also satisfies the conditions ρ(s + t − 1) =
s+ t− 1 and Φ(ρ) = 0, we can “link” again and obtain 〈ρ, τ〉 = 〈〈σ, τ〉, τ〉.

The following proposition is a slightly stronger version of Theorem 1(i) for the
rational function Φdif .

Proposition 6. For any integer n > 5, there is a permutation π ∈ Sn such that
π(1) = 1, π(n) = n, and Φdif(π) = 0.

Proof. Let

σ0 = (1, 4, 2, 5, 3, 6),

σ1 = (1, 3, 2, 4),

σ2 = (1, 3, 6, 4, 7, 5, 2, 8),

and τ = σ1 = (1, 3, 2, 4). We have Φdif(σj) = 0 for j = 0, 1, 2, and τ(1) = 1, τ(4) =
4. By repeated application of the link algorithm, we obtain the following three
families of permutations:

(1, 4, 2, 5, 3, 6),

(1, 4, 2, 5, 3, 6 | 8, 7, 9),

(1, 4, 2, 5, 3, 6 | 8, 7, 9 | 11, 10, 12),

...

(1, 3, 2, 4),

(1, 3, 2, 4 | 6, 5, 7),

(1, 3, 2, 4 | 6, 5, 7 | 9, 8, 10),

...

(1, 3, 6, 4, 7, 5, 2, 8),

(1, 3, 6, 4, 7, 5, 2, 8 | 10, 9, 11),

(1, 3, 6, 4, 7, 5, 2, 8 | 10, 9, 11 | 13, 12, 14),

...

of length
n = 6, 9, 12, 15, . . . (3k)

n = 4, 7, 10, 13, . . . (3k + 1)

n = 8, 11, 14, 17 . . . (3k + 2)

Hence we have constructed one permutation π ∈ Sn for each n > 5 such that
Φdif(π) = 0 and π(1) = 1 and π(n) = n. �

The following proposition is another enhanced version of Theorem 1(i) for Φdif ,
which is crucial for proving Theorem 1(ii) for Φcycdif . The difference between Propo-
sitions 6 and 7 lies in the value of π(n).

Proposition 7. For any integer n > 7, there is a permutation π ∈ Sn such that
π(1) = 1, π(n) = n− 1 and Φdif(π) = 0.
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Proof. Let

α8 = (1, 2, 4, 8, 6, 5, 3, 7),

α9 = (1, 4, 2, 5, 9, 3, 7, 6, 8),

α10 = (1, 2, 6, 3, 7, 8, 5, 4, 10, 9),

α11 = (1, 2, 3, 4, 6, 5, 9, 8, 7, 11, 10),

α12 = (1, 2, 3, 6, 4, 8, 12, 10, 9, 7, 5, 11).

We have αj(1) = 1, αj(j) = j − 1, and Φdif(αj) = 0 for j = 8, 9, . . . , 12. The
proposition is true for j = 8, 9, . . . , 12. For n ≥ 13 and k = n − 7 ≥ 6, take the
permutation σ ∈ Sk obtained in Proposition 6, i.e., σ(1) = 1, σ(k) = k,Φdif(σ) = 0.
Then, the link ρ = 〈σ, α8〉 satisfies ρ(1) = 1, ρ(n) = n − 1 and Φdif(ρ) = 0. For
example, for n = 13 and k = 6,

ρ = 〈(1, 4, 2, 5, 3, 6), (1, 2, 4, 8, 6, 5, 3, 7)〉 = (1, 4, 2, 5, 3, 6, 7, 9, 13, 11, 10, 8, 12).

Hence, the proposition is true for any n > 7. �

Now we are ready to prove part (ii) of Theorem 1 for the rational function Φcycdif .

Proof of Theorem 1(ii). If n = 2k is even, we can easily check that the permutation

π = (1, 2, 3, . . . , k − 1, k, 2k, 2k − 1, . . . , k + 3, k + 2, k + 1),

which is obtained by the concatenation of the increasing permutation of Sk and
the decreasing permutation of {j | k + 1 ≤ j ≤ 2k}, satisfies

Φcycdif(π) =

(
−1

1
− 1

1
− · · · − 1

1
− 1

k
+

1

1
+

1

1
+ · · ·+ 1

1

)
+

1

k
= 0.

The odd case is more complicated. First, we define

β9 = (2, 1, 4, 5, 9, 3, 7, 6, 8),

β11 = (1, 2, 11, 5, 4, 8, 7, 9, 3, 6, 10),

β13 = (1, 2, 13, 3, 5, 4, 9, 8, 10, 6, 11, 7, 12).

We have Φcycdif(βj) = 0 for j = 9, 11, 13. Next, for n = 2k+ 1 ≥ 15, i.e., k ≥ 7 and
m = k + 1 ≥ 8, by Propositions 6 and 7, there exist two permutations σ ∈ Sk and
σ ∈ Sm such that

(i) σ(1) = 1, σ(k) = k, and Φdif(σ) = 0;
(ii) τ(1) = 1, τ(m) = m− 1, and Φdif(τ) = 0.
Let τ ′ be the permutation of {j | k + 1 ≤ j ≤ 2k + 1} obtained by adding k in

the reverse of τ :

τ ′ = (k + τ(m), k + τ(m− 1), k + . . . , k + τ(3), k + τ(2), k + τ(1)).

Notice that the first and last elements of τ ′ are k+ τ(m) = 2k and k+ τ(1) = k+ 1,
respectively. Let ρ be the concatenation of σ and τ ′. We can verity that Φdif(τ

′) =
−Φdif(τ) = 0 and

Φcycdif(ρ) = Φdif(σ) +
1

k − 2k
+ Φdif(τ

′) +
1

(k + 1)− 1
= 0.

For example, for n = 15, k = 7 and m = 8, we have σ = (1, 3, 2, 4, 6, 5, 7) and τ =
(1, 2, 4, 8, 6, 5, 3, 7), so that τ ′ = (14, 10, 12, 13, 15, 11, 9, 8). Our final permutation ρ
is the concatenation of σ and τ ′:

ρ = (1, 3, 2, 4, 6, 5, 7, 14, 10, 12, 13, 15, 11, 9, 8).
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We can check that Φcycdif(ρ) = 0. �

To prove part (iii) of Theorem 1 concerning the rational function Φprod, we need
the following lemma. Also, it is much more convenient to describe the construction
in the increasing binary trees model (see, for example, [3, p. 51], [1, p. 143]).

Lemma 8 (Insertion). Let σ = σ(1)σ(2) · · ·σ(n− 1) ∈ Sn−1 be a permutation and
τ ∈ Sn be the permutation obtained by insertion of the letter n into σ:

τ = σ(1) · · ·σ(j)nσ(j + 1) · · ·σ(n− 1). (j = 1, 2, . . . , n− 2)

Then, Φprod(σ) = Φprod(τ) if and only if σ(j) + σ(j + 1) = n.

Proof. We have

Φprod(σ) =

n−2∑
k=1

1

σ(k)σ(k + 1)
= · · ·+ 1

σ(j)σ(j + 1)
+ · · ·

Φprod(τ) =

n−1∑
k=1

1

τ(k)τ(k + 1)
= · · ·+ 1

σ(j)n
+

1

nσ(j + 1)
+ · · ·

= · · ·+ σ(j) + σ(j + 1)

nσ(j)σ(j + 1)
+ · · ·

Hence, Φprod(σ) = Φprod(τ) if and only if

1

σ(j)σ(j + 1)
=
σ(j) + σ(j + 1)

nσ(j)σ(j + 1)
,

i.e., σ(j) + σ(j + 1) = n. �

Now we use the insertion lemma to prove part (iii) of our main theorem.

Proof of Theorem 1(iii). Let

δ6 = (2, 1, 3, 4, 5, 6),

δ7 = (2, 1, 3, 7, 4, 5, 6),

δ8 = (6, 4, 1, 2, 7, 5, 3, 8).

We verify that Φprod(δj) = 1 for j = 6, 7, 8. By insertion lemma, we define σ9 by
inserting the letter 9 between 2 and 7 in σ8:

σ9 = (6, 4, 1, 2,9, 7, 5, 3, 8).

Next, we insert 10 in σ9 between 6 and 4:

σ10 = (6,10, 4, 1, 2, 9, 7, 5, 3, 8).

For the insertion of 11, we have two possible positions, namely, between (2, 9) and
(3, 8). We choose the position (2, 9) and define

σ11 = (6, 10, 4, 1, 2,11, 9, 7, 5, 3, 8).

The crucial idea is to show that this kind of insertion can be repeatedly applied as
many times as we want, starting from σ8. Thus, we obtain the desired permutation
σn ∈ Sn for each n ≥ 8. To understand the general pattern, we take a rather big
example with n = 32. Our permutation δ32 is as follows:

δ32 = (6, 16, 10, 24, 14, 32, 18, 22, 26, 30, 4, 1, 2,

31, 29, 27, 25, 23, 21, 19, 17, 15, 28, 13, 11, 20, 9, 7, 12, 5, 3, 8),
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Figure 1. The increasing binary tree for δ32

which can be represented by the increasing binary tree (see, for example, [3, p. 51],
[1, p. 143]) in Figure 1. We see that the nodes of the form 2k+ 1, 4k+ 2, 8k, 8k+ 4
all appear in the tree structure. Hence, the insertion can be repeatedly applied to
reach each δn for n ≥ 8. �

As proved in Theorem 1, for any integer n > 5, there is a permutation π ∈ Sn

such that Φdif(π) = 0. For a permutation π, the value of Φdif(π) is, a priori, a
rational number. Theorem 2 provides a full characterization of the integer values
of the rational function Φdif .

Proof of Theorem 2. In fact, we need to prove a stronger statement by replacing
each Vn in the theorem by
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(2.1) V ′n =

{
n−1∑
k=1

1

π(k)− π(k + 1)
: π ∈ Sn, π(n) = n

}
.

It is easy to see that n− 1 ∈ V ′n by taking the identity permutation (1, 2, . . . n).
Also, the maximal value of Φdif(π) is n − 1, so that m 6∈ Vn for m ≥ n. We can
check by computer for all n ≤ 6. If n ≥ 7, we prove by induction on n. First, 0 ∈ V ′n
by Proposition 6. Next, for 1 ≤ m ≤ n− 3, by the induction hypothesis, there is a
permutation τ ∈ Sn−1 such that τ(n− 1) = n− 1 and Φdif(τ) = m− 1. We define

π = (τ(1), τ(2), . . . , τ(n− 1), n).

We verify that Φdif(π) = 1 + Φdif(τ) = m. Finally, for each σ ∈ Sn which is not
the identity permutation, we see that there exists at least one negative term in the
summation (1.1). Hence Φdif(σ) < n− 2, and n− 2 6∈ Vn. �

For n = 1, 2, . . . and k = 0, 1, . . . , n−1, let η(n, k) be the number of permutations
π ∈ Sn satisfying

n−1∑
k=1

1

π(k)− π(k + 1)
= k.

We list the first values of η(n, k) in the following table.

n \ k 0 1 2 3 4 5 6 7 8 9 10 11
1 1
2 0 1
3 0 0 1
4 2 2 0 1
5 0 3 4 0 1
6 12 16 3 6 0 1
7 18 44 38 8 8 0 1
8 348 339 136 73 11 10 0 1
9 906 1284 802 264 112 18 12 0 1
10 9740 8112 4081 1974 448 181 27 14 0 1
11 40992 44462 28028 10695 3754 842 212 14 16 0 1
12 376976 340032 178236 81037 25266 6548 1272 288 24 18 0 1
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