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ON THE EXISTENCE OF PERMUTATIONS CONDITIONED BY
CERTAIN RATIONAL FUNCTIONS

GUO-NIU HAN

(Communicated by Zhi-Wei Sun)

ABSTRACT. We prove several conjectures made by Z.-W. Sun on the existence
of permutations conditioned by certain rational functions. Furthermore, we
fully characterize all integer values of the “inverse difference” rational func-
tion. Our proofs consist of both investigation of the mathematical properties
of the rational functions and brute-force attack by computer for finding special
permutations.

1. INTRODUCTION

Permutations (see, for example, [1, 3]) are studied in almost every branch of
mathematics and also in computer science. The number of permutations m =
(r(1),7(2),...,m(n)) € &, of {1,2,...,n} is n!l. In [4] Z.-W. Sun made several
conjectures about the existence of permutations conditioned by certain rational
functions. In the paper we confirm three of them by proving the following theorem.

Theorem 1. (i) For any integer n > 5, there is a permutation € &,, such that

n—1
1
1.1 ——F— =0.
(L.1) ;ﬂ(k)—ﬂ'(k—f—l)
(ii) For any integer n > 7, there is a permutation ™ € &,, such that

1
+ =0.

n—1 1
(1.2) ; m(k) —n(k+1)  w(n)—=(1)

(iil) For any integer n > 5, there is a permutation m € &, such that

n—1 1 B
(13) D)

B
Il

Since n! is a huge number for large n, the generation of all n! permutations of n
by computer is already a challenge [2]. For this reason (1.1)-(1.3) have only been
verified for very small n. Our proof of Theorem 1 consists of both investigation
of the mathematical properties of the rational functions and brute-force attack by
computer for finding certain special permutations.
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Furthermore, we can fully characterize all integer values of the “inverse differ-
ence” rational function given in the left-hand side of (1.1). We define

n—1 1
(1.4) Vnz{zw(k)_ﬁwzween}.

k=1
Since a € V,, implies —a € V,, by the reverse of permutation, we only need to study
the nonnegative integer values of V;,. For example, n = 5, the value set V5 contains
the following nonnegative rational numbers:

11111723 7431971128, 1311,
1276747372712737477767372712°4°6712°77 67 4"

We see that there are three integers 1, 2,4 in the above list.
Theorem 2. We have Vs NN = {2}, Vs NN = {1,2,4}, and for n # 3,5,
(1.5) VoNN={0<j<n—-1]|j#n-—2}
The proofs of Theorems 1 and 2 will be given in Section 2. Notice that we are

still not able to prove three other conjectures of Sun. Let us reproduce them below
for interested readers.

Conjecture 3. (i) [4, Conj. 4.7(ii)] For any integer n > 6, there is a permutation
m € &, such that

n—1

1
1.6 — =1.
(16) ;Tr(k)-l—ﬂ'(k-f—l)
Also, for any integer n > 7, there is a permutation m € &,, such that
n—1
1 1
1.7 + =1.
(L7) kz::l wk)+n(k+1)  7w(n)+x(1)

(i1) [4, Conj. 4.8(ii)] For any integer n > 7, there is a permutation m € &,, such
that

M |

(18) Pt 2 —n( k—i— 2~

Motivated by (1.8), we make the following conjecture.

Conjecture 4. For any integer n > 11, there is a permutation m € &,, such that

— 1
(19) ; Tt e ar =

Conjecture 4 has been checked for 11 < n < 28 by computer. We list below the
permutations satisfying (1.9), which are found by our computer program in a highly
non-trivial way.

T2 = (1,4,3,5,7,2,12,8,10,11,9,6),

ms = (1,2,12,8,9,6,11,10,7,5,13,4, 3),

ma = (1,2,12,9,6,4,3,13,8,7,5,10,14, 11),

ms = (1,9,2,3,12,10,11,5,4, 14,6, 15, 13,8, 7),
=(1,3,2,4,5,11,16,14,10,8,6,12,9, 15,13, 7),

mr = (1,3,2,4,5,9,15,6,12,16,11,10, 14, 13,8,7,17),
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ms = (1,3,2,4,6,5,7,13,8, 14, 12, 16,10, 18,17,9, 11, 15),

mo = (1,3,2,4,6,5,7,8,12,18,17,13,9,15,11, 10, 16, 19, 14),

m20 = (1,3,2,4,6,5,7,18,8,13,12,17,9,20, 16,19, 10, 11, 15, 14),

T = (1,3,2,4,6,5,7,17,8,20, 16,9, 12, 18, 15, 13,19, 21,11, 14, 10),

T2 = (1,3,2,4,6,5,7,8,20,13,17,22,18,12,9, 15,21, 19, 16, 11, 10, 14),

T3 = (1,3,2,4,6,14,10,18,12,8,20,7,5,21, 15,11, 17, 13,22, 23, 16, 19, 9),
(1,3,2,4,6,14,10,18,12,8,5,9,21, 11,24, 16, 20, 22,17, 15,13, 19, 23,7),

mas = (1,3,2,4,6,14,10,18,12,8,5,16,24,9, 21,23, 7,17,15, 11, 13,22, 20, 19, 25),

m6 = (1,3,2,4,6,14,10,18,12,8,22, 13,5, 23, 16,20, 19,21,9, 7,17, 11, 25, 15, 24, 26),
=(1,3,2,4,6,14,10,18,12,8,22, 13,9, 5, 11,21, 23, 16, 26, 19, 25,27, 17, 15, 24, 20, 7).

2. PROOFS

Let ®gir(m), Poyedif(m), and Pproa(m) denote the three rational functions ex-
pressed in the left-hand side of (1.1), (1.2), and (1.3), respectively. The following
Link lemma is useful for our construction.

Lemma 5 (Link). Let 0 € &4 and 7 € &; be two permutations on {1,2,...,s} and
{1,2,...,t}, respectively, such that o(s) = s,7(1) = 1 and Pgir(c) = Pair(7) = 0.
We define the “link” of the two permutations p € Gsyy—1 by

(k) = a(k), if1<k<s
P = sl r(k—s+1). ifs+1<k<st+t—1
Then, we have @q4it(p) = 0. Furthermore, if T(t) = t, we have p(s+t—1) = s+t—1.

Proof. Notice that in the definition of p, if we allow k£ = s in the second case, the
expression will give the same definition of p(s) as in the first case, since o(s) = s =
s —1+47(1). Hence,

s—1 s+t—
Dat(p) =Y ——— —
ait(p) 2 p(k) — k+ 1) Z:: k 1)
B i 1 . — 1
Pt olk)—o(k+1) — 7(k) —1(k+1)
= ai(0) + Pait (7)
=0.
Furthermore, if 7(¢) = t, it is easy to see that p(s+t—1)=s+¢— 1. O

Let us write the link p of o and 7 by (o, 7).
Example. Take 0 = (1,4,2,5,3,6) and 7 = (1,3,2,4). We verify that
1 1 1 1 1
Buit(0) = —5 + = — =+ —2 =0,
at(@)=-3+5-37373
1 1 1
Buip(r) = ==+~ — =
at(M)=—3+7-3=0
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We have p = (o, 7) = (1,4,2,5,3,6,8,7,9) and

1 1 1 1 1 1 1 1
‘I’dif<P)—(‘3+2‘3+2‘3>+<‘2+1‘2>—0'

If 7(t) = t, since the link p = (o, 7) also satisfies the conditions p(s +t — 1) =
s+t—1and ®(p) =0, we can “link” again and obtain (p, ) = ({0, 7), 7).

The following proposition is a slightly stronger version of Theorem 1(i) for the
rational function ®g;¢.

Proposition 6. For any integer n > 5, there is a permutation m € &,, such that
w(1) =1,7(n) =n, and Pgit(m) = 0.
Proof. Let

0o = (15 47 27 57 33 6)7

g1 = (]-7 37 27 4)7

g9 = (17 37 67 4a 7) 57 27 8)a
and 7 = 01 = (1,3,2,4). We have ®qi¢(c;) =0 for 7 =0,1,2, and 7(1) = 1,7(4) =
4. By repeated application of the link algorithm, we obtain the following three
families of permutations:

(174’ 2) 5737 6)’
(1,4,2,5,3,6 | 8,7,9),
(1,4,2,5,3,6 | 8,7,9| 11,10, 12),

(1,3,2,4),
(1,3,2,46,5,7),
(1,3,2,4]6,5,7]9,8,10),

(1,3,6,4,7,5,2,8),
(1,3,6,4,7,5,2,8 | 10,9,11),
(1,3,6,4,7,5,2,8 | 10,9,11 | 13,12, 14),

of length

n==6,9,12,15,... (3k)

n=4,7,10,13,... (3k+1)

n=28,11,14,17... (3k + 2)
Hence we have constructed one permutation 7 € &,, for each n > 5 such that
Bgis(m) = 0 and w(1) =1 and 7(n) = n. O

The following proposition is another enhanced version of Theorem 1(i) for ®gs,
which is crucial for proving Theorem 1(ii) for ®cycqit. The difference between Propo-
sitions 6 and 7 lies in the value of m(n).

Proposition 7. For any integer n > 7, there is a permutation m € &,, such that
m(l) =1,7(n) =n —1 and Pgi(m) = 0.
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Proof. Let
=(1,2,4,8,6,5,3,7),
=(1,4,2,5,9,3,7,6,8),
a0 = (1,2,6,3,7,8,5,4,10,9),
an = (1,2,3,4,6,5,9,8,7,11, 10),
a1z = (1,2,3,6,4,8,12,10,9,7,5,11).
We have (1) = 1, o;(j) = j — 1, and Pgir(ej) = 0 for j = 8,9,...,12. The
proposition is true for j = 8,9,...,12. For n > 13 and k = n — 7 > 6, take the
permutation o € & obtained in Proposition 6, i.e., 0(1) = 1,0(k) = k, ®gir(0) = 0.
Then, the link p = (0, as) satisfies p(1) = 1,p(n) = n — 1 and Pqi¢(p) = 0. For
example, for n = 13 and k = 6,
p=1((1,4,2,5,3,6),(1,2,4,8,6,5,3,7)) = (1,4,2,5,3,6,7,9,13,11, 10, 8, 12).
Hence, the proposition is true for any n > 7. (|

Now we are ready to prove part (ii) of Theorem 1 for the rational function ®cycait-

Proof of Theorem 1(ii). If n = 2k is even, we can easily check that the permutation
=(1,2,3,... k—1,k2k2k—1,.. . k+3k+2k+1),
which is obtained by the concatenation of the increasing permutation of &; and
the decreasing permutation of {j | k + 1 < j < 2k}, satisfies
1 1 1 1 1 1 1 1
(I)CYCdif(Tr):< ___________ ++++1>+k‘:0

The odd case is more complicated. First, we define
59 = (23 13 47 57 97 33 73 67 8)7
ﬂll = (]-7 21 ]-17 57 47 87 77 97 37 67 10)7
By = (1,2,13,3,5,4,9,8,10,6,11,7,12).
We have ®cycair(f;) = 0 for j =9,11,13. Next, for n =2k+1>15,1e., k> 7 and
m =k + 1> 8, by Propositions 6 and 7, there exist two permutations ¢ € G and
o € G,, such that
(i) o(1) =1, o(k) = k, and Pgis(c) = 0;
(ii) 7(1) = 1, 7(m) = m — 1, and ®g;¢(7) = 0.
Let 7/ be the permutation of {j | K+ 1 < j < 2k + 1} obtained by adding k in
the reverse of T:
=(k+7(m),k+7(m—-1),k+...,k+703),k+7(2),k+7(1)).
Notice that the first and last elements of 7" are k+7(m) = 2k and k+7(1) = k+1,
respectively. Let p be the concatenation of o and 7/. We can verity that ®q;¢(7) =
7q)dif(7—) =0 and
+ ®git(17) + 7—— = 0.

q)cycdif(p) = (I)dif( ) k— 9%k (k + 1) -1

For example, for n = 15, k = 7 and m = 8, we have o = (1,3,2,4,6,5,7) and 7 =
(1,2,4,8,6,5,3,7), so that 7" = (14, 10,12,13,15,11,9,8). Our final permutation p
is the concatenation of o and 7':

p=(1,3,2,4,6,57, 14,10,12,13,15,11,9,8).

1
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We can check that ®cycqie(p) = 0. O

To prove part (iii) of Theorem 1 concerning the rational function ®p.0q, we need
the following lemma. Also, it is much more convenient to describe the construction
in the increasing binary trees model (see, for example, [3, p. 51], [1, p. 143]).

Lemma 8 (Insertion). Let o0 = o(1)o(2)---o(n—1) € &,_1 be a permutation and
T € &, be the permutation obtained by insertion of the letter n into o:

T=0()---0()no(j+1)---o(n-1). (j=12,....,n—2)
Then, Pprod(0) = Pprod(T) if and only if o(j) +o(j + 1) =n.
Proof. We have

- 1
Zl k+1) ey T
n—1 1 1 1
¢mmﬁﬁz:‘jgﬁgﬁgz”“+dﬁn+nag+1y+
o) +a+1)

ool D)
Hence, ®proa(0) = Pproa(7) if and only if
1 o(j)+o(j+1)
o(No(i+ 1) no(o(G+1)’
ie,o(j)+o(j+1)=n. O

Now we use the insertion lemma to prove part (iii) of our main theorem.

Proof of Theorem 1(iii). Let

d¢ = (2,1,3,4,5,6),

o7 =(2,1,3,7,4,5,6),

bs = (6,4,1,2,7,5,3,8).
We verify that ®p0a(d;) = 1 for j = 6,7,8. By insertion lemma, we define og by
inserting the letter 9 between 2 and 7 in og:

oo = (6,4,1,2,9,7,5,3,8).
Next, we insert 10 in og between 6 and 4:
o10 = (6,10,4,1,2,9,7,5,3,8).

For the insertion of 11, we have two possible positions, namely, between (2,9) and
(3,8). We choose the position (2,9) and define

o1 = (6,10,4,1,2,11,9,7,5,3,8).

The crucial idea is to show that this kind of insertion can be repeatedly applied as
many times as we want, starting from og. Thus, we obtain the desired permutation
on € 6, for each n > 8. To understand the general pattern, we take a rather big
example with n = 32. Our permutation d35 is as follows:

835 = (6,16, 10,24, 14, 32, 18,22, 26,30, 4, 1, 2,
31,29,27,25,23,21,19,17, 15,28, 13,11,20,9,7, 12,5, 3, 8),
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F1cURE 1. The increasing binary tree for d32

which can be represented by the increasing binary tree (see, for example, [3, p. 51],
[1, p. 143]) in Figure 1. We see that the nodes of the form 2k + 1,4k + 2,8k, 8k + 4
all appear in the tree structure. Hence, the insertion can be repeatedly applied to
reach each §,, for n > 8. O

As proved in Theorem 1, for any integer n > 5, there is a permutation m € &,,
such that ®g;¢(m) = 0. For a permutation 7, the value of ®gi¢(7) is, a priori, a
rational number. Theorem 2 provides a full characterization of the integer values
of the rational function Pg;¢.

Proof of Theorem 2. In fact, we need to prove a stronger statement by replacing
each V,, in the theorem by
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, n—1 1 . B
(2.1) V) = ];—w(k)—w(k+l)'ﬁEGn’ﬂ-(n)_n

It is easy to see that n — 1 € V! by taking the identity permutation (1,2,...n).
Also, the maximal value of ®gi¢(7) is n — 1, so that m ¢ V,, for m > n. We can
check by computer for all n < 6. If n > 7, we prove by induction on n. First, 0 € V!
by Proposition 6. Next, for 1 < m < n — 3, by the induction hypothesis, there is a
permutation 7 € &,,_1 such that 7(n — 1) =n — 1 and Pg;¢(7) = m — 1. We define

m=(r(1),7(2),...,7(n—1),n).

We verify that ®gis(7) = 1 + ®gis(7) = m. Finally, for each o € &,, which is not
the identity permutation, we see that there exists at least one negative term in the
summation (1.1). Hence @gir(0) <n—2,and n—2 ¢ V,,.

Forn=1,2,...and k =0,1,...,n—1, let n(n, k) be the number of permutations

m € G, satisfying

n—1 1
kZ: (k) —mw(k+1)

=1
We list the first values of n(n, k) in the following table.

n\k 0 1 2 3 4 5
1 1
2 0 1
3 0 0 1
4 2 2 0 1
5 0 3 4 0 1
6 12 16 3 6 0 1
7 18 14 38 8 8 0
8 348 339 136 73 11 10
9 906 1284 802 264 112 18
10 9740 8112 4081 1974 448 181
11 40992 44462 28028 10695 3754 842
12 376976 340032 178236 81037 25266 6548
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